OFFSET
1,1
COMMENTS
A primitive pseudoperfect number is a pseudoperfect number that is not a multiple of any other pseudoperfect number.
The odd entries so far are identical to the odd primitive abundant A006038. - Walter Kehowski, Aug 12 2005
Zachariou and Zachariou (1972) called these numbers "irreducible semiperfect numbers". - Amiram Eldar, Dec 04 2020
REFERENCES
Richard K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, Section B2, pp. 74-75.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Donovan Johnson, Table of n, a(n) for n = 1..10000
Thomas Bloom, Problem 469, Erdős Problems.
Erdős problems database contributors, Erdős problem database, see no. 469.
Richard K. Guy, Letter to N. J. A. Sloane with attachment, Jun. 1991
Eric Weisstein's World of Mathematics, Primitive Pseudoperfect Number.
Andreas Zachariou and Eleni Zachariou, Perfect, Semi-Perfect and Ore Numbers, Bull. Soc. Math. Grèce (New Ser.), Vol. 13, No. 13A (1972), pp. 12-22; alternative link.
MAPLE
with(numtheory): with(combinat): issemiperfect := proc(n) local b, S;
b:=false; S:=subsets(divisors(n) minus {n}); while not S[finished] do if
convert(S[nextvalue](), `+`)=n then b:=true; break fi od; return b end:
L:=remove(proc(z) isprime(z) end, [$1..5000]): PP:=[]: for zz from 1 to 1 do
for n in L do if issemiperfect(n) then PP:=[op(PP), n] fi od od;
sr := proc(l::list) local x, R, S, P, L; S:=sort(l); R:=[]; P:=S;
for x in S do
if not(x in R) then
L:=selectremove(proc(z) z>x and z mod x = 0 end, P);
R:=[op(R), op(L[1])]; P:=L[2];
fi; od; return P; end:
PPP:=sr(PP); # primitive pseudoperfect numbers less than 5000 # Walter Kehowski, Aug 12 2005
MATHEMATICA
PROG
(Haskell)
a006036 n = a006036_list !! (n-1)
a006036_list = filter (all (== 0) . map a210455 . a027751_row) a005835_list
-- Reinhard Zumkeller, Jan 21 2013
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
More terms from Walter Kehowski, Aug 12 2005
STATUS
approved
