Higher-order function
|
|
This article includes a list of references, but its sources remain unclear because it has insufficient inline citations. (September 2013) |
In mathematics and computer science, a higher-order function (also functional, functional form or functor) is a function that does at least one of the following:
- takes one or more functions as arguments (i.e., procedural parameters),
- returns a function as its result.[disputed ]
All other functions are first-order functions. In mathematics higher-order functions are also known as operators or functionals. The differential operator in calculus is a common example, since it maps a function to its derivative, also a function.
In the untyped lambda calculus, all functions are higher-order; in a typed lambda calculus, from which most functional programming languages are derived, higher-order functions that take one function as argument are values with types of the form
.
Contents
General examples[edit]
The map function, found in many functional programming languages, is one example of a higher-order function. It takes as arguments a function f and a list of elements, and as the result, returns a new list with f applied to each element from the list. Another very common kind of higher-order function in those languages which support them are sorting functions which take a comparison function as a parameter, allowing the programmer to separate the sorting algorithm from the comparisons of the items being sorted. The C standard function qsort is an example of this.
Other examples of higher-order functions include fold, function composition, integration, and the constant-function function λx.λy.y.x.
Support in programming languages[edit]
Direct support[edit]
The examples are not intended to compare and contrast programming languages, but to serve as examples of higher-order function syntax
In the following examples, the higher-order function twice takes a function , and applies the function to some value twice. If twice has to be applied several times for the same f it preferably should return a function rather than a value. This is in line with the "don't repeat yourself " principle.
Python[edit]
>>> def twice(function):
... return lambda x: function(function(x))
>>> def f(x):
... return x + 3
>>> g = twice(f)
>>> print g(7)
13
>>> print g(8)
14
F#[edit]
let twice f = f >> f
let f = (+) 3
twice f 7 |> printf "%A" // 13
Haskell[edit]
twice :: (a -> a) -> (a -> a)
twice f = f . f
f :: Num a => a -> a
f = subtract 3
main :: IO ()
main = print (twice f 7) -- 1
Clojure[edit]
(defn twice [function x]
(function (function x)))
(twice #(+ % 3) 7) ;13
In Clojure, "#" starts a lambda expression, and "%" refers to the next function argument.
Scheme[edit]
(define (add x y) (+ x y))
(define (f x)
(lambda (y) (+ x y)))
(display ((f 3) 7))
(display (add 3 7))
In this Scheme example, the higher-order function (f x) is used to implement currying. It takes a single argument and returns a function. The evaluation of the expression ((f 3) 7) first returns a function after evaluating (f 3). The returned function is (lambda (y) (+ 3 y)). Then, it evaluates the returned function with 7 as the argument, returning 10. This is equivalent to the expression (add 3 7), since (f x) is equivalent to the curried form of (add x y).
Erlang[edit]
or_else([], _) -> false;
or_else([F | Fs], X) -> or_else(Fs, X, F(X)).
or_else(Fs, X, false) -> or_else(Fs, X);
or_else(Fs, _, {false, Y}) -> or_else(Fs, Y);
or_else(_, _, R) -> R.
or_else([fun erlang:is_integer/1, fun erlang:is_atom/1, fun erlang:is_list/1],3.23).
In this Erlang example, the higher-order function or_else/2 takes a list of functions (Fs) and argument (X). It evaluates the function F with the argument X as argument. If the function F returns false then the next function in Fs will be evaluated. If the function F returns {false,Y} then the next function in Fs with argument Y will be evaluated. If the function F returns R the higher-order function or_else/2 will return R. Note that X, Y, and R can be functions. The example returns false.
JavaScript[edit]
function arrayForEach(array, func) {
var i;
for (i = 0, len = array.length; i < len; i++) {
func(array[i]);
}
}
arrayForEach([1,2,3,4,5], console.log.bind(console));
In this JavaScript example, the higher-order function arrayForEach takes an array and a function in as arguments and calls the function on every element in the array. Although the function may or may not return a value, there is no mapping involved since mapping requires saving returned values to a list.
However, this could also be implemented using the map function, which in JavaScript can accept functions with no return value.
[1,2,3,4,5].map(console.log.bind(console));
func f(x:Int) -> Int {
return x + 3
}
func g(function: (x:Int) -> Int, paramX: Int) -> Int {
return function(x: paramX) * function(x: paramX)
}
g(f,paramX: 7)
Alternatives[edit]
Function pointers[edit]
Function pointers in languages such as C and C++ allow programmers to pass around references to functions. The following C code computes an approximation of the integral of an arbitrary function:
#include <stdio.h>
double square(double x)
{
return x * x;
}
double cube(double x)
{
return x * x * x;
}
/* Compute the integral of f() within the interval [a,b] */
double integral(double f(double x), double a, double b, int n)
{
int i;
double sum = 0;
double dt = (b - a) / n;
for (i = 0; i < n; ++i) {
sum += f(a + (i + 0.5) * dt);
}
return sum * dt;
}
int main()
{
printf("%g\n", integral(square, 0, 1, 100));
printf("%g\n", integral(cube, 0, 1, 100));
return 0;
}
The qsort function from the C standard library uses a function pointer to emulate the behavior of a higher-order function.
Macros[edit]
Macros can also be used to achieve some of the effects of higher order functions. However, macros cannot easily avoid the problem of variable capture; they may also result in large amounts of duplicated code, which can be more difficult for a compiler to optimize. Macros are generally not strongly typed, although they may produce strongly typed code.
Dynamic code evaluation[edit]
In other imperative programming languages it is possible to achieve some of the same algorithmic results as are obtained through use of higher-order functions by dynamically executing code (sometimes called "Eval" or "Execute" operations) in the scope of evaluation. There can be significant drawbacks to this approach:
- The argument code to be executed is usually not statically typed; these languages generally rely on dynamic typing to determine the well-formedness and safety of the code to be executed.
- The argument is usually provided as a string, the value of which may not be known until run-time. This string must either be compiled during program execution (using just-in-time compilation) or evaluated by interpretation, causing some added overhead at run-time, and usually generating less efficient code.
Objects[edit]
In object-oriented programming languages that do not support higher-order functions, objects can be an effective substitute. An object's methods act in essence like functions, and a method may accept objects as parameters and produce objects as return values. Objects often carry added run-time overhead compared to pure functions, however, and added boilerplate code for defining and instantiating an object and its method(s). Languages that permit stack-based (versus heap-based) objects or structs can provide more flexibility with this method.
An example of using a simple stack based record in Free Pascal with a function that returns a function:
program example;
type
int = integer;
Txy = record x, y: int; end;
Tf = function (xy: Txy): int;
function f(xy: Txy): int;
begin
Result := xy.y + xy.x;
end;
function g(func: Tf): Tf;
begin
result := func;
end;
var
a: Tf;
xy: Txy = (x: 3; y: 7);
begin
a := g(@f); // return a function to "a"
writeln(a(xy)); // prints 10
end.
The function a() takes a Txy record as input and returns the integer value of the sum of the record's x and y fields (3 + 7).
Defunctionalization[edit]
Defunctionalization can be used to implement higher-order functions in languages that lack first-class functions:
// Defunctionalized function data structures
template<typename T> struct Add { T value; };
template<typename T> struct DivBy { T value; };
template<typename F, typename G> struct Composition { F f; G g; };
// Defunctionalized function application implementations
template<typename F, typename G, typename X>
auto apply(Composition<F, G> f, X arg) {
return apply(f.f, apply(f.g, arg));
}
template<typename T, typename X>
auto apply(Add<T> f, X arg) {
return arg + f.value;
}
template<typename T, typename X>
auto apply(DivBy<T> f, X arg) {
return arg / f.value;
}
// Higher-order compose function
template<typename F, typename G>
Composition<F, G> compose(F f, G g) {
return Composition<F, G> {f, g};
}
int main(int argc, const char* argv[]) {
auto f = compose(DivBy<float>{ 2.0f }, Add<int>{ 5 });
apply(f, 3); // 4.0f
apply(f, 9); // 7.0f
return 0;
}
In this case, different types are used to trigger different functions through the use of overloading. The overloaded function in this example has the signature auto apply.
See also[edit]
- First-class function
- Combinatory logic
- Function-level programming
- Functional programming
- Kappa calculus - a formalism for functions which excludes higher-order functions
- Strategy pattern
- Higher order messages

