The following is from High-Dimensional Statistics: A Non-Asymptotic Viewpoint by Wainwright.
Throughout, all matrices will be symmetric in $\mathbb{R}^{d \times d}$. For a matrix, let $\lVert A \rVert_2$ be the largest singular value of $A$. We write $A \preceq B$ if $B-A$ is positive semi-definite. For a symmetric matrix $A$ with an eigendecomposition $A = U D U^\top$ and a function $f \colon \mathbb{R} \to \mathbb{R}$, define $f(A) = U f(D) U^\top$, where $f(D)$ is a diagonal matrix obtained by applying $f$ to the diagonal entries of $D$.
A zero-mean symmetric random matrix $Q \in \mathcal{S}^{d \times d}$ is sub-Gaussian with matrix parameter $V \in \mathcal{S}^{d \times d}_+$ if
$$\mathbb{E}(e^{\lambda Q}) = \Psi_Q(\lambda) \preceq e^{\frac{\lambda^2 V}{2}}, \quad \forall \lambda \in \mathbb{R}$$
We want to prove the following theorem:
Let $Q_1, \ldots, Q_n$ be a sequence of zero-mean independent symmetric random matrices that satisfy the sub-Gaussian condition with parameters $V_1, \ldots, V_n$. Then, for all $\delta > 0$, we have the upper tail bound
\begin{align*} \mathbb{P}\left( \left\| \frac{1}{n} \sum_{i=1}^n Q_i \right\|_2 \geq \delta \right) \leq 2 \cdot \text{rank}\left( \sum_{i=1}^n V_i \right) \cdot \exp\left(-\frac{n\delta^2}{2\sigma^2}\right) \leq 2d \cdot \exp\left(-\frac{n\delta^2}{2\sigma^2}\right), \end{align*}
where $\sigma^2 = \left\| \frac{1}{n} \sum_{i=1}^n V_i \right\|_2$.
I understand the proof in the case when $\sum_{i=1}^n V_i$ is full rank, but I don't understand the proof when the rank of $\sum_{i=1}^n V_i$ is less than $d$. The proof to extend the case when the rank is less than $d$ from when the rank is $d$ goes as follows:
Now suppose that the matrix $V =\sum_{i=1}^n V_i$ is not full-rank, say of rank $r < d$. In this case, an eigendecomposition yields $V = UDU^\top$, where $U \in \mathbb{R}^{d \times r}$ has orthonormal columns. Introducing the shorthand $Q = \sum_{i=1}^n Q_i$, the $r$-dimensional matrix $\tilde{Q} = U^\top QU$ then captures all randomness in $Q$, and in particular we have $\lVert \tilde{Q} \rVert_2 = \lVert Q\rVert_2$. We can thus apply the same argument to bound $\lVert \tilde{Q} \rVert_2$, leading to a pre-factor of $r$ instead of $d$.
First, it seems as though it may not hold that $\lVert \tilde{Q} \rVert_2 = \lVert Q \rVert_2$. For example, $U = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $Q = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix}$. Furthermore, how do we prove that the random matrix $U^\top Q_i U$ is subgaussian with respect to $V_i$?
Thank you.