Bases: MessagePassing
The modified GINConv
operator from the “Strategies for
Pre-training Graph Neural Networks”
paper.
that is able to incorporate edge features \(\mathbf{e}_{j,i}\) into the aggregation procedure.
nn (torch.nn.Module) – A neural network \(h_{\mathbf{\Theta}}\) that
maps node features x
of shape [-1, in_channels]
to
shape [-1, out_channels]
, e.g., defined by
torch.nn.Sequential
.
eps (float, optional) – (Initial) \(\epsilon\)-value.
(default: 0.
)
train_eps (bool, optional) – If set to True
, \(\epsilon\)
will be a trainable parameter. (default: False
)
edge_dim (int, optional) – Edge feature dimensionality. If set to
None
, node and edge feature dimensionality is expected to
match. Other-wise, edge features are linearly transformed to match
node feature dimensionality. (default: None
)
**kwargs (optional) – Additional arguments of
torch_geometric.nn.conv.MessagePassing
.
input: node features \((|\mathcal{V}|, F_{in})\) or \(((|\mathcal{V_s}|, F_{s}), (|\mathcal{V_t}|, F_{t}))\) if bipartite, edge indices \((2, |\mathcal{E}|)\), edge features \((|\mathcal{E}|, D)\) (optional)
output: node features \((|\mathcal{V}|, F_{out})\) or \((|\mathcal{V}_t|, F_{out})\) if bipartite