2
votes
Accepted
An upper bound for the moment generating function $f(t) = \mathbb{E}[e^{tX}]$ when the mean, variance and upper bound of $X$ are given
We first observe the following:
Observation. For each $s > 0$, define the function $f_s(y)$ by
$$ f_s(y) = \frac{1 - e^{-sy}}{y} = \int_{0}^{s} e^{-yu} \, \mathrm{d}u. $$
Then $f_s(y)$ is a ...
Only top scored, non community-wiki answers of a minimum length are eligible
Related Tags
moment-generating-functions × 1356probability × 657
probability-distributions × 371
probability-theory × 304
statistics × 259
random-variables × 165
expected-value × 135
normal-distribution × 113
integration × 67
generating-functions × 41
characteristic-functions × 37
calculus × 36
poisson-distribution × 34
inequality × 31
laplace-transform × 31
independence × 28
statistical-inference × 27
real-analysis × 26
stochastic-processes × 25
exponential-distribution × 25
sequences-and-series × 24
variance × 23
cumulants × 23
uniform-distribution × 21
solution-verification × 19