Matrix gamma distribution
From Wikipedia, the free encyclopedia
| Notation | ![]() |
|---|---|
| Parameters |
shape parameter (real) scale (positive-definite real matrix) |
| Support | positive-definite real matrix |
|
|
In statistics, a matrix gamma distribution is a generalization of the gamma distribution to positive-definite matrices.[1] It is a more general version of the Wishart distribution, and is used similarly, e.g. as the conjugate prior of the precision matrix of a multivariate normal distribution and matrix normal distribution. The compound distribution resulting from compounding a matrix normal with a matrix gamma prior over the precision matrix is a generalized matrix t-distribution.[1]
This reduces to the Wishart distribution with 
See also[edit]
- inverse matrix gamma distribution.
- matrix normal distribution.
- matrix t-distribution.
- Wishart distribution.
Notes[edit]
- ^ a b Iranmanesh, Anis, M. Arashib and S. M. M. Tabatabaey (2010). "On Conditional Applications of Matrix Variate Normal Distribution". Iranian Journal of Mathematical Sciences and Informatics, 5:2, pp. 33–43.
References[edit]
- Gupta, A. K.; Nagar, D. K. (1999) Matrix Variate Distributions, Chapman and Hall/CRC ISBN 978-1584880462




is the