Bases: MessagePassing
The graph neural network operator from the “Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks” paper.
where \(e_{j,i}\) denotes the edge weight from source node j to
target node i (default: 1)
in_channels (int or tuple) – Size of each input sample, or -1 to
derive the size from the first input(s) to the forward method.
A tuple corresponds to the sizes of source and target
dimensionalities.
out_channels (int) – Size of each output sample.
aggr (str, optional) – The aggregation scheme to use
("add", "mean", "max").
(default: "add")
bias (bool, optional) – If set to False, the layer will not learn
an additive bias. (default: True)
**kwargs (optional) – Additional arguments of
torch_geometric.nn.conv.MessagePassing.
input: node features \((|\mathcal{V}|, F_{in})\) or \(((|\mathcal{V_s}|, F_{s}), (|\mathcal{V_t}|, F_{t}))\) if bipartite, edge indices \((2, |\mathcal{E}|)\), edge weights \((|\mathcal{E}|)\) (optional)
output: node features \((|\mathcal{V}|, F_{out})\) or \((|\mathcal{V}_t|, F_{out})\) if bipartite