FOXP3
FOXP3 (forkhead box P3) is a protein involved in immune system responses. A member of the FOX protein family, FOXP3 appears to function as a master regulator in the development and function of regulatory T cells.[1]
While the precise control mechanism has not yet been established, FOX proteins belong to the forkhead/winged-helix family of transcriptional regulators and are presumed to exert control via similar DNA binding interactions during transcription.
Contents |
[edit] Structure
The human FOXP3 genes contain 11 coding exons. Exon-intron boundaries are identical across the coding regions of the mouse and human genes. By genomic sequence analysis, the FOXP3 gene maps to the p arm of the X chromosome (specifically, Xp11.23).[2][3]
[edit] Physiology
The discovery of Foxp3 as a specific marker of natural T regulatory cells (nTregs, a lineage of T cells) and adaptive/induced T regulatory (a/iTregs) T cells gave a molecular anchor to the population of regulatory T cells (Tregs), previously identified by non-specific markers such as CD25 or CD45RB.[4][5][6] In animal studies, Tregs that express Foxp3 are critical in the transfer of immune tolerance, especially self-tolerance, so that hopefully in the future this knowledge can be used to prevent transplant graft rejection. The induction or administration of Foxp3 positive T cells has, in animal studies, led to marked reductions in (autoimmune) disease severity in models of diabetes, multiple sclerosis, asthma, inflammatory bowel disease, thyroiditis and renal disease.[7] These discoveries give hope that cellular therapies using Foxp3 positive cells may, one day, help overcome these diseases. Unfortunately recent T cell biology investigations revealed that T cell nature is much more plastic than initially thought. Thus the regulatory T cell therapy may in fact be very risky as the T regulatory cell transferred to the patient may reverse and become another proinflammatory T cell.(see recent papers from Romagnani, Stockinger etc.). Th17 (T helper 17) cells are proinflammatory and are produced under very similar environments as a/iTregs. Th17 cells are produced under the influence of TGF-β and IL-6 (or IL-21) whereas a/iTregs are produced under the influence of solely TGF-β and as such the difference between a proinflammatory and a pro-regulatory scenario is the presence of a single interleukin (IL-6 or IL-21 is being debated by immunology laboratories as the definitive signaling molecule). It seems so far that murine studies point to IL-6 whereas human studies have shown IL-21 (Citation needed).
[edit] Pathophysiology
In human disease, alterations in numbers of regulatory T cells – and in particular those that express Foxp3 – are found in a number of disease states. For example, patients with tumors have a local relative excess of Foxp3 positive T cells which inhibits the body's ability to suppress the formation of cancerous cells.[8] Conversely, patients with an autoimmune disease such as systemic lupus erythematosus (SLE) have a relative dysfunction of Foxp3 positive cells.[9] The Foxp3 gene is also mutated in the X-linked IPEX syndrome (Immunodysregulation, Polyendocrinopathy, and Enteropathy, X-linked).[10] These mutations were in the forkhead domain of FOXP3, indicating that the mutations may disrupt critical DNA interactions.
In mice, a Foxp3 mutation (a frameshift mutation that result in protein lacking the forkhead domain) is responsible for 'Scurfy', an X-linked recessive mouse mutant that results in lethality in hemizygous males 16 to 25 days after birth.[11] These mice have overproliferation of CD4+ T-lymphocytes, extensive multiorgan infiltration, and elevation of numerous cytokines. This phenotype is similar to those that lack expression of CTLA-4, TGF-β, human disease IPEX, or deletion of the Foxp3 gene in mice ("scurfy mice"). The pathology observed in scurfy mice seems to result from an inability to properly regulate CD4+ T-cell activity. In mice overexpressing the Foxp3 gene, fewer T cells are observed. The remaining T cells have poor proliferative and cytolytic responses and poor interleukin-2 production, although thymic development appears normal. Histologic analysis indicates that peripheral lymphoid organs, particularly lymph nodes, lack the proper number of cells.
[edit] See also
[edit] References
- ^ Zhang L, Zhao Y (June 2007). "The regulation of Foxp3 expression in regulatory CD4(+)CD25(+)T cells: multiple pathways on the road". J. Cell. Physiol. 211 (3): 590–597. doi:10.1002/jcp.21001. PMID 17311282.
- ^ Bennett CL, Yoshioka R, Kiyosawa H, Barker DF, Fain PR, Shigeoka AO, Chance PF (February 2000). "X-Linked syndrome of polyendocrinopathy, immune dysfunction, and diarrhea maps to Xp11.23-Xq13.3". Am. J. Hum. Genet. 66 (2): 461–468. doi:10.1086/302761. PMC 1288099. PMID 10677306. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1288099.
- ^ Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F (January 2001). "Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse". Nat. Genet. 27 (1): 68–73. doi:10.1038/83784. PMID 11138001.
- ^ Hori S, Nomura T, Sakaguchi S (2003). "Control of regulatory T cell development by the transcription factor Foxp3". Science 299 (5609): 1057–1061. doi:10.1126/science.1079490. PMID 12522256.
- ^ Fontenot JD, Gavin MA, Rudensky AY (2003). "Foxp3 programs the development and function of CD4+CD25+ regulatory T cells". Nature Immunology 4 (4): 330–336. doi:10.1038/ni904. PMID 12612578.
- ^ Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY (2005). "Regulatory T cell lineage specification by the forkhead transcription factor Foxp3". Immunity 22 (3): 329–341. doi:10.1016/j.immuni.2005.01.016. PMID 15780990.
- ^ Suri-Payer E, Fritzsching B (2006). "Regulatory T cells in experimental autoimmune disease". Springer Semin Immunopathol 28 (1): 3–16. doi:10.1007/s00281-006-0021-8. PMID 16838180.
- ^ Beyer M, Schultze J (2006). "Regulatory T cells in cancer". Blood 108 (3): 804–811. doi:10.1182/blood-2006-02-002774. PMID 16861339.
- ^ Alvarado-Sánchez B, Hernández-Castro B, Portales-Pérez D, Baranda L, Layseca-Espinosa E, Abud-Mendoza C, Cubillas-Tejeda A, González-Amaro R (2006). "Regulatory T cells in patients with systemic lupus erythematosus". J Autoimmun 27 (2): 110–118. doi:10.1016/j.jaut.2006.06.005. PMID 16890406.
- ^ Bennett C, Christie J, Ramsdell F, Brunkow M, Ferguson P, Whitesell L, Kelly T, Saulsbury F, Chance P, Ochs H (2001). "The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3". Nat Genet 27 (1): 20–21. doi:10.1038/83713. PMID 11137993.
- ^ Brunkow M, Jeffery E, Hjerrild K, Paeper B, Clark L, Yasayko S, Wilkinson J, Galas D, Ziegler S, Ramsdell F (2001). "Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse". Nat Genet 27 (1): 68–73. doi:10.1038/83784. PMID 11138001.
[edit] Further reading
- Wu Y, Borde M, Heissmeyer V et al. (2006). "FOXP3 controls regulatory T cell function through cooperation with NFAT". Cell 126 (2): 375–387. doi:10.1016/j.cell.2006.05.042. PMID 16873067.
- Schmidt-Weber CB, Blaser K (2006). "The role of the FOXP3 transcription factor in the immune regulation of allergic asthma". Current allergy and asthma reports 5 (5): 356–361. doi:10.1007/s11882-005-0006-z. PMID 16091206.
- Li B, Samanta A, Song X et al. (2006). "FOXP3 ensembles in T-cell regulation". Immunol. Rev. 212: 99–113. doi:10.1111/j.0105-2896.2006.00405.x. PMID 16903909.
- Ziegler SF (2007). "FOXP3: not just for regulatory T cells anymore". Eur. J. Immunol. 37 (1): 21–23. doi:10.1002/eji.200636929. PMID 17183612.
- Zhang L, Zhao Y (2007). "The regulation of Foxp3 expression in regulatory CD4(+)CD25(+)T cells: multiple pathways on the road". J. Cell. Physiol. 211 (3): 590–597. doi:10.1002/jcp.21001. PMID 17311282.
- Bacchetta R, Gambineri E, Roncarolo MG (2007). "Role of regulatory T cells and FOXP3 in human diseases". J. Allergy Clin. Immunol. 120 (2): 227–235. doi:10.1016/j.jaci.2007.06.023. PMID 17666212.
- Ochs HD, Torgerson TR (2007). "Immune dysregulation, polyendocrinopathy, enteropathy, X-linked inheritance: model for autoaggression". Adv. Exp. Med. Biol.. Advances in Experimental Medicine and Biology 601: 27–36. doi:10.1007/978-0-387-72005-0_3. ISBN 978-0-387-72004-3. PMID 17712989.
- Long E, Wood KJ (2007). "Understanding FOXP3: progress towards achieving transplantation tolerance". Transplantation 84 (4): 459–461. doi:10.1097/01.tp.0000275424.52998.ad. PMID 17713426.
- Bennett CL, Yoshioka R, Kiyosawa H et al. (2000). "X-Linked syndrome of polyendocrinopathy, immune dysfunction, and diarrhea maps to Xp11.23-Xq13.3". Am. J. Hum. Genet. 66 (2): 461–468. doi:10.1086/302761. PMC 1288099. PMID 10677306. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1288099.
- Hartley JL, Temple GF, Brasch MA (2001). "DNA cloning using in vitro site-specific recombination". Genome Res. 10 (11): 1788–1795. doi:10.1101/gr.143000. PMC 310948. PMID 11076863. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=310948.
- Chatila TA, Blaeser F, Ho N et al. (2001). "JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome". J. Clin. Invest. 106 (12): R75–R81. doi:10.1172/JCI11679. PMC 387260. PMID 11120765. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=387260.
- Wildin RS, Ramsdell F, Peake J et al. (2001). "X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy". Nat. Genet. 27 (1): 18–20. doi:10.1038/83707. PMID 11137992.
- Bennett CL, Christie J, Ramsdell F et al. (2001). "The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3". Nat. Genet. 27 (1): 20–21. doi:10.1038/83713. PMID 11137993.
- Brunkow ME, Jeffery EW, Hjerrild KA et al. (2001). "Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse". Nat. Genet. 27 (1): 68–73. doi:10.1038/83784. PMID 11138001.
- Schubert LA, Jeffery E, Zhang Y et al. (2001). "Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation". J. Biol. Chem. 276 (40): 37672–37679. doi:10.1074/jbc.M104521200. PMID 11483607.
- Kobayashi I, Shiari R, Yamada M et al. (2002). "Novel mutations of FOXP3 in two Japanese patients with immune dysregulation, polyendocrinopathy, enteropathy, X linked syndrome (IPEX)". J. Med. Genet. 38 (12): 874–876. doi:10.1136/jmg.38.12.874. PMC 1734795. PMID 11768393. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1734795.
- Tommasini A, Ferrari S, Moratto D et al. (2002). "X-chromosome inactivation analysis in a female carrier of FOXP3 mutation". Clin. Exp. Immunol. 130 (1): 127–130. doi:10.1046/j.1365-2249.2002.01940.x. PMC 1906506. PMID 12296863. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1906506.
- Strausberg RL, Feingold EA, Grouse LH et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–16903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=139241.
- Bassuny WM, Ihara K, Sasaki Y et al. (2003). "A functional polymorphism in the promoter/enhancer region of the FOXP3/Scurfin gene associated with type 1 diabetes". Immunogenetics 55 (3): 149–156. doi:10.1007/s00251-003-0559-8. PMID 12750858.
- Walker MR, Kasprowicz DJ, Gersuk VH et al. (2003). "Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells". J. Clin. Invest. 112 (9): 1437–1443. doi:10.1172/JCI200319441. PMC 228469. PMID 14597769. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=228469.
- Owen CJ, Jennings CE, Imrie H et al. (2004). "Mutational analysis of the FOXP3 gene and evidence for genetic heterogeneity in the immunodysregulation, polyendocrinopathy, enteropathy syndrome". J. Clin. Endocrinol. Metab. 88 (12): 6034–6039. doi:10.1210/jc.2003-031080. PMID 14671208.
[edit] External links
|

