Skip to main content
Warning Some features may not work without JavaScript. Please try enabling it if you encounter problems.

Fundamental package for array computing in Python

Project description


Powered by NumFOCUS PyPI Downloads Conda Downloads Stack Overflow Nature Paper OpenSSF Scorecard

NumPy is the fundamental package for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c "import numpy, sys; sys.exit(numpy.test() is False)"

Code of Conduct

NumPy is a community-driven open source project developed by a diverse group of contributors. The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the NumPy Code of Conduct for guidance on how to interact with others in a way that makes our community thrive.

Call for Contributions

The NumPy project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us through the mailing list first.

Writing code isn’t the only way to contribute to NumPy. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improve our website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • write grant proposals and help with other fundraising efforts

For more information about the ways you can contribute to NumPy, visit our website. If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by opening a new issue or leaving a comment on a relevant issue that is already open.

Our preferred channels of communication are all public, but if you’d like to speak to us in private first, contact our community coordinators at numpy-team@googlegroups.com or on Slack (write numpy-team@googlegroups.com for an invitation).

We also have a biweekly community call, details of which are announced on the mailing list. You are very welcome to join.

If you are new to contributing to open source, this guide helps explain why, what, and how to successfully get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-2.2.6.tar.gz (20.3 MB view details)

Uploaded Source

Built Distributions

numpy-2.2.6-pp310-pypy310_pp73-win_amd64.whl (12.8 MB view details)

Uploaded PyPy Windows x86-64

numpy-2.2.6-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-2.2.6-pp310-pypy310_pp73-macosx_14_0_x86_64.whl (6.8 MB view details)

Uploaded PyPy macOS 14.0+ x86-64

numpy-2.2.6-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (21.0 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

numpy-2.2.6-cp313-cp313t-win_amd64.whl (12.8 MB view details)

Uploaded CPython 3.13t Windows x86-64

numpy-2.2.6-cp313-cp313t-win32.whl (6.4 MB view details)

Uploaded CPython 3.13t Windows x86

numpy-2.2.6-cp313-cp313t-musllinux_1_2_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.13t musllinux: musl 1.2+ x86-64

numpy-2.2.6-cp313-cp313t-musllinux_1_2_aarch64.whl (15.6 MB view details)

Uploaded CPython 3.13t musllinux: musl 1.2+ ARM64

numpy-2.2.6-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.6 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.17+ x86-64

numpy-2.2.6-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.1 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.17+ ARM64

numpy-2.2.6-cp313-cp313t-macosx_14_0_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.13t macOS 14.0+ x86-64

numpy-2.2.6-cp313-cp313t-macosx_14_0_arm64.whl (5.2 MB view details)

Uploaded CPython 3.13t macOS 14.0+ ARM64

numpy-2.2.6-cp313-cp313t-macosx_11_0_arm64.whl (14.2 MB view details)

Uploaded CPython 3.13t macOS 11.0+ ARM64

numpy-2.2.6-cp313-cp313t-macosx_10_13_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.13t macOS 10.13+ x86-64

numpy-2.2.6-cp313-cp313-win_amd64.whl (12.6 MB view details)

Uploaded CPython 3.13 Windows x86-64

numpy-2.2.6-cp313-cp313-win32.whl (6.2 MB view details)

Uploaded CPython 3.13 Windows x86

numpy-2.2.6-cp313-cp313-musllinux_1_2_x86_64.whl (18.3 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

numpy-2.2.6-cp313-cp313-musllinux_1_2_aarch64.whl (15.5 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ ARM64

numpy-2.2.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.5 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

numpy-2.2.6-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

numpy-2.2.6-cp313-cp313-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.13 macOS 14.0+ x86-64

numpy-2.2.6-cp313-cp313-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.13 macOS 14.0+ ARM64

numpy-2.2.6-cp313-cp313-macosx_11_0_arm64.whl (14.1 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

numpy-2.2.6-cp313-cp313-macosx_10_13_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

numpy-2.2.6-cp312-cp312-win_amd64.whl (12.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

numpy-2.2.6-cp312-cp312-win32.whl (6.2 MB view details)

Uploaded CPython 3.12 Windows x86

numpy-2.2.6-cp312-cp312-musllinux_1_2_x86_64.whl (18.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

numpy-2.2.6-cp312-cp312-musllinux_1_2_aarch64.whl (15.5 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

numpy-2.2.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

numpy-2.2.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

numpy-2.2.6-cp312-cp312-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.12 macOS 14.0+ x86-64

numpy-2.2.6-cp312-cp312-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

numpy-2.2.6-cp312-cp312-macosx_11_0_arm64.whl (14.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

numpy-2.2.6-cp312-cp312-macosx_10_13_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

numpy-2.2.6-cp311-cp311-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

numpy-2.2.6-cp311-cp311-win32.whl (6.5 MB view details)

Uploaded CPython 3.11 Windows x86

numpy-2.2.6-cp311-cp311-musllinux_1_2_x86_64.whl (18.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

numpy-2.2.6-cp311-cp311-musllinux_1_2_aarch64.whl (15.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

numpy-2.2.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numpy-2.2.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numpy-2.2.6-cp311-cp311-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.11 macOS 14.0+ x86-64

numpy-2.2.6-cp311-cp311-macosx_14_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

numpy-2.2.6-cp311-cp311-macosx_11_0_arm64.whl (14.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numpy-2.2.6-cp311-cp311-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numpy-2.2.6-cp310-cp310-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-2.2.6-cp310-cp310-win32.whl (6.5 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-2.2.6-cp310-cp310-musllinux_1_2_x86_64.whl (18.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

numpy-2.2.6-cp310-cp310-musllinux_1_2_aarch64.whl (15.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

numpy-2.2.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-2.2.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-2.2.6-cp310-cp310-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 macOS 14.0+ x86-64

numpy-2.2.6-cp310-cp310-macosx_14_0_arm64.whl (5.3 MB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

numpy-2.2.6-cp310-cp310-macosx_11_0_arm64.whl (14.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-2.2.6-cp310-cp310-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

File details

Details for the file numpy-2.2.6.tar.gz.

File metadata

  • Download URL: numpy-2.2.6.tar.gz
  • Upload date:
  • Size: 20.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.2.6.tar.gz
Algorithm Hash digest
SHA256 e29554e2bef54a90aa5cc07da6ce955accb83f21ab5de01a62c8478897b264fd
MD5 63d66dc1db9d603df0a84c870e703cfc
BLAKE2b-256 76217d2a95e4bba9dc13d043ee156a356c0a8f0c6309dff6b21b4d71a073b8a8

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d042d24c90c41b54fd506da306759e06e568864df8ec17ccc17e9e884634fd00
MD5 3c96c89609022ecd27d44b12c2349a06
BLAKE2b-256 3748ac2a9584402fb6c0cd5b5d1a91dcf176b15760130dd386bbafdbfe3640bf

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ce47521a4754c8f4593837384bd3424880629f718d87c5d44f8ed763edd63543
MD5 0e53fbb4195726c62b8f237a4bf545e9
BLAKE2b-256 af30feba75f143bdc868a1cc3f44ccfa6c4b9ec522b36458e738cd00f67b573f

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-pp310-pypy310_pp73-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 7befc596a7dc9da8a337f79802ee8adb30a552a94f792b9c9d18c840055907db
MD5 f934cef42ac65a2094dd5280aa6bf9a2
BLAKE2b-256 17f409b2fa1b58f0fb4f7c7963a1649c64c4d315752240377ed74d9cd878f7b5

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 0b605b275d7bd0c640cad4e5d30fa701a8d59302e127e5f79138ad62762c3e3d
MD5 774589ee5f842137322ff19b56a35270
BLAKE2b-256 9e3bd94a75f4dbf1ef5d321523ecac21ef23a3cd2ac8b78ae2aac40873590229

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp313-cp313t-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.6-cp313-cp313t-win_amd64.whl
  • Upload date:
  • Size: 12.8 MB
  • Tags: CPython 3.13t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.2.6-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 6031dd6dfecc0cf9f668681a37648373bddd6421fff6c66ec1624eed0180ee06
MD5 4accc0387feec817565aeaba93c79173
BLAKE2b-256 670e35082d13c09c02c011cf21570543d202ad929d961c02a147493cb0c2bdf5

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp313-cp313t-win32.whl.

File metadata

  • Download URL: numpy-2.2.6-cp313-cp313t-win32.whl
  • Upload date:
  • Size: 6.4 MB
  • Tags: CPython 3.13t, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.2.6-cp313-cp313t-win32.whl
Algorithm Hash digest
SHA256 038613e9fb8c72b0a41f025a7e4c3f0b7a1b5d768ece4796b674c8f3fe13efff
MD5 21571229d4376f3c0458d8eb1be3ba52
BLAKE2b-256 0904f2f83279d287407cf36a7a8053a5abe7be3622a4363337338f2585e4afda

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp313-cp313t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp313-cp313t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 8e9ace4a37db23421249ed236fdcdd457d671e25146786dfc96835cd951aa7c1
MD5 d980d6c4b486ad09dbf62ac5cf1b0b2a
BLAKE2b-256 7695bef5b37f29fc5e739947e9ce5179ad402875633308504a52d188302319c8

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp313-cp313t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp313-cp313t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 389d771b1623ec92636b0786bc4ae56abafad4a4c513d36a55dce14bd9ce8571
MD5 1fce5d26d8d6d021954f717b4bad483c
BLAKE2b-256 1275ee20da0e58d3a66f204f38916757e01e33a9737d0b22373b3eb5a27358f9

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f447e6acb680fd307f40d3da4852208af94afdfab89cf850986c3ca00562f4fa
MD5 113d466026e770badd1061a6e1a8ca92
BLAKE2b-256 12fb9e743f8d4e4d3c710902cf87af3512082ae3d43b945d5d16563f26ec251d

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e1dda9c7e08dc141e0247a5b8f49cf05984955246a327d4c48bda16821947b2f
MD5 6a96c540b8df291a128bb50dfdad0ba4
BLAKE2b-256 b730172c2d5c4be71fdf476e9de553443cf8e25feddbe185e0bd88b096915bcc

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp313-cp313t-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp313-cp313t-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 fee4236c876c4e8369388054d02d0e9bb84821feb1a64dd59e137e6511a551f8
MD5 c2b4fb7464e42af240ad51c8be5fb1ba
BLAKE2b-256 aa4a6e313b5108f53dcbf3aca0c0f3e9c92f4c10ce57a0a721851f9785872895

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp313-cp313t-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp313-cp313t-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 5bd4fc3ac8926b3819797a7c0e2631eb889b4118a9898c84f585a54d475b7e40
MD5 cd1d2271c05ccc502b78827b88ff7670
BLAKE2b-256 e425480387655407ead912e28ba3a820bc69af9adf13bcbe40b299d454ec011f

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fc0c5673685c508a142ca65209b4e79ed6740a4ed6b2267dbba90f34b0b3cfda
MD5 cbc7a48b9ca730a8d40927666651430a
BLAKE2b-256 6166d2de6b291507517ff2e438e13ff7b1e2cdbdb7cb40b3ed475377aece69f9

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp313-cp313t-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp313-cp313t-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 0bca768cd85ae743b2affdc762d617eddf3bcf8724435498a1e80132d04879e6
MD5 d1982e582eae2fb076942c0bbedcefe4
BLAKE2b-256 6b9e4bf918b818e516322db999ac25d00c75788ddfd2d2ade4fa66f1f38097e1

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.6-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.2.6-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 b0544343a702fa80c95ad5d3d608ea3599dd54d4632df855e4c8d24eb6ecfa1c
MD5 03df8a78963b318b4dfede10b213dce4
BLAKE2b-256 cb3bd58c12eafcb298d4e6d0d40216866ab15f59e55d148a5658bb3132311fcf

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp313-cp313-win32.whl.

File metadata

  • Download URL: numpy-2.2.6-cp313-cp313-win32.whl
  • Upload date:
  • Size: 6.2 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.2.6-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 5beb72339d9d4fa36522fc63802f469b13cdbe4fdab4a288f0c441b74272ebfd
MD5 9998e8ae155872c375ce6c020654176b
BLAKE2b-256 f03b5cba2b1d88760ef86596ad0f3d484b1cbff7c115ae2429678465057c5155

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b4f13750ce79751586ae2eb824ba7e1e8dba64784086c98cdbbcc6a42112ce0d
MD5 fb459919a3433235312673bd5797ab8b
BLAKE2b-256 170a5cd92e352c1307640d5b6fec1b2ffb06cd0dabe7d7b8227f97933d378422

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 e3143e4451880bed956e706a3220b4e5cf6172ef05fcc397f6f36a550b1dd868
MD5 c704c1c56c777bc0fc0d54bbcf9f2ddb
BLAKE2b-256 b26c04b5f47f4f32f7c2b0e7260442a8cbcf8168b0e1a41ff1495da42f42a14f

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1bc23a79bfabc5d056d106f9befb8d50c31ced2fbc70eedb8155aec74a45798f
MD5 4e4eccd129b31fbef3ced7fb338e862e
BLAKE2b-256 19494df9123aafa7b539317bf6d342cb6d227e49f7a35b99c287a6109b13dd93

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f92729c95468a2f4f15e9bb94c432a9229d0d50de67304399627a943201baa2f
MD5 954981f2846e6735798fb33c1e6fba76
BLAKE2b-256 85c5e19c8f99d83fd377ec8c7e0cf627a8049746da54afc24ef0a0cb73d5dfb5

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp313-cp313-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp313-cp313-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 55a4d33fa519660d69614a9fad433be87e5252f4b03850642f88993f7b2ca566
MD5 1340a90e0f62a31691e475214f773196
BLAKE2b-256 73ed63d920c23b4289fdac96ddbdd6132e9427790977d5457cd132f18e76eae0

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 f1372f041402e37e5e633e586f62aa53de2eac8d98cbfb822806ce4bbefcb74d
MD5 bb404027de8df58312964e26528ef591
BLAKE2b-256 4f067e96c57d90bebdce9918412087fc22ca9851cceaf5567a45c1f404480e9e

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 287cc3162b6f01463ccd86be154f284d0893d2b3ed7292439ea97eafa8170e0b
MD5 0d05b1bb5af5059c8775a4f10fa0ec3d
BLAKE2b-256 dc9e14520dc3dadf3c803473bd07e9b2bd1b69bc583cb2497b47000fed2fa92f

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 0811bb762109d9708cca4d0b13c4f67146e3c3b7cf8d34018c722adb2d957c84
MD5 2faa32e27b81105db53fb2fc25a54e0d
BLAKE2b-256 f95c6657823f4f594f72b5471f1db1ab12e26e890bb2e41897522d134d2a3e81

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.6-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.2.6-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 c1f9540be57940698ed329904db803cf7a402f3fc200bfe599334c9bd84a40b2
MD5 ae2e39f1dba9b91d35edcd8736041df8
BLAKE2b-256 36fa8c9210162ca1b88529ab76b41ba02d433fd54fecaf6feb70ef9f124683f1

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp312-cp312-win32.whl.

File metadata

  • Download URL: numpy-2.2.6-cp312-cp312-win32.whl
  • Upload date:
  • Size: 6.2 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.2.6-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 4eeaae00d789f66c7a25ac5f34b71a7035bb474e679f410e5e1a94deb24cf2d4
MD5 3e2664254d9a7bb5c66df2b108aaec2f
BLAKE2b-256 570a72d5a3527c5ebffcd47bde9162c39fae1f90138c961e5296491ce778e682

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 fe27749d33bb772c80dcd84ae7e8df2adc920ae8297400dabec45f0dedb3f6de
MD5 4edf8f80feec739de3e08fffe97195a3
BLAKE2b-256 b7255761d832a81df431e260719ec45de696414266613c9ee268394dd5ad8236

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 37c0ca431f82cd5fa716eca9506aefcabc247fb27ba69c5062a6d3ade8cf8f49
MD5 df530a075c04dbef9abcac95d027c8bc
BLAKE2b-256 61c603ed30992602c85aa3cd95b9070a514f8b3c33e31124694438d88809ae36

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fd83c01228a688733f1ded5201c678f0c53ecc1006ffbc404db9f7a899ac6249
MD5 2f9ac35f955d9217b6841568ce13d636
BLAKE2b-256 8c3d1e1db36cfd41f895d266b103df00ca5b3cbe965184df824dec5c08c6b803

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f2618db89be1b4e05f7a1a847a9c1c0abd63e63a1607d892dd54668dd92faf87
MD5 f37533a7ae4aa95da824b1df2786ac55
BLAKE2b-256 f8358c80729f1ff76b3921d5c9487c7ac3de9b2a103b1cd05e905b3090513510

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp312-cp312-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp312-cp312-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 71594f7c51a18e728451bb50cc60a3ce4e6538822731b2933209a1f3614e9282
MD5 01a338bc3a5349b5b7db4335fe879810
BLAKE2b-256 cc89e5a34c071a0570cc40c9a54eb472d113eea6d002e9ae12bb3a8407fb912e

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 894b3a42502226a1cac872f840030665f33326fc3dac8e57c607905773cdcde3
MD5 fb553e49196bce93af4b0d7e1e8fad1e
BLAKE2b-256 3c654baa99f1c53b30adf0acd9a5519078871ddde8d2339dc5a7fde80d9d87da

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 de749064336d37e340f640b05f24e9e3dd678c57318c7289d222a8a2f543e90c
MD5 79d8f89e82971bb2a2f61d0ef8f1a677
BLAKE2b-256 66ee560deadcdde6c2f90200450d5938f63a34b37e27ebff162810f716f6a230

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 41c5a21f4a04fa86436124d388f6ed60a9343a6f767fced1a8a71c3fbca038ff
MD5 75e9fa94b0a6ef568b532f6e0773a6a7
BLAKE2b-256 825dc00588b6cf18e1da539b45d3598d3557084990dcc4331960c15ee776ee41

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.6-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.2.6-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e8213002e427c69c45a52bbd94163084025f533a55a59d6f9c5b820774ef3303
MD5 9162cb90bff0e4ba322f1e61da9f2fba
BLAKE2b-256 310af354fb7176b81747d870f7991dc763e157a934c717b67b58456bc63da3df

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-2.2.6-cp311-cp311-win32.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.2.6-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 0678000bb9ac1475cd454c6b8c799206af8107e310843532b04d49649c717a47
MD5 93c920d40abbc10d5d056b8bfbcdad74
BLAKE2b-256 6afde19617b9530b031db51b0926eed5345ce8ddc669bb3bc0044b23e275ebe8

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9551a499bf125c1d4f9e250377c1ee2eddd02e01eac6644c080162c0c51778ab
MD5 7402bbedcc0b59bd6cef1c483b77dac0
BLAKE2b-256 ae9d81e8216030ce66be25279098789b665d49ff19eef08bfa8cb96d4957f422

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 bd48227a919f1bafbdda0583705e547892342c26fb127219d60a5c36882609d1
MD5 0f7073c78e0aede7179c537f64856db7
BLAKE2b-256 836c44d0325722cf644f191042bf47eedad61c1e6df2432ed65cbe28509d404e

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ba10f8411898fc418a521833e014a77d3ca01c15b0c6cdcce6a0d2897e6dbbdf
MD5 7f986c33f49d5940d6d005ff7039e420
BLAKE2b-256 b3dd2238b898e51bd6d389b7389ffb20d7f4c10066d80351187ec8e303a5a475

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b64d8d4d17135e00c8e346e0a738deb17e754230d7e0810ac5012750bbd85a5a
MD5 2f87d921a50fe50d04bb62125f8638dd
BLAKE2b-256 52b87f0554d49b565d0171eab6e99001846882000883998e7b7d9f0d98b1f934

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp311-cp311-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp311-cp311-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 481b49095335f8eed42e39e8041327c05b0f6f4780488f61286ed3c01368d491
MD5 f640cd91637f1d474947ecdb18d17ee8
BLAKE2b-256 310db48c405c91693635fbe2dcd7bc84a33a602add5f63286e024d3b6741411c

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 3d70692235e759f260c3d837193090014aebdf026dfd167834bcba43e30c2a42
MD5 feb8104ed864d51c68984ff93f7255b5
BLAKE2b-256 4a9f0121e375000b5e50ffdd8b25bf78d8e1a5aa4cca3f185d41265198c7b834

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c820a93b0255bc360f53eca31a0e676fd1101f673dda8da93454a12e23fc5f7a
MD5 0427961f3a70ed92b1c4d2c5516c5803
BLAKE2b-256 b32b64e1affc7972decb74c9e29e5649fac940514910960ba25cd9af4488b66c

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f9f1adb22318e121c5c69a09142811a201ef17ab257a1e66ca3025065b7f53ae
MD5 116203803ceeaa911dd64810b0305b4c
BLAKE2b-256 daa84f83e2aa666a9fbf56d6118faaaf5f1974d456b1823fda0a176eff722839

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.6-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.2.6-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f0fd6321b839904e15c46e0d257fdd101dd7f530fe03fd6359c1ea63738703f3
MD5 1cfd2ac5609b4800512f0ce304e19acc
BLAKE2b-256 a3dd4b822569d6b96c39d1215dbae0582fd99954dcbcf0c1a13c61783feaca3f

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-2.2.6-cp310-cp310-win32.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.2.6-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 b093dd74e50a8cba3e873868d9e93a85b78e0daf2e98c6797566ad8044e8363d
MD5 8f4f1982837618ed7636ebd432234aeb
BLAKE2b-256 5bc50064b1b7e7c89137b471ccec1fd2282fceaae0ab3a9550f2568782d80357

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 8fc377d995680230e83241d8a96def29f204b5782f371c532579b4f20607a289
MD5 3e5626cf6d8bec95d430a7362e71691c
BLAKE2b-256 01c8dc6ae86e3c61cfec1f178e5c9f7858584049b6093f843bca541f94120920

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 74d4531beb257d2c3f4b261bfb0fc09e0f9ebb8842d82a7b4209415896adc680
MD5 e604aae2ef6e01fb92ecc39aca0424d9
BLAKE2b-256 07b689d837eddef52b3d0cec5c6ba0456c1bf1b9ef6a6672fc2b7873c3ec4e2e

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fc7b73d02efb0e18c000e9ad8b83480dfcd5dfd11065997ed4c6747470ae8915
MD5 8f382b9ca6770db600edd5ea2447a925
BLAKE2b-256 b4633de6a34ad7ad6646ac7d2f55ebc6ad439dbbf9c4370017c50cf403fb19b5

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 efd28d4e9cd7d7a8d39074a4d44c63eda73401580c5c76acda2ce969e0a38e83
MD5 52190e22869884f0870eb3df7a283ca9
BLAKE2b-256 eb1796a3acd228cec142fcb8723bd3cc39c2a474f7dcf0a5d16731980bcafa95

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp310-cp310-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp310-cp310-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 5a6429d4be8ca66d889b7cf70f536a397dc45ba6faeb5f8c5427935d9592e9cf
MD5 f2ddc2b22517f6e31caa1372b12c2499
BLAKE2b-256 7a4f1cb5fdc353a5f5cc7feb692db9b8ec2c3d6405453f982435efc52561df58

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 37e990a01ae6ec7fe7fa1c26c55ecb672dd98b19c3d0e1d1f326fa13cb38d163
MD5 f01b7aea9d2b76b1eeb49766e615d689
BLAKE2b-256 fd77dc2fcfc66943c6410e2bf598062f5959372735ffda175b39906d54f02349

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8e41fd67c52b86603a91c1a505ebaef50b3314de0213461c7a6e99c9a3beff90
MD5 16fa85488e149489ce7ee044d7b0d307
BLAKE2b-256 22c24b9221495b2a132cc9d2eb862e21d42a009f5a60e45fc44b00118c174bff

See more details on using hashes here.

File details

Details for the file numpy-2.2.6-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.6-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b412caa66f72040e6d268491a59f2c43bf03eb6c96dd8f0307829feb7fa2b6fb
MD5 259343f056061f6eadb2f4b8999d06d4
BLAKE2b-256 9a3eed6db5be21ce87955c0cbd3009f2803f59fa08df21b5df06862e2d8e2bdd

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page
Morty Proxy This is a proxified and sanitized view of the page, visit original site.