Such list of phenyltropanes present many different avenues of research into therapeutic and addiction control depending on their construction and structure-activity relationship ranging from the treating of cocaine dependency to understanding the dopamine reward system in the human brain to treating Alzheimer's & Parkinson's diseases. More recently there have been continual additions to the list and enumerations of the plethora of types of chemicals that fall into the category of being among one kind that would make it among others of this substance profile. Many of the compounds were first elucidated in published material by the Research Triangle Institute (RTI) and are thus so named. Similarly, a number of others are named for Sterling-Winthrop pharmaceuticals (WIN) & Wake Forest University (WF).
[edit] 2-Carboxymethyl esters
Certain phenyltropanes can be used as a smoking cessation aid.
[edit] (3,4-Disubstituted phenyl)-tropanes
| Compound |
X |
Y |
2 Position |
config |
8 |
DA |
5-HT |
NE |
| RTI-318 |
β-naphthyl |
CO2Me |
β,β |
NMe |
0.5 |
0.81 |
20 |
| Dichloropane (RTI-111) |
Cl |
Cl |
CO2Me |
β,β |
NMe |
0.79 |
3.13 |
18.0 |
| RTI-88 [recheck] |
NH2 |
I |
CO2Me |
β,β |
NMe |
1.35 |
1329 |
320 |
| RTI-97 |
NH2 |
Br |
CO2Me |
β,β |
NMe |
3.91 |
181 |
282 |
| RTI-112 |
Cl |
Me |
CO2Me |
β,β |
NMe |
0.82 |
10.5 |
36.2 |
| RTI-96 |
F |
Me |
CO2Me |
β,β |
NMe |
2.95 |
76 |
520 |
| RTI-295 |
Et |
I |
CO2Me |
β,β |
NMe |
21.3 |
2.96 |
1349 |
| RTI-353 (EINT) |
Et |
I |
CO2Me |
β,β |
NH |
331 |
0.69 |
148 |
| RTI-279 |
Me |
I |
CO2Me |
β,β |
NH |
5.98 |
1.06 |
74.3 |
| RTI-280 |
Me |
I |
CO2Me |
β,β |
NMe |
3.12 |
6.81 |
484 |
[edit] Carboxyaryl
| Compound |
X |
2 Position |
config |
8 |
DA |
5-HT |
NE |
| RTI-122 |
I |
-CO2Ph |
β,β |
NMe |
1.50 |
184 |
3,791 |
| RTI-113 |
Cl |
-CO2Ph |
β,β |
NMe |
1.98 |
2,336 |
2,955 |
| RTI-277 |
NO2 |
-CO2Ph |
β,β |
NMe |
5.94 |
2,910 |
5,695 |
| RTI-120 [recheck] |
Me |
-CO2Ph |
β,β |
NMe |
3.26 |
24,471 |
5,833 |
| RTI-116 |
Cl |
-CO2(p-C6H4I) |
β,β |
NMe |
33 |
1,227 |
968 |
| RTI-203 |
Cl |
CO2(m-C6H4Me) |
β,β |
NMe |
9.37 |
2153 |
2744 |
| RTI-204 |
Cl |
-CO2(o-C6H4Me) |
β,β |
NMe |
3.91 |
3,772 |
4,783 |
| RTI-205 |
Me |
-CO2(m-C6H4Me) |
β,β |
NMe |
8.19 |
5,237 |
2,137 |
| RTI-206 |
Cl |
-CO2(p-C6H4Me) |
β,β |
NMe |
27.4 |
1,203 |
1,278 |
[edit] Carboxyalkyl
| Code |
X |
2 Position |
config |
8 |
DA |
5-HT |
NE |
| RTI-77 |
Cl |
CH2CH2(3-iodo-p-anilino) |
β,β |
NMe |
2.51 |
— |
2247 |
| RTI-121 |
I |
-CO2Pri |
β,β |
NMe |
0.43 |
66.8 |
285 |
| RTI-153 |
I |
-CO2Pri |
β,β |
NH |
1.06 |
3.59 |
132 |
| RTI-191 |
I |
-CO2Prcyc |
β,β |
NMe |
0.61 |
15.5 |
102 |
| RTI-114 |
Cl |
-CO2Pri |
β,β |
NMe |
1.40 |
1,404 |
778 |
| RTI-278 |
NO2 |
-CO2Pri |
β,β |
NMe |
8.14 |
2,147 |
4,095 |
| RTI-190 |
Cl |
-CO2Prcyc |
β,β |
NMe |
0.96 |
168 |
235 |
| RTI-193 |
Me |
-CO2Prcyc |
β,β |
NMe |
1.68 |
1,066 |
644 |
| RTI-117 |
Me |
-CO2Pri |
β,β |
NMe |
6.45 |
6,090 |
1,926 |
| RTI-150 |
Me |
-CO2Bucyc |
β,β |
NMe |
3.74 |
2,020 |
4,738 |
| RTI-127 |
Me |
-CO2C(H)Et2 |
β,β |
NMe |
19 |
4500 |
3444 |
| RTI-338 |
ethyl |
-CO2CH2Ph |
β,β |
NMe |
1104 |
7.41 |
3366 |
Use of a cyclopropyl ester appears to enable better MAT retention than does the choice of isopropyl ester.
Use of a cycBu resulted in greater DAT selectivity than did the cycPr homologue.
[edit] Amides
U.S. Patent 5,736,123 RTI-183 and RTI-218 have the same structure??



| Code |
X |
2 Position |
config |
8 |
DA |
NE |
5-HT |
| RTI-106 |
Cl |
CON(H)Me |
β,β |
NMe |
12.4 |
1511 |
1312 |
| RTI-118 |
Cl |
CONH2 |
β,β |
NMe |
11.5 |
4267 |
1621 |
| RTI-222 |
Me |
morpholinyl |
β,β |
NMe |
11.7 |
— |
>100K |
| RTI-129 |
Cl |
CONMe2 |
β,β |
NMe |
1.38 |
942 |
1079 |
| RTI-146 |
Cl |
CONHCH2OH |
β,β |
NMe |
2.05 |
144 |
98 |
| RTI-147 |
Cl |
CON(CH2)4 |
β,β |
NMe |
1.38 |
3,949 |
12,394 |
| RTI-156 |
Cl |
CON(CH2)5 |
β,β |
NMe |
6.61 |
5832 |
3468 |
| RTI-170 |
Cl |
CON(H)CH2C≡CH |
β,β |
NMe |
16.5 |
1839 |
4827 |
| RTI-172 |
Cl |
CON(H)NH2 |
β,β |
NMe |
44.1 |
3914 |
3815 |
| RTI-174 |
Cl |
CONHCOMe |
β,β |
NMe |
158 |
>43K |
>125K |
| RTI-182 |
Cl |
CONHCH2COPh |
β,β |
NMe |
7.79 |
1722 |
827 |
| RTI-183 |
Cl |
CON(OMe)Me |
β,β |
NMe |
0.85 |
549 |
724 |
| RTI-186 |
Me |
CON(OMe)Me |
β,β |
NMe |
2.55 |
442 (266) |
3400 (309) |
| RTI-198 |
Cl |
CON(CH2)3 |
β,β |
NMe |
6.57 |
990 |
813 |
| RTI-196 |
Cl |
CONHOMe |
β,β |
NMe |
10.7 |
9907 |
>43K |
| RTI-201 |
Cl |
CONHNHCOPh |
β,β |
NMe |
91.8 |
>20K |
>48K |
| RTI-208 |
Cl |
CONO(CH2)3 |
β,β |
NMe |
1.47 |
998 |
2470 |
| RTI-214 |
Cl |
CON(-CH2CH2-)2O |
β,β |
NMe |
2.90 |
8545 |
>88K |
| RTI-215 |
Cl |
CONEt2 |
β,β |
NMe |
5.48 |
? |
9432 |
| RTI-217 |
Cl |
CONH(m-C6H4OH) |
β,β |
NMe |
4.78 |
>30K |
>16K |
| RTI-218 |
Cl |
CON(Me)OMe |
β,β |
NMe |
1.19 |
520 |
1911 |
| RTI-226 |
Cl |
CONMePh |
β,β |
NMe |
45.0 |
? |
24K |
| RTI-227 |
I |
CONO(CH2)3 |
β,β |
NMe |
0.75 |
446 |
230 |
| RTI-229[3] |
I |
CON(CH2)4 |
β,β |
NMe |
0.37 |
991 |
1,728 |
| # |
X |
Y |
2 Position |
config |
8 |
DA |
5-HT |
NE |
| WF-23 |
β-naphthyl |
C(O)Et |
β,β |
NMe |
0.115 |
0.394 |
No data |
| WF-31 |
-Pri |
H |
C.O.Et |
β,β |
NMe |
615 |
54.5 |
No data |
| WF-11 |
Me |
H |
-C.O.Et |
β,β |
NMe |
8.2 |
131 |
No data |
| WF-25 |
H |
H |
-C.O.Et |
β,β |
NMe |
48.3 |
1005 |
No data |
| WF-33 |
6-MeoBN |
C(O)Et |
α,β |
NMe |
0.13 |
2.24 |
No data |
[edit] Ester reduction
Note: p-fluorophenyl is weaker than the others. RTI-145 is not peroxy, it is a methylcarbonate.
| Code |
X |
2 Position |
config |
8 |
DA |
5-HT |
NE |
| RTI-100 |
F |
-CH2OH |
β,β |
NMe |
47 |
4741 |
no data |
| RTI-101 |
I |
-CH2OH |
β,β |
NMe |
2.2 |
26 |
no data |
| RTI-99 |
Br |
-CH2OH |
β,β |
NMe |
1.49 |
51 |
no data |
| RTI-93 |
Cl |
-CH2OH |
β,β |
NMe |
1.53 |
204 |
43.8 |
| RTI-105 |
Cl |
-CH2OAc |
β,β |
NMe |
1.60 |
143 |
127 |
| RTI-123 |
Cl |
-CH2OBz |
β,β |
NMe |
1.78 |
3.53 |
393 |
| RTI-145 |
Cl |
-CH2OCO2Me |
β,β |
NMe |
9.60 |
2.93 |
1.48 |


| Code |
X |
2 Position |
config |
8 |
DA |
5-HT |
NE |
| RTI-102 |
I |
CO2H |
β,β |
NMe |
474 |
1928 |
43,400 |
| RTI-103 |
Br |
CO2H |
β,β |
NMe |
278 |
3070 |
17,400 |
| RTI-104 |
F |
CO2H |
β,β |
NMe |
2744 |
>100K |
>100K |
| RTI-108 |
Cl |
-CH2Cl |
β,β |
NMe |
2.64 |
98 |
129.8 |
| RTI-241 |
Me |
-CH2CO2Me |
β,β |
NMe |
1.02 |
619 |
124 |
| RTI-139 |
Cl |
-CH3 |
β,β |
NMe |
1.67 |
85 |
57 |
| RTI-161 |
Cl |
-C≡N |
β,β |
NMe |
13.1 |
1887 |
2516 |
| RTI-230 |
Cl |
H3C–Ç=CH2 |
β,β |
NMe |
1.28 |
57 |
141 |
| RTI-240 |
Cl |
-CHMe2 |
β,β |
NMe |
1.38 |
38.4 |
84.5 |
| RTI-145 |
Cl |
-CH2OCO2Me |
β,β |
NMe |
9.60 |
2,932 |
1,478 |
| RTI-158 |
Me |
-C≡N |
β,β |
NMe |
57 |
5095 |
1624 |
| RTI-131 |
Me |
-CH2NH2 |
β,β |
NMe |
10.5 |
855 |
120 |
| RTI-164 |
Me |
-CH2NHMe |
β,β |
NMe |
13.6 |
2246 |
280 |
| RTI-132 |
Me |
-CH2NMe2 |
β,β |
NMe |
3.48 |
206 |
137 |
| RTI-239 |
Me |
-CHMe2 |
β,β |
NMe |
0.61 |
114 |
35.6 |
| RTI-338 |
Et |
-CO2CH2Ph |
β,β |
NMe |
1104 |
7.41 |
3366 |
| RTI-348 |
H |
-Ph |
β,β |
NMe |
28.2 |
>34,000 |
2670 |
[edit] F&B series
The compound of the present invention are useful pesticides.[4]
| Code |
X |
2 Position |
config |
DA |
NE |
5-HT |
| RTI-224 |
Me |
F1c |
β,β |
4.49 |
— |
155.6 |
| RTI-233 |
Me |
F2 |
β,β |
4.38 |
516 |
73.6 |
| RTI-235 |
Me |
F3 d |
β,β |
1.75 |
402 |
72.4 |
| RTI-236 |
Me |
B1 d |
β,β |
1.63 |
86.8 |
138 |
| RTI-237 |
Me |
B2 d |
β,β |
7.27 |
258 |
363 |
| RTI-244 |
Me |
B3 d |
β,β |
15.6 |
1809 |
33.7 |
| RTI-245 |
Cl |
F4 c |
β,β |
77.3 |
— |
— |
| RTI-246 |
Me |
F4 c |
β,β |
50.3 |
3000 |
— |
| RTI-248 |
Cl |
F6 c |
β,β |
9.73 |
4674 |
6.96 |
| RTI-249 |
Cl |
F1 c |
β,β |
8.32 |
5023 |
81.6 |
| RTI-266 |
Me |
F2 |
β,β |
4.80 |
836 |
842 |
| RTI-267 |
Me |
F7 wrong |
β,β |
2.52 |
324 |
455 |
| RTI-268 |
Me |
F7 right |
β,β |
3.89 |
1014 |
382 |
| RTI-269 |
Me |
F8 |
β,β |
5.55 |
788 |
986 |
Biotin
[edit] β,α Stereochemistry
| Compound |
X |
2 Group |
config |
8 |
DA |
5-HT |
NE |
| RTI-140 |
H |
CO2Me |
β,α |
NMe |
101 |
5,701 |
2,076 |
| RTI-352 U.S. Patent 6,358,492 |
I |
CO2Me |
β,α |
NMe |
2.86 |
64.9 |
52.4 |
| RTI-549 |
Br |
CO2Me |
β,α |
NMe |
|
|
|
| RTI-319 U.S. Patent 7,011,813 |
BN |
CO2Me |
β,α |
NMe |
1.1 |
11.4 |
70.2 |
| RTI-286 U.S. Patent 7,011,813 |
F |
CO2Me |
β,α |
NMe |
21 |
5062 |
1231 |
| RTI-274 U.S. Patent 7,291,737 |
F |
CH2O(3'4'-MD-phenyl) |
β,α |
NH |
3.96 |
5.62 |
14.4 |
| RTI-287 |
Et |
CO2Me |
β,α |
NMe |
327 |
1687 |
17,819 |
[edit] α,β Stereochemistry
| Compound |
X |
2 Group |
config |
8 |
DA |
5-HT |
NE |
| Brasofensine |
Cl2 |
methyl aldoxime |
α,β |
NMe |
|
|
|
| Tesofensine |
Cl2 |
ethoxymethyl |
α,β |
NMe |
65 |
11 |
1.7 |
| NS-2359 (GSK-372,475) |
Cl2 |
Methoxymethyl |
α,β |
NH |
|
|
|
[edit] Heterocycles
These heterocycles are sometimes referred to as the "bioisosteric equivalent" of the simpler esters from which they are derived. A potential disadvantage of leaving the ββ-ester unreacted is that in addition to being hydrolyzable, it can also epimerize[5] to the energetically more favorable trans configuration. This can also happen to cocaine also.
[edit] 3-Substituted-isoxazol-5-yl

N-methylphenyltropanes with 1R β,β stereochemistry.
| Code |
X |
R |
DA |
NE |
5HT |
| RTI-165 |
Cl |
3-methylisoxazol-5-yl |
0.59 |
181 |
572 |
| RTI-171 |
Me |
3-methylisoxazol-5-yl |
0.93 |
254 |
3818 |
| RTI-180 |
I |
3-methylisoxazol-5-yl |
0.73 |
67.9 |
36.4 |
| RTI-177 |
Cl |
3-phenylisoxazol-5-yl |
1.28 |
504 |
2418 |
| RTI-176 |
Me |
3-phenylisoxazol-5-yl |
1.58 |
398 |
5110 |
| RTI-181 |
I |
3-phenylisoxazol-5-yl |
2.57 |
868 |
100 |
| RTI-184 |
H |
methyl |
43.3 |
— |
6208 |
| RTI-185 |
H |
Ph |
285 |
— |
>12K |
| RTI-334 |
Cl |
3-ethylisoxazol-5-yl |
0.50 |
120 |
3086 |
| RTI-335 |
Cl |
isopropyl |
1.19 |
954 |
2318 |
| RTI-336 |
Cl |
3-(4-methylphenyl)isoxazol-5-yl |
4.09 |
1714 |
5741 |
| RTI-337 |
Cl |
3-t-butyl-isoxazol-5-yl |
7.31 |
6321 |
37K |
| RTI-345 |
Cl |
p-chlorophenyl |
6.42 |
5290 |
>76K |
| RTI-346 |
Cl |
p-anisyl |
1.57 |
762 |
5880 |
| RTI-347 |
Cl |
p-fluorophenyl |
1.86 |
918 |
7257 |
| RTI-354 |
Me |
3-ethylisoxazol-5-yl |
1.62 |
299 |
6400 |
| RTI-366 |
Me |
R = isopropyl |
4.5 |
2523 (1550) |
42,900 (3900) |
| RTI-371 |
Me |
p-chlorophenyl |
8.74 |
>100K (60,200) |
>100K (9090) |
| RTI-386 |
Me |
p-anisyl |
3.93 |
756 (450) |
4027 (380) |
| RTI-387 |
Me |
p-fluorophenyl |
6.45 |
917 (546) |
>100K (9400) |
[edit] 3-Substituted-1,2,4-oxadiazole
Heterocyclic (N-methyl)phenyltropanes with 1R stereochemistry.
| Code |
X |
R |
DA |
NE |
5HT |
| ααRTI-87 |
H |
3-methyl-1,2,4-oxadiazole |
204 |
36K |
30K |
| βαRTI-119 |
H |
3-methyl-1,2,4-oxadiazole |
167 |
7K |
41K |
| αβRTI-124 |
H |
3-methyl-1,2,4-oxadiazole |
1028 |
71K |
33K |
| RTI-125 |
Cl |
3-methyl-1,2,4-oxadiazole |
4.05 |
363 |
2584 |
| ββRTI-126[4] |
H |
3-methyl-1,2,4-oxadiazole |
100 |
7876 |
3824 |
| RTI-130 |
Cl |
3-phenyl-1,2,4-oxadiazole |
1.62 |
245 |
195 |
| RTI-141 |
Cl |
3-(p-anisyl)-1,2,4-oxadiazole |
1.81 |
835 |
357 |
| RTI-143 |
Cl |
3-(p-chlorophenyl)-1,2,4-oxadiazole |
4.1 |
4069 |
404 |
| RTI-144 |
Cl |
3-(p-bromophenyl)-1,2,4-oxadiazole |
3.44 |
1825 |
106 |
| βRTI-151 |
Me |
3-phenyl-1,2,4-oxadiazole |
2.33 |
60 |
1074 |
| αRTI-152 |
Me |
3-phenyl-1,2,4-oxadiazole |
494 |
— |
1995 |
| RTI-154 |
Cl |
3-isopropyl-1,2,4-oxadiazole |
6 |
135 |
3460 |
| RTI-155 |
Cl |
3-cyclopropyl-1,2,4-oxadiazole |
3.41 |
177 |
4362 |

N-methylphenyltropanes with 1R β,β stereochemistry.
| Code |
X |
2 Group |
DA |
NE |
5HT |
| RTI-157 |
Me |
tetrazole |
1557 |
>37K |
>43K |
| RTI-163 |
Cl |
tetrazole |
911 |
— |
5456 |
| RTI-178 |
Me |
5-phenyl-oxazol-2-yl |
35.4 |
677 |
1699 |
| RTI-188 |
Cl |
5-phenyl-1,3,4-oxadiazol-2-yl |
12.6 |
930 |
3304 |
| RTI-189 |
Cl |
5-phenyl-oxazol-2-yl |
19.7 |
496 |
1116 |
| RTI-194 |
Me |
5-methyl-1,3,4-oxadiazol-2-yl |
4.45 |
253 |
4885 |
| RTI-195 |
Me |
5-phenyl-1,3,4-oxadiazol-2-yl |
47.5 |
1310 |
>22,000 |
| RTI-199 |
Me |
5-phenyl-1,3,4-thiadiazol-2-yl |
35.9 |
>24,000 |
>51,000 |
| RTI-200 |
Cl |
5-phenyl-1,3,4-thiadiazol-2-yl |
15.3 |
4142 |
>18,000 |
| RTI-202 |
Cl |
benzothiazol-2-yl |
1.37 |
403 |
1119 |
| RTI-219 |
Cl |
5-phenylthiazol-2-yl |
5.71 |
8516 |
10,342 |
| RTI-262 |
Cl |
|
| RTI-370 |
Me |
3-(p-cresyl)isoxazol-5-yl |
8.74 |
6980 |
>100K |
| RTI-371 |
Cl |
3-(p-chlorophenyl)isoxazol-5-yl |
13 |
>100K |
>100K |
| RTI-436 |
Me |
-CH=CHPh[6] |
3.09 |
1960 (1181) |
335 (31) |
| RTI-470 |
Cl |
o-Cl-benzothiazol-2-yl |
0.094 |
1590 (994) |
1080 (98) |
| RTI-451 |
Me |
benzothiazol-2-yl |
1.53 |
476 (287) |
7120 (647) |

[edit] N-alkyl
| Compound |
X |
2 Group |
config |
8 |
DAT |
SERT |
NET |
| FP-β-CPPIT |
Cl |
3'-phenylisoxazol-5'-yl |
β,β |
NCH2CH2CH2F |
|
|
|
| FE-β-CPPIT |
Cl |
(3'-phenylisoxazol-5'-yl) |
β,β |
NCH2CH2F |
|
|
|
| Altropane |
F |
CO2Me |
β,β |
NCH2CH=CHF |
|
|
|
| RTI-310 U.S. Patent 5,736,123 |
I |
CO2Me |
β,β |
N-Prn |
1.17 |
|
|
| RTI-311 |
I |
CO2Me |
β,β |
NCH2CH=CH2 |
1.79 |
|
|
| RTI-312 U.S. Patent 5,736,123 |
I |
CO2Me |
β,β |
NBun |
0.76 |
|
|
| RTI-313 U.S. Patent 5,736,123 |
I |
CO2Me |
β,β |
NCH2CH2CH2F |
1.67 |
|
|
| Ioflupane |
¹²³I |
CO2Me |
β,β |
NCH2CH2CH2F |
|
|
|
| RTI-251 |
Cl |
CO2Me |
β,β |
NCH2CO2Et |
1.93 |
10.1 |
114 |
| RTI-252 |
Cl |
CO2Me |
β,β |
NCH2CH2CO2Et |
2.56 |
35.2 |
125 |
| RTI-242 |
Cl |
β,β (bridged) -C(O)CH(CO2Me)CH2N |
7.67 |
227 |
510 |
Bi- and tri-cyclic aza compounds and their uses U.S. Patent 6,150,376
[edit] N-replaced (S,O,C)
| Compound |
X |
2 Group |
config |
8 |
DA |
5-HT |
NE |
| Tropoxane |
Cl,Cl |
CO2Me |
(racemic) β,β |
O |
3.3 |
6.5 |
No data |
[edit] Irreversible
Irreversible (phenylisothiocyanate) binding ligand (Murthy, V.; Martin, T. J.; Kim, S.; Davies, H. M. L.; Childers, S. R. (2008). "In Vivo Characterization of a Novel Phenylisothiocyanate Tropane Analog at Monoamine Transporters in Rat Brain". Journal of Pharmacology and Experimental Therapeutics 326 (2): 587–595. DOI:10.1124/jpet.108.138842. PMID 18492949. ) [7] RTI-76:[8] 4-isothiocyanatophenyl (1R,2S,3S,5S)-3-(4-chlorophenyl)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate. Also known as: 3beta-(p-chlorophenyl)tropan-2beta-carboxylic acid p-isothiocyanatophenylmethyl ester.
Note the contrast to the phenylisothiocyanate covalent binding site location as compared to the one on p-Isococ, a non-phenyltropane cocaine analogue.
[edit] Nortropanes (N-demethylated)
NS2359 (GSK-372,475)
It is well established that electrostatic potential around the para position tends to improve MAT binding. This is believed to also be the case for the meta position, although it is less studied. N-demethylation dramatically potentiates NET and SERT affinity, but the effects of this on DAT binding are insignificant.[9] Of course, this is not always the case. For an interesting exception to this trend, see the Taxil document. There is ample evidence suggesting that N-demethylation of alkaloids occurs naturally in vivo via a biological enzyme. The fact that hydrolysis of the ester leads to inactive metabolites means that this is still the main mode of deactivation for analogues which have an easily metabolised 2-ester substituent. The attached table provides good illustration of the effect of this chemical transformation on MAT binding affinities. N.B. In the case of both nocaine and pethidine, N-demethyl compounds are more toxic and have a decreased seizure threshold.
[10]
Selected ββ Nortropanes
| Code |
X |
DA |
5HT |
NE |
| RTI-142 |
F |
4.39 |
68.6 |
18.8 |
| RTI-98 |
I |
0.69 |
0.36 |
11.0 |
| RTI-110 |
Cl |
0.62 |
4.13 |
5.45 |
| RTI-173 |
Et |
49.9 |
8.13 |
122 |
N-demethylating various β,β p-HC-phenyltropanes.
| X |
[3H]Paroxetine |
[3H]WIN 35,428 |
[3H]Nisoxetine |
| Ethyl |
28.4 → 8.13 |
55 → 49.9 |
4,029 → 122 |
| vinyl |
9.5 → 2.25 |
1.24 → 1.73 |
78 → 14.9 |
| Ethynyl |
4.4 → 1.59 |
1.2 → 1.24 |
83.2 → 21.8 |
| 1-Propyl |
70.4 → 26 |
68.5 → 212 |
3,920 → 532 |
| t-propenyl |
11.4 → 1.3 |
5.29 → 28.6 |
1,590 → 54 |
| c-propenyl |
7.09 → 1.15 |
15 → 31.6 |
2,800 → 147 |
| Allyl |
28.4 → 6.2 |
32.8 → 56.5 |
2,480 → 89.7 |
| 1-Propynyl |
15.7 → 3.16 |
2.37 → 6.11 |
820 → 116 |
| i-Propyl |
191 → 15.1 |
597 → 310 |
75,000 → ? |
| 2-Propenyl |
3.13 → 0.6 |
14.4 → 23 |
1,330? → 144 |
N-Demethylating phenyltropanes to find a NRI
| Isomer |
4' |
3' |
NE |
DA |
5HT |
| β,β |
Me |
H |
60 → 7.2 |
1.7 → 0.84 |
240 → 135 |
| β,β |
F |
H |
835 → 18.8 |
15.7 → 4.4 |
760 → 68.6 |
| β,β |
Cl |
H |
37 → 5.45 |
1.12 → 0.62 |
45 → 4.13 |
| β,α |
Me |
H |
270 → 9 |
10.2 → 33.6 |
4250 → 500 |
| β,α |
F |
H |
1200 → 9.8 |
21 → 32.6 |
5060 → 92.4 |
| β,α |
Cl |
H |
60 → 5.41 |
2.4 → 3.1 |
998 → 53.3 |
| β,α |
F |
Me |
148 → 4.23 |
13.7 → 9.38 |
1161 → 69.8 |
| β,α |
Me |
F |
44.7 → 0.86 |
7.38 → 9 |
1150 → 97.4 |
"Interest in NET selective drugs continues as evidenced by the development of atomoxetine, manifaxine, and reboxetine as new NET selective compounds for treating ADHD and other CNS disorders such as depression" (FIC, et al. 2005).[11]
[edit] Thiophenyltropanes

[edit] Select annotations of above
Phenyltropanes can be grouped by "N substitution" "Stereochemistry" "2-substitution" & by the nature of the 3-phenyl group substituent X.
Often this has dramatic effects on selectivity, potency, and duration, also toxicity, since phenyltropanes are highly versatile. For more examples of interesting phenyltropanes, see some of the more recent patents, e.g. U.S. Patent 6,329,520, U.S. Patent 7,011,813, U.S. Patent 6,531,483, and U.S. Patent 7,291,737.
Potency in vitro should not be confused with the actual dosage, as pharmacokinetic factors can have a dramatic influence on what proportion of an administered dose actually gets to the target binding sites in the brain, and so a drug which is very potent at binding to the target may nevertheless have only moderate potency in vivo. For example, RTI-336 requires a higher dosage than cocaine. Accordingly, the active dosage of RTI-386 is exceedingly poor despite the relatively high ex vivo DAT binding affinity.
[edit] Sister substances
Many molecular drug structures have exceedingly similar pharmarcology to phenyltropanes, yet by certain technicalities do not fit the phenyltropane moniker. These are namely classes of dopaminergic cocaine analogues that are in the piperidine class (a category that includes methylphenidate) or benztropine class (such as Difluoropine: which is extremely close to fitting the criteria of being a phenyltropane.) Whereas other potent DRIs are far removed from being in the phenyltropane structural family, such as Benocyclidine or Vanoxerine.
[edit] References
- ^ U.S. Patent 6,479,509 Method of promoting smoking cessation.
- ^ Blough, B. E.; Keverline, K. I.; Nie, Z.; Navarro, H.; Kuhar, M. J.; Carroll, F. I. (2002). "Synthesis and transporter binding properties of 3beta-4'-(phenylalkyl, -phenylalkenyl, and -phenylalkynyl)phenyltropane-2beta-carboxylic acid methyl esters: evidence of a remote phenyl binding domain on the dopamine transporter". Journal of Medicinal Chemistry 45 (18): 4029–4037. DOI:10.1021/jm020098n. PMID 12190324.
- ^ http://www3.interscience.wiley.com/journal/55001898/abstract
- ^ a b Methods for controlling invertebrate pests using cocaine receptor binding ligands. U.S. Patent 5,935,953
- ^ Carroll, F. I.; Gray; Abraham; Kuzemko; Lewin; Boja; Kuhar (1993). "3-Aryl-2-(3'-substituted-1',2',4'-oxadiazol-5'-yl)tropane analogues of cocaine: affinities at the cocaine binding site at the dopamine, serotonin, and norepinephrine transporters". Journal of Medicinal Chemistry 36 (20): 2886–2890. DOI:10.1021/jm00072a007. PMID 8411004.
- ^ Carroll, F.; Howard, J.; Howell, L.; Fox, B.; Kuhar, M. (2006). "Development of the dopamine transporter selective RTI-336 as a pharmacotherapy for cocaine abuse". The AAPS journal 8 (1): E196–E203. DOI:10.1208/aapsj080124. PMC 2751440. PMID 16584128. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2751440.
- ^ Carroll, F. I.; Gao; Abraham; Lewin; Lew; Patel; Boja; Kuhar (1992). "Probes for the cocaine receptor. Potentially irreversible ligands for the dopamine transporter". Journal of Medical Chemistry 35 (10): 1813–1817. DOI:10.1021/jm00088a017. PMID 1588560.
- ^ Wu; Reith, M.; Walker, Q.; Kuhn, C.; Carroll, F.; Garris, P. (2002). "Concurrent autoreceptor-mediated control of dopamine release and uptake during neurotransmission: an in vivo voltammetric study". Journal of Neuroscience 22 (14): 6272–6281. PMID 12122086.
- ^ Blough, B. .; Abraham, P. .; Lewin, A. .; Kuhar, M. .; Boja, J. .; Carroll, F. . (1996). "Synthesis and transporter binding properties of 3 beta-(4'-alkyl-, 4'-alkenyl-, and 4'-alkynylphenyl)nortropane-2 beta-carboxylic acid methyl esters: serotonin transporter selective analogs". Journal of Medicinal Chemistry 39 (20): 4027–4035. DOI:10.1021/jm960409s. PMID 8831768.
- ^ Spealman, RD; Kelleher (Mar 1981). "Self-administration of cocaine derivatives by squirrel monkeys". The Journal of Pharmacology and Experimental Therapeutics 216 (3): 532–6. ISSN 0022-3565. PMID 7205634.
- ^ Carroll, F. .; Tyagi, S. .; Blough, B. .; Kuhar, M. .; Navarro, H. . (2005). "Synthesis and monoamine transporter binding properties of 3alpha-(substituted phenyl)nortropane-2beta-carboxylic acid methyl esters. Norepinephrine transporter selective compounds". Journal of Medicinal Chemistry 48 (11): 3852–3857. DOI:10.1021/jm058164j. PMID 15916437.
[edit] External links
|
|
|
| 2-Carboxymethyl Esters |
|
|
| (3,4-Disubstituted Phenyl)-tropanes |
|
|
| Arylcarboxy |
|
|
| Carboxyalkyl |
|
|
| Acyl |
|
|
| β,α Stereochemistry |
|
|
| α,β Stereochemistry |
|
|
| Heterocycles: 3-Substituted-isoxazol-5-yl |
|
|
| Heterocycles: 3-Substituted-1,2,4-oxadiazole |
|
|
| N-alkyl |
|
|
| N-replaced (S,O,C) |
|
|
| Irreversible |
|
|
| Nortropanes (N-demethylated) |
|
|