The Wayback Machine - https://web.archive.org/web/20110524190111/http://mcb.asm.org/cgi/content/abstract/17/9/4957
This Article
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Right arrow Citation Map
Services
Right arrow E-mail this article to a friend
Right arrow Similar articles in this journal
Right arrow Similar articles in ASM journals
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Download to citation manager
Right arrowReprints and Permissions
Right arrow Copyright Information
Right arrow Books from ASM Press
Right arrow MicrobeWorld
Citing Articles
Right arrow Citing Articles via HighWire
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Zhu, C.
Right arrow Articles by Prywes, R.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Zhu, C.
Right arrow Articles by Prywes, R.

 Previous Article  |  Next Article 

Mol. Cell. Biol., Sep 1997, 4957-4966, Vol 17, No. 9
Copyright © 1997, American Society for Microbiology

Interaction of ATF6 and serum response factor

C Zhu, FE Johansen and R Prywes
Department of Biological Sciences, Columbia University, New York, New York 10027, USA.

Serum response factor (SRF) is a transcription factor which binds to the serum response element (SRE) in the c-fos promoter. It is required for regulated expression of the c-fos gene as well as other immediate- early genes and some tissue-specific genes. To better understand the regulation of SRF, we used a yeast interaction assay to screen a human HeLa cell cDNA library for SRF-interacting proteins. ATF6, a basic- leucine zipper protein, was isolated by binding to SRF and in particular to its transcriptional activation domain. The binding of ATF6 to SRF was also detected in vitro. An ATF6-VP16 chimera activated expression of an SRE reporter gene in HeLa cells, suggesting that ATF6 can interact with endogenous SRF. More strikingly, an antisense ATF6 construct reduced serum induction of a c-fos reporter gene, suggesting that ATF6 is involved in activation of transcription by SRF. ATF6 was previously partially cloned as a member of the ATF family. The complete cDNA of ATF6 was isolated, and its expression pattern was described.


This article has been cited by other articles:

  • (2010). N-linked glycosylation is required for optimal proteolytic activation of membrane-bound transcription factor CREB-H. J. Cell Sci. 123: 1438-1448  
  • Mori, K. (2010). Divest Yourself of a Preconceived Idea: Transcription Factor ATF6 Is Not a Soluble Protein!. Mol. Biol. Cell 21: 1435-1438 [Abstract] [Full Text]  
  • Seo, H.-Y., Kim, M.-K., Min, A.-K., Kim, H.-S., Ryu, S.-Y., Kim, N.-K., Lee, K. M., Kim, H.-J., Choi, H.-S., Lee, K.-U., Park, K.-G., Lee, I.-K. (2010). Endoplasmic Reticulum Stress-Induced Activation of Activating Transcription Factor 6 Decreases cAMP-Stimulated Hepatic Gluconeogenesis via Inhibition of CREB. Endocrinology 151: 561-568 [Abstract] [Full Text]  
  • Doroudgar, S., Thuerauf, D. J., Marcinko, M. C., Belmont, P. J., Glembotski, C. C. (2009). Ischemia Activates the ATF6 Branch of the Endoplasmic Reticulum Stress Response. J. Biol. Chem. 284: 29735-29745 [Abstract] [Full Text]  
  • Yokoyama, K. D., Ohler, U., Wray, G. A. (2009). Measuring spatial preferences at fine-scale resolution identifies known and novel cis-regulatory element candidates and functional motif-pair relationships. Nucleic Acids Res 37: e92-e92 [Abstract] [Full Text]  
  • Glembotski, C. C. (2007). Endoplasmic Reticulum Stress in the Heart. Circ. Res. 101: 975-984 [Abstract] [Full Text]  
  • Thuerauf, D. J., Marcinko, M., Belmont, P. J., Glembotski, C. C. (2007). Effects of the Isoform-specific Characteristics of ATF6{alpha} and ATF6beta on Endoplasmic Reticulum Stress Response Gene Expression and Cell Viability. J. Biol. Chem. 282: 22865-22878 [Abstract] [Full Text]  
  • Choi, H. S., Choi, B. Y., Cho, Y.-Y., Mizuno, H., Kang, B. S., Bode, A. M., Dong, Z. (2005). Phosphorylation of Histone H3 at Serine 10 Is Indispensable for Neoplastic Cell Transformation. Cancer Res. 65: 5818-5827 [Abstract] [Full Text]  
  • Baumeister, P., Luo, S., Skarnes, W. C., Sui, G., Seto, E., Shi, Y., Lee, A. S. (2005). Endoplasmic Reticulum Stress Induction of the Grp78/BiP Promoter: Activating Mechanisms Mediated by YY1 and Its Interactive Chromatin Modifiers. Mol. Cell. Biol. 25: 4529-4540 [Abstract] [Full Text]  
  • Chin, K.-T., Zhou, H.-J., Wong, C.-M., Lee, J. M.-F., Chan, C.-P., Qiang, B.-Q., Yuan, J.-G., Ng, I. O.-l., Jin, D.-Y. (2005). The liver-enriched transcription factor CREB-H is a growth suppressor protein underexpressed in hepatocellular carcinoma. Nucleic Acids Res 33: 1859-1873 [Abstract] [Full Text]  
  • Zhang, X., Azhar, G., Zhong, Y., Wei, J. Y. (2004). Identification of a Novel Serum Response Factor Cofactor in Cardiac Gene Regulation. J. Biol. Chem. 279: 55626-55632 [Abstract] [Full Text]  
  • Thuerauf, D. J., Morrison, L., Glembotski, C. C. (2004). Opposing Roles for ATF6{alpha} and ATF6{beta} in Endoplasmic Reticulum Stress Response Gene Induction. J. Biol. Chem. 279: 21078-21084 [Abstract] [Full Text]  
  • Hong, M., Luo, S., Baumeister, P., Huang, J.-M., Gogia, R. K., Li, M., Lee, A. S. (2004). Underglycosylation of ATF6 as a Novel Sensing Mechanism for Activation of the Unfolded Protein Response. J. Biol. Chem. 279: 11354-11363 [Abstract] [Full Text]  
  • Ueyama, T., Kasahara, H., Ishiwata, T., Nie, Q., Izumo, S. (2003). Myocardin Expression Is Regulated by Nkx2.5, and Its Function Is Required for Cardiomyogenesis. Mol. Cell. Biol. 23: 9222-9232 [Abstract] [Full Text]  
  • Lee, A.-H., Iwakoshi, N. N., Glimcher, L. H. (2003). XBP-1 Regulates a Subset of Endoplasmic Reticulum Resident Chaperone Genes in the Unfolded Protein Response. Mol. Cell. Biol. 23: 7448-7459 [Abstract] [Full Text]  
  • Raggo, C., Rapin, N., Stirling, J., Gobeil, P., Smith-Windsor, E., O'Hare, P., Misra, V. (2002). Luman, the Cellular Counterpart of Herpes Simplex Virus VP16, Is Processed by Regulated Intramembrane Proteolysis. Mol. Cell. Biol. 22: 5639-5649 [Abstract] [Full Text]  
  • Chen, X., Shen, J., Prywes, R. (2002). The Luminal Domain of ATF6 Senses Endoplasmic Reticulum (ER) Stress and Causes Translocation of ATF6 from the ER to the Golgi. J. Biol. Chem. 277: 13045-13052 [Abstract] [Full Text]  
  • Gotoh, T., Oyadomari, S., Mori, K., Mori, M. (2002). Nitric Oxide-induced Apoptosis in RAW 264.7 Macrophages Is Mediated by Endoplasmic Reticulum Stress Pathway Involving ATF6 and CHOP. J. Biol. Chem. 277: 12343-12350 [Abstract] [Full Text]  
  • Tice, D. A., Soloviev, I., Polakis, P. (2002). Activation of the Wnt Pathway Interferes with Serum Response Element-driven Transcription of Immediate Early Genes. J. Biol. Chem. 277: 6118-6123 [Abstract] [Full Text]  
  • Thuerauf, D. J., Hoover, H., Meller, J., Hernandez, J., Su, L., Andrews, C., Dillmann, W. H., McDonough, P. M., Glembotski, C. C. (2001). Sarco/endoplasmic Reticulum Calcium ATPase-2 Expression Is Regulated by ATF6 during the Endoplasmic Reticulum Stress Response. INTRACELLULAR SIGNALING OF CALCIUM STRESS IN A CARDIAC MYOCYTE MODEL SYSTEM. J. Biol. Chem. 276: 48309-48317 [Abstract] [Full Text]  
  • Zeng, C., Morrison, A. R. (2001). Disruption of the actin cytoskeleton regulates cytokine-induced iNOS expression. Am. J. Physiol. Cell Physiol. 281: C932-C940 [Abstract] [Full Text]  
  • Parker, R., Phan, T., Baumeister, P., Roy, B., Cheriyath, V., Roy, A. L., Lee, A. S. (2001). Identification of TFII-I as the Endoplasmic Reticulum Stress Response Element Binding Factor ERSF: Its Autoregulation by Stress and Interaction with ATF6. Mol. Cell. Biol. 21: 3220-3233 [Abstract] [Full Text]  
  • Morin, S., Paradis, P., Aries, A., Nemer, M. (2001). Serum Response Factor-GATA Ternary Complex Required for Nuclear Signaling by a G-Protein-Coupled Receptor. Mol. Cell. Biol. 21: 1036-1044 [Abstract] [Full Text]  
  • Yoshida, H., Okada, T., Haze, K., Yanagi, H., Yura, T., Negishi, M., Mori, K. (2001). Endoplasmic Reticulum Stress-Induced Formation of Transcription Factor Complex ERSF Including NF-Y (CBF) and Activating Transcription Factors 6{alpha} and 6{beta} That Activates the Mammalian Unfolded Protein Response. Mol. Cell. Biol. 21: 1239-1248 [Abstract] [Full Text]  
  • Yoshida, H., Okada, T., Haze, K., Yanagi, H., Yura, T., Negishi, M., Mori, K. (2000). ATF6 Activated by Proteolysis Binds in the Presence of NF-Y (CBF) Directly to the cis-Acting Element Responsible for the Mammalian Unfolded Protein Response. Mol. Cell. Biol. 20: 6755-6767 [Abstract] [Full Text]  
  • Li, M., Baumeister, P., Roy, B., Phan, T., Foti, D., Luo, S., Lee, A. S. (2000). ATF6 as a Transcription Activator of the Endoplasmic Reticulum Stress Element: Thapsigargin Stress-Induced Changes and Synergistic Interactions with NF-Y and YY1. Mol. Cell. Biol. 20: 5096-5106 [Abstract] [Full Text]  
  • Giebler, H. A., Lemasson, I., Nyborg, J. K. (2000). p53 Recruitment of CREB Binding Protein Mediated through Phosphorylated CREB: a Novel Pathway of Tumor Suppressor Regulation. Mol. Cell. Biol. 20: 4849-4858 [Abstract] [Full Text]  
  • Ubeda, M., Vallejo, M., Habener, J. F. (1999). CHOP Enhancement of Gene Transcription by Interactions with Jun/Fos AP-1 Complex Proteins. Mol. Cell. Biol. 19: 7589-7599 [Abstract] [Full Text]  
  • Haze, K., Yoshida, H., Yanagi, H., Yura, T., Mori, K. (1999). Mammalian Transcription Factor ATF6 Is Synthesized as a Transmembrane Protein and Activated by Proteolysis in Response to Endoplasmic Reticulum Stress. Mol. Biol. Cell 10: 3787-3799 [Abstract] [Full Text]  
  • Belaguli, N. S., Zhou, W., Trinh, T.-H. T., Majesky, M. W., Schwartz, R. J. (1999). Dominant Negative Murine Serum Response Factor: Alternative Splicing within the Activation Domain Inhibits Transactivation of Serum Response Factor Binding Targets. Mol. Cell. Biol. 19: 4582-4591 [Abstract] [Full Text]  
  • Spencer, J. A., Major, M. L., Misra, R. P. (1999). Basic Fibroblast Growth Factor Activates Serum Response Factor Gene Expression by Multiple Distinct Signaling Mechanisms. Mol. Cell. Biol. 19: 3977-3988 [Abstract] [Full Text]  
  • Spencer, J. A., Baron, M. H., Olson, E. N. (1999). Cooperative Transcriptional Activation by Serum Response Factor and the High Mobility Group Protein SSRP1. J. Biol. Chem. 274: 15686-15693 [Abstract] [Full Text]  
  • Heidenreich, O., Neininger, A., Schratt, G., Zinck, R., Cahill, M. A., Engel, K., Kotlyarov, A., Kraft, R., Kostka, S., Gaestel, M., Nordheim, A. (1999). MAPKAP Kinase 2 Phosphorylates Serum Response Factor in Vitro and in Vivo. J. Biol. Chem. 274: 14434-14443 [Abstract] [Full Text]  
  • Soh, J.-W., Lee, E. H., Prywes, R., Weinstein, I. B. (1999). Novel Roles of Specific Isoforms of Protein Kinase C in Activation of the c-fos Serum Response Element. Mol. Cell. Biol. 19: 1313-1324 [Abstract] [Full Text]  
  • Yoshida, H., Haze, K., Yanagi, H., Yura, T., Mori, K. (1998). Identification of the cis-Acting Endoplasmic Reticulum Stress Response Element Responsible for Transcriptional Induction of Mammalian Glucose-regulated Proteins. INVOLVEMENT OF BASIC LEUCINE ZIPPER TRANSCRIPTION FACTORS. J. Biol. Chem. 273: 33741-33749 [Abstract] [Full Text]  
  • Velmurugan, S., Ahn, Y.-T., Yang, X.-M., Wu, X.-L., Jayaram, M. (1998). The 2µm Plasmid Stability System: Analyses of the Interactions among Plasmid- and Host-Encoded Components. Mol. Cell. Biol. 18: 7466-7477 [Abstract] [Full Text]  
  • Thuerauf, D. J., Arnold, N. D., Zechner, D., Hanford, D. S., DeMartin, K. M., McDonough, P. M., Prywes, R., Glembotski, C. C. (1998). p38 Mitogen-activated Protein Kinase Mediates the Transcriptional Induction of the Atrial Natriuretic Factor Gene through a Serum Response Element. A POTENTIAL ROLE FOR THE TRANSCRIPTION FACTOR ATF6. J. Biol. Chem. 273: 20636-20643 [Abstract] [Full Text]  
  • Kim, D.-W., Cheriyath, V., Roy, A. L., Cochran, B. H. (1998). TFII-I Enhances Activation of the c-fos Promoter through Interactions with Upstream Elements. Mol. Cell. Biol. 18: 3310-3320 [Abstract] [Full Text]  
  • TREISMAN, R., ALBERTS, A.S., SAHAI, E. (1998). Regulation of SRF Activity by Rho Family GTPases. Cold Spring Harb Symp Quant Biol 63: 643-652 [Abstract]  
  • Wang, Y., Shen, J., Arenzana, N., Tirasophon, W., Kaufman, R. J., Prywes, R. (2000). Activation of ATF6 and an ATF6 DNA Binding Site by the Endoplasmic Reticulum Stress Response. J. Biol. Chem. 275: 27013-27020 [Abstract] [Full Text]  
  • Nissen, L. J., Gelly, J.-C., Hipskind, R. A. (2001). Induction-independent Recruitment of CREB-binding Protein to the c-fos Serum Response Element through Interactions between the Bromodomain and Elk-1. J. Biol. Chem. 276: 5213-5221 [Abstract] [Full Text]  
  • Gupta, M., Kogut, P., Davis, F. J., Belaguli, N. S., Schwartz, R. J., Gupta, M. P. (2001). Physical Interaction between the MADS Box of Serum Response Factor and the TEA/ATTS DNA-binding Domain of Transcription Enhancer Factor-1. J. Biol. Chem. 276: 10413-10422 [Abstract] [Full Text]  
  • Niehof, M., Streetz, K., Rakemann, T., Bischoff, S. C., Manns, M. P., Horn, F., Trautwein, C. (2001). Interleukin-6-induced Tethering of STAT3 to the LAP/C/EBPbeta Promoter Suggests a New Mechanism of Transcriptional Regulation by STAT3. J. Biol. Chem. 276: 9016-9027 [Abstract] [Full Text]  
  • Gineitis, D., Treisman, R. (2001). Differential Usage of Signal Transduction Pathways Defines Two Types of Serum Response Factor Target Gene. J. Biol. Chem. 276: 24531-24539 [Abstract] [Full Text]  
  • Zhou, H.-J., Wong, C.-M., Chen, J.-H., Qiang, B.-Q., Yuan, J.-G., Jin, D.-Y. (2001). Inhibition of LZIP-mediated Transcription through Direct Interaction with a Novel Host Cell Factor-like Protein. J. Biol. Chem. 276: 28933-28938 [Abstract] [Full Text]  
  • Davis, F. J., Gupta, M., Pogwizd, S. M., Bacha, E., Jeevanandam, V., Gupta, M. P. (2002). Increased expression of alternatively spliced dominant-negative isoform of SRF in human failing hearts. Am. J. Physiol. Heart Circ. Physiol. 282: H1521-H1533 [Abstract] [Full Text]  


Morty Proxy This is a proxified and sanitized view of the page, visit original site.