| /************************************************ | |
| enumerator.c - provides Enumerator class | |
| $Author$ | |
| Copyright (C) 2001-2003 Akinori MUSHA | |
| $Idaemons: /home/cvs/rb/enumerator/enumerator.c,v 1.1.1.1 2001/07/15 10:12:48 knu Exp $ | |
| $RoughId: enumerator.c,v 1.6 2003/07/27 11:03:24 nobu Exp $ | |
| $Id$ | |
| ************************************************/ | |
| #include "internal.h" | |
| /* | |
| * Document-class: Enumerator | |
| * | |
| * A class which allows both internal and external iteration. | |
| * | |
| * An Enumerator can be created by the following methods. | |
| * - Kernel#to_enum | |
| * - Kernel#enum_for | |
| * - Enumerator.new | |
| * | |
| * Most methods have two forms: a block form where the contents | |
| * are evaluated for each item in the enumeration, and a non-block form | |
| * which returns a new Enumerator wrapping the iteration. | |
| * | |
| * enumerator = %w(one two three).each | |
| * puts enumerator.class # => Enumerator | |
| * | |
| * enumerator.each_with_object("foo") do |item, obj| | |
| * puts "#{obj}: #{item}" | |
| * end | |
| * | |
| * # foo: one | |
| * # foo: two | |
| * # foo: three | |
| * | |
| * enum_with_obj = enumerator.each_with_object("foo") | |
| * puts enum_with_obj.class # => Enumerator | |
| * | |
| * enum_with_obj.each do |item, obj| | |
| * puts "#{obj}: #{item}" | |
| * end | |
| * | |
| * # foo: one | |
| * # foo: two | |
| * # foo: three | |
| * | |
| * This allows you to chain Enumerators together. For example, you | |
| * can map a list's elements to strings containing the index | |
| * and the element as a string via: | |
| * | |
| * puts %w[foo bar baz].map.with_index { |w, i| "#{i}:#{w}" } | |
| * # => ["0:foo", "1:bar", "2:baz"] | |
| * | |
| * An Enumerator can also be used as an external iterator. | |
| * For example, Enumerator#next returns the next value of the iterator | |
| * or raises StopIteration if the Enumerator is at the end. | |
| * | |
| * e = [1,2,3].each # returns an enumerator object. | |
| * puts e.next # => 1 | |
| * puts e.next # => 2 | |
| * puts e.next # => 3 | |
| * puts e.next # raises StopIteration | |
| * | |
| * You can use this to implement an internal iterator as follows: | |
| * | |
| * def ext_each(e) | |
| * while true | |
| * begin | |
| * vs = e.next_values | |
| * rescue StopIteration | |
| * return $!.result | |
| * end | |
| * y = yield(*vs) | |
| * e.feed y | |
| * end | |
| * end | |
| * | |
| * o = Object.new | |
| * | |
| * def o.each | |
| * puts yield | |
| * puts yield(1) | |
| * puts yield(1, 2) | |
| * 3 | |
| * end | |
| * | |
| * # use o.each as an internal iterator directly. | |
| * puts o.each {|*x| puts x; [:b, *x] } | |
| * # => [], [:b], [1], [:b, 1], [1, 2], [:b, 1, 2], 3 | |
| * | |
| * # convert o.each to an external iterator for | |
| * # implementing an internal iterator. | |
| * puts ext_each(o.to_enum) {|*x| puts x; [:b, *x] } | |
| * # => [], [:b], [1], [:b, 1], [1, 2], [:b, 1, 2], 3 | |
| * | |
| */ | |
| VALUE rb_cEnumerator; | |
| VALUE rb_cLazy; | |
| static ID id_rewind, id_each, id_new, id_initialize, id_yield, id_call, id_size, id_to_enum; | |
| static ID id_eqq, id_next, id_result, id_lazy, id_receiver, id_arguments, id_memo, id_method, id_force; | |
| static VALUE sym_each, sym_cycle; | |
| VALUE rb_eStopIteration; | |
| struct enumerator { | |
| VALUE obj; | |
| ID meth; | |
| VALUE args; | |
| VALUE fib; | |
| VALUE dst; | |
| VALUE lookahead; | |
| VALUE feedvalue; | |
| VALUE stop_exc; | |
| VALUE size; | |
| VALUE procs; | |
| rb_enumerator_size_func *size_fn; | |
| }; | |
| static VALUE rb_cGenerator, rb_cYielder; | |
| struct generator { | |
| VALUE proc; | |
| VALUE obj; | |
| }; | |
| struct yielder { | |
| VALUE proc; | |
| }; | |
| typedef struct MEMO *lazyenum_proc_func(VALUE, struct MEMO *, VALUE, long); | |
| typedef VALUE lazyenum_size_func(VALUE, VALUE); | |
| typedef struct { | |
| lazyenum_proc_func *proc; | |
| lazyenum_size_func *size; | |
| } lazyenum_funcs; | |
| struct proc_entry { | |
| VALUE proc; | |
| VALUE memo; | |
| const lazyenum_funcs *fn; | |
| }; | |
| static VALUE generator_allocate(VALUE klass); | |
| static VALUE generator_init(VALUE obj, VALUE proc); | |
| /* | |
| * Enumerator | |
| */ | |
| static void | |
| enumerator_mark(void *p) | |
| { | |
| struct enumerator *ptr = p; | |
| rb_gc_mark(ptr->obj); | |
| rb_gc_mark(ptr->args); | |
| rb_gc_mark(ptr->fib); | |
| rb_gc_mark(ptr->dst); | |
| rb_gc_mark(ptr->lookahead); | |
| rb_gc_mark(ptr->feedvalue); | |
| rb_gc_mark(ptr->stop_exc); | |
| rb_gc_mark(ptr->size); | |
| rb_gc_mark(ptr->procs); | |
| } | |
| #define enumerator_free RUBY_TYPED_DEFAULT_FREE | |
| static size_t | |
| enumerator_memsize(const void *p) | |
| { | |
| return sizeof(struct enumerator); | |
| } | |
| static const rb_data_type_t enumerator_data_type = { | |
| "enumerator", | |
| { | |
| enumerator_mark, | |
| enumerator_free, | |
| enumerator_memsize, | |
| }, | |
| 0, 0, RUBY_TYPED_FREE_IMMEDIATELY | |
| }; | |
| static struct enumerator * | |
| enumerator_ptr(VALUE obj) | |
| { | |
| struct enumerator *ptr; | |
| TypedData_Get_Struct(obj, struct enumerator, &enumerator_data_type, ptr); | |
| if (!ptr || ptr->obj == Qundef) { | |
| rb_raise(rb_eArgError, "uninitialized enumerator"); | |
| } | |
| return ptr; | |
| } | |
| static void | |
| proc_entry_mark(void *p) | |
| { | |
| struct proc_entry *ptr = p; | |
| rb_gc_mark(ptr->proc); | |
| rb_gc_mark(ptr->memo); | |
| } | |
| #define proc_entry_free RUBY_TYPED_DEFAULT_FREE | |
| static size_t | |
| proc_entry_memsize(const void *p) | |
| { | |
| return p ? sizeof(struct proc_entry) : 0; | |
| } | |
| static const rb_data_type_t proc_entry_data_type = { | |
| "proc_entry", | |
| { | |
| proc_entry_mark, | |
| proc_entry_free, | |
| proc_entry_memsize, | |
| }, | |
| }; | |
| static struct proc_entry * | |
| proc_entry_ptr(VALUE proc_entry) | |
| { | |
| struct proc_entry *ptr; | |
| TypedData_Get_Struct(proc_entry, struct proc_entry, &proc_entry_data_type, ptr); | |
| return ptr; | |
| } | |
| /* | |
| * call-seq: | |
| * obj.to_enum(method = :each, *args) -> enum | |
| * obj.enum_for(method = :each, *args) -> enum | |
| * obj.to_enum(method = :each, *args) {|*args| block} -> enum | |
| * obj.enum_for(method = :each, *args){|*args| block} -> enum | |
| * | |
| * Creates a new Enumerator which will enumerate by calling +method+ on | |
| * +obj+, passing +args+ if any. | |
| * | |
| * If a block is given, it will be used to calculate the size of | |
| * the enumerator without the need to iterate it (see Enumerator#size). | |
| * | |
| * === Examples | |
| * | |
| * str = "xyz" | |
| * | |
| * enum = str.enum_for(:each_byte) | |
| * enum.each { |b| puts b } | |
| * # => 120 | |
| * # => 121 | |
| * # => 122 | |
| * | |
| * # protect an array from being modified by some_method | |
| * a = [1, 2, 3] | |
| * some_method(a.to_enum) | |
| * | |
| * It is typical to call to_enum when defining methods for | |
| * a generic Enumerable, in case no block is passed. | |
| * | |
| * Here is such an example, with parameter passing and a sizing block: | |
| * | |
| * module Enumerable | |
| * # a generic method to repeat the values of any enumerable | |
| * def repeat(n) | |
| * raise ArgumentError, "#{n} is negative!" if n < 0 | |
| * unless block_given? | |
| * return to_enum(__method__, n) do # __method__ is :repeat here | |
| * sz = size # Call size and multiply by n... | |
| * sz * n if sz # but return nil if size itself is nil | |
| * end | |
| * end | |
| * each do |*val| | |
| * n.times { yield *val } | |
| * end | |
| * end | |
| * end | |
| * | |
| * %i[hello world].repeat(2) { |w| puts w } | |
| * # => Prints 'hello', 'hello', 'world', 'world' | |
| * enum = (1..14).repeat(3) | |
| * # => returns an Enumerator when called without a block | |
| * enum.first(4) # => [1, 1, 1, 2] | |
| * enum.size # => 42 | |
| */ | |
| static VALUE | |
| obj_to_enum(int argc, VALUE *argv, VALUE obj) | |
| { | |
| VALUE enumerator, meth = sym_each; | |
| if (argc > 0) { | |
| --argc; | |
| meth = *argv++; | |
| } | |
| enumerator = rb_enumeratorize_with_size(obj, meth, argc, argv, 0); | |
| if (rb_block_given_p()) { | |
| enumerator_ptr(enumerator)->size = rb_block_proc(); | |
| } | |
| return enumerator; | |
| } | |
| static VALUE | |
| enumerator_allocate(VALUE klass) | |
| { | |
| struct enumerator *ptr; | |
| VALUE enum_obj; | |
| enum_obj = TypedData_Make_Struct(klass, struct enumerator, &enumerator_data_type, ptr); | |
| ptr->obj = Qundef; | |
| return enum_obj; | |
| } | |
| static VALUE | |
| enumerator_init(VALUE enum_obj, VALUE obj, VALUE meth, int argc, const VALUE *argv, rb_enumerator_size_func *size_fn, VALUE size) | |
| { | |
| struct enumerator *ptr; | |
| rb_check_frozen(enum_obj); | |
| TypedData_Get_Struct(enum_obj, struct enumerator, &enumerator_data_type, ptr); | |
| if (!ptr) { | |
| rb_raise(rb_eArgError, "unallocated enumerator"); | |
| } | |
| ptr->obj = obj; | |
| ptr->meth = rb_to_id(meth); | |
| if (argc) ptr->args = rb_ary_new4(argc, argv); | |
| ptr->fib = 0; | |
| ptr->dst = Qnil; | |
| ptr->lookahead = Qundef; | |
| ptr->feedvalue = Qundef; | |
| ptr->stop_exc = Qfalse; | |
| ptr->size = size; | |
| ptr->size_fn = size_fn; | |
| return enum_obj; | |
| } | |
| /* | |
| * call-seq: | |
| * Enumerator.new(size = nil) { |yielder| ... } | |
| * Enumerator.new(obj, method = :each, *args) | |
| * | |
| * Creates a new Enumerator object, which can be used as an | |
| * Enumerable. | |
| * | |
| * In the first form, iteration is defined by the given block, in | |
| * which a "yielder" object, given as block parameter, can be used to | |
| * yield a value by calling the +yield+ method (aliased as +<<+): | |
| * | |
| * fib = Enumerator.new do |y| | |
| * a = b = 1 | |
| * loop do | |
| * y << a | |
| * a, b = b, a + b | |
| * end | |
| * end | |
| * | |
| * p fib.take(10) # => [1, 1, 2, 3, 5, 8, 13, 21, 34, 55] | |
| * | |
| * The optional parameter can be used to specify how to calculate the size | |
| * in a lazy fashion (see Enumerator#size). It can either be a value or | |
| * a callable object. | |
| * | |
| * In the second, deprecated, form, a generated Enumerator iterates over the | |
| * given object using the given method with the given arguments passed. | |
| * | |
| * Use of this form is discouraged. Use Kernel#enum_for or Kernel#to_enum | |
| * instead. | |
| * | |
| * e = Enumerator.new(ObjectSpace, :each_object) | |
| * #-> ObjectSpace.enum_for(:each_object) | |
| * | |
| * e.select { |obj| obj.is_a?(Class) } #=> array of all classes | |
| * | |
| */ | |
| static VALUE | |
| enumerator_initialize(int argc, VALUE *argv, VALUE obj) | |
| { | |
| VALUE recv, meth = sym_each; | |
| VALUE size = Qnil; | |
| if (rb_block_given_p()) { | |
| rb_check_arity(argc, 0, 1); | |
| recv = generator_init(generator_allocate(rb_cGenerator), rb_block_proc()); | |
| if (argc) { | |
| if (NIL_P(argv[0]) || rb_respond_to(argv[0], id_call) || | |
| (RB_TYPE_P(argv[0], T_FLOAT) && RFLOAT_VALUE(argv[0]) == INFINITY)) { | |
| size = argv[0]; | |
| } | |
| else { | |
| size = rb_to_int(argv[0]); | |
| } | |
| argc = 0; | |
| } | |
| } | |
| else { | |
| rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS); | |
| rb_warn("Enumerator.new without a block is deprecated; use Object#to_enum"); | |
| recv = *argv++; | |
| if (--argc) { | |
| meth = *argv++; | |
| --argc; | |
| } | |
| } | |
| return enumerator_init(obj, recv, meth, argc, argv, 0, size); | |
| } | |
| /* :nodoc: */ | |
| static VALUE | |
| enumerator_init_copy(VALUE obj, VALUE orig) | |
| { | |
| struct enumerator *ptr0, *ptr1; | |
| if (!OBJ_INIT_COPY(obj, orig)) return obj; | |
| ptr0 = enumerator_ptr(orig); | |
| if (ptr0->fib) { | |
| /* Fibers cannot be copied */ | |
| rb_raise(rb_eTypeError, "can't copy execution context"); | |
| } | |
| TypedData_Get_Struct(obj, struct enumerator, &enumerator_data_type, ptr1); | |
| if (!ptr1) { | |
| rb_raise(rb_eArgError, "unallocated enumerator"); | |
| } | |
| ptr1->obj = ptr0->obj; | |
| ptr1->meth = ptr0->meth; | |
| ptr1->args = ptr0->args; | |
| ptr1->fib = 0; | |
| ptr1->lookahead = Qundef; | |
| ptr1->feedvalue = Qundef; | |
| ptr1->size = ptr0->size; | |
| ptr1->size_fn = ptr0->size_fn; | |
| return obj; | |
| } | |
| /* | |
| * For backwards compatibility; use rb_enumeratorize_with_size | |
| */ | |
| VALUE | |
| rb_enumeratorize(VALUE obj, VALUE meth, int argc, const VALUE *argv) | |
| { | |
| return rb_enumeratorize_with_size(obj, meth, argc, argv, 0); | |
| } | |
| static VALUE | |
| lazy_to_enum_i(VALUE self, VALUE meth, int argc, const VALUE *argv, rb_enumerator_size_func *size_fn); | |
| VALUE | |
| rb_enumeratorize_with_size(VALUE obj, VALUE meth, int argc, const VALUE *argv, rb_enumerator_size_func *size_fn) | |
| { | |
| /* Similar effect as calling obj.to_enum, i.e. dispatching to either | |
| Kernel#to_enum vs Lazy#to_enum */ | |
| if (RTEST(rb_obj_is_kind_of(obj, rb_cLazy))) | |
| return lazy_to_enum_i(obj, meth, argc, argv, size_fn); | |
| else | |
| return enumerator_init(enumerator_allocate(rb_cEnumerator), | |
| obj, meth, argc, argv, size_fn, Qnil); | |
| } | |
| static VALUE | |
| enumerator_block_call(VALUE obj, rb_block_call_func *func, VALUE arg) | |
| { | |
| int argc = 0; | |
| const VALUE *argv = 0; | |
| const struct enumerator *e = enumerator_ptr(obj); | |
| ID meth = e->meth; | |
| if (e->args) { | |
| argc = RARRAY_LENINT(e->args); | |
| argv = RARRAY_CONST_PTR(e->args); | |
| } | |
| return rb_block_call(e->obj, meth, argc, argv, func, arg); | |
| } | |
| /* | |
| * call-seq: | |
| * enum.each { |elm| block } -> obj | |
| * enum.each -> enum | |
| * enum.each(*appending_args) { |elm| block } -> obj | |
| * enum.each(*appending_args) -> an_enumerator | |
| * | |
| * Iterates over the block according to how this Enumerator was constructed. | |
| * If no block and no arguments are given, returns self. | |
| * | |
| * === Examples | |
| * | |
| * "Hello, world!".scan(/\w+/) #=> ["Hello", "world"] | |
| * "Hello, world!".to_enum(:scan, /\w+/).to_a #=> ["Hello", "world"] | |
| * "Hello, world!".to_enum(:scan).each(/\w+/).to_a #=> ["Hello", "world"] | |
| * | |
| * obj = Object.new | |
| * | |
| * def obj.each_arg(a, b=:b, *rest) | |
| * yield a | |
| * yield b | |
| * yield rest | |
| * :method_returned | |
| * end | |
| * | |
| * enum = obj.to_enum :each_arg, :a, :x | |
| * | |
| * enum.each.to_a #=> [:a, :x, []] | |
| * enum.each.equal?(enum) #=> true | |
| * enum.each { |elm| elm } #=> :method_returned | |
| * | |
| * enum.each(:y, :z).to_a #=> [:a, :x, [:y, :z]] | |
| * enum.each(:y, :z).equal?(enum) #=> false | |
| * enum.each(:y, :z) { |elm| elm } #=> :method_returned | |
| * | |
| */ | |
| static VALUE | |
| enumerator_each(int argc, VALUE *argv, VALUE obj) | |
| { | |
| if (argc > 0) { | |
| struct enumerator *e = enumerator_ptr(obj = rb_obj_dup(obj)); | |
| VALUE args = e->args; | |
| if (args) { | |
| #if SIZEOF_INT < SIZEOF_LONG | |
| /* check int range overflow */ | |
| rb_long2int(RARRAY_LEN(args) + argc); | |
| #endif | |
| args = rb_ary_dup(args); | |
| rb_ary_cat(args, argv, argc); | |
| } | |
| else { | |
| args = rb_ary_new4(argc, argv); | |
| } | |
| e->args = args; | |
| } | |
| if (!rb_block_given_p()) return obj; | |
| return enumerator_block_call(obj, 0, obj); | |
| } | |
| static VALUE | |
| enumerator_with_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(val, m)) | |
| { | |
| struct MEMO *memo = (struct MEMO *)m; | |
| VALUE idx = memo->v1; | |
| MEMO_V1_SET(memo, rb_int_succ(idx)); | |
| if (argc <= 1) | |
| return rb_yield_values(2, val, idx); | |
| return rb_yield_values(2, rb_ary_new4(argc, argv), idx); | |
| } | |
| static VALUE | |
| enumerator_size(VALUE obj); | |
| static VALUE | |
| enumerator_enum_size(VALUE obj, VALUE args, VALUE eobj) | |
| { | |
| return enumerator_size(obj); | |
| } | |
| /* | |
| * call-seq: | |
| * e.with_index(offset = 0) {|(*args), idx| ... } | |
| * e.with_index(offset = 0) | |
| * | |
| * Iterates the given block for each element with an index, which | |
| * starts from +offset+. If no block is given, returns a new Enumerator | |
| * that includes the index, starting from +offset+ | |
| * | |
| * +offset+:: the starting index to use | |
| * | |
| */ | |
| static VALUE | |
| enumerator_with_index(int argc, VALUE *argv, VALUE obj) | |
| { | |
| VALUE memo; | |
| rb_scan_args(argc, argv, "01", &memo); | |
| RETURN_SIZED_ENUMERATOR(obj, argc, argv, enumerator_enum_size); | |
| if (NIL_P(memo)) | |
| memo = INT2FIX(0); | |
| else | |
| memo = rb_to_int(memo); | |
| return enumerator_block_call(obj, enumerator_with_index_i, (VALUE)MEMO_NEW(memo, 0, 0)); | |
| } | |
| /* | |
| * call-seq: | |
| * e.each_with_index {|(*args), idx| ... } | |
| * e.each_with_index | |
| * | |
| * Same as Enumerator#with_index(0), i.e. there is no starting offset. | |
| * | |
| * If no block is given, a new Enumerator is returned that includes the index. | |
| * | |
| */ | |
| static VALUE | |
| enumerator_each_with_index(VALUE obj) | |
| { | |
| return enumerator_with_index(0, NULL, obj); | |
| } | |
| static VALUE | |
| enumerator_with_object_i(RB_BLOCK_CALL_FUNC_ARGLIST(val, memo)) | |
| { | |
| if (argc <= 1) | |
| return rb_yield_values(2, val, memo); | |
| return rb_yield_values(2, rb_ary_new4(argc, argv), memo); | |
| } | |
| /* | |
| * call-seq: | |
| * e.each_with_object(obj) {|(*args), obj| ... } | |
| * e.each_with_object(obj) | |
| * e.with_object(obj) {|(*args), obj| ... } | |
| * e.with_object(obj) | |
| * | |
| * Iterates the given block for each element with an arbitrary object, +obj+, | |
| * and returns +obj+ | |
| * | |
| * If no block is given, returns a new Enumerator. | |
| * | |
| * === Example | |
| * | |
| * to_three = Enumerator.new do |y| | |
| * 3.times do |x| | |
| * y << x | |
| * end | |
| * end | |
| * | |
| * to_three_with_string = to_three.with_object("foo") | |
| * to_three_with_string.each do |x,string| | |
| * puts "#{string}: #{x}" | |
| * end | |
| * | |
| * # => foo:0 | |
| * # => foo:1 | |
| * # => foo:2 | |
| */ | |
| static VALUE | |
| enumerator_with_object(VALUE obj, VALUE memo) | |
| { | |
| RETURN_SIZED_ENUMERATOR(obj, 1, &memo, enumerator_enum_size); | |
| enumerator_block_call(obj, enumerator_with_object_i, memo); | |
| return memo; | |
| } | |
| static VALUE | |
| next_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, obj)) | |
| { | |
| struct enumerator *e = enumerator_ptr(obj); | |
| VALUE feedvalue = Qnil; | |
| VALUE args = rb_ary_new4(argc, argv); | |
| rb_fiber_yield(1, &args); | |
| if (e->feedvalue != Qundef) { | |
| feedvalue = e->feedvalue; | |
| e->feedvalue = Qundef; | |
| } | |
| return feedvalue; | |
| } | |
| static VALUE | |
| next_i(VALUE curr, VALUE obj) | |
| { | |
| struct enumerator *e = enumerator_ptr(obj); | |
| VALUE nil = Qnil; | |
| VALUE result; | |
| result = rb_block_call(obj, id_each, 0, 0, next_ii, obj); | |
| e->stop_exc = rb_exc_new2(rb_eStopIteration, "iteration reached an end"); | |
| rb_ivar_set(e->stop_exc, id_result, result); | |
| return rb_fiber_yield(1, &nil); | |
| } | |
| static void | |
| next_init(VALUE obj, struct enumerator *e) | |
| { | |
| VALUE curr = rb_fiber_current(); | |
| e->dst = curr; | |
| e->fib = rb_fiber_new(next_i, obj); | |
| e->lookahead = Qundef; | |
| } | |
| static VALUE | |
| get_next_values(VALUE obj, struct enumerator *e) | |
| { | |
| VALUE curr, vs; | |
| if (e->stop_exc) | |
| rb_exc_raise(e->stop_exc); | |
| curr = rb_fiber_current(); | |
| if (!e->fib || !rb_fiber_alive_p(e->fib)) { | |
| next_init(obj, e); | |
| } | |
| vs = rb_fiber_resume(e->fib, 1, &curr); | |
| if (e->stop_exc) { | |
| e->fib = 0; | |
| e->dst = Qnil; | |
| e->lookahead = Qundef; | |
| e->feedvalue = Qundef; | |
| rb_exc_raise(e->stop_exc); | |
| } | |
| return vs; | |
| } | |
| /* | |
| * call-seq: | |
| * e.next_values -> array | |
| * | |
| * Returns the next object as an array in the enumerator, and move the | |
| * internal position forward. When the position reached at the end, | |
| * StopIteration is raised. | |
| * | |
| * This method can be used to distinguish <code>yield</code> and <code>yield | |
| * nil</code>. | |
| * | |
| * === Example | |
| * | |
| * o = Object.new | |
| * def o.each | |
| * yield | |
| * yield 1 | |
| * yield 1, 2 | |
| * yield nil | |
| * yield [1, 2] | |
| * end | |
| * e = o.to_enum | |
| * p e.next_values | |
| * p e.next_values | |
| * p e.next_values | |
| * p e.next_values | |
| * p e.next_values | |
| * e = o.to_enum | |
| * p e.next | |
| * p e.next | |
| * p e.next | |
| * p e.next | |
| * p e.next | |
| * | |
| * ## yield args next_values next | |
| * # yield [] nil | |
| * # yield 1 [1] 1 | |
| * # yield 1, 2 [1, 2] [1, 2] | |
| * # yield nil [nil] nil | |
| * # yield [1, 2] [[1, 2]] [1, 2] | |
| * | |
| * Note that +next_values+ does not affect other non-external enumeration | |
| * methods unless underlying iteration method itself has side-effect, e.g. | |
| * IO#each_line. | |
| * | |
| */ | |
| static VALUE | |
| enumerator_next_values(VALUE obj) | |
| { | |
| struct enumerator *e = enumerator_ptr(obj); | |
| VALUE vs; | |
| if (e->lookahead != Qundef) { | |
| vs = e->lookahead; | |
| e->lookahead = Qundef; | |
| return vs; | |
| } | |
| return get_next_values(obj, e); | |
| } | |
| static VALUE | |
| ary2sv(VALUE args, int dup) | |
| { | |
| if (!RB_TYPE_P(args, T_ARRAY)) | |
| return args; | |
| switch (RARRAY_LEN(args)) { | |
| case 0: | |
| return Qnil; | |
| case 1: | |
| return RARRAY_AREF(args, 0); | |
| default: | |
| if (dup) | |
| return rb_ary_dup(args); | |
| return args; | |
| } | |
| } | |
| /* | |
| * call-seq: | |
| * e.next -> object | |
| * | |
| * Returns the next object in the enumerator, and move the internal position | |
| * forward. When the position reached at the end, StopIteration is raised. | |
| * | |
| * === Example | |
| * | |
| * a = [1,2,3] | |
| * e = a.to_enum | |
| * p e.next #=> 1 | |
| * p e.next #=> 2 | |
| * p e.next #=> 3 | |
| * p e.next #raises StopIteration | |
| * | |
| * Note that enumeration sequence by +next+ does not affect other non-external | |
| * enumeration methods, unless the underlying iteration methods itself has | |
| * side-effect, e.g. IO#each_line. | |
| * | |
| */ | |
| static VALUE | |
| enumerator_next(VALUE obj) | |
| { | |
| VALUE vs = enumerator_next_values(obj); | |
| return ary2sv(vs, 0); | |
| } | |
| static VALUE | |
| enumerator_peek_values(VALUE obj) | |
| { | |
| struct enumerator *e = enumerator_ptr(obj); | |
| if (e->lookahead == Qundef) { | |
| e->lookahead = get_next_values(obj, e); | |
| } | |
| return e->lookahead; | |
| } | |
| /* | |
| * call-seq: | |
| * e.peek_values -> array | |
| * | |
| * Returns the next object as an array, similar to Enumerator#next_values, but | |
| * doesn't move the internal position forward. If the position is already at | |
| * the end, StopIteration is raised. | |
| * | |
| * === Example | |
| * | |
| * o = Object.new | |
| * def o.each | |
| * yield | |
| * yield 1 | |
| * yield 1, 2 | |
| * end | |
| * e = o.to_enum | |
| * p e.peek_values #=> [] | |
| * e.next | |
| * p e.peek_values #=> [1] | |
| * p e.peek_values #=> [1] | |
| * e.next | |
| * p e.peek_values #=> [1, 2] | |
| * e.next | |
| * p e.peek_values # raises StopIteration | |
| * | |
| */ | |
| static VALUE | |
| enumerator_peek_values_m(VALUE obj) | |
| { | |
| return rb_ary_dup(enumerator_peek_values(obj)); | |
| } | |
| /* | |
| * call-seq: | |
| * e.peek -> object | |
| * | |
| * Returns the next object in the enumerator, but doesn't move the internal | |
| * position forward. If the position is already at the end, StopIteration | |
| * is raised. | |
| * | |
| * === Example | |
| * | |
| * a = [1,2,3] | |
| * e = a.to_enum | |
| * p e.next #=> 1 | |
| * p e.peek #=> 2 | |
| * p e.peek #=> 2 | |
| * p e.peek #=> 2 | |
| * p e.next #=> 2 | |
| * p e.next #=> 3 | |
| * p e.peek #raises StopIteration | |
| * | |
| */ | |
| static VALUE | |
| enumerator_peek(VALUE obj) | |
| { | |
| VALUE vs = enumerator_peek_values(obj); | |
| return ary2sv(vs, 1); | |
| } | |
| /* | |
| * call-seq: | |
| * e.feed obj -> nil | |
| * | |
| * Sets the value to be returned by the next yield inside +e+. | |
| * | |
| * If the value is not set, the yield returns nil. | |
| * | |
| * This value is cleared after being yielded. | |
| * | |
| * # Array#map passes the array's elements to "yield" and collects the | |
| * # results of "yield" as an array. | |
| * # Following example shows that "next" returns the passed elements and | |
| * # values passed to "feed" are collected as an array which can be | |
| * # obtained by StopIteration#result. | |
| * e = [1,2,3].map | |
| * p e.next #=> 1 | |
| * e.feed "a" | |
| * p e.next #=> 2 | |
| * e.feed "b" | |
| * p e.next #=> 3 | |
| * e.feed "c" | |
| * begin | |
| * e.next | |
| * rescue StopIteration | |
| * p $!.result #=> ["a", "b", "c"] | |
| * end | |
| * | |
| * o = Object.new | |
| * def o.each | |
| * x = yield # (2) blocks | |
| * p x # (5) => "foo" | |
| * x = yield # (6) blocks | |
| * p x # (8) => nil | |
| * x = yield # (9) blocks | |
| * p x # not reached w/o another e.next | |
| * end | |
| * | |
| * e = o.to_enum | |
| * e.next # (1) | |
| * e.feed "foo" # (3) | |
| * e.next # (4) | |
| * e.next # (7) | |
| * # (10) | |
| */ | |
| static VALUE | |
| enumerator_feed(VALUE obj, VALUE v) | |
| { | |
| struct enumerator *e = enumerator_ptr(obj); | |
| if (e->feedvalue != Qundef) { | |
| rb_raise(rb_eTypeError, "feed value already set"); | |
| } | |
| e->feedvalue = v; | |
| return Qnil; | |
| } | |
| /* | |
| * call-seq: | |
| * e.rewind -> e | |
| * | |
| * Rewinds the enumeration sequence to the beginning. | |
| * | |
| * If the enclosed object responds to a "rewind" method, it is called. | |
| */ | |
| static VALUE | |
| enumerator_rewind(VALUE obj) | |
| { | |
| struct enumerator *e = enumerator_ptr(obj); | |
| rb_check_funcall(e->obj, id_rewind, 0, 0); | |
| e->fib = 0; | |
| e->dst = Qnil; | |
| e->lookahead = Qundef; | |
| e->feedvalue = Qundef; | |
| e->stop_exc = Qfalse; | |
| return obj; | |
| } | |
| static struct generator *generator_ptr(VALUE obj); | |
| static VALUE append_method(VALUE obj, VALUE str, ID default_method, VALUE default_args); | |
| static VALUE | |
| inspect_enumerator(VALUE obj, VALUE dummy, int recur) | |
| { | |
| struct enumerator *e; | |
| VALUE eobj, str, cname; | |
| TypedData_Get_Struct(obj, struct enumerator, &enumerator_data_type, e); | |
| cname = rb_obj_class(obj); | |
| if (!e || e->obj == Qundef) { | |
| return rb_sprintf("#<%"PRIsVALUE": uninitialized>", rb_class_path(cname)); | |
| } | |
| if (recur) { | |
| str = rb_sprintf("#<%"PRIsVALUE": ...>", rb_class_path(cname)); | |
| OBJ_TAINT(str); | |
| return str; | |
| } | |
| if (e->procs) { | |
| long i; | |
| eobj = generator_ptr(e->obj)->obj; | |
| /* In case procs chained enumerator traversing all proc entries manually */ | |
| if (rb_obj_class(eobj) == cname) { | |
| str = rb_inspect(eobj); | |
| } | |
| else { | |
| str = rb_sprintf("#<%"PRIsVALUE": %+"PRIsVALUE">", rb_class_path(cname), eobj); | |
| } | |
| for (i = 0; i < RARRAY_LEN(e->procs); i++) { | |
| str = rb_sprintf("#<%"PRIsVALUE": %"PRIsVALUE, cname, str); | |
| append_method(RARRAY_AREF(e->procs, i), str, e->meth, e->args); | |
| rb_str_buf_cat2(str, ">"); | |
| } | |
| return str; | |
| } | |
| eobj = rb_attr_get(obj, id_receiver); | |
| if (NIL_P(eobj)) { | |
| eobj = e->obj; | |
| } | |
| /* (1..100).each_cons(2) => "#<Enumerator: 1..100:each_cons(2)>" */ | |
| str = rb_sprintf("#<%"PRIsVALUE": %+"PRIsVALUE, rb_class_path(cname), eobj); | |
| append_method(obj, str, e->meth, e->args); | |
| rb_str_buf_cat2(str, ">"); | |
| return str; | |
| } | |
| static VALUE | |
| append_method(VALUE obj, VALUE str, ID default_method, VALUE default_args) | |
| { | |
| VALUE method, eargs; | |
| method = rb_attr_get(obj, id_method); | |
| if (method != Qfalse) { | |
| if (!NIL_P(method)) { | |
| Check_Type(method, T_SYMBOL); | |
| method = rb_sym2str(method); | |
| } | |
| else { | |
| method = rb_id2str(default_method); | |
| } | |
| rb_str_buf_cat2(str, ":"); | |
| rb_str_buf_append(str, method); | |
| } | |
| eargs = rb_attr_get(obj, id_arguments); | |
| if (NIL_P(eargs)) { | |
| eargs = default_args; | |
| } | |
| if (eargs != Qfalse) { | |
| long argc = RARRAY_LEN(eargs); | |
| const VALUE *argv = RARRAY_CONST_PTR(eargs); /* WB: no new reference */ | |
| if (argc > 0) { | |
| rb_str_buf_cat2(str, "("); | |
| while (argc--) { | |
| VALUE arg = *argv++; | |
| rb_str_append(str, rb_inspect(arg)); | |
| rb_str_buf_cat2(str, argc > 0 ? ", " : ")"); | |
| OBJ_INFECT(str, arg); | |
| } | |
| } | |
| } | |
| return str; | |
| } | |
| /* | |
| * call-seq: | |
| * e.inspect -> string | |
| * | |
| * Creates a printable version of <i>e</i>. | |
| */ | |
| static VALUE | |
| enumerator_inspect(VALUE obj) | |
| { | |
| return rb_exec_recursive(inspect_enumerator, obj, 0); | |
| } | |
| /* | |
| * call-seq: | |
| * e.size -> int, Float::INFINITY or nil | |
| * | |
| * Returns the size of the enumerator, or +nil+ if it can't be calculated lazily. | |
| * | |
| * (1..100).to_a.permutation(4).size # => 94109400 | |
| * loop.size # => Float::INFINITY | |
| * (1..100).drop_while.size # => nil | |
| */ | |
| static VALUE | |
| enumerator_size(VALUE obj) | |
| { | |
| struct enumerator *e = enumerator_ptr(obj); | |
| int argc = 0; | |
| const VALUE *argv = NULL; | |
| VALUE size; | |
| if (e->procs) { | |
| struct generator *g = generator_ptr(e->obj); | |
| VALUE receiver = rb_check_funcall(g->obj, id_size, 0, 0); | |
| long i = 0; | |
| for (i = 0; i < RARRAY_LEN(e->procs); i++) { | |
| VALUE proc = RARRAY_AREF(e->procs, i); | |
| struct proc_entry *entry = proc_entry_ptr(proc); | |
| lazyenum_size_func *size = entry->fn->size; | |
| if (!size) { | |
| return Qnil; | |
| } | |
| receiver = (*size)(proc, receiver); | |
| } | |
| return receiver; | |
| } | |
| if (e->size_fn) { | |
| return (*e->size_fn)(e->obj, e->args, obj); | |
| } | |
| if (e->args) { | |
| argc = (int)RARRAY_LEN(e->args); | |
| argv = RARRAY_CONST_PTR(e->args); | |
| } | |
| size = rb_check_funcall(e->size, id_call, argc, argv); | |
| if (size != Qundef) return size; | |
| return e->size; | |
| } | |
| /* | |
| * Yielder | |
| */ | |
| static void | |
| yielder_mark(void *p) | |
| { | |
| struct yielder *ptr = p; | |
| rb_gc_mark(ptr->proc); | |
| } | |
| #define yielder_free RUBY_TYPED_DEFAULT_FREE | |
| static size_t | |
| yielder_memsize(const void *p) | |
| { | |
| return sizeof(struct yielder); | |
| } | |
| static const rb_data_type_t yielder_data_type = { | |
| "yielder", | |
| { | |
| yielder_mark, | |
| yielder_free, | |
| yielder_memsize, | |
| }, | |
| 0, 0, RUBY_TYPED_FREE_IMMEDIATELY | |
| }; | |
| static struct yielder * | |
| yielder_ptr(VALUE obj) | |
| { | |
| struct yielder *ptr; | |
| TypedData_Get_Struct(obj, struct yielder, &yielder_data_type, ptr); | |
| if (!ptr || ptr->proc == Qundef) { | |
| rb_raise(rb_eArgError, "uninitialized yielder"); | |
| } | |
| return ptr; | |
| } | |
| /* :nodoc: */ | |
| static VALUE | |
| yielder_allocate(VALUE klass) | |
| { | |
| struct yielder *ptr; | |
| VALUE obj; | |
| obj = TypedData_Make_Struct(klass, struct yielder, &yielder_data_type, ptr); | |
| ptr->proc = Qundef; | |
| return obj; | |
| } | |
| static VALUE | |
| yielder_init(VALUE obj, VALUE proc) | |
| { | |
| struct yielder *ptr; | |
| TypedData_Get_Struct(obj, struct yielder, &yielder_data_type, ptr); | |
| if (!ptr) { | |
| rb_raise(rb_eArgError, "unallocated yielder"); | |
| } | |
| ptr->proc = proc; | |
| return obj; | |
| } | |
| /* :nodoc: */ | |
| static VALUE | |
| yielder_initialize(VALUE obj) | |
| { | |
| rb_need_block(); | |
| return yielder_init(obj, rb_block_proc()); | |
| } | |
| /* :nodoc: */ | |
| static VALUE | |
| yielder_yield(VALUE obj, VALUE args) | |
| { | |
| struct yielder *ptr = yielder_ptr(obj); | |
| return rb_proc_call(ptr->proc, args); | |
| } | |
| /* :nodoc: */ | |
| static VALUE | |
| yielder_yield_push(VALUE obj, VALUE args) | |
| { | |
| yielder_yield(obj, args); | |
| return obj; | |
| } | |
| static VALUE | |
| yielder_yield_i(RB_BLOCK_CALL_FUNC_ARGLIST(obj, memo)) | |
| { | |
| return rb_yield_values2(argc, argv); | |
| } | |
| static VALUE | |
| yielder_new(void) | |
| { | |
| return yielder_init(yielder_allocate(rb_cYielder), rb_proc_new(yielder_yield_i, 0)); | |
| } | |
| /* | |
| * Generator | |
| */ | |
| static void | |
| generator_mark(void *p) | |
| { | |
| struct generator *ptr = p; | |
| rb_gc_mark(ptr->proc); | |
| rb_gc_mark(ptr->obj); | |
| } | |
| #define generator_free RUBY_TYPED_DEFAULT_FREE | |
| static size_t | |
| generator_memsize(const void *p) | |
| { | |
| return sizeof(struct generator); | |
| } | |
| static const rb_data_type_t generator_data_type = { | |
| "generator", | |
| { | |
| generator_mark, | |
| generator_free, | |
| generator_memsize, | |
| }, | |
| 0, 0, RUBY_TYPED_FREE_IMMEDIATELY | |
| }; | |
| static struct generator * | |
| generator_ptr(VALUE obj) | |
| { | |
| struct generator *ptr; | |
| TypedData_Get_Struct(obj, struct generator, &generator_data_type, ptr); | |
| if (!ptr || ptr->proc == Qundef) { | |
| rb_raise(rb_eArgError, "uninitialized generator"); | |
| } | |
| return ptr; | |
| } | |
| /* :nodoc: */ | |
| static VALUE | |
| generator_allocate(VALUE klass) | |
| { | |
| struct generator *ptr; | |
| VALUE obj; | |
| obj = TypedData_Make_Struct(klass, struct generator, &generator_data_type, ptr); | |
| ptr->proc = Qundef; | |
| return obj; | |
| } | |
| static VALUE | |
| generator_init(VALUE obj, VALUE proc) | |
| { | |
| struct generator *ptr; | |
| rb_check_frozen(obj); | |
| TypedData_Get_Struct(obj, struct generator, &generator_data_type, ptr); | |
| if (!ptr) { | |
| rb_raise(rb_eArgError, "unallocated generator"); | |
| } | |
| ptr->proc = proc; | |
| return obj; | |
| } | |
| /* :nodoc: */ | |
| static VALUE | |
| generator_initialize(int argc, VALUE *argv, VALUE obj) | |
| { | |
| VALUE proc; | |
| if (argc == 0) { | |
| rb_need_block(); | |
| proc = rb_block_proc(); | |
| } | |
| else { | |
| rb_scan_args(argc, argv, "1", &proc); | |
| if (!rb_obj_is_proc(proc)) | |
| rb_raise(rb_eTypeError, | |
| "wrong argument type %"PRIsVALUE" (expected Proc)", | |
| rb_obj_class(proc)); | |
| if (rb_block_given_p()) { | |
| rb_warn("given block not used"); | |
| } | |
| } | |
| return generator_init(obj, proc); | |
| } | |
| /* :nodoc: */ | |
| static VALUE | |
| generator_init_copy(VALUE obj, VALUE orig) | |
| { | |
| struct generator *ptr0, *ptr1; | |
| if (!OBJ_INIT_COPY(obj, orig)) return obj; | |
| ptr0 = generator_ptr(orig); | |
| TypedData_Get_Struct(obj, struct generator, &generator_data_type, ptr1); | |
| if (!ptr1) { | |
| rb_raise(rb_eArgError, "unallocated generator"); | |
| } | |
| ptr1->proc = ptr0->proc; | |
| return obj; | |
| } | |
| /* :nodoc: */ | |
| static VALUE | |
| generator_each(int argc, VALUE *argv, VALUE obj) | |
| { | |
| struct generator *ptr = generator_ptr(obj); | |
| VALUE args = rb_ary_new2(argc + 1); | |
| rb_ary_push(args, yielder_new()); | |
| if (argc > 0) { | |
| rb_ary_cat(args, argv, argc); | |
| } | |
| return rb_proc_call(ptr->proc, args); | |
| } | |
| /* Lazy Enumerator methods */ | |
| static VALUE | |
| enum_size(VALUE self) | |
| { | |
| VALUE r = rb_check_funcall(self, id_size, 0, 0); | |
| return (r == Qundef) ? Qnil : r; | |
| } | |
| static VALUE | |
| lazyenum_size(VALUE self, VALUE args, VALUE eobj) | |
| { | |
| return enum_size(self); | |
| } | |
| static VALUE | |
| lazy_size(VALUE self) | |
| { | |
| return enum_size(rb_ivar_get(self, id_receiver)); | |
| } | |
| static VALUE | |
| lazy_receiver_size(VALUE generator, VALUE args, VALUE lazy) | |
| { | |
| return lazy_size(lazy); | |
| } | |
| static VALUE | |
| lazy_init_iterator(RB_BLOCK_CALL_FUNC_ARGLIST(val, m)) | |
| { | |
| VALUE result; | |
| if (argc == 1) { | |
| VALUE args[2]; | |
| args[0] = m; | |
| args[1] = val; | |
| result = rb_yield_values2(2, args); | |
| } | |
| else { | |
| VALUE args; | |
| int len = rb_long2int((long)argc + 1); | |
| VALUE *nargv = ALLOCV_N(VALUE, args, len); | |
| nargv[0] = m; | |
| if (argc > 0) { | |
| MEMCPY(nargv + 1, argv, VALUE, argc); | |
| } | |
| result = rb_yield_values2(len, nargv); | |
| ALLOCV_END(args); | |
| } | |
| if (result == Qundef) rb_iter_break(); | |
| return Qnil; | |
| } | |
| static VALUE | |
| lazy_init_block_i(RB_BLOCK_CALL_FUNC_ARGLIST(val, m)) | |
| { | |
| rb_block_call(m, id_each, argc-1, argv+1, lazy_init_iterator, val); | |
| return Qnil; | |
| } | |
| #define memo_value v2 | |
| #define memo_flags u3.state | |
| #define LAZY_MEMO_BREAK 1 | |
| #define LAZY_MEMO_PACKED 2 | |
| #define LAZY_MEMO_BREAK_P(memo) ((memo)->memo_flags & LAZY_MEMO_BREAK) | |
| #define LAZY_MEMO_PACKED_P(memo) ((memo)->memo_flags & LAZY_MEMO_PACKED) | |
| #define LAZY_MEMO_SET_BREAK(memo) ((memo)->memo_flags |= LAZY_MEMO_BREAK) | |
| #define LAZY_MEMO_SET_VALUE(memo, value) MEMO_V2_SET(memo, value) | |
| static VALUE | |
| lazy_init_yielder(VALUE val, VALUE m, int argc, VALUE *argv) | |
| { | |
| VALUE yielder = RARRAY_AREF(m, 0); | |
| VALUE procs_array = RARRAY_AREF(m, 1); | |
| VALUE memos = rb_attr_get(yielder, id_memo); | |
| long i = 0; | |
| struct MEMO *result; | |
| int cont = 1; | |
| result = MEMO_NEW(Qnil, rb_enum_values_pack(argc, argv), | |
| argc > 1 ? LAZY_MEMO_PACKED : 0); | |
| for (i = 0; i < RARRAY_LEN(procs_array); i++) { | |
| VALUE proc = RARRAY_AREF(procs_array, i); | |
| struct proc_entry *entry = proc_entry_ptr(proc); | |
| if (!(*entry->fn->proc)(proc, result, memos, i)) { | |
| cont = 0; | |
| break; | |
| } | |
| } | |
| if (cont) { | |
| rb_funcall2(yielder, id_yield, 1, &(result->memo_value)); | |
| } | |
| if (LAZY_MEMO_BREAK_P(result)) { | |
| rb_iter_break(); | |
| } | |
| return result->memo_value; | |
| } | |
| static VALUE | |
| lazy_init_block(VALUE val, VALUE m, int argc, VALUE *argv) | |
| { | |
| VALUE procs = RARRAY_AREF(m, 1); | |
| rb_ivar_set(val, id_memo, rb_ary_new2(RARRAY_LEN(procs))); | |
| rb_block_call(RARRAY_AREF(m, 0), id_each, 0, 0, | |
| lazy_init_yielder, rb_ary_new3(2, val, procs)); | |
| return Qnil; | |
| } | |
| static VALUE | |
| lazy_generator_init(VALUE enumerator, VALUE procs) | |
| { | |
| VALUE generator; | |
| VALUE obj; | |
| struct generator *gen_ptr; | |
| struct enumerator *e = enumerator_ptr(enumerator); | |
| if (RARRAY_LEN(procs) > 0) { | |
| struct generator *old_gen_ptr = generator_ptr(e->obj); | |
| obj = old_gen_ptr->obj; | |
| } | |
| else { | |
| obj = enumerator; | |
| } | |
| generator = generator_allocate(rb_cGenerator); | |
| rb_block_call(generator, id_initialize, 0, 0, | |
| lazy_init_block, rb_ary_new3(2, obj, procs)); | |
| gen_ptr = generator_ptr(generator); | |
| gen_ptr->obj = obj; | |
| return generator; | |
| } | |
| /* | |
| * call-seq: | |
| * Lazy.new(obj, size=nil) { |yielder, *values| ... } | |
| * | |
| * Creates a new Lazy enumerator. When the enumerator is actually enumerated | |
| * (e.g. by calling #force), +obj+ will be enumerated and each value passed | |
| * to the given block. The block can yield values back using +yielder+. | |
| * For example, to create a method +filter_map+ in both lazy and | |
| * non-lazy fashions: | |
| * | |
| * module Enumerable | |
| * def filter_map(&block) | |
| * map(&block).compact | |
| * end | |
| * end | |
| * | |
| * class Enumerator::Lazy | |
| * def filter_map | |
| * Lazy.new(self) do |yielder, *values| | |
| * result = yield *values | |
| * yielder << result if result | |
| * end | |
| * end | |
| * end | |
| * | |
| * (1..Float::INFINITY).lazy.filter_map{|i| i*i if i.even?}.first(5) | |
| * # => [4, 16, 36, 64, 100] | |
| */ | |
| static VALUE | |
| lazy_initialize(int argc, VALUE *argv, VALUE self) | |
| { | |
| VALUE obj, size = Qnil; | |
| VALUE generator; | |
| rb_check_arity(argc, 1, 2); | |
| if (!rb_block_given_p()) { | |
| rb_raise(rb_eArgError, "tried to call lazy new without a block"); | |
| } | |
| obj = argv[0]; | |
| if (argc > 1) { | |
| size = argv[1]; | |
| } | |
| generator = generator_allocate(rb_cGenerator); | |
| rb_block_call(generator, id_initialize, 0, 0, lazy_init_block_i, obj); | |
| enumerator_init(self, generator, sym_each, 0, 0, 0, size); | |
| rb_ivar_set(self, id_receiver, obj); | |
| return self; | |
| } | |
| static void | |
| lazy_set_args(VALUE lazy, VALUE args) | |
| { | |
| ID id = rb_frame_this_func(); | |
| rb_ivar_set(lazy, id_method, ID2SYM(id)); | |
| if (NIL_P(args)) { | |
| /* Qfalse indicates that the arguments are empty */ | |
| rb_ivar_set(lazy, id_arguments, Qfalse); | |
| } | |
| else { | |
| rb_ivar_set(lazy, id_arguments, args); | |
| } | |
| } | |
| static VALUE | |
| lazy_set_method(VALUE lazy, VALUE args, rb_enumerator_size_func *size_fn) | |
| { | |
| struct enumerator *e = enumerator_ptr(lazy); | |
| lazy_set_args(lazy, args); | |
| e->size_fn = size_fn; | |
| return lazy; | |
| } | |
| static VALUE | |
| lazy_add_method(VALUE obj, int argc, VALUE *argv, VALUE args, VALUE memo, | |
| const lazyenum_funcs *fn) | |
| { | |
| struct enumerator *new_e; | |
| VALUE new_obj; | |
| VALUE new_generator; | |
| VALUE new_procs; | |
| struct enumerator *e = enumerator_ptr(obj); | |
| struct proc_entry *entry; | |
| VALUE entry_obj = TypedData_Make_Struct(rb_cObject, struct proc_entry, | |
| &proc_entry_data_type, entry); | |
| if (rb_block_given_p()) { | |
| entry->proc = rb_block_proc(); | |
| } | |
| entry->fn = fn; | |
| entry->memo = args; | |
| lazy_set_args(entry_obj, memo); | |
| new_procs = RTEST(e->procs) ? rb_ary_dup(e->procs) : rb_ary_new(); | |
| new_generator = lazy_generator_init(obj, new_procs); | |
| rb_ary_push(new_procs, entry_obj); | |
| new_obj = enumerator_init_copy(enumerator_allocate(rb_cLazy), obj); | |
| new_e = DATA_PTR(new_obj); | |
| new_e->obj = new_generator; | |
| new_e->procs = new_procs; | |
| if (argc > 0) { | |
| new_e->meth = rb_to_id(*argv++); | |
| --argc; | |
| } | |
| else { | |
| new_e->meth = id_each; | |
| } | |
| new_e->args = rb_ary_new4(argc, argv); | |
| return new_obj; | |
| } | |
| /* | |
| * call-seq: | |
| * e.lazy -> lazy_enumerator | |
| * | |
| * Returns a lazy enumerator, whose methods map/collect, | |
| * flat_map/collect_concat, select/find_all, reject, grep, grep_v, zip, take, | |
| * take_while, drop, and drop_while enumerate values only on an | |
| * as-needed basis. However, if a block is given to zip, values | |
| * are enumerated immediately. | |
| * | |
| * === Example | |
| * | |
| * The following program finds pythagorean triples: | |
| * | |
| * def pythagorean_triples | |
| * (1..Float::INFINITY).lazy.flat_map {|z| | |
| * (1..z).flat_map {|x| | |
| * (x..z).select {|y| | |
| * x**2 + y**2 == z**2 | |
| * }.map {|y| | |
| * [x, y, z] | |
| * } | |
| * } | |
| * } | |
| * end | |
| * # show first ten pythagorean triples | |
| * p pythagorean_triples.take(10).force # take is lazy, so force is needed | |
| * p pythagorean_triples.first(10) # first is eager | |
| * # show pythagorean triples less than 100 | |
| * p pythagorean_triples.take_while { |*, z| z < 100 }.force | |
| */ | |
| static VALUE | |
| enumerable_lazy(VALUE obj) | |
| { | |
| VALUE result = lazy_to_enum_i(obj, sym_each, 0, 0, lazyenum_size); | |
| /* Qfalse indicates that the Enumerator::Lazy has no method name */ | |
| rb_ivar_set(result, id_method, Qfalse); | |
| return result; | |
| } | |
| static VALUE | |
| lazy_to_enum_i(VALUE obj, VALUE meth, int argc, const VALUE *argv, rb_enumerator_size_func *size_fn) | |
| { | |
| return enumerator_init(enumerator_allocate(rb_cLazy), | |
| obj, meth, argc, argv, size_fn, Qnil); | |
| } | |
| /* | |
| * call-seq: | |
| * lzy.to_enum(method = :each, *args) -> lazy_enum | |
| * lzy.enum_for(method = :each, *args) -> lazy_enum | |
| * lzy.to_enum(method = :each, *args) {|*args| block} -> lazy_enum | |
| * lzy.enum_for(method = :each, *args){|*args| block} -> lazy_enum | |
| * | |
| * Similar to Kernel#to_enum, except it returns a lazy enumerator. | |
| * This makes it easy to define Enumerable methods that will | |
| * naturally remain lazy if called from a lazy enumerator. | |
| * | |
| * For example, continuing from the example in Kernel#to_enum: | |
| * | |
| * # See Kernel#to_enum for the definition of repeat | |
| * r = 1..Float::INFINITY | |
| * r.repeat(2).first(5) # => [1, 1, 2, 2, 3] | |
| * r.repeat(2).class # => Enumerator | |
| * r.repeat(2).map{|n| n ** 2}.first(5) # => endless loop! | |
| * # works naturally on lazy enumerator: | |
| * r.lazy.repeat(2).class # => Enumerator::Lazy | |
| * r.lazy.repeat(2).map{|n| n ** 2}.first(5) # => [1, 1, 4, 4, 9] | |
| */ | |
| static VALUE | |
| lazy_to_enum(int argc, VALUE *argv, VALUE self) | |
| { | |
| VALUE lazy, meth = sym_each; | |
| if (argc > 0) { | |
| --argc; | |
| meth = *argv++; | |
| } | |
| lazy = lazy_to_enum_i(self, meth, argc, argv, 0); | |
| if (rb_block_given_p()) { | |
| enumerator_ptr(lazy)->size = rb_block_proc(); | |
| } | |
| return lazy; | |
| } | |
| static VALUE | |
| lazyenum_yield(VALUE proc_entry, struct MEMO *result) | |
| { | |
| struct proc_entry *entry = proc_entry_ptr(proc_entry); | |
| return rb_proc_call_with_block(entry->proc, 1, &result->memo_value, Qnil); | |
| } | |
| static VALUE | |
| lazyenum_yield_values(VALUE proc_entry, struct MEMO *result) | |
| { | |
| struct proc_entry *entry = proc_entry_ptr(proc_entry); | |
| int argc = 1; | |
| const VALUE *argv = &result->memo_value; | |
| if (LAZY_MEMO_PACKED_P(result)) { | |
| const VALUE args = *argv; | |
| argc = RARRAY_LENINT(args); | |
| argv = RARRAY_CONST_PTR(args); | |
| } | |
| return rb_proc_call_with_block(entry->proc, argc, argv, Qnil); | |
| } | |
| static struct MEMO * | |
| lazy_map_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index) | |
| { | |
| VALUE value = lazyenum_yield_values(proc_entry, result); | |
| LAZY_MEMO_SET_VALUE(result, value); | |
| return result; | |
| } | |
| static VALUE | |
| lazy_map_size(VALUE entry, VALUE receiver) | |
| { | |
| return receiver; | |
| } | |
| static const lazyenum_funcs lazy_map_funcs = { | |
| lazy_map_proc, lazy_map_size, | |
| }; | |
| static VALUE | |
| lazy_map(VALUE obj) | |
| { | |
| if (!rb_block_given_p()) { | |
| rb_raise(rb_eArgError, "tried to call lazy map without a block"); | |
| } | |
| return lazy_add_method(obj, 0, 0, Qnil, Qnil, &lazy_map_funcs); | |
| } | |
| static VALUE | |
| lazy_flat_map_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, yielder)) | |
| { | |
| return rb_funcallv(yielder, id_yield, argc, argv); | |
| } | |
| static VALUE | |
| lazy_flat_map_each(VALUE obj, VALUE yielder) | |
| { | |
| rb_block_call(obj, id_each, 0, 0, lazy_flat_map_i, yielder); | |
| return Qnil; | |
| } | |
| static VALUE | |
| lazy_flat_map_to_ary(VALUE obj, VALUE yielder) | |
| { | |
| VALUE ary = rb_check_array_type(obj); | |
| if (NIL_P(ary)) { | |
| rb_funcall(yielder, id_yield, 1, obj); | |
| } | |
| else { | |
| long i; | |
| for (i = 0; i < RARRAY_LEN(ary); i++) { | |
| rb_funcall(yielder, id_yield, 1, RARRAY_AREF(ary, i)); | |
| } | |
| } | |
| return Qnil; | |
| } | |
| static VALUE | |
| lazy_flat_map_proc(RB_BLOCK_CALL_FUNC_ARGLIST(val, m)) | |
| { | |
| VALUE result = rb_yield_values2(argc - 1, &argv[1]); | |
| if (RB_TYPE_P(result, T_ARRAY)) { | |
| long i; | |
| for (i = 0; i < RARRAY_LEN(result); i++) { | |
| rb_funcall(argv[0], id_yield, 1, RARRAY_AREF(result, i)); | |
| } | |
| } | |
| else { | |
| if (rb_respond_to(result, id_force) && rb_respond_to(result, id_each)) { | |
| lazy_flat_map_each(result, argv[0]); | |
| } | |
| else { | |
| lazy_flat_map_to_ary(result, argv[0]); | |
| } | |
| } | |
| return Qnil; | |
| } | |
| /* | |
| * call-seq: | |
| * lazy.collect_concat { |obj| block } -> a_lazy_enumerator | |
| * lazy.flat_map { |obj| block } -> a_lazy_enumerator | |
| * | |
| * Returns a new lazy enumerator with the concatenated results of running | |
| * <i>block</i> once for every element in <i>lazy</i>. | |
| * | |
| * ["foo", "bar"].lazy.flat_map {|i| i.each_char.lazy}.force | |
| * #=> ["f", "o", "o", "b", "a", "r"] | |
| * | |
| * A value <i>x</i> returned by <i>block</i> is decomposed if either of | |
| * the following conditions is true: | |
| * | |
| * a) <i>x</i> responds to both each and force, which means that | |
| * <i>x</i> is a lazy enumerator. | |
| * b) <i>x</i> is an array or responds to to_ary. | |
| * | |
| * Otherwise, <i>x</i> is contained as-is in the return value. | |
| * | |
| * [{a:1}, {b:2}].lazy.flat_map {|i| i}.force | |
| * #=> [{:a=>1}, {:b=>2}] | |
| */ | |
| static VALUE | |
| lazy_flat_map(VALUE obj) | |
| { | |
| if (!rb_block_given_p()) { | |
| rb_raise(rb_eArgError, "tried to call lazy flat_map without a block"); | |
| } | |
| return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj, | |
| lazy_flat_map_proc, 0), | |
| Qnil, 0); | |
| } | |
| static struct MEMO * | |
| lazy_select_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index) | |
| { | |
| VALUE chain = lazyenum_yield(proc_entry, result); | |
| if (!RTEST(chain)) return 0; | |
| return result; | |
| } | |
| static const lazyenum_funcs lazy_select_funcs = { | |
| lazy_select_proc, 0, | |
| }; | |
| static VALUE | |
| lazy_select(VALUE obj) | |
| { | |
| if (!rb_block_given_p()) { | |
| rb_raise(rb_eArgError, "tried to call lazy select without a block"); | |
| } | |
| return lazy_add_method(obj, 0, 0, Qnil, Qnil, &lazy_select_funcs); | |
| } | |
| static struct MEMO * | |
| lazy_reject_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index) | |
| { | |
| VALUE chain = lazyenum_yield(proc_entry, result); | |
| if (RTEST(chain)) return 0; | |
| return result; | |
| } | |
| static const lazyenum_funcs lazy_reject_funcs = { | |
| lazy_reject_proc, 0, | |
| }; | |
| static VALUE | |
| lazy_reject(VALUE obj) | |
| { | |
| if (!rb_block_given_p()) { | |
| rb_raise(rb_eArgError, "tried to call lazy reject without a block"); | |
| } | |
| return lazy_add_method(obj, 0, 0, Qnil, Qnil, &lazy_reject_funcs); | |
| } | |
| static struct MEMO * | |
| lazy_grep_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index) | |
| { | |
| struct proc_entry *entry = proc_entry_ptr(proc_entry); | |
| VALUE chain = rb_funcall(entry->memo, id_eqq, 1, result->memo_value); | |
| if (!RTEST(chain)) return 0; | |
| return result; | |
| } | |
| static struct MEMO * | |
| lazy_grep_iter_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index) | |
| { | |
| struct proc_entry *entry = proc_entry_ptr(proc_entry); | |
| VALUE value, chain = rb_funcall(entry->memo, id_eqq, 1, result->memo_value); | |
| if (!RTEST(chain)) return 0; | |
| value = rb_proc_call_with_block(entry->proc, 1, &(result->memo_value), Qnil); | |
| LAZY_MEMO_SET_VALUE(result, value); | |
| return result; | |
| } | |
| static const lazyenum_funcs lazy_grep_iter_funcs = { | |
| lazy_grep_iter_proc, 0, | |
| }; | |
| static const lazyenum_funcs lazy_grep_funcs = { | |
| lazy_grep_proc, 0, | |
| }; | |
| static VALUE | |
| lazy_grep(VALUE obj, VALUE pattern) | |
| { | |
| const lazyenum_funcs *const funcs = rb_block_given_p() ? | |
| &lazy_grep_iter_funcs : &lazy_grep_funcs; | |
| return lazy_add_method(obj, 0, 0, pattern, rb_ary_new3(1, pattern), funcs); | |
| } | |
| static VALUE | |
| lazy_grep_v_func(RB_BLOCK_CALL_FUNC_ARGLIST(val, m)) | |
| { | |
| VALUE i = rb_enum_values_pack(argc - 1, argv + 1); | |
| VALUE result = rb_funcall(m, id_eqq, 1, i); | |
| if (!RTEST(result)) { | |
| rb_funcall(argv[0], id_yield, 1, i); | |
| } | |
| return Qnil; | |
| } | |
| static VALUE | |
| lazy_grep_v_iter(RB_BLOCK_CALL_FUNC_ARGLIST(val, m)) | |
| { | |
| VALUE i = rb_enum_values_pack(argc - 1, argv + 1); | |
| VALUE result = rb_funcall(m, id_eqq, 1, i); | |
| if (!RTEST(result)) { | |
| rb_funcall(argv[0], id_yield, 1, rb_yield(i)); | |
| } | |
| return Qnil; | |
| } | |
| static VALUE | |
| lazy_grep_v(VALUE obj, VALUE pattern) | |
| { | |
| return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj, | |
| rb_block_given_p() ? | |
| lazy_grep_v_iter : lazy_grep_v_func, | |
| pattern), | |
| rb_ary_new3(1, pattern), 0); | |
| } | |
| static VALUE | |
| call_next(VALUE obj) | |
| { | |
| return rb_funcall(obj, id_next, 0); | |
| } | |
| static VALUE | |
| next_stopped(VALUE obj) | |
| { | |
| return Qnil; | |
| } | |
| static VALUE | |
| lazy_zip_arrays_func(RB_BLOCK_CALL_FUNC_ARGLIST(val, arrays)) | |
| { | |
| VALUE yielder, ary, memo; | |
| long i, count; | |
| yielder = argv[0]; | |
| memo = rb_attr_get(yielder, id_memo); | |
| count = NIL_P(memo) ? 0 : NUM2LONG(memo); | |
| ary = rb_ary_new2(RARRAY_LEN(arrays) + 1); | |
| rb_ary_push(ary, argv[1]); | |
| for (i = 0; i < RARRAY_LEN(arrays); i++) { | |
| rb_ary_push(ary, rb_ary_entry(RARRAY_AREF(arrays, i), count)); | |
| } | |
| rb_funcall(yielder, id_yield, 1, ary); | |
| rb_ivar_set(yielder, id_memo, LONG2NUM(++count)); | |
| return Qnil; | |
| } | |
| static VALUE | |
| lazy_zip_func(RB_BLOCK_CALL_FUNC_ARGLIST(val, zip_args)) | |
| { | |
| VALUE yielder, ary, arg, v; | |
| long i; | |
| yielder = argv[0]; | |
| arg = rb_attr_get(yielder, id_memo); | |
| if (NIL_P(arg)) { | |
| arg = rb_ary_new2(RARRAY_LEN(zip_args)); | |
| for (i = 0; i < RARRAY_LEN(zip_args); i++) { | |
| rb_ary_push(arg, rb_funcall(RARRAY_AREF(zip_args, i), id_to_enum, 0)); | |
| } | |
| rb_ivar_set(yielder, id_memo, arg); | |
| } | |
| ary = rb_ary_new2(RARRAY_LEN(arg) + 1); | |
| v = Qnil; | |
| if (--argc > 0) { | |
| ++argv; | |
| v = argc > 1 ? rb_ary_new_from_values(argc, argv) : *argv; | |
| } | |
| rb_ary_push(ary, v); | |
| for (i = 0; i < RARRAY_LEN(arg); i++) { | |
| v = rb_rescue2(call_next, RARRAY_AREF(arg, i), next_stopped, 0, | |
| rb_eStopIteration, (VALUE)0); | |
| rb_ary_push(ary, v); | |
| } | |
| rb_funcall(yielder, id_yield, 1, ary); | |
| return Qnil; | |
| } | |
| static VALUE | |
| lazy_zip(int argc, VALUE *argv, VALUE obj) | |
| { | |
| VALUE ary, v; | |
| long i; | |
| rb_block_call_func *func = lazy_zip_arrays_func; | |
| if (rb_block_given_p()) { | |
| return rb_call_super(argc, argv); | |
| } | |
| ary = rb_ary_new2(argc); | |
| for (i = 0; i < argc; i++) { | |
| v = rb_check_array_type(argv[i]); | |
| if (NIL_P(v)) { | |
| for (; i < argc; i++) { | |
| if (!rb_respond_to(argv[i], id_each)) { | |
| rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (must respond to :each)", | |
| rb_obj_class(argv[i])); | |
| } | |
| } | |
| ary = rb_ary_new4(argc, argv); | |
| func = lazy_zip_func; | |
| break; | |
| } | |
| rb_ary_push(ary, v); | |
| } | |
| return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj, | |
| func, ary), | |
| ary, lazy_receiver_size); | |
| } | |
| static struct MEMO * | |
| lazy_take_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index) | |
| { | |
| long remain; | |
| struct proc_entry *entry = proc_entry_ptr(proc_entry); | |
| VALUE memo = rb_ary_entry(memos, memo_index); | |
| if (NIL_P(memo)) { | |
| memo = entry->memo; | |
| } | |
| remain = NUM2LONG(memo); | |
| if (remain == 0) { | |
| LAZY_MEMO_SET_BREAK(result); | |
| } | |
| else { | |
| if (--remain == 0) LAZY_MEMO_SET_BREAK(result); | |
| rb_ary_store(memos, memo_index, LONG2NUM(remain)); | |
| } | |
| return result; | |
| } | |
| static VALUE | |
| lazy_take_size(VALUE entry, VALUE receiver) | |
| { | |
| long len = NUM2LONG(RARRAY_AREF(rb_ivar_get(entry, id_arguments), 0)); | |
| if (NIL_P(receiver) || (FIXNUM_P(receiver) && FIX2LONG(receiver) < len)) | |
| return receiver; | |
| return LONG2NUM(len); | |
| } | |
| static const lazyenum_funcs lazy_take_funcs = { | |
| lazy_take_proc, lazy_take_size, | |
| }; | |
| static VALUE | |
| lazy_take(VALUE obj, VALUE n) | |
| { | |
| long len = NUM2LONG(n); | |
| int argc = 0; | |
| VALUE argv[2]; | |
| if (len < 0) { | |
| rb_raise(rb_eArgError, "attempt to take negative size"); | |
| } | |
| if (len == 0) { | |
| argv[0] = sym_cycle; | |
| argv[1] = INT2NUM(0); | |
| argc = 2; | |
| } | |
| return lazy_add_method(obj, argc, argv, n, rb_ary_new3(1, n), &lazy_take_funcs); | |
| } | |
| static struct MEMO * | |
| lazy_take_while_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index) | |
| { | |
| VALUE take = lazyenum_yield_values(proc_entry, result); | |
| if (!RTEST(take)) { | |
| LAZY_MEMO_SET_BREAK(result); | |
| return 0; | |
| } | |
| return result; | |
| } | |
| static const lazyenum_funcs lazy_take_while_funcs = { | |
| lazy_take_while_proc, 0, | |
| }; | |
| static VALUE | |
| lazy_take_while(VALUE obj) | |
| { | |
| if (!rb_block_given_p()) { | |
| rb_raise(rb_eArgError, "tried to call lazy take_while without a block"); | |
| } | |
| return lazy_add_method(obj, 0, 0, Qnil, Qnil, &lazy_take_while_funcs); | |
| } | |
| static VALUE | |
| lazy_drop_size(VALUE proc_entry, VALUE receiver) | |
| { | |
| long len = NUM2LONG(RARRAY_AREF(rb_ivar_get(proc_entry, id_arguments), 0)); | |
| if (NIL_P(receiver)) | |
| return receiver; | |
| if (FIXNUM_P(receiver)) { | |
| len = FIX2LONG(receiver) - len; | |
| return LONG2FIX(len < 0 ? 0 : len); | |
| } | |
| return rb_funcall(receiver, '-', 1, LONG2NUM(len)); | |
| } | |
| static struct MEMO * | |
| lazy_drop_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index) | |
| { | |
| long remain; | |
| struct proc_entry *entry = proc_entry_ptr(proc_entry); | |
| VALUE memo = rb_ary_entry(memos, memo_index); | |
| if (NIL_P(memo)) { | |
| memo = entry->memo; | |
| } | |
| remain = NUM2LONG(memo); | |
| if (remain > 0) { | |
| --remain; | |
| rb_ary_store(memos, memo_index, LONG2NUM(remain)); | |
| return 0; | |
| } | |
| return result; | |
| } | |
| static const lazyenum_funcs lazy_drop_funcs = { | |
| lazy_drop_proc, lazy_drop_size, | |
| }; | |
| static VALUE | |
| lazy_drop(VALUE obj, VALUE n) | |
| { | |
| long len = NUM2LONG(n); | |
| VALUE argv[2]; | |
| argv[0] = sym_each; | |
| argv[1] = n; | |
| if (len < 0) { | |
| rb_raise(rb_eArgError, "attempt to drop negative size"); | |
| } | |
| return lazy_add_method(obj, 2, argv, n, rb_ary_new3(1, n), &lazy_drop_funcs); | |
| } | |
| static struct MEMO * | |
| lazy_drop_while_proc(VALUE proc_entry, struct MEMO* result, VALUE memos, long memo_index) | |
| { | |
| struct proc_entry *entry = proc_entry_ptr(proc_entry); | |
| VALUE memo = rb_ary_entry(memos, memo_index); | |
| if (NIL_P(memo)) { | |
| memo = entry->memo; | |
| } | |
| if (!RTEST(memo)) { | |
| VALUE drop = lazyenum_yield_values(proc_entry, result); | |
| if (RTEST(drop)) return 0; | |
| rb_ary_store(memos, memo_index, Qtrue); | |
| } | |
| return result; | |
| } | |
| static const lazyenum_funcs lazy_drop_while_funcs = { | |
| lazy_drop_while_proc, 0, | |
| }; | |
| static VALUE | |
| lazy_drop_while(VALUE obj) | |
| { | |
| if (!rb_block_given_p()) { | |
| rb_raise(rb_eArgError, "tried to call lazy drop_while without a block"); | |
| } | |
| return lazy_add_method(obj, 0, 0, Qfalse, Qnil, &lazy_drop_while_funcs); | |
| } | |
| static VALUE | |
| lazy_uniq_i(VALUE i, VALUE hash, int argc, const VALUE *argv, VALUE yielder) | |
| { | |
| if (rb_hash_add_new_element(hash, i, Qfalse)) | |
| return Qnil; | |
| return rb_funcallv(yielder, id_yield, argc, argv); | |
| } | |
| static VALUE | |
| lazy_uniq_func(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash)) | |
| { | |
| VALUE yielder = (--argc, *argv++); | |
| i = rb_enum_values_pack(argc, argv); | |
| return lazy_uniq_i(i, hash, argc, argv, yielder); | |
| } | |
| static VALUE | |
| lazy_uniq_iter(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash)) | |
| { | |
| VALUE yielder = (--argc, *argv++); | |
| i = rb_yield_values2(argc, argv); | |
| return lazy_uniq_i(i, hash, argc, argv, yielder); | |
| } | |
| static VALUE | |
| lazy_uniq(VALUE obj) | |
| { | |
| rb_block_call_func *const func = | |
| rb_block_given_p() ? lazy_uniq_iter : lazy_uniq_func; | |
| VALUE hash = rb_obj_hide(rb_hash_new()); | |
| return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj, | |
| func, hash), | |
| 0, 0); | |
| } | |
| static VALUE | |
| lazy_super(int argc, VALUE *argv, VALUE lazy) | |
| { | |
| return enumerable_lazy(rb_call_super(argc, argv)); | |
| } | |
| static VALUE | |
| lazy_lazy(VALUE obj) | |
| { | |
| return obj; | |
| } | |
| /* | |
| * Document-class: StopIteration | |
| * | |
| * Raised to stop the iteration, in particular by Enumerator#next. It is | |
| * rescued by Kernel#loop. | |
| * | |
| * loop do | |
| * puts "Hello" | |
| * raise StopIteration | |
| * puts "World" | |
| * end | |
| * puts "Done!" | |
| * | |
| * <em>produces:</em> | |
| * | |
| * Hello | |
| * Done! | |
| */ | |
| /* | |
| * call-seq: | |
| * result -> value | |
| * | |
| * Returns the return value of the iterator. | |
| * | |
| * o = Object.new | |
| * def o.each | |
| * yield 1 | |
| * yield 2 | |
| * yield 3 | |
| * 100 | |
| * end | |
| * | |
| * e = o.to_enum | |
| * | |
| * puts e.next #=> 1 | |
| * puts e.next #=> 2 | |
| * puts e.next #=> 3 | |
| * | |
| * begin | |
| * e.next | |
| * rescue StopIteration => ex | |
| * puts ex.result #=> 100 | |
| * end | |
| * | |
| */ | |
| static VALUE | |
| stop_result(VALUE self) | |
| { | |
| return rb_attr_get(self, id_result); | |
| } | |
| void | |
| InitVM_Enumerator(void) | |
| { | |
| rb_define_method(rb_mKernel, "to_enum", obj_to_enum, -1); | |
| rb_define_method(rb_mKernel, "enum_for", obj_to_enum, -1); | |
| rb_cEnumerator = rb_define_class("Enumerator", rb_cObject); | |
| rb_include_module(rb_cEnumerator, rb_mEnumerable); | |
| rb_define_alloc_func(rb_cEnumerator, enumerator_allocate); | |
| rb_define_method(rb_cEnumerator, "initialize", enumerator_initialize, -1); | |
| rb_define_method(rb_cEnumerator, "initialize_copy", enumerator_init_copy, 1); | |
| rb_define_method(rb_cEnumerator, "each", enumerator_each, -1); | |
| rb_define_method(rb_cEnumerator, "each_with_index", enumerator_each_with_index, 0); | |
| rb_define_method(rb_cEnumerator, "each_with_object", enumerator_with_object, 1); | |
| rb_define_method(rb_cEnumerator, "with_index", enumerator_with_index, -1); | |
| rb_define_method(rb_cEnumerator, "with_object", enumerator_with_object, 1); | |
| rb_define_method(rb_cEnumerator, "next_values", enumerator_next_values, 0); | |
| rb_define_method(rb_cEnumerator, "peek_values", enumerator_peek_values_m, 0); | |
| rb_define_method(rb_cEnumerator, "next", enumerator_next, 0); | |
| rb_define_method(rb_cEnumerator, "peek", enumerator_peek, 0); | |
| rb_define_method(rb_cEnumerator, "feed", enumerator_feed, 1); | |
| rb_define_method(rb_cEnumerator, "rewind", enumerator_rewind, 0); | |
| rb_define_method(rb_cEnumerator, "inspect", enumerator_inspect, 0); | |
| rb_define_method(rb_cEnumerator, "size", enumerator_size, 0); | |
| /* Lazy */ | |
| rb_cLazy = rb_define_class_under(rb_cEnumerator, "Lazy", rb_cEnumerator); | |
| rb_define_method(rb_mEnumerable, "lazy", enumerable_lazy, 0); | |
| rb_define_method(rb_cLazy, "initialize", lazy_initialize, -1); | |
| rb_define_method(rb_cLazy, "to_enum", lazy_to_enum, -1); | |
| rb_define_method(rb_cLazy, "enum_for", lazy_to_enum, -1); | |
| rb_define_method(rb_cLazy, "map", lazy_map, 0); | |
| rb_define_method(rb_cLazy, "collect", lazy_map, 0); | |
| rb_define_method(rb_cLazy, "flat_map", lazy_flat_map, 0); | |
| rb_define_method(rb_cLazy, "collect_concat", lazy_flat_map, 0); | |
| rb_define_method(rb_cLazy, "select", lazy_select, 0); | |
| rb_define_method(rb_cLazy, "find_all", lazy_select, 0); | |
| rb_define_method(rb_cLazy, "reject", lazy_reject, 0); | |
| rb_define_method(rb_cLazy, "grep", lazy_grep, 1); | |
| rb_define_method(rb_cLazy, "grep_v", lazy_grep_v, 1); | |
| rb_define_method(rb_cLazy, "zip", lazy_zip, -1); | |
| rb_define_method(rb_cLazy, "take", lazy_take, 1); | |
| rb_define_method(rb_cLazy, "take_while", lazy_take_while, 0); | |
| rb_define_method(rb_cLazy, "drop", lazy_drop, 1); | |
| rb_define_method(rb_cLazy, "drop_while", lazy_drop_while, 0); | |
| rb_define_method(rb_cLazy, "lazy", lazy_lazy, 0); | |
| rb_define_method(rb_cLazy, "chunk", lazy_super, -1); | |
| rb_define_method(rb_cLazy, "slice_before", lazy_super, -1); | |
| rb_define_method(rb_cLazy, "slice_after", lazy_super, -1); | |
| rb_define_method(rb_cLazy, "slice_when", lazy_super, -1); | |
| rb_define_method(rb_cLazy, "chunk_while", lazy_super, -1); | |
| rb_define_method(rb_cLazy, "uniq", lazy_uniq, 0); | |
| rb_define_alias(rb_cLazy, "force", "to_a"); | |
| rb_eStopIteration = rb_define_class("StopIteration", rb_eIndexError); | |
| rb_define_method(rb_eStopIteration, "result", stop_result, 0); | |
| /* Generator */ | |
| rb_cGenerator = rb_define_class_under(rb_cEnumerator, "Generator", rb_cObject); | |
| rb_include_module(rb_cGenerator, rb_mEnumerable); | |
| rb_define_alloc_func(rb_cGenerator, generator_allocate); | |
| rb_define_method(rb_cGenerator, "initialize", generator_initialize, -1); | |
| rb_define_method(rb_cGenerator, "initialize_copy", generator_init_copy, 1); | |
| rb_define_method(rb_cGenerator, "each", generator_each, -1); | |
| /* Yielder */ | |
| rb_cYielder = rb_define_class_under(rb_cEnumerator, "Yielder", rb_cObject); | |
| rb_define_alloc_func(rb_cYielder, yielder_allocate); | |
| rb_define_method(rb_cYielder, "initialize", yielder_initialize, 0); | |
| rb_define_method(rb_cYielder, "yield", yielder_yield, -2); | |
| rb_define_method(rb_cYielder, "<<", yielder_yield_push, -2); | |
| rb_provide("enumerator.so"); /* for backward compatibility */ | |
| } | |
| #undef rb_intern | |
| void | |
| Init_Enumerator(void) | |
| { | |
| id_rewind = rb_intern("rewind"); | |
| id_each = rb_intern("each"); | |
| id_call = rb_intern("call"); | |
| id_size = rb_intern("size"); | |
| id_yield = rb_intern("yield"); | |
| id_new = rb_intern("new"); | |
| id_initialize = rb_intern("initialize"); | |
| id_next = rb_intern("next"); | |
| id_result = rb_intern("result"); | |
| id_lazy = rb_intern("lazy"); | |
| id_eqq = rb_intern("==="); | |
| id_receiver = rb_intern("receiver"); | |
| id_arguments = rb_intern("arguments"); | |
| id_memo = rb_intern("memo"); | |
| id_method = rb_intern("method"); | |
| id_force = rb_intern("force"); | |
| id_to_enum = rb_intern("to_enum"); | |
| sym_each = ID2SYM(id_each); | |
| sym_cycle = ID2SYM(rb_intern("cycle")); | |
| InitVM(Enumerator); | |
| } |