The physiology, pharmacology, and biochemistry of the eccrine sweat gland
Chapter
First Online:
Keywords
Myoepithelial Cell Sweat Gland Sweat Rate Eccrine Sweat Gland Sweat Duct
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- Bailey, R. E., Bartos, D., Bartos, F., Castro, A., Dobson, R. L., Crettie, D. P., Kramer, R., Macfarlane, D., Sato, K.: Activation of aldosterone and renin secretion by thermal stress. Experientia (Basel) 28, 259–160 (1971)Google Scholar
- Bartoli, E., Conger, J. D., Earley, L. E.: Effect of intraluminal flow on proximal tubular reabsorption. J. clin. Invest. 52, 843–849 (1973)PubMedCentralPubMedGoogle Scholar
- Batzri, S., Selinger, Z.: Enzyme secretion mediated by the epinephrine β-receptor in rat parotid slices. J. biol. Chem. 248, 356–360 (1973)PubMedGoogle Scholar
- Batzri, S., Selinger, Z., Schramm, M.: Potassium ion release and enzyme secretions. Adrenergic regulation by α-and β-receptors. Science. 174, 1029–1031 (1971)PubMedGoogle Scholar
- Batzri, S., Selinger, Z., Schramm, M., Robinovitch, M. R.: Potassium release mediated by the epinephrine α-receptor in rat parotid slices. J. biol. Chem. 248, 361–368 (1973)PubMedGoogle Scholar
- Bdolah, A., Ben-zvi, R., Schramm, M.: The mechanism of enzyme secretion by the cell. II. Secretion of amylase and other proteins by slices of rat parotid gland. Arch. Biochem. 104, 58–66 (1964)PubMedGoogle Scholar
- Bdolah, A., Schramm, M.: The function of 3′, 5′-cyclic AMP in enzyme secretion. Biochem. Biophys. Res. Commun. 18, 452–454 (1965)PubMedGoogle Scholar
- Berridge, M. J., Prince, W. T.: The electrical response of isolated salivary glands during stimulation with 5-hydroxytryptamine and cyclic AMP. Philos. Trans. roy. Soc. Lond. [Biol.] B262, 111–120(1971)Google Scholar
- Brusilow, S. W.: The permeability of the sweat gland to nonelectrolytes. Mod. Probl. Pädiat. 10, 32–40 (1967)Google Scholar
- Brusilow, S. W., Gordes, E. H.: Determination of sweat gland precursor fluid osmolarity by direct cryoscopy. J. clin. Invest. 42, 920–921 (1963)Google Scholar
- Brusilow, S. W., Gordes, W. H.: Ammonia secretion in sweat. Amer. J. Physiol. 214, 513–517 (1967)Google Scholar
- Brusilow, S. W., Munger, B.: Comparative physiology of sweat. Proc. Soc. exp. Biol. (N.4.) 110, 317–319 (1962)PubMedGoogle Scholar
- Bulmer, M. G., Forwell, G. D.: The concentration of sodium in thermal sweat. J. Physiol. (Lond.) 132, 115–122 (1956)PubMedCentralPubMedGoogle Scholar
- Burg, M. B., Grantham, J., Abramow, M., Orloff, J.: Preparation and study of fragments of single rabbit nephrons. Amer. J. Physiol. 210, 1293–1298 (1966)PubMedGoogle Scholar
- Burg, M. B., Green, N.: Function of the thick ascending limb of Henle's loop. Amer. J. Physiol. 224, 659–668 (1973)PubMedGoogle Scholar
- Burg, M. B., Orloff, J.: Electrical potential difference across proximal convaluted tubules. Amer. J. Physiol. 219, 1714–1716 (1970)PubMedGoogle Scholar
- Burg, M. B., Stoner, L., Cardinal, J., Green, N.: Furosemide effect on isolated perfused tubules. Amer. J. Physiol. 225, 119–124 (1973)PubMedGoogle Scholar
- Butcher, F. R.: The role of calcium and cyclic nucleotides in α-amylase release from slices of rat parotid: studies with the divalent cation ionophore A23187. Metabolism 24, 409–418 (1975)PubMedGoogle Scholar
- Cage, G. W., Dobson, R. L.: Effect of asteroid, diuretics and pitressin on sodium excretion by the sweat gland. Fed. Proc. 24, 280 (1965a)Google Scholar
- Cage, G. W., Dobson, R. L.: Sodium secretion and reabsorption in the human eccrine sweat gland. J. clin. Invest. 44, 1270–1276 (1965b)PubMedCentralPubMedGoogle Scholar
- Cage, G. W., Dobson, R. L., Waller, R.: Sweat gland function in cystic fibrosis. J. clin. Invest. 45, 1373–1378(1966)PubMedCentralPubMedGoogle Scholar
- Cage, G. W., Wolfe, S. M., Thompson, R. H., Gordon, Jr., R. S.: Effects of water intake on composition of thermal sweat in normal human volunteers. J. appl. Physiol. 29, 687–690 (1970)PubMedGoogle Scholar
- Cereijido, M., Herrera, F. C., Flanigan, W. J., Curran, P. F.: The influence of Na concentration on Na transport across frog skin. J. gen. Physiol. 47, 879–893 (1964)PubMedCentralPubMedGoogle Scholar
- Chalmers, T. M., Keele, C. A.: Physiological significance of the sweat response to adrenaline in man. J. Physiol. (Lond.) 114, 510–514 (1951)PubMedCentralPubMedGoogle Scholar
- Cier, J. F., Manuel, Y., Lacour, J. R.: Electrophoretic study of the proteins of human sweat. Paper electrohoresis, immunoelectrophoresis and starch gel electrophoresis. C. R. Soc. Biol. (Paris) 157, 1623–1626 (1963)Google Scholar
- Cohen, J. J., Barac-Nieto, M.: Renal metabolism of substrates in relation to renal function. In: Handbook of Physiology. Sect. 8: Renal Physiology. Orloff, J., Berliner, R. W. (eds.). Baltimore: The Williams & Wilkins Company 1973, pp. 909–1001.Google Scholar
- Collins, K. J.: Composition of plasma and forearm sweat. J. appl. Physiol. 17, 99–102 (1962)PubMedGoogle Scholar
- Conn, J. W., Louis, L. H., Johnston, M. W., Johnson, B. J.: The electrolyte content of thermal sweat as an index of adrenal cortical function. J. clin. Invest. 27, 529–530 (1948)PubMedGoogle Scholar
- Coon, J. M., Rothman, S.: The sweat response to drugs with nocotine-like action. J. Pharmacol. exp. Ther. 23, 1–11 (1941)Google Scholar
- Dale, H. H., Feldberg, W.: The chemical transmission of secretory impulses to the sweat glands of cat. J. Physiol. (Lond.) 82, 121–128 (1934)PubMedCentralPubMedGoogle Scholar
- Daniel, E. E., Paton, D. M., Taylor, G. S., Hodgson, B. J.: Adrenergic receptors for catecholamine effect on tissue electrolytes. Fed. Proc. 29, 1410–1425 (1970)PubMedGoogle Scholar
- Diamond, J. M.: The reabsorptive function of the gall bladder. J. Physiol. (Lond.) 161, 442–473 (1962)PubMedCentralPubMedGoogle Scholar
- Diamond, J. M., Bossert, W. H.: Standing-gradient osmatic flow. A mechanism of coupling of water and solute transport in epithelia. J. Am. Physiol. 50, 2061–2083 (1967)Google Scholar
- Diamond, J. M., Bossert, W. H.: Functional consequences of ultrastructural geometry in backward's fluid transporting epithelia. J. Cell Biol. 37, 694–702 (1968)PubMedCentralPubMedGoogle Scholar
- Dobson, R. L.: The effect of repeated episodes of profuse sweating on the eccrine sweat glands. J. invest. Derm. 35, 195–198 (1960)PubMedGoogle Scholar
- Dobson, R. L.: The correlation of structure and function in the human eccrine sweat gland. In: Advances in Biology of Skin. Montagna, W., Ellis, R. A., Silver, A. F. (eds.). New York: Appleton-Century-Crafts 1962, Vol. III, pp. 54–75.Google Scholar
- Dobson, R. L., Sato, K.: The stimulation of eccrine sweating by pharmacologic agents. In: Advances in Biology of Skin. Montagna, W., Stoughton, R. B., van Scott, E. J. (eds.). New York: Appleton-Century-Crafts 1972, Vol. XII, pp. 447–475.Google Scholar
- Dobson, R. L., Siegers, J. F. R.: The ffect of aldosterone on sweating in the cat. J. invest. Derm. 56, 337–339 (1971)PubMedGoogle Scholar
- Dorey, G., Bhoola, K. D.: Ultrastructure of acinar cell granules in mammalian submaxillary glands. Z. Zellforsch. 126, 320–334 (1972)PubMedGoogle Scholar
- Douglas, W. W.: Stimulus-secretion coupling: the concept and clues from chromatin and other cells. The first gaddum memorial lecture. Cambridge, Br. J. Pharmacol 34, 451–474 (1968)Google Scholar
- Douglas, W. W.: Involvement of calcium in exocytosis and the exocytosis-vesiculation sequence. In: Calcium and Cell Regulation. Smellie, R. M. S. (ed.). London: The Biochemical Society 1971, Vol. XXXIX, pp. 1–28Google Scholar
- Ellis, R. A.: Eccrine sweat glands. In: Handbuch der Haut und Geschlechtskrankheiten. I Band. Normale und Pathologische Anatomie der Haut. Jadassohn, J. (ed.). Berlin-Heidelberg-New York: Springer 1967Google Scholar
- Emrich, H. M., Oelert, H.: pH-Wert und Gesamtammoniak im menschlichen Schweiss. Pfluegers Arch. 290, 311–314 (1966)Google Scholar
- Emrich, H. M., Ullrich, K. J.: Auscheidung verschiedener Stoffe in Schweiss in Abhängigkeit von der Schweissflussrate. Pfluegers Arch. ges. Physiol. 290, 298–310 (1966)Google Scholar
- Emrich, H. M., Stoll, E., Friolet, B., Colombo, J. P., Rossi, E., Richterich, R.: Excretion of different substances in sweat of children with cystic fibrosis and control. Mod. Probl. Pädiat. 10, 58–73 (1967)Google Scholar
- Emrich, H. M., Zwiebel, R. K. H.: Veränderungen des Lactat-Pyruvat-Quotienten im menschlichen Schweiss bei verschieden starkem Schwitzen. Pfluegers Arch. ges. Physiol. 290, 315–319 (1966)Google Scholar
- Fasciolo, J. C., Totel, G. L., Johnson, R. E.: Antidiuretic hormone and human eccrine sweating. J. appl. Physiol. 27, 303–307 (1969)PubMedGoogle Scholar
- Flores, J., Witkum, P., Beckman, B., Sharp, G. W. G.: Reserve of vasopressin-sensitive adenyltate cyclase in toad urinary bladder. Biochim. Biophys. Acta 362, 501–508 (1974)PubMedGoogle Scholar
- Förström, L., Goldyne, M. E., Winkelmann, R. K.: Prostaglandin activity in human eccrine sweat. Prostaglandins 7, 459–464 (1974)PubMedGoogle Scholar
- Förström, L., Goldyne, M. E., Winkelmann, R. K.: IgE in human eccrine sweat J. invest. Derm. 64, 156–157(1975)PubMedGoogle Scholar
- Fortney, J. A.: Crytology of eccrine sweat glands in the opossum. Amer. J. Anat, 136, 205–219 (1973)PubMedGoogle Scholar
- Foster, K. G.: Composition of the secretion from the eccrine sweat glands of the cat's foot pad. J. Physiol. (Lond.) 184, 106–119 (1966)PubMedCentralPubMedGoogle Scholar
- Foster, K. G.: Factors affecting the quantitative response of human eccrine sweat glands to intradermal injections of acetylcholine and methacholine. J. Physiol. (Lond.) 213, 277–290 (1971)PubMedCentralPubMedGoogle Scholar
- Foster, K. G., Ginsburg, J., Weiner, J. S.: Role of circulating catecholamines in human eccrine sweat gland control. Clin. Sci. 39, 823–832 (1970)PubMedGoogle Scholar
- Foster, K. G., Haspinall, J. R., Mollel, C. L.: Effect of propranolol on the response of human eccrine glands to acetylcholine. Brit. J. Derm. 85, 363–367 (1971)PubMedGoogle Scholar
- Foster, K. G., Weiner, J. S.: Effects of cholinergic and adrenergic blocking agents on the activity of the eccrine sweat glands. J. Physiol. (Lond.) 210, 883–895 (1970)PubMedCentralPubMedGoogle Scholar
- Fräki, J. E., Jansen, C. T., Hopsu-Havu, V. K.: Human sweat kallikrein: biochemical demonstration and chromatographic separation from several other esteropeptidases in the sweat. Acta derm.-venerol. (Stockh.) 50, 321–326 (1970)PubMedGoogle Scholar
- Frewin, D. B., Eakin, K. E., Downey, J. A., Bhattachejee, P.: Prostaglandin-like activity in human eccrine sweat. Aust. J. exp. Biol. med. Sci. 51, 701–702 (1973)PubMedGoogle Scholar
- Fritz, M. E., Grampp, W.: The action of dibutyryl adenosine-3′:5′-cyclic monophosphoric acid and theophylline on the isolated cat parotid gland. Acta physiol. scand. 93, 352–363 (1975)PubMedGoogle Scholar
- Frizzell, R. A., Ducas, M. C., Schultz, S. G.: Sodium chloride transport by rabbit gall bladder. Direct evidence for a coupled NaCl influx process. J. gen. Physiol. 65, 769–795 (1975)PubMedGoogle Scholar
- Frömter, E.: The route of passive ion movement through the epithelium of Necturus gall bladder. J. Membr. Biol. 8, 259–301 (1972)PubMedGoogle Scholar
- Frömter, E., Diamond, J.: Route of passive ion permeation in epithelia. Nature [New Biol.] 235, 9–13 (1972)Google Scholar
- Garden, J. W.: Plasma and sweat histamine concentration after heat exposure and physical exercise. J. appl. Physiol. 21, 631–635 (1966)PubMedGoogle Scholar
- Gibs, G. E., Griffin, G., Reimer, K.: Quantitative microdetermination of enzymes in sweat gland. Pediat. Res. 1, 24–26 (1967).Google Scholar
- Gitlitz, P. H., Sunderman, F. W., Hohnadel, D. C.: Ion-exchange chromatography of amino acids in sweat collected from healthy subjects during sauna bathing. Clin. Chem. 20, 1305–1312 (1974)PubMedGoogle Scholar
- Granata, L., Braga, E. C., Cevese, A., Data, P. G.: Beta adrenergic receptor activity in peripheral vascular beds of the unanesthetized dog. Pflügers Arch. ges. Physiol. 320, 64–78 (1970)Google Scholar
- Grand, J. R., Di Sant'agnese, P. A., Talamo, R. C., Pallavicini, J. C.: The effects of exogenous aldosterone on sweat electrolytes. I. Normal subjects. Pediatrics 70, 346–356 (1967)Google Scholar
- Grandchamp, A., Scherrer, J. R., Veyrat, R., Muller, A. F.: I. Measurement of sweat sodium and potassium excretion for evaluation of mineralocorticoid activity in normal subjects. Helv. med. Acta 34, 367–385 (1968)Google Scholar
- Haimovici, H.: Evidence for adrenergic sweating in man. J. appl. Physiol. 2, 512–521 (1950)PubMedGoogle Scholar
- Harden, R. M., Alexander, W. D.: Quantitative aspects of iodide excretion in human thermal sweat. Clin. Sci. 25, 79–87 (1963)PubMedGoogle Scholar
- Hashimoto, K., Gross, B. G., Lever, W. F.: The ultrastructure of the skin of human embryos. I. Intraepidermal eccrine sweat duct. J. invest. Derm. 45, 139–151 (1965)PubMedGoogle Scholar
- Hayashi, H.: Functional activity of the sweat glands of the mouse. Tohoku J. exp. Med. 95, 289–295 (1968)PubMedGoogle Scholar
- Hemels, H. G. W. M.: The effect of propranolol on the acetylcholine-induced sweat response in atopic and non-atopic subject. Brit. J. Derm. 83, 312–314 (1970)PubMedGoogle Scholar
- Hermann, W. P., Habbig, J.: Immunological demonstration of multiple esterases in human eccrine sweat. Brit. J. Derm. 95, 67–70 (1976)Google Scholar
- Hittelman, K. J., Butcher, R. W.: Cyclic AMP and the mechanism of action on the prostaglandins. In: The Prostaglandins. Cuthbert, (ed.). London: William Heinemann Medical Books Ltd. 1973, pp. 151–165.Google Scholar
- Hohnadel, D. C., Sunderman, F. W., Nechay, M. W., McNeely, M. D.: Atomic absorption spectrometry of nickel, copper, zinc and lead in sweat collected from healthy subjects during sauna bathing. Clin. Chem. 19, 1288–1292 (1973)PubMedGoogle Scholar
- Ikai, K., Sakamoto, M., Takaba, H., Nitta, H.: Planter sweat electrolyte concentration in the dog: effect of exogenous aldosterone on the sweat electrolyte concentration — discussion on ductal reabsorption in the sweat duct. Nagoya med. J. 15, 33–45 (1969)PubMedGoogle Scholar
- Ikai, K., Sato, Koji, Kozawa, H., Nitta, H.: Palmer or planter sweat electrolyte concentration in the monkey. II. Effects of adrenergic mechanism on the sweat electrolyte concentration. Proc. Jap. Acad. 46, 203–208 (1970)Google Scholar
- Jenkinson, D. M.: Sweat gland function in domestic animals. In: The Exocrine Glands. Ed. Botelho, S., Brooke, F., Sherry, W. (eds.). Philadelphia: University of Pennsylvania 1968, pp. 201–214.Google Scholar
- Jenkinson, D. M., Mabon, R. M.: The effect of temperature and humidity on skin surface pH and the ionic composition of skin secretion in Ayrshire cattle. Brit. vet. J. 129, 282–294 (1973)Google Scholar
- Jirka, M., Kotas, J.: Some observations on the chemical composition of horse sweat. J. Physiol. (Lond.) 145, 74–77 (1959)Google Scholar
- Jirka, M.: Micro-disc electrophoresis of proteins in pilocarpine-induced sweat. Febs Lett. 4, 28–30 (1969)PubMedGoogle Scholar
- Johnson, K. G.: Sweating rate and the electrolyte content of skin secretions of Bos taurus and Bos indicus cross-bred cows. J. Agric. Camb. 25, 397–402 (1970)Google Scholar
- Johnson, R. F., Pitts, G. C., Consolazio, F. C.: Factors influencing chloride concentration in human sweat. Amer. J. Physiol. 141, 575–589 (1944)Google Scholar
- Kagayama, M., Nishiyama, A.: Membrane potential and input resistance in acinar cells from cat and rabbit submaxillary glands in vivo: effect of autonomic nerve stimulation. J. Physiol. (Lond.) 242, 157–172(1974)PubMedCentralPubMedGoogle Scholar
- Kahn, D., Rothman, S.: Sweat responses to acetylcholine. J. invest. Derm. 5, 431–444 (1942)Google Scholar
- Kaiser, D., Drack, E.: Dimished excretion of bicarbonate from the single sweat gland of patients with cystic fibrosis of the pancreas. Eur. J. clin. Invest. 4, 261–265 (1974)PubMedGoogle Scholar
- Kaiser, D., Songo-Williams, S., Drack, E.: Hydrogen ion and electrolyte excretion of the single human sweat gland. Pflügers Arch. ges. Physiol. 349, 63–72 (1974)Google Scholar
- Katz, J., Wood, H. G.: The use of 14CO2 yields from glucose 1-and-6-14C for the evaluation of pathway of glucose metabolism. J. biol. Chem. 238, 517–523 (1963)PubMedGoogle Scholar
- Knauf, H., Frömter, E.: Die Kationenausscheidung der grossen Speicheldrüsen des Menschen. Pflügers Arch. ges. Physiol. 316, 213–237 (1970)Google Scholar
- Knauf, H., Frömter, E.: Studies on the origin of the transepithelial electrical potential difference in the salivary duct epithelium. In: Electrophysiology of Epithelial Cells. Giebish, G. (ed.). Stuttgart-New York: Schattauer Verlag 1971, pp. 187–206.Google Scholar
- Koelz, H. R., Kondo, S., Blum, A. L., Schulz, I.: Calcium ion uptake induced by cholinergic and α-adrenergic stimulation in isolated cells of rat salivary glands. Pflügers Arch. ges. Physiol., in press 1977Google Scholar
- Kondo, S., Schulz, I.: Ca++ fluxes in isolated cells of rat pancreas. Effect of secretagogues and different Ca++ concentrations. J. Membr. Biol. 29, 185–203 (1976 a)Google Scholar
- Kondo, S., Schulz, I.: Calcium ion uptake in isolated pancreas cells induced by secretagogues. Biochim. Biophys. Acta 419, 76–92 (1976b)PubMedGoogle Scholar
- Kuno, Y.: Human perspiration. Springfield, Illinois: C. C. Thomas 1956.Google Scholar
- Kuno, Y.: The mechanism of human sweat secretion. Proc. int. Congr. Physiol. Sci. 23rd, Tokyo, Japan. 5, 8–22 (1965)Google Scholar
- Leslie, B. A., Putney, Jr., J. W., Sherman, J. M.: α-adrenergic, β-adrenergic and cholinergic mechanisms for amylase secretion by rat parotid gland in vitro. J. Physiol. (Lond.) 260, 351–370 (1976)PubMedCentralPubMedGoogle Scholar
- Lloyd, D. P. C.: Secretion and reabsorption in sweat glands. Proc. nat. Acad. Sci. (Wash.) 45, 405–409 (1959a)PubMedCentralPubMedGoogle Scholar
- Lloyd, D. P. C.: Response of cholinergically innervated sweat glands to adrenaline and noradrenaline. Nature (Lond.) 184, 277–278 (1959b)PubMedGoogle Scholar
- Lloyd, D. P. C.: Secretion and reabsorption in eccrine sweat gland. In: Advances in Biology of Skin. Montagna, W. (ed.). Oxford-London-New York-Paris: Pergamone Press 1962, pp. 127–151.Google Scholar
- Locke, W., Talbot, N. F., Johnes, H. S., Worcester, J.: Studies on the combined use of measurements of sweat electrolyte composition and rate of sweating as an index of adrenal cortical activitiy. J. clin. Invest. 30, 325–332 (1951)PubMedCentralPubMedGoogle Scholar
- Love, A. H. G., Shanks, R. G.: The relationship between the onset of sweating and vasodilation in the forearm during body heating. J. Physiol. (Lond.) 162, 121–128 (1962)PubMedCentralPubMedGoogle Scholar
- Mangos, J. A.: Microperfusion study of the sweat gland abnormality in cystic fibrosis. Tex. Rep. Biol. Med. 31, 651–663 (1973a)PubMedGoogle Scholar
- Mangos, J. A.: Transductal fluxes of Na, K and water in the human eccrine sweat gland. Amer. J. Physiol. 224, 1235–1240 (1973b)PubMedGoogle Scholar
- Mangos, J. A., McSherry, N. R., Barber, T.: Dispersed rat parotid acinar cells. III. Characterization of cholinergic receptors. Amer. J. Physiol. 229, 566–569 (1975a)PubMedGoogle Scholar
- Mangos, J. A., McSherry, N. R., Barber, T., Arvanitakis, S. N., Wagner, V.: Dispersed rat parotid acinar cells. II. Characterization of adrenergic receptors. Amer. J. Physiol. 229, 560–565 (1975b)PubMedGoogle Scholar
- Mangos, J. A., McSherry, N. R., Benke, P. J., Speck, A.: A.: Studies on the pathogenesis of cystic fibrosis: the isoproterenol treated rat as an experimental model. In: 5th International Cystic Fibrosis Conference. Cambridge: Churchill College 1969 pp. 25–36.Google Scholar
- Montagna, W.: Histology and cytochemistry of human skin XIX. The development and fate of the axillary organ. J. invest. Derm. 33, 151–160 (1959)PubMedGoogle Scholar
- Morimoto, T., Johnson, R. E.: Ammonia and the regulations of activity in human eccrine sweat. Nature (Lond.) 216, 813–814 (1967)PubMedGoogle Scholar
- Munger, B. L., Brusilow, S. W.: An electron microscopic study of eccrine sweat glands of cat foot and toe pads — evidence for ductal reabsorption in the human. J. biophys. biohcem. Cytol. 11, 403–417(1961)Google Scholar
- Nakamura, Y., Hatanaka, K.: Effect of denervation of the cat's sweat lands to their responsiveness to adrenaline, nicotine and Mecholyl. Tohoku J. exp. Med. 68, 225–237 (1958)Google Scholar
- Nishiyama, A., Petersen, O. H.: Pancreatic acinar cells: ionic dependence of acetylcholine-induced membrane potential and resistance change. J. Physiol. (Lond.) 244, 432–465 (1975)Google Scholar
- Page, C. O., Remington, J. S.: Immunologic studies in normal human sweat. J. Lab. clin. Med. 69, 634–650 (1967)PubMedGoogle Scholar
- Pallavicini, J. C., Gabriel, O., Disant'Agnese, P. A., Buskirk, E. R.: Isolation and characterization of carbohydrate-protein complex from human sweat. Ann. N. Y. Acad. Sci. 106, 330–338 (1963)Google Scholar
- Pearcy, M., Robinson, S., Miller, D. E., Thomas, Jr., J. T., Debrota, J.: Effects of dehydration, salt depletion and pitressin on sweat rate and urine flow. J. appl. Physiol. 8, 621–626 (1955–1956)Google Scholar
- Petersen, O. H.: Electrogenic sodium pump in pancreatic acinar cells. Proc. Roy Soc. B184, 115–119 (1973)Google Scholar
- Petersen, O. H.: Electrophysiological studies on gland cells. Experientia (Basel) 30, 130–134 (1974).PubMedGoogle Scholar
- Prince, W. T., Berridge, M. J.: The effect of 5-hydroxy-tryptamine and cyclic AMP on the potential profiles across isolated salivary glands. J. exp. Biol. 56, 323–333 (1972)PubMedGoogle Scholar
- Prince, W. T., Rasmussen, H., Berridge, M. J.: The role of calcium in fly salivary gland secretion analyzed with the ionophore A23187. Biochim. Biophys. Acta 329, 98–107 (1973)PubMedGoogle Scholar
- Prout, B. J., Wardell, W. M.: Sweating and peripheral blood flow in patients with phaechromocytona. Clin. Sci. 36, 109–117 (1969)PubMedGoogle Scholar
- Quatrale, R. P., Laden, K.: Solute and water secretion by the eccrine sweat glands of the rat. J. invest. Derm. 51, 502–504(1968)PubMedGoogle Scholar
- Quatrale, R. P., Spier, E. H.: The effect of ADH on eccrine sweating in the rat. J. invest. Derm. 55, 344–349 (1970)PubMedGoogle Scholar
- Radtke, H. W., Rumrich, G., Kinne-Saffran, E., Ullrich, K. J.: Dual action of acetazolamide and furosemide on proximal volume absorption in the rat kidney. Kidney Int. 1, 100–105 (1972)PubMedGoogle Scholar
- Randal, W. C., Kimura, K. K.: The pharmacology of sweating. Pharmacol. Rev. 7, 365–397 (1955)Google Scholar
- Ratner, A. C., Dobson, R. L.: The effect of antidiuretic hormone on sweating. J. invest. Derm. 43, 379–381 (1964)PubMedGoogle Scholar
- Reas, H. W., Trendelenburg, U.: Changes in the sensitivity of the sweat glands of the cat after denervation. J. Pharmacol. exp. Ther. 156, 126–136 (1967)PubMedGoogle Scholar
- Reed, P. W., Lardy, H. A.: A23187: a divalent cation ionophore. J. biol. Chem. 247, 6970–6977 (1972)PubMedGoogle Scholar
- Richterich, R., Friolet, B.: The effect of acetazolamide on sweat electrolytes in mucoviscidosis. Metabolism 12, 1112–1121 (1963)PubMedGoogle Scholar
- Robertshaw, D., Taylor, C. R., Mazzia, L. M.: Sweating in primates: secretion by adrenal medulla during exercise. Amer. J. Physiol. 224, 678–681 (1973)PubMedGoogle Scholar
- Robinson, S., Robinson, A. H.: Chemical composition of sweat. Physiol. Rev. 34, 202–220 (1954)PubMedGoogle Scholar
- Rose, R. C., Schultz, S. G.: Studies on the electrical potential profile across rabbit ileum. J. gen. Physiol. 57, 639–663 (1971)PubMedCentralPubMedGoogle Scholar
- Rossignal, B., Herman, G., Chambaut, A. M., Kreyer, G.: The calcium ionophore A23187 as a probe for studying the role of Ca+ ions in the mediation of carbachol effects on rat salivary glands: protein secretion and metabolism of phospholipids and glycogen. FEBS Lett. 43, 241–246 (1974)Google Scholar
- Rothman, S.: Physiology and biochemistry of the skin. Chicago: The University of Chicago Press 1954, p. 189.Google Scholar
- Sakurai, M., Montagna, W.: Observation on the eccrine sweat glands of Lemur Mongoz after denervation. J. invest. Derm. 44, 87–92 (1965)PubMedGoogle Scholar
- Sargent, II., F.: Depression of sweating in man: so-called “sweat gland fatigue.” In: Advances in Biology of Skin. Ed. Montagna, W., Ellis, R. A., Silver, A. F. (eds.). Oxford-London-New York-Paris: Pergamon Press 1962, Vol. III, pp. 163–212.Google Scholar
- Sato, F., Burgers, M., Sato, K.: Some characteristics of adrenergic human eccrine sweating. Experientia (Basel) 30, 40–41 (1973)Google Scholar
- Sato, K.: Stimulation of pentose cycle in the eccrine sweat gland by adrenergic drugs. Amer. J. Physiol. 224, 1149–1154 (1973a)PubMedGoogle Scholar
- Sato, K.: Sweat induction from an isolated eccrine sweat gland. Am. J. Physiol. 225, 1147–1151 (1973b)PubMedGoogle Scholar
- Sato, K.: Inhibition of respiration in the eccrine sweat gland by ethacrynic acid. Pflügers Arch. ges. Physiol. 341, 223–241 (1973c)Google Scholar
- Sato, K.: Current knowledge on the energy metabolism and the secretory mechanism of the eccrine sweat glands. In: Secretory Mechanism of Exocrine Gland. Thorn, N. A., Petersen, O. H. (eds.). Copenhagen: Munksgaard 1974, pp. 588–607.Google Scholar
- Sato, K.: Electrophysiological studies of the rat paw eccrine sweat gland; a unique K-secreting epithelium. J. clin. Res. 23, 602A (1975)Google Scholar
- Sato, K., Dobson, R. L.: Regional and individual variations in the function of the human eccrine sweat gland. J. invest. Derm. 54, 443–449 (1970a)PubMedGoogle Scholar
- Sato, K., Dobson, R. L.: The effect of intracutaneous d-aldosterone and hydrocortisone on the human eccrine sweat gland function. J. invest. Derm. 54, 450–459 (1970b)PubMedGoogle Scholar
- Sato, K., Dobson, R. L.: Enzymatic basis for the active transport of sodium in the duct and the secretory portion of the eccrine sweat gland. J. invest. Derm. 55, 53–56 (1970 c)PubMedGoogle Scholar
- Sato, K., Dobson, R. L.: Glucose metabolism of the isolated eccrine sweat gland. I. The effect of Mecholyl, epinephrine and ouabain. J. invest. Derm. 56, 272–280 (1971)PubMedGoogle Scholar
- Sato, K., Dobson, R. L.: Glucose metabolism of the isolated eccrine sweat gland. II. The relation between glucose metabolism and sodium transport. J. clin. Invest. 52, 2166–2174 (1973)PubMedCentralPubMedGoogle Scholar
- Sato, K., Dobson, R. L., Mali, J. W. H.: Enzymatic basis for the active transport of sodium in the eccrine sweat gland. Localization and characterization of Na-K-ATPase. J. invest. Derm. 57, 10–16 (1971)PubMedGoogle Scholar
- Sato, K., Freibleman, C., Dobson, R. L.: The electrolyte composition of pharmacologically and thermally induced sweat: a comparative study. J. invest. Derm. 55, 433–438 (1970)PubMedGoogle Scholar
- Sato, K., Sato, F.: Pharmacological responsiveness of an isolated monkey palm eccrine sweat gland in vitro. J. clin. Res. (May, 1976)Google Scholar
- Sato, K., Taylor, J. R., Dobson, R. L.: The effect of ouabain on eccrine sweat gland function. J. invest. Derm. 53, 275–282 (1969)PubMedGoogle Scholar
- Schieferdicker, P.: Die Hautdrüsen des Menschen und der Säugetiere, ihre biologische und rassenanatomische Bedeutung, sowie die Muscularis sexualis. Biol. Zbl. 37, 534–562 (1917)Google Scholar
- Schmidt, V., Dubach, V. C.: Activity of Na+K-stimulated adenosine-triphosphatase in the rat nephron. Pflügers Arch. ges. Physiol. 306, 219–226 (1969)Google Scholar
- Schneyer, L. H.: Isoproterenol-induced stimulation of sodium absorption in perfused salivary gland duct. Amer. J. Physiol. 224, 136–139 (1973)PubMedGoogle Scholar
- Schneyer, L. H.: Effects of calcium on Na, K transport by perfused main duct of rat submaxillary gland. Amer. J. Physiol. 226, 821–826 (1974a)PubMedGoogle Scholar
- Schneyer, L. H.: Effect of luminal calcium on transport of Na and K by perfused main duct of rat submaxillary gland. In: Secretory Mechanisms of Exocrine Glands. Thorn, N. A., Petersen, O. H. (eds.). Copenhagen: Munksgaard 1974b, pp. 514–524.Google Scholar
- Schramm, M.: Secretion of enzymes and other macromolecules. Ann. Rev. Biochem. 36, 307–320 (1967)PubMedGoogle Scholar
- Schramm, M., Selinger, Z.: The functions of cyclic AMP and calcium as alternative second messengers in parotid gland and pancreas. J. Cycl. Nucl. Res. 1, 181–192 (1975)Google Scholar
- Schreurs, V. V. A. M., Swarts, H. G. P., Depont, J. J. H. H. M., Bonting, S. L.: Role of calcium in exocrine pancreatic secretion. II. Comparison of the effects of carbachol and the ionophore A23187 on enzyme secretion and calcium movements in rabbit pancreas. Biochim. Biophys. Acta 419, 320–333 (1976)PubMedGoogle Scholar
- Schulz, I.: Micropuncture studies of the sweat formation in cystic fibrosis patients. J. clin. Invest. 48, 1470–1477 (1969)PubMedCentralPubMedGoogle Scholar
- Schulz, I., Ullrich, K. J., Frömter, E., Holzgreve, H., Frick, A., Hegel, V.: Mikropunktion und electrische Potentialmessung an Schweissdrüsen des Menschen. Pflugers Arch. ges. Physiol. 284, 360–372(1965)Google Scholar
- Schwartz, I. L., Thaysen, J. H.: Excretion of sodium and potassium in human sweat. J. clin. Invest. 34, 114–120(1955)Google Scholar
- Scott, E. J. va, YU, R. J.: Control of keratinization with α-hydroxy acids and related compounds. I. Topical treatment of ichthyotic disorders. Arch. Derm. 110, 586–590 (1974)PubMedGoogle Scholar
- Seifert, G.: Experimental sialadenosis by isoproterenol and other agents: histochemistry and electronmicroscopy. In: Secretory Mechanisms of Salivary Glands. Schneyer, L. H., Schneyer, C. A. (eds.). New York: Academic Press 1967, pp. 191–208.Google Scholar
- Selinger, Z., Batzri, S., Eimerl, S., Schramm, M.: Calcium and energy requirements for K+ release mediated by the epinephrine α-receptor in rat parotid slices. J. biol. Chem. 248, 369–372 (1973)PubMedGoogle Scholar
- Selinger, Z., Eimerl, S., Schramm, M,: A calcium ionophore stimulating the action of epinephrine on the α-adrenergic receptor. Proc. nat. Acad. Sci. (Wash.) 71, 128–131 (1974)PubMedCentralPubMedGoogle Scholar
- Seutter, E., Sutorius, A. H. M.: The vitamin K derivatives of some skin-mucin. I. Properties and vitamin K origin. Int. J. Vitam. Nutr. Res. 41, 57–67 (1971)PubMedGoogle Scholar
- Seutter, E., Sutorius, A. H. M.: The quantitative analysis of some constituents of crude sweat. II. Zinc, copper, iron, sialic acid content and oxidative activity. Dermatologica (Basel 145, 203–209 (1972)PubMedGoogle Scholar
- Silver, A., Versau, A., Montagna, W.: Studies of sweating and sensory function in cases of peripheral nerve injuries of the hand. J. invest. Derm. 40, 243–258 (1963)PubMedGoogle Scholar
- Skou, J. C.: Enzymatic bases for active transport of Na+ and K+ across cell membrane. Physiol. Rev. 45, 596–619(1965)PubMedGoogle Scholar
- Slegers, J. F. G.: The mechanism of eccrine sweat gland function in normal subjects and in patients with mucoviscidosis. Dermatologica (Basel) 127, 242–254 (1963)Google Scholar
- Slegers, J. F. G.: The influx and outflux of sodium in the sweat gland. Dermatologica (Basel) 132, 152–174 (1966)PubMedGoogle Scholar
- Slegers, J. F. G.: A mathematical approach to the two-step reabsorption hypothesis. Mod. Probl. Pädiat. 10, 74–88 (1967)Google Scholar
- Slegers, J. F. G.: Mechnisms of nonelectrolyte transport through epithelial cells. u. c. In: The Exocrine Gland. Ed. Botelho, S. Y., Brook, F. P., Shelly, W. M. (eds.). Philadelphia: University of Pennsylvania Press 1969, pp. 133–151.Google Scholar
- Slegers, J. F. G.: Alterations in sweat gland function produced by pharmacological u. c. agents. In: Pharmacology and the Skin. Montagna, W. (ed.). New York: Appleton-Century-Crofts 1972, pp. 477–493.Google Scholar
- Slegers, J. F. G., Moon, W. M.: Effect of acetazolamide on the chloride shift and the sodium pump. Nature (Lond.) 220, 181–182 (1968)PubMedGoogle Scholar
- Slegers, J. F. G., Van't Hot-Grootenboer: The localization of sodium transport sites in a forward pumping system. Pflügers Arch. ges. Physiol. 327, 167–185 (1971)Google Scholar
- Slyke, D. D. van, Plazin, J.: Micromanometric analysis. Baltimore: Williams & Wilkins 1961, pp. 39–55.Google Scholar
- Smiles, K. A., Robinson, S.: Regulation of sweat secretion during positive and negative work. J. appl. Physiol. 30, 409–412(1971)PubMedGoogle Scholar
- Smith, A.: Histochemical differentiation of two forms of glycogen synthetase. J. Histochem. Cytochem. 18, 756–759(1970)PubMedGoogle Scholar
- Smith, A., Dobson, R. L.: Sweating and glycogenolysis in the palmer eccrine sweat glands of rhesus monkey. J. invest. Derm. 47, 313–316 (1966)PubMedGoogle Scholar
- Sonnenschein, R. R., Robrin, N., Janowitz, H. D., Grasoman, M. I.: Stimulation and inhibition of human sweat glands by intradermal sympathomimetic agents. J. appl. Physiol. 3, 523–581 (1951)Google Scholar
- Sorensen, V. W., Prasad, G.: On the fine structure of horse sweat glands. Z. Anat. Entwickl. Gesch. 139, 173–189(1973)Google Scholar
- Spicer, S. S., Martin, B. J., Simon, J. V.: The junctional complex associated body of human eccrine sweat gland. J. Cell Biol. 53, 582–586 (1972)PubMedCentralPubMedGoogle Scholar
- Stüttgen, G., Richter, S., Wildherger, D. Z.: Erfassung biogener Amine in tierischer sowie menschlicher Haut und deren Tumoren mit dünnschichtchromatographischer Methodik. I. Alkylamine, Colamine, Piperidin, Histamine, Spermine und Spermidine. Arch. klin exp. Derm. 230, 349–360 (1960)Google Scholar
- Sutherland, E. W.: On the biological role of cyclic AMP. J. Amer. med. Ass. 214, 1281–1288 (1970)Google Scholar
- Szabo, G.: The number of eccrine sweat glands in human skin. In: Advances in, Biology of Skin. Ed. Montagna, W., Ellis, R., Silver, A. (eds.). New York: Pergamon Press 1962, vol. III, pp. 1–5.Google Scholar
- Takahashi, Y.: Functional activity of the eccrine sweat glands in the toepads of the dog. Tokohu J. exp. Med. 83, 205–219 (1964)Google Scholar
- Terada, E.: Effects of adrenaline on human sweating. J. physiol. Soc. Jpn. 28, 176–183 (1966)Google Scholar
- Terzakis, J. A.: The ultrastructure of monkey eccrine sweat glands. Z. Zellforsch. 64, 493–509 (1964)PubMedGoogle Scholar
- Thaysen, J. H.: Handling of alkali metals by exocrine glands other than the kidney. In: Handbuch der Experimentellen Pharmakologie. Berlin: Springer 1960, Vol. XIII, Chap. 5, pp. 424–507.Google Scholar
- Thaysen, J. H., Thorn, N. A., Schwartz, I. L.: Excretion of sodium, potassium, chloride, and carbon dioxide in human parotid saliva. Amer. J. Physiol. 178, 155–159 (1964)Google Scholar
- Uno, H., Montagna, W.: Catecholamine-containing nerve terminals of the eccrine sweat glands of Macaques. Cell. Tiss. Res. 158, 1–13 (1975)Google Scholar
- Ussing, H. H.: Transport of electrolytes and water across the epithelia. Harvey Lect. Ser. 59, 1–30 (1965)Google Scholar
- Ussing, H. H., Zerahn, K.: Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta physiol. scand. 23, 110–127 (1951)PubMedGoogle Scholar
- Vree, T. B., Th, A., Muskens, J. M., Rossum, J. M.: Excretion of amphetamines in human sweat. Arch. int. Pharmcodyn. 199, 311–317 (1972)Google Scholar
- Vreugdenhil, A. P., Roukema, P. A.: Comparison of the secretory processes in the parotid and sublingual gland of the mouse. I. Regulation of the secretory processes. Biochim. Biophys. Acta 413, 79–94 (1975)PubMedGoogle Scholar
- Wada, M.: Sudorific action of adrenaline on the human sweat glands and determination of their excitability. Science 111, 376–377 (1950)PubMedGoogle Scholar
- Warndorff, J. A.: The response of the sweat gland to acetylcholine in atopic subjects. Brit. J. Derm. 83, 306–311(1970)PubMedGoogle Scholar
- Warndorff, J. A.: The reponse of the sweat glands to β-adrenergic stimulation. Brit. J. Derm. 86, 282–285 (1972)PubMedGoogle Scholar
- Warndorff, J. A., Hamar, M. L.: The response of the sweat glands to β-adrenergic stimulation with isoprenaline. Brit. J. Derm. 90, 263–268 (1973)Google Scholar
- Weiner, I. S., Heyningen, R. E. van: Observations on lactate content of sweat. J. appl. Physiol. 4, 734–744 (1952)PubMedGoogle Scholar
- Williams, J. A.: Pancreatic acinar cells: use of a Ca++ ionophore to separate enzyme release from the earlier steps in stimulus-secretion coupling. Biochem. Biophys. Res. Commun. 60, 542–548 (1974)PubMedGoogle Scholar
- Williams, J. A.: Na dependence of in vitro pancreatic amylase release. Amer. J. Physiol. 229, 1023–1026 (1975)PubMedGoogle Scholar
- Wojcik, J. D., Grand, R. J., Kimberg, D. V.: Amylase secretion by rabbit parotid secretion. Biochim. Biophys. Acta 411, 25–262 (1975)Google Scholar
- Wolfe, S., Cage, G., Epstein, M., Tice, L., Miller, H., Gordon, R. S.: Metabolic studies of isolated human eccrine sweat glands. J. clin. Invest. 49, 1880–1884 (1970)PubMedCentralPubMedGoogle Scholar
- Wuster, R. D., McCook, R. D.: Influence of rate of change in skin temperature on sweating. J. appl. Physiol. 27, 237–240 (1969)Google Scholar
- Young, J. A., Martin, C. J.: The effect of a sympathomimetic and a parasympathomimetic drug on the electrolyte concentrations of primary and final saliva of the rat submaxillary gland. Pflügers Arch. ges. Physiol. 327, 285–302 (1971)Google Scholar
- Yuyama, H.: On the histological examination of distribution of glycogen in the skin of leprosy with special reference to the relationship between the function of the sweat glands and the changes of glycogen content. Jap. J. Derm. Urol. 37, 811–832 (1935)Google Scholar
Copyright information
© Springer-Verlag 1977

