| #include "cache.h" | |
| #include "config.h" | |
| #include "notes.h" | |
| #include "blob.h" | |
| #include "tree.h" | |
| #include "utf8.h" | |
| #include "strbuf.h" | |
| #include "tree-walk.h" | |
| #include "string-list.h" | |
| #include "refs.h" | |
| /* | |
| * Use a non-balancing simple 16-tree structure with struct int_node as | |
| * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a | |
| * 16-array of pointers to its children. | |
| * The bottom 2 bits of each pointer is used to identify the pointer type | |
| * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL) | |
| * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node * | |
| * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node * | |
| * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node * | |
| * | |
| * The root node is a statically allocated struct int_node. | |
| */ | |
| struct int_node { | |
| void *a[16]; | |
| }; | |
| /* | |
| * Leaf nodes come in two variants, note entries and subtree entries, | |
| * distinguished by the LSb of the leaf node pointer (see above). | |
| * As a note entry, the key is the SHA1 of the referenced object, and the | |
| * value is the SHA1 of the note object. | |
| * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the | |
| * referenced object, using the last byte of the key to store the length of | |
| * the prefix. The value is the SHA1 of the tree object containing the notes | |
| * subtree. | |
| */ | |
| struct leaf_node { | |
| struct object_id key_oid; | |
| struct object_id val_oid; | |
| }; | |
| /* | |
| * A notes tree may contain entries that are not notes, and that do not follow | |
| * the naming conventions of notes. There are typically none/few of these, but | |
| * we still need to keep track of them. Keep a simple linked list sorted alpha- | |
| * betically on the non-note path. The list is populated when parsing tree | |
| * objects in load_subtree(), and the non-notes are correctly written back into | |
| * the tree objects produced by write_notes_tree(). | |
| */ | |
| struct non_note { | |
| struct non_note *next; /* grounded (last->next == NULL) */ | |
| char *path; | |
| unsigned int mode; | |
| struct object_id oid; | |
| }; | |
| #define PTR_TYPE_NULL 0 | |
| #define PTR_TYPE_INTERNAL 1 | |
| #define PTR_TYPE_NOTE 2 | |
| #define PTR_TYPE_SUBTREE 3 | |
| #define GET_PTR_TYPE(ptr) ((uintptr_t) (ptr) & 3) | |
| #define CLR_PTR_TYPE(ptr) ((void *) ((uintptr_t) (ptr) & ~3)) | |
| #define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type))) | |
| #define GET_NIBBLE(n, sha1) (((sha1[(n) >> 1]) >> ((~(n) & 0x01) << 2)) & 0x0f) | |
| #define KEY_INDEX (GIT_SHA1_RAWSZ - 1) | |
| #define FANOUT_PATH_SEPARATORS ((GIT_SHA1_HEXSZ / 2) - 1) | |
| #define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \ | |
| (memcmp(key_sha1, subtree_sha1, subtree_sha1[KEY_INDEX])) | |
| struct notes_tree default_notes_tree; | |
| static struct string_list display_notes_refs = STRING_LIST_INIT_NODUP; | |
| static struct notes_tree **display_notes_trees; | |
| static void load_subtree(struct notes_tree *t, struct leaf_node *subtree, | |
| struct int_node *node, unsigned int n); | |
| /* | |
| * Search the tree until the appropriate location for the given key is found: | |
| * 1. Start at the root node, with n = 0 | |
| * 2. If a[0] at the current level is a matching subtree entry, unpack that | |
| * subtree entry and remove it; restart search at the current level. | |
| * 3. Use the nth nibble of the key as an index into a: | |
| * - If a[n] is an int_node, recurse from #2 into that node and increment n | |
| * - If a matching subtree entry, unpack that subtree entry (and remove it); | |
| * restart search at the current level. | |
| * - Otherwise, we have found one of the following: | |
| * - a subtree entry which does not match the key | |
| * - a note entry which may or may not match the key | |
| * - an unused leaf node (NULL) | |
| * In any case, set *tree and *n, and return pointer to the tree location. | |
| */ | |
| static void **note_tree_search(struct notes_tree *t, struct int_node **tree, | |
| unsigned char *n, const unsigned char *key_sha1) | |
| { | |
| struct leaf_node *l; | |
| unsigned char i; | |
| void *p = (*tree)->a[0]; | |
| if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) { | |
| l = (struct leaf_node *) CLR_PTR_TYPE(p); | |
| if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_oid.hash)) { | |
| /* unpack tree and resume search */ | |
| (*tree)->a[0] = NULL; | |
| load_subtree(t, l, *tree, *n); | |
| free(l); | |
| return note_tree_search(t, tree, n, key_sha1); | |
| } | |
| } | |
| i = GET_NIBBLE(*n, key_sha1); | |
| p = (*tree)->a[i]; | |
| switch (GET_PTR_TYPE(p)) { | |
| case PTR_TYPE_INTERNAL: | |
| *tree = CLR_PTR_TYPE(p); | |
| (*n)++; | |
| return note_tree_search(t, tree, n, key_sha1); | |
| case PTR_TYPE_SUBTREE: | |
| l = (struct leaf_node *) CLR_PTR_TYPE(p); | |
| if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_oid.hash)) { | |
| /* unpack tree and resume search */ | |
| (*tree)->a[i] = NULL; | |
| load_subtree(t, l, *tree, *n); | |
| free(l); | |
| return note_tree_search(t, tree, n, key_sha1); | |
| } | |
| /* fall through */ | |
| default: | |
| return &((*tree)->a[i]); | |
| } | |
| } | |
| /* | |
| * To find a leaf_node: | |
| * Search to the tree location appropriate for the given key: | |
| * If a note entry with matching key, return the note entry, else return NULL. | |
| */ | |
| static struct leaf_node *note_tree_find(struct notes_tree *t, | |
| struct int_node *tree, unsigned char n, | |
| const unsigned char *key_sha1) | |
| { | |
| void **p = note_tree_search(t, &tree, &n, key_sha1); | |
| if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) { | |
| struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p); | |
| if (!hashcmp(key_sha1, l->key_oid.hash)) | |
| return l; | |
| } | |
| return NULL; | |
| } | |
| /* | |
| * How to consolidate an int_node: | |
| * If there are > 1 non-NULL entries, give up and return non-zero. | |
| * Otherwise replace the int_node at the given index in the given parent node | |
| * with the only NOTE entry (or a NULL entry if no entries) from the given | |
| * tree, and return 0. | |
| */ | |
| static int note_tree_consolidate(struct int_node *tree, | |
| struct int_node *parent, unsigned char index) | |
| { | |
| unsigned int i; | |
| void *p = NULL; | |
| assert(tree && parent); | |
| assert(CLR_PTR_TYPE(parent->a[index]) == tree); | |
| for (i = 0; i < 16; i++) { | |
| if (GET_PTR_TYPE(tree->a[i]) != PTR_TYPE_NULL) { | |
| if (p) /* more than one entry */ | |
| return -2; | |
| p = tree->a[i]; | |
| } | |
| } | |
| if (p && (GET_PTR_TYPE(p) != PTR_TYPE_NOTE)) | |
| return -2; | |
| /* replace tree with p in parent[index] */ | |
| parent->a[index] = p; | |
| free(tree); | |
| return 0; | |
| } | |
| /* | |
| * To remove a leaf_node: | |
| * Search to the tree location appropriate for the given leaf_node's key: | |
| * - If location does not hold a matching entry, abort and do nothing. | |
| * - Copy the matching entry's value into the given entry. | |
| * - Replace the matching leaf_node with a NULL entry (and free the leaf_node). | |
| * - Consolidate int_nodes repeatedly, while walking up the tree towards root. | |
| */ | |
| static void note_tree_remove(struct notes_tree *t, | |
| struct int_node *tree, unsigned char n, | |
| struct leaf_node *entry) | |
| { | |
| struct leaf_node *l; | |
| struct int_node *parent_stack[GIT_SHA1_RAWSZ]; | |
| unsigned char i, j; | |
| void **p = note_tree_search(t, &tree, &n, entry->key_oid.hash); | |
| assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */ | |
| if (GET_PTR_TYPE(*p) != PTR_TYPE_NOTE) | |
| return; /* type mismatch, nothing to remove */ | |
| l = (struct leaf_node *) CLR_PTR_TYPE(*p); | |
| if (oidcmp(&l->key_oid, &entry->key_oid)) | |
| return; /* key mismatch, nothing to remove */ | |
| /* we have found a matching entry */ | |
| oidcpy(&entry->val_oid, &l->val_oid); | |
| free(l); | |
| *p = SET_PTR_TYPE(NULL, PTR_TYPE_NULL); | |
| /* consolidate this tree level, and parent levels, if possible */ | |
| if (!n) | |
| return; /* cannot consolidate top level */ | |
| /* first, build stack of ancestors between root and current node */ | |
| parent_stack[0] = t->root; | |
| for (i = 0; i < n; i++) { | |
| j = GET_NIBBLE(i, entry->key_oid.hash); | |
| parent_stack[i + 1] = CLR_PTR_TYPE(parent_stack[i]->a[j]); | |
| } | |
| assert(i == n && parent_stack[i] == tree); | |
| /* next, unwind stack until note_tree_consolidate() is done */ | |
| while (i > 0 && | |
| !note_tree_consolidate(parent_stack[i], parent_stack[i - 1], | |
| GET_NIBBLE(i - 1, entry->key_oid.hash))) | |
| i--; | |
| } | |
| /* | |
| * To insert a leaf_node: | |
| * Search to the tree location appropriate for the given leaf_node's key: | |
| * - If location is unused (NULL), store the tweaked pointer directly there | |
| * - If location holds a note entry that matches the note-to-be-inserted, then | |
| * combine the two notes (by calling the given combine_notes function). | |
| * - If location holds a note entry that matches the subtree-to-be-inserted, | |
| * then unpack the subtree-to-be-inserted into the location. | |
| * - If location holds a matching subtree entry, unpack the subtree at that | |
| * location, and restart the insert operation from that level. | |
| * - Else, create a new int_node, holding both the node-at-location and the | |
| * node-to-be-inserted, and store the new int_node into the location. | |
| */ | |
| static int note_tree_insert(struct notes_tree *t, struct int_node *tree, | |
| unsigned char n, struct leaf_node *entry, unsigned char type, | |
| combine_notes_fn combine_notes) | |
| { | |
| struct int_node *new_node; | |
| struct leaf_node *l; | |
| void **p = note_tree_search(t, &tree, &n, entry->key_oid.hash); | |
| int ret = 0; | |
| assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */ | |
| l = (struct leaf_node *) CLR_PTR_TYPE(*p); | |
| switch (GET_PTR_TYPE(*p)) { | |
| case PTR_TYPE_NULL: | |
| assert(!*p); | |
| if (is_null_oid(&entry->val_oid)) | |
| free(entry); | |
| else | |
| *p = SET_PTR_TYPE(entry, type); | |
| return 0; | |
| case PTR_TYPE_NOTE: | |
| switch (type) { | |
| case PTR_TYPE_NOTE: | |
| if (!oidcmp(&l->key_oid, &entry->key_oid)) { | |
| /* skip concatenation if l == entry */ | |
| if (!oidcmp(&l->val_oid, &entry->val_oid)) | |
| return 0; | |
| ret = combine_notes(l->val_oid.hash, | |
| entry->val_oid.hash); | |
| if (!ret && is_null_oid(&l->val_oid)) | |
| note_tree_remove(t, tree, n, entry); | |
| free(entry); | |
| return ret; | |
| } | |
| break; | |
| case PTR_TYPE_SUBTREE: | |
| if (!SUBTREE_SHA1_PREFIXCMP(l->key_oid.hash, | |
| entry->key_oid.hash)) { | |
| /* unpack 'entry' */ | |
| load_subtree(t, entry, tree, n); | |
| free(entry); | |
| return 0; | |
| } | |
| break; | |
| } | |
| break; | |
| case PTR_TYPE_SUBTREE: | |
| if (!SUBTREE_SHA1_PREFIXCMP(entry->key_oid.hash, l->key_oid.hash)) { | |
| /* unpack 'l' and restart insert */ | |
| *p = NULL; | |
| load_subtree(t, l, tree, n); | |
| free(l); | |
| return note_tree_insert(t, tree, n, entry, type, | |
| combine_notes); | |
| } | |
| break; | |
| } | |
| /* non-matching leaf_node */ | |
| assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE || | |
| GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE); | |
| if (is_null_oid(&entry->val_oid)) { /* skip insertion of empty note */ | |
| free(entry); | |
| return 0; | |
| } | |
| new_node = (struct int_node *) xcalloc(1, sizeof(struct int_node)); | |
| ret = note_tree_insert(t, new_node, n + 1, l, GET_PTR_TYPE(*p), | |
| combine_notes); | |
| if (ret) | |
| return ret; | |
| *p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL); | |
| return note_tree_insert(t, new_node, n + 1, entry, type, combine_notes); | |
| } | |
| /* Free the entire notes data contained in the given tree */ | |
| static void note_tree_free(struct int_node *tree) | |
| { | |
| unsigned int i; | |
| for (i = 0; i < 16; i++) { | |
| void *p = tree->a[i]; | |
| switch (GET_PTR_TYPE(p)) { | |
| case PTR_TYPE_INTERNAL: | |
| note_tree_free(CLR_PTR_TYPE(p)); | |
| /* fall through */ | |
| case PTR_TYPE_NOTE: | |
| case PTR_TYPE_SUBTREE: | |
| free(CLR_PTR_TYPE(p)); | |
| } | |
| } | |
| } | |
| /* | |
| * Convert a partial SHA1 hex string to the corresponding partial SHA1 value. | |
| * - hex - Partial SHA1 segment in ASCII hex format | |
| * - hex_len - Length of above segment. Must be multiple of 2 between 0 and 40 | |
| * - sha1 - Partial SHA1 value is written here | |
| * - sha1_len - Max #bytes to store in sha1, Must be >= hex_len / 2, and < 20 | |
| * Returns -1 on error (invalid arguments or invalid SHA1 (not in hex format)). | |
| * Otherwise, returns number of bytes written to sha1 (i.e. hex_len / 2). | |
| * Pads sha1 with NULs up to sha1_len (not included in returned length). | |
| */ | |
| static int get_oid_hex_segment(const char *hex, unsigned int hex_len, | |
| unsigned char *oid, unsigned int oid_len) | |
| { | |
| unsigned int i, len = hex_len >> 1; | |
| if (hex_len % 2 != 0 || len > oid_len) | |
| return -1; | |
| for (i = 0; i < len; i++) { | |
| unsigned int val = (hexval(hex[0]) << 4) | hexval(hex[1]); | |
| if (val & ~0xff) | |
| return -1; | |
| *oid++ = val; | |
| hex += 2; | |
| } | |
| for (; i < oid_len; i++) | |
| *oid++ = 0; | |
| return len; | |
| } | |
| static int non_note_cmp(const struct non_note *a, const struct non_note *b) | |
| { | |
| return strcmp(a->path, b->path); | |
| } | |
| /* note: takes ownership of path string */ | |
| static void add_non_note(struct notes_tree *t, char *path, | |
| unsigned int mode, const unsigned char *sha1) | |
| { | |
| struct non_note *p = t->prev_non_note, *n; | |
| n = (struct non_note *) xmalloc(sizeof(struct non_note)); | |
| n->next = NULL; | |
| n->path = path; | |
| n->mode = mode; | |
| hashcpy(n->oid.hash, sha1); | |
| t->prev_non_note = n; | |
| if (!t->first_non_note) { | |
| t->first_non_note = n; | |
| return; | |
| } | |
| if (non_note_cmp(p, n) < 0) | |
| ; /* do nothing */ | |
| else if (non_note_cmp(t->first_non_note, n) <= 0) | |
| p = t->first_non_note; | |
| else { | |
| /* n sorts before t->first_non_note */ | |
| n->next = t->first_non_note; | |
| t->first_non_note = n; | |
| return; | |
| } | |
| /* n sorts equal or after p */ | |
| while (p->next && non_note_cmp(p->next, n) <= 0) | |
| p = p->next; | |
| if (non_note_cmp(p, n) == 0) { /* n ~= p; overwrite p with n */ | |
| assert(strcmp(p->path, n->path) == 0); | |
| p->mode = n->mode; | |
| oidcpy(&p->oid, &n->oid); | |
| free(n); | |
| t->prev_non_note = p; | |
| return; | |
| } | |
| /* n sorts between p and p->next */ | |
| n->next = p->next; | |
| p->next = n; | |
| } | |
| static void load_subtree(struct notes_tree *t, struct leaf_node *subtree, | |
| struct int_node *node, unsigned int n) | |
| { | |
| struct object_id object_oid; | |
| unsigned int prefix_len; | |
| void *buf; | |
| struct tree_desc desc; | |
| struct name_entry entry; | |
| int len, path_len; | |
| unsigned char type; | |
| struct leaf_node *l; | |
| buf = fill_tree_descriptor(&desc, subtree->val_oid.hash); | |
| if (!buf) | |
| die("Could not read %s for notes-index", | |
| oid_to_hex(&subtree->val_oid)); | |
| prefix_len = subtree->key_oid.hash[KEY_INDEX]; | |
| assert(prefix_len * 2 >= n); | |
| memcpy(object_oid.hash, subtree->key_oid.hash, prefix_len); | |
| while (tree_entry(&desc, &entry)) { | |
| path_len = strlen(entry.path); | |
| len = get_oid_hex_segment(entry.path, path_len, | |
| object_oid.hash + prefix_len, GIT_SHA1_RAWSZ - prefix_len); | |
| if (len < 0) | |
| goto handle_non_note; /* entry.path is not a SHA1 */ | |
| len += prefix_len; | |
| /* | |
| * If object SHA1 is complete (len == 20), assume note object | |
| * If object SHA1 is incomplete (len < 20), and current | |
| * component consists of 2 hex chars, assume note subtree | |
| */ | |
| if (len <= GIT_SHA1_RAWSZ) { | |
| type = PTR_TYPE_NOTE; | |
| l = (struct leaf_node *) | |
| xcalloc(1, sizeof(struct leaf_node)); | |
| oidcpy(&l->key_oid, &object_oid); | |
| oidcpy(&l->val_oid, entry.oid); | |
| if (len < GIT_SHA1_RAWSZ) { | |
| if (!S_ISDIR(entry.mode) || path_len != 2) | |
| goto handle_non_note; /* not subtree */ | |
| l->key_oid.hash[KEY_INDEX] = (unsigned char) len; | |
| type = PTR_TYPE_SUBTREE; | |
| } | |
| if (note_tree_insert(t, node, n, l, type, | |
| combine_notes_concatenate)) | |
| die("Failed to load %s %s into notes tree " | |
| "from %s", | |
| type == PTR_TYPE_NOTE ? "note" : "subtree", | |
| oid_to_hex(&l->key_oid), t->ref); | |
| } | |
| continue; | |
| handle_non_note: | |
| /* | |
| * Determine full path for this non-note entry: | |
| * The filename is already found in entry.path, but the | |
| * directory part of the path must be deduced from the subtree | |
| * containing this entry. We assume here that the overall notes | |
| * tree follows a strict byte-based progressive fanout | |
| * structure (i.e. using 2/38, 2/2/36, etc. fanouts, and not | |
| * e.g. 4/36 fanout). This means that if a non-note is found at | |
| * path "dead/beef", the following code will register it as | |
| * being found on "de/ad/beef". | |
| * On the other hand, if you use such non-obvious non-note | |
| * paths in the middle of a notes tree, you deserve what's | |
| * coming to you ;). Note that for non-notes that are not | |
| * SHA1-like at the top level, there will be no problems. | |
| * | |
| * To conclude, it is strongly advised to make sure non-notes | |
| * have at least one non-hex character in the top-level path | |
| * component. | |
| */ | |
| { | |
| struct strbuf non_note_path = STRBUF_INIT; | |
| const char *q = oid_to_hex(&subtree->key_oid); | |
| int i; | |
| for (i = 0; i < prefix_len; i++) { | |
| strbuf_addch(&non_note_path, *q++); | |
| strbuf_addch(&non_note_path, *q++); | |
| strbuf_addch(&non_note_path, '/'); | |
| } | |
| strbuf_addstr(&non_note_path, entry.path); | |
| add_non_note(t, strbuf_detach(&non_note_path, NULL), | |
| entry.mode, entry.oid->hash); | |
| } | |
| } | |
| free(buf); | |
| } | |
| /* | |
| * Determine optimal on-disk fanout for this part of the notes tree | |
| * | |
| * Given a (sub)tree and the level in the internal tree structure, determine | |
| * whether or not the given existing fanout should be expanded for this | |
| * (sub)tree. | |
| * | |
| * Values of the 'fanout' variable: | |
| * - 0: No fanout (all notes are stored directly in the root notes tree) | |
| * - 1: 2/38 fanout | |
| * - 2: 2/2/36 fanout | |
| * - 3: 2/2/2/34 fanout | |
| * etc. | |
| */ | |
| static unsigned char determine_fanout(struct int_node *tree, unsigned char n, | |
| unsigned char fanout) | |
| { | |
| /* | |
| * The following is a simple heuristic that works well in practice: | |
| * For each even-numbered 16-tree level (remember that each on-disk | |
| * fanout level corresponds to _two_ 16-tree levels), peek at all 16 | |
| * entries at that tree level. If all of them are either int_nodes or | |
| * subtree entries, then there are likely plenty of notes below this | |
| * level, so we return an incremented fanout. | |
| */ | |
| unsigned int i; | |
| if ((n % 2) || (n > 2 * fanout)) | |
| return fanout; | |
| for (i = 0; i < 16; i++) { | |
| switch (GET_PTR_TYPE(tree->a[i])) { | |
| case PTR_TYPE_SUBTREE: | |
| case PTR_TYPE_INTERNAL: | |
| continue; | |
| default: | |
| return fanout; | |
| } | |
| } | |
| return fanout + 1; | |
| } | |
| /* hex SHA1 + 19 * '/' + NUL */ | |
| #define FANOUT_PATH_MAX GIT_SHA1_HEXSZ + FANOUT_PATH_SEPARATORS + 1 | |
| static void construct_path_with_fanout(const unsigned char *sha1, | |
| unsigned char fanout, char *path) | |
| { | |
| unsigned int i = 0, j = 0; | |
| const char *hex_sha1 = sha1_to_hex(sha1); | |
| assert(fanout < GIT_SHA1_RAWSZ); | |
| while (fanout) { | |
| path[i++] = hex_sha1[j++]; | |
| path[i++] = hex_sha1[j++]; | |
| path[i++] = '/'; | |
| fanout--; | |
| } | |
| xsnprintf(path + i, FANOUT_PATH_MAX - i, "%s", hex_sha1 + j); | |
| } | |
| static int for_each_note_helper(struct notes_tree *t, struct int_node *tree, | |
| unsigned char n, unsigned char fanout, int flags, | |
| each_note_fn fn, void *cb_data) | |
| { | |
| unsigned int i; | |
| void *p; | |
| int ret = 0; | |
| struct leaf_node *l; | |
| static char path[FANOUT_PATH_MAX]; | |
| fanout = determine_fanout(tree, n, fanout); | |
| for (i = 0; i < 16; i++) { | |
| redo: | |
| p = tree->a[i]; | |
| switch (GET_PTR_TYPE(p)) { | |
| case PTR_TYPE_INTERNAL: | |
| /* recurse into int_node */ | |
| ret = for_each_note_helper(t, CLR_PTR_TYPE(p), n + 1, | |
| fanout, flags, fn, cb_data); | |
| break; | |
| case PTR_TYPE_SUBTREE: | |
| l = (struct leaf_node *) CLR_PTR_TYPE(p); | |
| /* | |
| * Subtree entries in the note tree represent parts of | |
| * the note tree that have not yet been explored. There | |
| * is a direct relationship between subtree entries at | |
| * level 'n' in the tree, and the 'fanout' variable: | |
| * Subtree entries at level 'n <= 2 * fanout' should be | |
| * preserved, since they correspond exactly to a fanout | |
| * directory in the on-disk structure. However, subtree | |
| * entries at level 'n > 2 * fanout' should NOT be | |
| * preserved, but rather consolidated into the above | |
| * notes tree level. We achieve this by unconditionally | |
| * unpacking subtree entries that exist below the | |
| * threshold level at 'n = 2 * fanout'. | |
| */ | |
| if (n <= 2 * fanout && | |
| flags & FOR_EACH_NOTE_YIELD_SUBTREES) { | |
| /* invoke callback with subtree */ | |
| unsigned int path_len = | |
| l->key_oid.hash[KEY_INDEX] * 2 + fanout; | |
| assert(path_len < FANOUT_PATH_MAX - 1); | |
| construct_path_with_fanout(l->key_oid.hash, | |
| fanout, | |
| path); | |
| /* Create trailing slash, if needed */ | |
| if (path[path_len - 1] != '/') | |
| path[path_len++] = '/'; | |
| path[path_len] = '\0'; | |
| ret = fn(&l->key_oid, &l->val_oid, | |
| path, | |
| cb_data); | |
| } | |
| if (n > fanout * 2 || | |
| !(flags & FOR_EACH_NOTE_DONT_UNPACK_SUBTREES)) { | |
| /* unpack subtree and resume traversal */ | |
| tree->a[i] = NULL; | |
| load_subtree(t, l, tree, n); | |
| free(l); | |
| goto redo; | |
| } | |
| break; | |
| case PTR_TYPE_NOTE: | |
| l = (struct leaf_node *) CLR_PTR_TYPE(p); | |
| construct_path_with_fanout(l->key_oid.hash, fanout, | |
| path); | |
| ret = fn(&l->key_oid, &l->val_oid, path, | |
| cb_data); | |
| break; | |
| } | |
| if (ret) | |
| return ret; | |
| } | |
| return 0; | |
| } | |
| struct tree_write_stack { | |
| struct tree_write_stack *next; | |
| struct strbuf buf; | |
| char path[2]; /* path to subtree in next, if any */ | |
| }; | |
| static inline int matches_tree_write_stack(struct tree_write_stack *tws, | |
| const char *full_path) | |
| { | |
| return full_path[0] == tws->path[0] && | |
| full_path[1] == tws->path[1] && | |
| full_path[2] == '/'; | |
| } | |
| static void write_tree_entry(struct strbuf *buf, unsigned int mode, | |
| const char *path, unsigned int path_len, const | |
| unsigned char *sha1) | |
| { | |
| strbuf_addf(buf, "%o %.*s%c", mode, path_len, path, '\0'); | |
| strbuf_add(buf, sha1, GIT_SHA1_RAWSZ); | |
| } | |
| static void tree_write_stack_init_subtree(struct tree_write_stack *tws, | |
| const char *path) | |
| { | |
| struct tree_write_stack *n; | |
| assert(!tws->next); | |
| assert(tws->path[0] == '\0' && tws->path[1] == '\0'); | |
| n = (struct tree_write_stack *) | |
| xmalloc(sizeof(struct tree_write_stack)); | |
| n->next = NULL; | |
| strbuf_init(&n->buf, 256 * (32 + GIT_SHA1_HEXSZ)); /* assume 256 entries per tree */ | |
| n->path[0] = n->path[1] = '\0'; | |
| tws->next = n; | |
| tws->path[0] = path[0]; | |
| tws->path[1] = path[1]; | |
| } | |
| static int tree_write_stack_finish_subtree(struct tree_write_stack *tws) | |
| { | |
| int ret; | |
| struct tree_write_stack *n = tws->next; | |
| struct object_id s; | |
| if (n) { | |
| ret = tree_write_stack_finish_subtree(n); | |
| if (ret) | |
| return ret; | |
| ret = write_sha1_file(n->buf.buf, n->buf.len, tree_type, s.hash); | |
| if (ret) | |
| return ret; | |
| strbuf_release(&n->buf); | |
| free(n); | |
| tws->next = NULL; | |
| write_tree_entry(&tws->buf, 040000, tws->path, 2, s.hash); | |
| tws->path[0] = tws->path[1] = '\0'; | |
| } | |
| return 0; | |
| } | |
| static int write_each_note_helper(struct tree_write_stack *tws, | |
| const char *path, unsigned int mode, | |
| const struct object_id *oid) | |
| { | |
| size_t path_len = strlen(path); | |
| unsigned int n = 0; | |
| int ret; | |
| /* Determine common part of tree write stack */ | |
| while (tws && 3 * n < path_len && | |
| matches_tree_write_stack(tws, path + 3 * n)) { | |
| n++; | |
| tws = tws->next; | |
| } | |
| /* tws point to last matching tree_write_stack entry */ | |
| ret = tree_write_stack_finish_subtree(tws); | |
| if (ret) | |
| return ret; | |
| /* Start subtrees needed to satisfy path */ | |
| while (3 * n + 2 < path_len && path[3 * n + 2] == '/') { | |
| tree_write_stack_init_subtree(tws, path + 3 * n); | |
| n++; | |
| tws = tws->next; | |
| } | |
| /* There should be no more directory components in the given path */ | |
| assert(memchr(path + 3 * n, '/', path_len - (3 * n)) == NULL); | |
| /* Finally add given entry to the current tree object */ | |
| write_tree_entry(&tws->buf, mode, path + 3 * n, path_len - (3 * n), | |
| oid->hash); | |
| return 0; | |
| } | |
| struct write_each_note_data { | |
| struct tree_write_stack *root; | |
| struct non_note *next_non_note; | |
| }; | |
| static int write_each_non_note_until(const char *note_path, | |
| struct write_each_note_data *d) | |
| { | |
| struct non_note *n = d->next_non_note; | |
| int cmp = 0, ret; | |
| while (n && (!note_path || (cmp = strcmp(n->path, note_path)) <= 0)) { | |
| if (note_path && cmp == 0) | |
| ; /* do nothing, prefer note to non-note */ | |
| else { | |
| ret = write_each_note_helper(d->root, n->path, n->mode, | |
| &n->oid); | |
| if (ret) | |
| return ret; | |
| } | |
| n = n->next; | |
| } | |
| d->next_non_note = n; | |
| return 0; | |
| } | |
| static int write_each_note(const struct object_id *object_oid, | |
| const struct object_id *note_oid, char *note_path, | |
| void *cb_data) | |
| { | |
| struct write_each_note_data *d = | |
| (struct write_each_note_data *) cb_data; | |
| size_t note_path_len = strlen(note_path); | |
| unsigned int mode = 0100644; | |
| if (note_path[note_path_len - 1] == '/') { | |
| /* subtree entry */ | |
| note_path_len--; | |
| note_path[note_path_len] = '\0'; | |
| mode = 040000; | |
| } | |
| assert(note_path_len <= GIT_SHA1_HEXSZ + FANOUT_PATH_SEPARATORS); | |
| /* Weave non-note entries into note entries */ | |
| return write_each_non_note_until(note_path, d) || | |
| write_each_note_helper(d->root, note_path, mode, note_oid); | |
| } | |
| struct note_delete_list { | |
| struct note_delete_list *next; | |
| const unsigned char *sha1; | |
| }; | |
| static int prune_notes_helper(const struct object_id *object_oid, | |
| const struct object_id *note_oid, char *note_path, | |
| void *cb_data) | |
| { | |
| struct note_delete_list **l = (struct note_delete_list **) cb_data; | |
| struct note_delete_list *n; | |
| if (has_object_file(object_oid)) | |
| return 0; /* nothing to do for this note */ | |
| /* failed to find object => prune this note */ | |
| n = (struct note_delete_list *) xmalloc(sizeof(*n)); | |
| n->next = *l; | |
| n->sha1 = object_oid->hash; | |
| *l = n; | |
| return 0; | |
| } | |
| int combine_notes_concatenate(unsigned char *cur_sha1, | |
| const unsigned char *new_sha1) | |
| { | |
| char *cur_msg = NULL, *new_msg = NULL, *buf; | |
| unsigned long cur_len, new_len, buf_len; | |
| enum object_type cur_type, new_type; | |
| int ret; | |
| /* read in both note blob objects */ | |
| if (!is_null_sha1(new_sha1)) | |
| new_msg = read_sha1_file(new_sha1, &new_type, &new_len); | |
| if (!new_msg || !new_len || new_type != OBJ_BLOB) { | |
| free(new_msg); | |
| return 0; | |
| } | |
| if (!is_null_sha1(cur_sha1)) | |
| cur_msg = read_sha1_file(cur_sha1, &cur_type, &cur_len); | |
| if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) { | |
| free(cur_msg); | |
| free(new_msg); | |
| hashcpy(cur_sha1, new_sha1); | |
| return 0; | |
| } | |
| /* we will separate the notes by two newlines anyway */ | |
| if (cur_msg[cur_len - 1] == '\n') | |
| cur_len--; | |
| /* concatenate cur_msg and new_msg into buf */ | |
| buf_len = cur_len + 2 + new_len; | |
| buf = (char *) xmalloc(buf_len); | |
| memcpy(buf, cur_msg, cur_len); | |
| buf[cur_len] = '\n'; | |
| buf[cur_len + 1] = '\n'; | |
| memcpy(buf + cur_len + 2, new_msg, new_len); | |
| free(cur_msg); | |
| free(new_msg); | |
| /* create a new blob object from buf */ | |
| ret = write_sha1_file(buf, buf_len, blob_type, cur_sha1); | |
| free(buf); | |
| return ret; | |
| } | |
| int combine_notes_overwrite(unsigned char *cur_sha1, | |
| const unsigned char *new_sha1) | |
| { | |
| hashcpy(cur_sha1, new_sha1); | |
| return 0; | |
| } | |
| int combine_notes_ignore(unsigned char *cur_sha1, | |
| const unsigned char *new_sha1) | |
| { | |
| return 0; | |
| } | |
| /* | |
| * Add the lines from the named object to list, with trailing | |
| * newlines removed. | |
| */ | |
| static int string_list_add_note_lines(struct string_list *list, | |
| const unsigned char *sha1) | |
| { | |
| char *data; | |
| unsigned long len; | |
| enum object_type t; | |
| if (is_null_sha1(sha1)) | |
| return 0; | |
| /* read_sha1_file NUL-terminates */ | |
| data = read_sha1_file(sha1, &t, &len); | |
| if (t != OBJ_BLOB || !data || !len) { | |
| free(data); | |
| return t != OBJ_BLOB || !data; | |
| } | |
| /* | |
| * If the last line of the file is EOL-terminated, this will | |
| * add an empty string to the list. But it will be removed | |
| * later, along with any empty strings that came from empty | |
| * lines within the file. | |
| */ | |
| string_list_split(list, data, '\n', -1); | |
| free(data); | |
| return 0; | |
| } | |
| static int string_list_join_lines_helper(struct string_list_item *item, | |
| void *cb_data) | |
| { | |
| struct strbuf *buf = cb_data; | |
| strbuf_addstr(buf, item->string); | |
| strbuf_addch(buf, '\n'); | |
| return 0; | |
| } | |
| int combine_notes_cat_sort_uniq(unsigned char *cur_sha1, | |
| const unsigned char *new_sha1) | |
| { | |
| struct string_list sort_uniq_list = STRING_LIST_INIT_DUP; | |
| struct strbuf buf = STRBUF_INIT; | |
| int ret = 1; | |
| /* read both note blob objects into unique_lines */ | |
| if (string_list_add_note_lines(&sort_uniq_list, cur_sha1)) | |
| goto out; | |
| if (string_list_add_note_lines(&sort_uniq_list, new_sha1)) | |
| goto out; | |
| string_list_remove_empty_items(&sort_uniq_list, 0); | |
| string_list_sort(&sort_uniq_list); | |
| string_list_remove_duplicates(&sort_uniq_list, 0); | |
| /* create a new blob object from sort_uniq_list */ | |
| if (for_each_string_list(&sort_uniq_list, | |
| string_list_join_lines_helper, &buf)) | |
| goto out; | |
| ret = write_sha1_file(buf.buf, buf.len, blob_type, cur_sha1); | |
| out: | |
| strbuf_release(&buf); | |
| string_list_clear(&sort_uniq_list, 0); | |
| return ret; | |
| } | |
| static int string_list_add_one_ref(const char *refname, const struct object_id *oid, | |
| int flag, void *cb) | |
| { | |
| struct string_list *refs = cb; | |
| if (!unsorted_string_list_has_string(refs, refname)) | |
| string_list_append(refs, refname); | |
| return 0; | |
| } | |
| /* | |
| * The list argument must have strdup_strings set on it. | |
| */ | |
| void string_list_add_refs_by_glob(struct string_list *list, const char *glob) | |
| { | |
| assert(list->strdup_strings); | |
| if (has_glob_specials(glob)) { | |
| for_each_glob_ref(string_list_add_one_ref, glob, list); | |
| } else { | |
| struct object_id oid; | |
| if (get_oid(glob, &oid)) | |
| warning("notes ref %s is invalid", glob); | |
| if (!unsorted_string_list_has_string(list, glob)) | |
| string_list_append(list, glob); | |
| } | |
| } | |
| void string_list_add_refs_from_colon_sep(struct string_list *list, | |
| const char *globs) | |
| { | |
| struct string_list split = STRING_LIST_INIT_NODUP; | |
| char *globs_copy = xstrdup(globs); | |
| int i; | |
| string_list_split_in_place(&split, globs_copy, ':', -1); | |
| string_list_remove_empty_items(&split, 0); | |
| for (i = 0; i < split.nr; i++) | |
| string_list_add_refs_by_glob(list, split.items[i].string); | |
| string_list_clear(&split, 0); | |
| free(globs_copy); | |
| } | |
| static int notes_display_config(const char *k, const char *v, void *cb) | |
| { | |
| int *load_refs = cb; | |
| if (*load_refs && !strcmp(k, "notes.displayref")) { | |
| if (!v) | |
| config_error_nonbool(k); | |
| string_list_add_refs_by_glob(&display_notes_refs, v); | |
| } | |
| return 0; | |
| } | |
| const char *default_notes_ref(void) | |
| { | |
| const char *notes_ref = NULL; | |
| if (!notes_ref) | |
| notes_ref = getenv(GIT_NOTES_REF_ENVIRONMENT); | |
| if (!notes_ref) | |
| notes_ref = notes_ref_name; /* value of core.notesRef config */ | |
| if (!notes_ref) | |
| notes_ref = GIT_NOTES_DEFAULT_REF; | |
| return notes_ref; | |
| } | |
| void init_notes(struct notes_tree *t, const char *notes_ref, | |
| combine_notes_fn combine_notes, int flags) | |
| { | |
| struct object_id oid, object_oid; | |
| unsigned mode; | |
| struct leaf_node root_tree; | |
| if (!t) | |
| t = &default_notes_tree; | |
| assert(!t->initialized); | |
| if (!notes_ref) | |
| notes_ref = default_notes_ref(); | |
| if (!combine_notes) | |
| combine_notes = combine_notes_concatenate; | |
| t->root = (struct int_node *) xcalloc(1, sizeof(struct int_node)); | |
| t->first_non_note = NULL; | |
| t->prev_non_note = NULL; | |
| t->ref = xstrdup_or_null(notes_ref); | |
| t->update_ref = (flags & NOTES_INIT_WRITABLE) ? t->ref : NULL; | |
| t->combine_notes = combine_notes; | |
| t->initialized = 1; | |
| t->dirty = 0; | |
| if (flags & NOTES_INIT_EMPTY || !notes_ref || | |
| get_sha1_treeish(notes_ref, object_oid.hash)) | |
| return; | |
| if (flags & NOTES_INIT_WRITABLE && read_ref(notes_ref, object_oid.hash)) | |
| die("Cannot use notes ref %s", notes_ref); | |
| if (get_tree_entry(object_oid.hash, "", oid.hash, &mode)) | |
| die("Failed to read notes tree referenced by %s (%s)", | |
| notes_ref, oid_to_hex(&object_oid)); | |
| oidclr(&root_tree.key_oid); | |
| oidcpy(&root_tree.val_oid, &oid); | |
| load_subtree(t, &root_tree, t->root, 0); | |
| } | |
| struct notes_tree **load_notes_trees(struct string_list *refs, int flags) | |
| { | |
| struct string_list_item *item; | |
| int counter = 0; | |
| struct notes_tree **trees; | |
| ALLOC_ARRAY(trees, refs->nr + 1); | |
| for_each_string_list_item(item, refs) { | |
| struct notes_tree *t = xcalloc(1, sizeof(struct notes_tree)); | |
| init_notes(t, item->string, combine_notes_ignore, flags); | |
| trees[counter++] = t; | |
| } | |
| trees[counter] = NULL; | |
| return trees; | |
| } | |
| void init_display_notes(struct display_notes_opt *opt) | |
| { | |
| char *display_ref_env; | |
| int load_config_refs = 0; | |
| display_notes_refs.strdup_strings = 1; | |
| assert(!display_notes_trees); | |
| if (!opt || opt->use_default_notes > 0 || | |
| (opt->use_default_notes == -1 && !opt->extra_notes_refs.nr)) { | |
| string_list_append(&display_notes_refs, default_notes_ref()); | |
| display_ref_env = getenv(GIT_NOTES_DISPLAY_REF_ENVIRONMENT); | |
| if (display_ref_env) { | |
| string_list_add_refs_from_colon_sep(&display_notes_refs, | |
| display_ref_env); | |
| load_config_refs = 0; | |
| } else | |
| load_config_refs = 1; | |
| } | |
| git_config(notes_display_config, &load_config_refs); | |
| if (opt) { | |
| struct string_list_item *item; | |
| for_each_string_list_item(item, &opt->extra_notes_refs) | |
| string_list_add_refs_by_glob(&display_notes_refs, | |
| item->string); | |
| } | |
| display_notes_trees = load_notes_trees(&display_notes_refs, 0); | |
| string_list_clear(&display_notes_refs, 0); | |
| } | |
| int add_note(struct notes_tree *t, const struct object_id *object_oid, | |
| const struct object_id *note_oid, combine_notes_fn combine_notes) | |
| { | |
| struct leaf_node *l; | |
| if (!t) | |
| t = &default_notes_tree; | |
| assert(t->initialized); | |
| t->dirty = 1; | |
| if (!combine_notes) | |
| combine_notes = t->combine_notes; | |
| l = (struct leaf_node *) xmalloc(sizeof(struct leaf_node)); | |
| oidcpy(&l->key_oid, object_oid); | |
| oidcpy(&l->val_oid, note_oid); | |
| return note_tree_insert(t, t->root, 0, l, PTR_TYPE_NOTE, combine_notes); | |
| } | |
| int remove_note(struct notes_tree *t, const unsigned char *object_sha1) | |
| { | |
| struct leaf_node l; | |
| if (!t) | |
| t = &default_notes_tree; | |
| assert(t->initialized); | |
| hashcpy(l.key_oid.hash, object_sha1); | |
| oidclr(&l.val_oid); | |
| note_tree_remove(t, t->root, 0, &l); | |
| if (is_null_oid(&l.val_oid)) /* no note was removed */ | |
| return 1; | |
| t->dirty = 1; | |
| return 0; | |
| } | |
| const struct object_id *get_note(struct notes_tree *t, | |
| const struct object_id *oid) | |
| { | |
| struct leaf_node *found; | |
| if (!t) | |
| t = &default_notes_tree; | |
| assert(t->initialized); | |
| found = note_tree_find(t, t->root, 0, oid->hash); | |
| return found ? &found->val_oid : NULL; | |
| } | |
| int for_each_note(struct notes_tree *t, int flags, each_note_fn fn, | |
| void *cb_data) | |
| { | |
| if (!t) | |
| t = &default_notes_tree; | |
| assert(t->initialized); | |
| return for_each_note_helper(t, t->root, 0, 0, flags, fn, cb_data); | |
| } | |
| int write_notes_tree(struct notes_tree *t, unsigned char *result) | |
| { | |
| struct tree_write_stack root; | |
| struct write_each_note_data cb_data; | |
| int ret; | |
| if (!t) | |
| t = &default_notes_tree; | |
| assert(t->initialized); | |
| /* Prepare for traversal of current notes tree */ | |
| root.next = NULL; /* last forward entry in list is grounded */ | |
| strbuf_init(&root.buf, 256 * (32 + GIT_SHA1_HEXSZ)); /* assume 256 entries */ | |
| root.path[0] = root.path[1] = '\0'; | |
| cb_data.root = &root; | |
| cb_data.next_non_note = t->first_non_note; | |
| /* Write tree objects representing current notes tree */ | |
| ret = for_each_note(t, FOR_EACH_NOTE_DONT_UNPACK_SUBTREES | | |
| FOR_EACH_NOTE_YIELD_SUBTREES, | |
| write_each_note, &cb_data) || | |
| write_each_non_note_until(NULL, &cb_data) || | |
| tree_write_stack_finish_subtree(&root) || | |
| write_sha1_file(root.buf.buf, root.buf.len, tree_type, result); | |
| strbuf_release(&root.buf); | |
| return ret; | |
| } | |
| void prune_notes(struct notes_tree *t, int flags) | |
| { | |
| struct note_delete_list *l = NULL; | |
| if (!t) | |
| t = &default_notes_tree; | |
| assert(t->initialized); | |
| for_each_note(t, 0, prune_notes_helper, &l); | |
| while (l) { | |
| if (flags & NOTES_PRUNE_VERBOSE) | |
| printf("%s\n", sha1_to_hex(l->sha1)); | |
| if (!(flags & NOTES_PRUNE_DRYRUN)) | |
| remove_note(t, l->sha1); | |
| l = l->next; | |
| } | |
| } | |
| void free_notes(struct notes_tree *t) | |
| { | |
| if (!t) | |
| t = &default_notes_tree; | |
| if (t->root) | |
| note_tree_free(t->root); | |
| free(t->root); | |
| while (t->first_non_note) { | |
| t->prev_non_note = t->first_non_note->next; | |
| free(t->first_non_note->path); | |
| free(t->first_non_note); | |
| t->first_non_note = t->prev_non_note; | |
| } | |
| free(t->ref); | |
| memset(t, 0, sizeof(struct notes_tree)); | |
| } | |
| /* | |
| * Fill the given strbuf with the notes associated with the given object. | |
| * | |
| * If the given notes_tree structure is not initialized, it will be auto- | |
| * initialized to the default value (see documentation for init_notes() above). | |
| * If the given notes_tree is NULL, the internal/default notes_tree will be | |
| * used instead. | |
| * | |
| * (raw != 0) gives the %N userformat; otherwise, the note message is given | |
| * for human consumption. | |
| */ | |
| static void format_note(struct notes_tree *t, const struct object_id *object_oid, | |
| struct strbuf *sb, const char *output_encoding, int raw) | |
| { | |
| static const char utf8[] = "utf-8"; | |
| const struct object_id *oid; | |
| char *msg, *msg_p; | |
| unsigned long linelen, msglen; | |
| enum object_type type; | |
| if (!t) | |
| t = &default_notes_tree; | |
| if (!t->initialized) | |
| init_notes(t, NULL, NULL, 0); | |
| oid = get_note(t, object_oid); | |
| if (!oid) | |
| return; | |
| if (!(msg = read_sha1_file(oid->hash, &type, &msglen)) || type != OBJ_BLOB) { | |
| free(msg); | |
| return; | |
| } | |
| if (output_encoding && *output_encoding && | |
| !is_encoding_utf8(output_encoding)) { | |
| char *reencoded = reencode_string(msg, output_encoding, utf8); | |
| if (reencoded) { | |
| free(msg); | |
| msg = reencoded; | |
| msglen = strlen(msg); | |
| } | |
| } | |
| /* we will end the annotation by a newline anyway */ | |
| if (msglen && msg[msglen - 1] == '\n') | |
| msglen--; | |
| if (!raw) { | |
| const char *ref = t->ref; | |
| if (!ref || !strcmp(ref, GIT_NOTES_DEFAULT_REF)) { | |
| strbuf_addstr(sb, "\nNotes:\n"); | |
| } else { | |
| if (starts_with(ref, "refs/")) | |
| ref += 5; | |
| if (starts_with(ref, "notes/")) | |
| ref += 6; | |
| strbuf_addf(sb, "\nNotes (%s):\n", ref); | |
| } | |
| } | |
| for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) { | |
| linelen = strchrnul(msg_p, '\n') - msg_p; | |
| if (!raw) | |
| strbuf_addstr(sb, " "); | |
| strbuf_add(sb, msg_p, linelen); | |
| strbuf_addch(sb, '\n'); | |
| } | |
| free(msg); | |
| } | |
| void format_display_notes(const struct object_id *object_oid, | |
| struct strbuf *sb, const char *output_encoding, int raw) | |
| { | |
| int i; | |
| assert(display_notes_trees); | |
| for (i = 0; display_notes_trees[i]; i++) | |
| format_note(display_notes_trees[i], object_oid, sb, | |
| output_encoding, raw); | |
| } | |
| int copy_note(struct notes_tree *t, | |
| const struct object_id *from_obj, const struct object_id *to_obj, | |
| int force, combine_notes_fn combine_notes) | |
| { | |
| const struct object_id *note = get_note(t, from_obj); | |
| const struct object_id *existing_note = get_note(t, to_obj); | |
| if (!force && existing_note) | |
| return 1; | |
| if (note) | |
| return add_note(t, to_obj, note, combine_notes); | |
| else if (existing_note) | |
| return add_note(t, to_obj, &null_oid, combine_notes); | |
| return 0; | |
| } | |
| void expand_notes_ref(struct strbuf *sb) | |
| { | |
| if (starts_with(sb->buf, "refs/notes/")) | |
| return; /* we're happy */ | |
| else if (starts_with(sb->buf, "notes/")) | |
| strbuf_insert(sb, 0, "refs/", 5); | |
| else | |
| strbuf_insert(sb, 0, "refs/notes/", 11); | |
| } | |
| void expand_loose_notes_ref(struct strbuf *sb) | |
| { | |
| struct object_id object; | |
| if (get_oid(sb->buf, &object)) { | |
| /* fallback to expand_notes_ref */ | |
| expand_notes_ref(sb); | |
| } | |
| } |