The Wayback Machine - https://web.archive.org/web/20110803085849/http://en.wikipedia.org/wiki/Roman_numerals

Roman numerals

From Wikipedia, the free encyclopedia
Jump to: navigation, search
MMXI


"2011" as a Roman numeral

The numeral system of ancient Rome, or Roman numerals, uses combinations of letters from the Latin alphabet to signify values. The numbers 1 through 10 can be expressed in Roman numerals as:

I, II, III, IV, V, VI, VII, VIII, IX, and X.

The Roman numeral system is decimal[1] but not directly positional and does not include a zero. It is a cousin of the Etruscan numerals. Use of Roman numerals persisted after the decline of the Roman Empire. In the 14th century, Roman numerals were largely abandoned in favor of Arabic numerals; however, they are still used to this day in minor applications.

Modern use of Roman numerals includes numbered lists (such as the outline format of an article), clock faces, pages preceding the main body of a book, successive political leaders or children with identical names, and the numbering of annual events.

Numeral systems by culture
Hindu-Arabic numerals (list)
Western Arabic
Eastern Arabic
Indian family
Burmese
Khmer
Lao
Mongolian
Tamil
Thai
East Asian numerals
Chinese
Japanese
Suzhou
Korean
Vietnamese
Counting rods
Alphabetic numerals
Abjad
Armenian
Āryabhaṭa
Cyrillic
Ge'ez
Greek (Ionian)
Hebrew
Other systems
Aegean
Attic
Babylonian
Brahmi
Egyptian
Etruscan
Inuit
Kharosthi
Mayan
Quipu
Roman
Sumerian
Urnfield
List of numeral system topics
Positional systems by base
Decimal (10)
1, 2, 3, 4, 5, 8, 12, 16, 20, 60
List of numeral systems
v · d · e
Entrance to section LII of the Colosseum, with numerals still visible

Contents

[edit] Reading Roman numerals

Roman numerals, as used today, are based on seven symbols:

Symbol Value
I 1
V 5
X 10
L 50
C 100
D 500
M 1,000

Numbers are formed by combining symbols together and adding the values. For example, MMVI is 1000 + 1000 + 5 + 1 = 2006. Generally, symbols are placed in order of value, starting with the largest values. When smaller values precede larger values, the smaller values are subtracted from the larger values, and the result is added to the total. For example MCMXLIV = 1000 + (1000 − 100) + (50 − 10) + (5 − 1) = 1944.[2]

1 2 3 4 5 6 7 8 9
Ones I II III IV V VI VII VIII IX
Tens X XX XXX XL L LX LXX LXXX XC
Hundreds C CC CCC CD D DC DCC DCCC CM

Because there has been no standardization, there may be multiple ways of representing the same number in Roman numerals.[2] Historical and modern usage include the following examples:

An inscription on Admiralty Arch, London. The numeral translates to 1910.

Despite the lack of standardization, modern textbooks and references often state additional rules, including the following:

[edit] History

[edit] Pre-Roman/Ancient Rome

Although Roman numerals are now written with letters of the Roman alphabet, they were originally independent symbols. The Etruscans, for example, used I, Λ, X, ⋔, 8, ⊕, for I, V, X, L, C, and M, of which only I and X happened to be letters in their alphabet. One folk etymology has it that the V represented a hand, and that the X was made by placing two Vs on top of each other, one inverted. However, the Etrusco-Roman numerals actually appear to derive from notches on tally sticks, which continued to be used by Italian and Dalmatian shepherds into the 19th century.[9]

Thus, 'I' descends not from the letter 'I' but from a notch scored across the stick. Every fifth notch was double cut (i.e. , , , , etc.), and every tenth was cross cut (X), IIIIΛIIIIXIIIIΛIIIIXII..., much like European tally marks today. This produced a positional system: Eight on a counting stick was eight tallies, IIIIΛIII, or the eighth of a longer series of tallies; either way, it could be abbreviated ΛIII (or VIII), as the existence of a Λ implies four prior notches. By extension, eighteen was the eighth tally after the first ten, which could be abbreviated X, and so was XΛIII. Likewise, number four on the stick was the I-notch that could be felt just before the cut of the Λ (V), so it could be written as either IIII or IΛ (IV). Thus the system was neither additive nor subtractive in its conception, but ordinal. When the tallies were transferred to writing, the marks were easily identified with the existing Roman letters I, V and X.

The tenth V or X along the stick received an extra stroke. Thus 50 was written variously as N, И, K, Ψ, , etc., but perhaps most often as a chicken-track shape like a superimposed V and I - . This had flattened to (an inverted T) by the time of Augustus, and soon thereafter became identified with the graphically similar letter L. Likewise, 100 was variously Ж, , , H, or as any of the symbols for 50 above plus an extra stroke. The form Ж (that is, a superimposed X and I) came to predominate. It was written variously as >I< or ƆIC, was then abbreviated to Ɔ or C, with C variant finally winning out because, as a letter, it stood for centum, Latin for "hundred".

The hundredth V or X was marked with a box or circle. Thus 500 was like a Ɔ superimposed on a or — that is, like a Þ with a cross bar,— becoming D or Ð by the time of Augustus, under the graphic influence of the letter D. It was later identified as the letter D; an alternative symbol for "thousand" looks like this (I), and half of a thousand or "five hundred" is the right half of the symbol, or I), and this may have been converted into D.[10] This at least was the folk etymology given to it later on.

Meanwhile, 1000 was a circled or boxed X: , , ⊕, and by Augustinian times was partially identified with the Greek letter Φ phi. Over time, the symbol changed to Ψ and . The latter symbol further evolved into , then , and eventually changed to M under the influence of the Latin word mille "thousand".

Alfred Hooper has an alternative discussion of the origin of the Roman numeral system, for small numbers.[11] Hooper contends that the digits are related to hand signals. For example, the numbers I, II, III, IIII correspond to the number of fingers held up for another to see. V, then represents that hand upright with fingers together and thumb apart. Numbers 6–10, are represented with two hands as follows (left hand, right hand) 6=(V,I), 7=(V,II), 8=(V,III), 9=(V,IIII), 10=(V,V) and X results from either crossing of the thumbs, or holding both hands up in a cross.

In the early period of Roman history, there was no subtractive principle. Subtractive notation arose from regular Latin usage: the number 18 was duodeviginti or “two from twenty”; the number 19 was undeviginti or "one from twenty".[citation needed]

[edit] Middle Ages/Rennaisance

Minuscule (lower case) letters were developed in the Middle Ages, well after the demise of the Roman Empire, and lower-case versions of Roman numbers are now also commonly used: i, ii, iii, iv, etc. In the middle ages, a j was sometimes substituted for the final i of a number, such as iij for 3 or vij for 7. This j was considered a swash variant of i. The use of a final j is still used in medical prescriptions to prevent tampering with or misinterpretation of a number after it is written.[12][13]

A unique, more comprehensive shorthand for writing Roman numerals was developed during the middle ages, which today are called "medieval Roman numerals." This system used almost every other letter of the Roman alphabet to stand as abbreviations for more longhand numbers (usually those that consisted of repetitions of the same symbol). They are still listed today in most dictionaries, although through disfavor are primarily out of use.[14]

Modern
number
Medieval
abbreviation
Notes
5 A Resembles an upside-down V. Also said to equal 500.
6 Either a ligature of VI, or the Greek letter stigma (Ϛ), having the same numerical value.[15]
7 S, Z Presumed abbreviation of septem, Latin for 7.
11 O Presumed abbreviation of (e.g.) onze, French for 11.
40 F Presumed abbreviation of English forty.
70 S Also could stand for 7, and has same etymology.
80 R
90 N Presumed abbreviation of nonaginta, Latin for 90.
150 Y Possibly derived from the lowercase y's shape.
151 K This unusual abbreviation's origin is unknown; it has also been said to stand for 250.
160 T Possibly derived from Greek tetra, as 4 x 40 = 160.
200 H
250 E
300 B
400 P, G
500 Q Redundant with D, abbreviation for quingenti, Latin for 500.
2000 Z

Chronograms, messages with a numbers encoded into them, were popular during the Renaissance era. The chronogram would be a phrase containing the letters I, V, X, L, C, D, and M. By putting these letters together, the reader would obtain a number, usually indicating a particular year.

[edit] Modern usage

Roman numbers on stern of Cutty Sark, Greenwich, showing draft in feet.

Roman numerals remained in common use until about the 14th century, when they were outmoded by Hindu-Arabic numerals (thought to have been introduced to Europe from al-Andalus, by way of Arab traders and arithmetic treatises, around the 11th century) in practically all mathematical and economical applications. Roman numerals are still used today in several niche contexts. A few examples of their current use include:

In chemistry, Roman numerals are used in the IUPAC nomenclature of inorganic chemistry, for the oxidation number of cations which can take on several different positive charges. They are also used for naming phases of polymorphic crystals, such as ice.

In astronomy, the natural satellites or "moons" of the planets are traditionally designated by capital Roman numerals.

In photography, Roman numerals (with zero) are used to denote varying levels of brightness when using the Zone System.

In earthquake seismology, Roman numerals are used to designate degrees of the Mercalli intensity scale.

In Music theory, the diatonic functions are identified using Roman numerals. In performance practice, individual strings of stringed instruments, such as the violin, are often denoted by Roman numerals, with higher numbers denoting lower strings.

[edit] Modern non-English-speaking usage

The French, Hungarian, Italian, Portuguese, Polish, Romanian, Russian, Spanish, Croatian, Catalan and Serbian languages use capital Roman numerals to denote centuries (e.g., XVIII refers to the eighteenth century).

In Italy, Poland, Russia, Central Europe, and in Portuguese, Romanian, Croatian and Serbian languages, mixed Roman and Arabic numerals are used to record dates (usually on tombstones, but also elsewhere, such as in formal letters and official documents). The month is written in Roman numerals while the day is in Arabic numerals: 14.VI 1789 is 14 June 1789.

In Eastern Europe and the Baltic nations, Roman numerals are used to represent the days of the week in hours-of-operation signs displayed in windows or on doors of businesses. Monday is represented by I, which is the initial day of the week. Sunday is represented by VII, which is the final day of the week. The hours of operation signs are tables composed of two columns where the left column is the day of the week in Roman numerals and the right column is a range of hours of operation from starting time to closing time. The following example hours-of-operation table would be for a business whose hours of operation are 9:30 AM to 5:30 PM on Mondays, Wednesdays, and Thursdays; 9:30 AM to 7:00 PM on Tuesdays and Fridays; and 9:30 AM to 1:00 PM on Saturdays; and which is closed on Sundays.

I 9:30–17:30
II 9:30–19:00
III 9:30–17:30
IV 9:30–17:30
V 9:30–19:00
VI 9:30–13:00
VII

In Hungary, Poland, Romania, Serbia and other European countries to lesser extent, Roman numerals are used for floor numbering. Likewise apartments in central Amsterdam are indicated as 138-III, with both an Arabic numeral (number of the block or house) and a Roman numeral (floor number). The apartment on the ground floor is indicated as '138-huis'.

[edit] Special Values

[edit] Zero

The number zero does not have its own Roman numeral, but the word nulla (the Latin word meaning "none") was sometimes used by medieval computists in lieu of 0. Dionysius Exiguus was known to use nulla alongside Roman numerals in 525. [16][17] About 725, Bede or one of his colleagues used the letter N, the initial of nulla, in a table of epacts, all written in Roman numerals.[18]

[edit] Fractions

A triens coin (1/3 or 4/12 of an as). Note the four dots •••• indicating its value.
A semis coin (1/2 or 6/12 of an as). Note the S indicating its value.

Though the Romans used a decimal system for whole numbers, reflecting how they counted in Latin, they used a duodecimal system for fractions, because the divisibility of twelve (12 = 3 × 2 × 2) makes it easier to handle the common fractions of 1/3 and 1/4 than does a system based on ten (10 = 2 × 5). On coins, many of which had values that were duodecimal fractions of the unit as, they used a tally-like notational system based on twelfths and halves. A dot • indicated an uncia "twelfth", the source of the English words inch and ounce; dots were repeated for fractions up to five twelfths. Six twelfths (one half) was abbreviated as the letter S for semis "half". Uncia dots were added to S for fractions from seven to eleven twelfths, just as tallies were added to V for whole numbers from six to nine.

Each of these fractions had a name, which was also the name of the corresponding coin:

Fraction Roman Numeral Name (nominative and genitive) Meaning
1/12 uncia, unciae "ounce"
2/12 = 1/6 •• or : sextans, sextantis "sixth"
3/12 = 1/4 ••• or quadrans, quadrantis "quarter"
4/12 = 1/3 •••• or :: triens, trientis "third"
5/12 ••••• or :: quincunx, quincuncis "five-ounce" (quinque unciaequincunx)
6/12 = 1/2 S semis, semissis "half"
7/12 S• septunx, septuncis "seven-ounce" (septem unciaeseptunx)
8/12 = 2/3 S•• or S: bes, bessis "twice" (as in "twice a third")
9/12 = 3/4 S••• or S: dodrans, dodrantis
or nonuncium, nonuncii
"less a quarter" (de-quadransdodrans)
or "ninth ounce" (nona uncianonuncium)
10/12 = 5/6 S•••• or S:: dextans, dextantis
or decunx, decuncis
"less a sixth" (de-sextansdextans)
or "ten ounces" (decem unciaedecunx)
11/12 S••••• or S:: deunx, deuncis "less an ounce" (de-unciadeunx)
12/12 = 1 I as, assis "unit"

The arrangement of the dots was variable and not necessarily linear. Five dots arranged like :·: (as on the face of a die) are known as a quincunx from the name of the Roman fraction/coin. The Latin words sextans and quadrans are the source of the English words sextant and quadrant.

Other Roman fractions include:

[edit] Large numbers

In the Middle Ages, a horizontal line was used above a particular numeral to represent one thousand times that numeral, and additional vertical lines on both sides of the numeral to denote one hundred times the number, as in these examples:

The same overline was also used with a different meaning, to clarify that the characters were numerals. Sometimes both underline and overline were used, e. g. MCMLXVII, and in certain (serif) typefaces, particularly Times New Roman, the capital letters when used without spaces simulates the appearance of the under/over bar, e.g. MCMLXVII.

1630 on the Westerkerk in Amsterdam
Roman numerals, 16th century

Sometimes 500, usually D, was written as IƆ, while 1,000, usually M, was written as CIƆ. This is believed to be a system of encasing numbers to denote thousands (imagine the Cs as parentheses). This system has its origins from Etruscan numeral usage. The D and M symbols to represent 500 and 1,000 were most likely derived from and CIƆ, respectively.

An extra Ɔ denoted 500, and multiple extra Ɔs are used to denote 5,000, 50,000, etc. For example:

Base number   CIƆ = 1,000 CCIƆƆ = 10,000 CCCIƆƆƆ = 100,000
1 extra Ɔ IƆ = 500 CIƆƆ = 1,500 CCIƆƆƆ = 10,500 CCCIƆƆƆƆ = 100,500
2 extra Ɔs IƆƆ = 5,000   CCIƆƆƆƆ = 15,000 CCCIƆƆƆƆƆ = 105,000
3 extra Ɔs IƆƆƆ = 50,000     CCCIƆƆƆƆƆƆ = 150,000

Sometimes CIƆ was reduced to for denoting 1,000. John Wallis is often credited for introducing this symbol to represent infinity (), and one conjecture is that he based it on this usage, since 1,000 was hyperbolically used to represent very large numbers. Similarly, 5,000 (IƆƆ) was reduced to ; and 10,000 (CCIƆƆ) was reduced to .

[edit] IIII and IV on clocks

A typical clock face with Roman numerals in Bad Salzdetfurth, Germany
The Shepherd gate clock with Roman numbers up to XXIII (and 0), in Greenwich

Clock faces that are labeled using Roman numerals conventionally show IIII for four o'clock and IX for nine o'clock, using the subtractive principle in one case and not the other. There are many suggested explanations for this:

The IIX and one of the IXs are rotated 180° to form XI and XII. The alternative with IV uses seventeen Is, five Vs, and four Xs, requiring the clock maker to have several different molds.

[edit] Unicode

Unicode has a number of characters specifically designated as Roman numerals, as part of the Number Forms[23] range from U+2160 to U+2188. This range includes both upper- and lowercase numerals, as well as pre-combined glyphs for numbers up to 12 ( or XII), mainly intended for the clock faces for compatibility with large East-Asian character sets such as JIS X 0213 that provide these characters. The pre-combined glyphs should only be used to represent the individual numbers where the use of individual glyphs is not wanted, and not to replace compounded numbers. Additionally, glyphs exist for archaic[23] forms of 1000, 5000, 10,000, large reversed C (Ɔ), late 6 (, similar to Greek Stigma: Ϛ), early 50 (, similar to down arrow ↓⫝⊥[15]), 50,000, and 100,000. Note that the small reversed c, is not intended to be used in roman numerals, but as lower case Claudian letter ,

Table of Roman numerals in Unicode
Code x= 0 1 2 3 4 5 6 7 8 9 A B C D E F
Value[24] 1 2 3 4 5 6 7 8 9 10 11 12 50 100 500 1,000
U+216x
U+217x
Value 1000 5000 10,000 6 50 50,000 100,000
U+218x

The characters in the range U+2160–217F are present only for compatibility with other character set standards which provide these characters. For ordinary uses, the standard Latin letters are preferred. Displaying these characters requires a program that can handle Unicode and a font that contains appropriate glyphs for them.

If using blackletter or script typefaces, Roman numerals are set in Roman type. Such typefaces may contain Roman numerals matching the style of the typeface in the Unicode range U+2160–217F; if they don't exist, a matching Antiqua typeface is used for Roman numerals.

[edit] See also

[edit] References

  1. ^ Or more precisely, "a decimal system in which the number 5 is an auxiliary base" (Ifrah 200:193)
  2. ^ a b c d e Stroh, Michael. Trick question: How to spell 1999? Numerals: Maybe the Roman Empire fell because their computers couldn't handle calculations in Latin. The Baltimore Sun, December 27, 1998.
  3. ^ Adams, Cecil. The Straight Dope, February 23, 1990. http://www.straightdope.com/columns/read/1371/what-is-the-proper-way-to-style-roman-numerals-for-the-1990s
  4. ^ David P. Hayes, "Guide to Roman Numerals" in "Copyright Registration and Renewal Information Chart and Web Site"
  5. ^ Number Smart Quest for Mastery: Teacher's Edition. MLP Dela Cruz, HD Torres, 2009 Rex Bookstore, Inc. http://books.google.com/books?id=PVK6lt2xXz4C
  6. ^ Python cookbook By Alex Martelli, David Ascher, O'Reilly Media Inc., 2002. http://books.google.com/books?id=yhfdQgq8JF4C
  7. ^ Python cookbook By Alex Martelli, David Ascher, O'Reilly Media Inc., 2002. http://books.google.com/books?id=yhfdQgq8JF4C
  8. ^ Essential Math and Calculations for Pharmacy Technicians By Indra K. Reddy, Mansoor A. Khan, CRC Press, 2003 http://books.google.com/books?id=U3QY7gz0C2cC
  9. ^ Georges Ifrah, The Universal History of Numbers: From Prehistory to the Invention of the Computer. Translated by David Bellos, E. F. Harding, Sophie Wood, Ian Monk. John Wiley & Sons, 2000.
  10. ^ "Asimov On Numbers" - Isaac Asimov - published by Pocket Books, a division of Simon & Schuster, Inc. 1966, 1977 - page 9.
  11. ^ Alfred Hooper. The River Mathematics (New York, H. Holt, 1945).
  12. ^ Sturmer, Julius W. Course in Pharmaceutical and Chemical Arithmetic, 3rd ed. (LaFayette, IN: Burt-Terry-Wilson, 1906). p25 Retrieved on 2010-03-15.
  13. ^ Bastedo, Walter A. Materia Medica: Pharmacology, Therapeutics and Prescription Writing for Students and Practitioners, 2nd ed. (Philadelphia, PA: W.B. Saunders, 1919) p582 Retrieved on 2010-03-15.
  14. ^ Capelli, A. Dictionary of Latin Abbreviations. 1912.
  15. ^ a b Perry, David J. Proposal to Add Additional Ancient Roman Characters to UCS.
  16. ^ Faith Wallis, trans. Bede: The Reckoning of Time (725), Liverpool: Liverpool Univ. Pr., 2004. ISBN 0-85323-693-3.
  17. ^ Byrhtferth's Enchiridion (1016). Edited by Peter S. Baker and Michael Lapidge. Early English Text Society 1995. ISBN 978-0-19-722416-8.
  18. ^ C. W. Jones, ed., Opera Didascalica, vol. 123C in Corpus Christianorum, Series Latina.
  19. ^ http://www.voxinghistory.com/?tag=roman_numerals
  20. ^ W.I. Milham, Time & Timekeepers (New York: Macmillan, 1947) p. 196
  21. ^ FAQ: Roman IIII vs. IV on Clock Dials - Donn Lathrop's page on IIII vs. IV - Copyright © UBR, Inc., 1996-2007.
  22. ^ Paul Lewis, Clocking the fours: A new theory about IIII
  23. ^ a b Unicode Number Forms
  24. ^ For the first two rows

[edit] External links


Aa Bb Cc Dd Ee Ff Gg Hh Ii Jj Kk Ll Mm Nn Oo Pp Qq Rr Ss Tt Uu Vv Ww Xx Yy Zz
Related
History • Palaeography • Derivations • Diacritics • Punctuation • Numerals • Unicode • List of letters • ISO/IEC 646

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox
Print/export
Languages
Morty Proxy This is a proxified and sanitized view of the page, visit original site.