Skip to main content

Stack Exchange Network

Stack Exchange network consists of 183 Q&A communities including Stack Overflow, the largest, most trusted online community for developers to learn, share their knowledge, and build their careers.

Visit Stack Exchange
added 94 characters in body
Source Link
Dan
  • 4.7k
  • 5
  • 52

Here is my answer (essentially the same as @Pranay's answer).

The moral of the story is that e is hidden in every ball.

TakingThin slice cut from apple

Taking OP's hint, we consider the four quantities:

$r=$ red surface area of the small piece
$y=$ yellow surface area of the small piece
$R=$ red surface area of the big piece
$Y=$ yellow surface area of the big piece

We will show that the following limit (note the elegant structure) equals $e$: $$L=\lim\limits_{r/R\to 0}\left(\frac{r}{y}\right)^\frac{R}{Y}$$
Assume the radius of the sphere is $1$.
Let $t$ be the thickness of the slice. Archimedes tells us $r=2\pi t$.
Let $a=\sqrt{1-(1-t)^2}=\sqrt{2t-t^2}$ be the radius of the yellow disks.

$L=\lim\limits_{r/R\to 0}\left(\frac{r}{y}\right)^\frac{R}{Y}$
$=\lim\limits_{t\to 0}\left(\frac{2\pi t}{\pi a^2}\right)^\frac{4\pi-r}{\pi a^2}$
$=\lim\limits_{t\to 0}\left(\frac{2}{2-t}\right)^{\frac{4-2t}{2t-t^2}}$
$=\lim\limits_{t\to 0}\left(\frac{2}{2-t}\right)^{\frac{2}{t}}$
$\overset{t=-\frac{2}{n}}{=}\lim\limits_{n\to \infty}\left(\frac{2}{2+\frac{2}{n}}\right)^{-n}$
$=\lim\limits_{n\to \infty}\left(1+\frac{1}{n}\right)^n$
$=\boxed{e}$

Here is my answer (essentially the same as @Pranay's answer).

The moral of the story is that e is hidden in every ball.

Taking OP's hint, we consider the four quantities:

$r=$ red surface area of the small piece
$y=$ yellow surface area of the small piece
$R=$ red surface area of the big piece
$Y=$ yellow surface area of the big piece

We will show that the following limit (note the elegant structure) equals $e$: $$L=\lim\limits_{r/R\to 0}\left(\frac{r}{y}\right)^\frac{R}{Y}$$
Assume the radius of the sphere is $1$.
Let $t$ be the thickness of the slice. Archimedes tells us $r=2\pi t$.
Let $a=\sqrt{1-(1-t)^2}=\sqrt{2t-t^2}$ be the radius of the yellow disks.

$L=\lim\limits_{r/R\to 0}\left(\frac{r}{y}\right)^\frac{R}{Y}$
$=\lim\limits_{t\to 0}\left(\frac{2\pi t}{\pi a^2}\right)^\frac{4\pi-r}{\pi a^2}$
$=\lim\limits_{t\to 0}\left(\frac{2}{2-t}\right)^{\frac{4-2t}{2t-t^2}}$
$=\lim\limits_{t\to 0}\left(\frac{2}{2-t}\right)^{\frac{2}{t}}$
$\overset{t=-\frac{2}{n}}{=}\lim\limits_{n\to \infty}\left(\frac{2}{2+\frac{2}{n}}\right)^{-n}$
$=\lim\limits_{n\to \infty}\left(1+\frac{1}{n}\right)^n$
$=\boxed{e}$

Here is my answer (essentially the same as @Pranay's answer).

The moral of the story is that e is hidden in every ball.

Thin slice cut from apple

Taking OP's hint, we consider the four quantities:

$r=$ red surface area of the small piece
$y=$ yellow surface area of the small piece
$R=$ red surface area of the big piece
$Y=$ yellow surface area of the big piece

We will show that the following limit (note the elegant structure) equals $e$: $$L=\lim\limits_{r/R\to 0}\left(\frac{r}{y}\right)^\frac{R}{Y}$$
Assume the radius of the sphere is $1$.
Let $t$ be the thickness of the slice. Archimedes tells us $r=2\pi t$.
Let $a=\sqrt{1-(1-t)^2}=\sqrt{2t-t^2}$ be the radius of the yellow disks.

$L=\lim\limits_{r/R\to 0}\left(\frac{r}{y}\right)^\frac{R}{Y}$
$=\lim\limits_{t\to 0}\left(\frac{2\pi t}{\pi a^2}\right)^\frac{4\pi-r}{\pi a^2}$
$=\lim\limits_{t\to 0}\left(\frac{2}{2-t}\right)^{\frac{4-2t}{2t-t^2}}$
$=\lim\limits_{t\to 0}\left(\frac{2}{2-t}\right)^{\frac{2}{t}}$
$\overset{t=-\frac{2}{n}}{=}\lim\limits_{n\to \infty}\left(\frac{2}{2+\frac{2}{n}}\right)^{-n}$
$=\lim\limits_{n\to \infty}\left(1+\frac{1}{n}\right)^n$
$=\boxed{e}$

Source Link
Dan
  • 4.7k
  • 5
  • 52

Here is my answer (essentially the same as @Pranay's answer).

The moral of the story is that e is hidden in every ball.

Taking OP's hint, we consider the four quantities:

$r=$ red surface area of the small piece
$y=$ yellow surface area of the small piece
$R=$ red surface area of the big piece
$Y=$ yellow surface area of the big piece

We will show that the following limit (note the elegant structure) equals $e$: $$L=\lim\limits_{r/R\to 0}\left(\frac{r}{y}\right)^\frac{R}{Y}$$
Assume the radius of the sphere is $1$.
Let $t$ be the thickness of the slice. Archimedes tells us $r=2\pi t$.
Let $a=\sqrt{1-(1-t)^2}=\sqrt{2t-t^2}$ be the radius of the yellow disks.

$L=\lim\limits_{r/R\to 0}\left(\frac{r}{y}\right)^\frac{R}{Y}$
$=\lim\limits_{t\to 0}\left(\frac{2\pi t}{\pi a^2}\right)^\frac{4\pi-r}{\pi a^2}$
$=\lim\limits_{t\to 0}\left(\frac{2}{2-t}\right)^{\frac{4-2t}{2t-t^2}}$
$=\lim\limits_{t\to 0}\left(\frac{2}{2-t}\right)^{\frac{2}{t}}$
$\overset{t=-\frac{2}{n}}{=}\lim\limits_{n\to \infty}\left(\frac{2}{2+\frac{2}{n}}\right)^{-n}$
$=\lim\limits_{n\to \infty}\left(1+\frac{1}{n}\right)^n$
$=\boxed{e}$

Morty Proxy This is a proxified and sanitized view of the page, visit original site.