Bases: MessagePassing
The graph neural network operator from the “Convolutional Networks on Graphs for Learning Molecular Fingerprints” paper.
which trains a distinct weight matrix for each possible vertex degree.
in_channels (int or tuple) – Size of each input sample, or -1
to
derive the size from the first input(s) to the forward method.
A tuple corresponds to the sizes of source and target
dimensionalities.
out_channels (int) – Size of each output sample.
max_degree (int, optional) – The maximum node degree to consider when
updating weights (default: 10
)
bias (bool, optional) – If set to False
, the layer will not learn
an additive bias. (default: True
)
**kwargs (optional) – Additional arguments of
torch_geometric.nn.conv.MessagePassing
.
inputs: node features \((|\mathcal{V}|, F_{in})\) or \(((|\mathcal{V_s}|, F_{s}), (|\mathcal{V_t}|, F_{t}))\) if bipartite, edge indices \((2, |\mathcal{E}|)\)
outputs: node features \((|\mathcal{V}|, F_{out})\) or \((|\mathcal{V_t}|, F_{out})\) if bipartite