From 5c1fe91805848db7688d167d03d5001e0bb2120f Mon Sep 17 00:00:00 2001 From: sebaheredia Date: Thu, 11 Jan 2018 10:01:07 -0300 Subject: [PATCH] Version 1.0 --- Ej1a.py | 28 ++++++ Ej1b.py | 26 ++++++ Ej1b_V2.py | 24 +++++ Ej1c.py | 24 +++++ Ej1c_V2.py | 21 +++++ Ej2a.py | 34 +++++++ Ej2a_v2.py | 38 ++++++++ Ej3a.py | 44 +++++++++ PolAndDer.txt | 201 +++++++++++++++++++++++++++++++++++++++++ PolinomioYDerivada.png | Bin 0 -> 40992 bytes prueba1.py | 21 +++++ 11 files changed, 461 insertions(+) create mode 100644 Ej1a.py create mode 100644 Ej1b.py create mode 100644 Ej1b_V2.py create mode 100644 Ej1c.py create mode 100644 Ej1c_V2.py create mode 100644 Ej2a.py create mode 100644 Ej2a_v2.py create mode 100644 Ej3a.py create mode 100644 PolAndDer.txt create mode 100644 PolinomioYDerivada.png create mode 100644 prueba1.py diff --git a/Ej1a.py b/Ej1a.py new file mode 100644 index 0000000..4882df2 --- /dev/null +++ b/Ej1a.py @@ -0,0 +1,28 @@ + +#Utilizando solo python elegir alguno de los siguientes problemas y solucionarlo (no use numpy) El archivo ejemplo.py contiene la solucion #al primer ejercicio. Puede utilizarlo para verificar su solucion o como ejemplo para resolver los demas. Los problemas fueron extraidos de #https://projecteuler.net/archives + +#a) Si hacemos una lista de todos los numeros naturales debajo de 10 que sean multiplos de 3 o 5 obtendriamos 3, 5, 6 y 9. La suma de los #multiplos es 23. Encuentre la suma de todos los multiplos de 3 y 5 debajo de 1000. + +# Importamos la libreria con las funciones que se van a utilizar +import numpy as np + +# Aqui se define el numero a probar +n=1000 +# Se crea un vector que vaya de 0 a n-1 +a= range(1,n) #defined as a list +# Se define un valor auxiliar que sera la suma parcial +suma=0 +for i in a: +# Esta es la condicion se es multiplo de 3 o 5 hace lo que esta dentro del if + if (i%3)==0 or (i%5)==0: + # print(i) + suma =suma+i +# Imprime el valor final de la suma +print ("El valor final de la suma es = ",suma) +# ('El valor final de la suma es = ', 233168) + + + + + + diff --git a/Ej1b.py b/Ej1b.py new file mode 100644 index 0000000..7d81eb6 --- /dev/null +++ b/Ej1b.py @@ -0,0 +1,26 @@ + +# Importamos la libreria con las funciones que se van a utilizar +import numpy as np + +# Se definen los valores iniciales de las variables: suma, amin1, amin2 +suma = 0 +amin1=0 +amin2=1 +# Se define el corte en la serie de Fibonacci +corte=1000000 +# Valor inicial de la variable fibonacci +fibonacci=0 +while fibonacci < corte: +# Si fibonacci es impar hace la suma parcial del termino + if (fibonacci%2==1): + suma=suma+fibonacci +# print('La suma es: ',suma) +# Se actualizan los valores del termino de la serie fibonacci, amin1 y amin2 + fibonacci=amin1+amin2 +# print('El termino fibonacci es: ',fibonacci) + amin1=amin2 + amin2=fibonacci +# Se imprime el valor final de la suma +print("La suma total de los numeros impares de la serie de Fibonacci menores a ",corte," es ",suma) +#'La suma total de los numeros impares de la serie de Fibonacci menores a ', 1000000, ' es ', 1089153 + diff --git a/Ej1b_V2.py b/Ej1b_V2.py new file mode 100644 index 0000000..5e38375 --- /dev/null +++ b/Ej1b_V2.py @@ -0,0 +1,24 @@ + +# Importamos la libreria con las funciones que se van a utilizar +import numpy as np + +# Se definen los valores iniciales de las variables: suma, amin1, amin2 +suma = 0 +amin1=0 +amin2=1 +# Se define el corte en la serie de Fibonacci +corte=1000000 +# Valor inicial de la variable fibonacci +fibonacci=0 +while fibonacci < corte: +# Si fibonacci es impar hace la suma parcial del termino + if (fibonacci%2==1): + suma=suma+fibonacci +# Se actualizan los valores del termino de la serie fibonacci, amin1 y amin2 + fibonacci=amin1+amin2 + amin1=amin2 + amin2=fibonacci +# Se imprime el valor final de la suma +print("La suma total de los numeros impares de la serie de Fibonacci menores a ",corte," es ",suma) +#'La suma total de los numeros impares de la serie de Fibonacci menores a ', 1000000, ' es ', 1089153 + diff --git a/Ej1c.py b/Ej1c.py new file mode 100644 index 0000000..4132115 --- /dev/null +++ b/Ej1c.py @@ -0,0 +1,24 @@ + +# Importamos la libreria con las funciones que se van a utilizar +import numpy as np + +# Aqui se define el numero a descomponer en numeros primos +n=2*3*5*7 +print("n = ",n) +# El primer divisor de prueba se define 2, ya que todo numero es divisible por 1 +i=2 +# aux es un valor auxiliar que seria el ultimo cociente de la descomposicion con el ultimo numero primo +aux=n +# La condicion i <= n/2 se debe a que no va a haber ningun numero primo mayor a n/2 +while i <= n/2: +# print("i = ",i) + if aux%i==0: + aux=aux/i + max_div=i + print("max_div = ",max_div) + print("aux = ",aux) +# Se sube e 1 el divisor propuesto + i=i+1 +# Se imprime el ultimo valor del maximo divisor +print("max_div = ",max_div) + diff --git a/Ej1c_V2.py b/Ej1c_V2.py new file mode 100644 index 0000000..8b4b6c7 --- /dev/null +++ b/Ej1c_V2.py @@ -0,0 +1,21 @@ + +# Importamos la libreria con las funciones que se van a utilizar +import numpy as np + +# Aqui se define el numero a descomponer en numeros primos +n=600851475143 +print("n = ",n) +# El primer divisor de prueba se define 2, ya que todo numero es divisible por 1 +i=2 +# aux es un valor auxiliar que seria el ultimo cociente de la descomposicion con el ultimo numero primo +aux=n +# La condicion i <= n/2 se debe a que no va a haber ningun numero primo mayor a n/2 +while i <= n/2: + if aux%i==0: + aux=aux/i + max_div=i +# Se sube e 1 el divisor propuesto + i=i+1 +# Se imprime el ultimo valor del maximo divisor +print("max_div = ",max_div) + diff --git a/Ej2a.py b/Ej2a.py new file mode 100644 index 0000000..cd8975d --- /dev/null +++ b/Ej2a.py @@ -0,0 +1,34 @@ + +# Se importan las libreria con las funciones que se van a utilizar +import numpy as np +import matplotlib.pyplot as pp +from pylab import * + +fold='/home/janisaseba/Dropbox/documentos/cursos/TecnicasDeProgramacionCientifica/ejercicios/labdia1/mios' +# Se definen los valores de x e y +x=array([7,5,4,48,8,60,7,73,5,28,4,25,6,99,6,31,9,15,5,06]) +y=array([28,66,20,37,22,33,26,35,22,29,21,74,23,11,23,13,24,68,21,89]) + +# Grafico de los puntos en el plano x,y +fig=pp.figure() +pp.plot(x,y,"*",color='r',label='x vs y') +pp.title('Scatter plot y Vs. x') +pp.ylabel('y') +pp.grid(True) +pp.xlabel('x') +fig_fol=fold + '/xVsy_scatter.png' +print(fig_fol) +fig.savefig(fig_fol) +pp.show() +#m,b = np.polyfit(x, y, 1) +#yaux=x*m+b +##print(yaux) +##x_si=np.size(x) +##yaux_si=np.size(yaux) +##print("x.shape = ",x_si) +##print("yaux.shape = ",yaux_si) +##print(m) +##print(b) +#pp.plot(x, y, 'yo', x, yaux, '--r') +##plot(x, y, 'yo', x, m*x+b, '--k') +#pp.show() diff --git a/Ej2a_v2.py b/Ej2a_v2.py new file mode 100644 index 0000000..4f32297 --- /dev/null +++ b/Ej2a_v2.py @@ -0,0 +1,38 @@ + +# Se importan las libreria con las funciones que se van a utilizar +import numpy as np +import matplotlib.pyplot as pp +from pylab import * + +# Carpeta local +local_fol='/home/janisaseba/Dropbox/documentos/cursos/TecnicasDeProgramacionCientifica/ejercicios/labdia1/mios' +# Se definen los valores de x e y +x=array([7,5,4,48,8,60,7,73,5,28,4,25,6,99,6,31,9,15,5,06]) +y=array([28,66,20,37,22,33,26,35,22,29,21,74,23,11,23,13,24,68,21,89]) + +# Grafico de los puntos en el plano x,y +fig=pp.figure() +line1, =pp.plot(x,y,"*",color='b') +pp.title('Scatter plot y Vs. x') +pp.ylabel('Eje y') +pp.grid(True) +pp.xlabel('Eje x') +# direccion donde se va a guardar la figura +fig_fol=local_fol + '/xVsy_scatter.png' +# Se guarda la figura +fig.savefig(fig_fol) + +# Calculo de los coeficientes del ajuste lineal +m,b = np.polyfit(x, y, 1) +# Calcuo de valor de "y" segun el ajuste +yaux=x*m+b +# Grafico de los valores interpolados +line2, =pp.plot(x,yaux, '--r') +pp.legend([line1,line2], ['Valores Originales', 'Valores Interpolados']) +fig_fol2=local_fol + '/x-y_Vs_xyinterpolated_scatter.png' +# Se guarda la figura +fig.savefig(fig_fol2) +pp.show() + + + diff --git a/Ej3a.py b/Ej3a.py new file mode 100644 index 0000000..5c7c132 --- /dev/null +++ b/Ej3a.py @@ -0,0 +1,44 @@ +# Se importan las libreria con las funciones que se van a utilizar +import numpy as np +import matplotlib.pyplot as pp + +# Carpeta local +local_fol='/home/janisaseba/Dropbox/documentos/cursos/TecnicasDeProgramacionCientifica/ejercicios/labdia1/mios' +# Variable independiente - vector x +x=np.arange(-10,10,0.1) +# Coeficientes del polinomio en orden decreciente +pol=np.array([1,1,-4,4]) +# Se evalua el poliinomio en los valores de x +pol_val=np.polyval(pol,x) +# Calculo de la derivada. El primer argumento de polyder es el polinomio, el segundo es el orden de la derivada +pol_der=np.polyder(pol,1) +# se evalua la derivada en x +pol_der_val=np.polyval(pol_der,x) + +# Grafico del polinomio y su derivada en funcion de x +fig=pp.figure() +line1, =pp.plot(x,pol_val,".-",color='b') +line2, =pp.plot(x,pol_der_val,".-",color='r') +pp.title('Grafico del Polinomio y su derivada') +pp.ylabel('Eje y') +pp.grid(True) +pp.xlabel('Eje x') +pp.legend([line1,line2], ['Valores del Polinomio', 'Valores de la Derivada']) +fig_fol=local_fol + '/PolinomioYDerivada.png' +fig.savefig(fig_fol) +pp.show() + +# Se ordenan las variables en columnas +c=zip(x,pol_val,pol_der_val) +# Escritura de las variables en un archivo de texto +np.savetxt("PolAndDer.txt", c, delimiter=' ', header=" Valores de x Valores del Polinomio Valores de la Derivada", comments="") + + + + + + + + + + diff --git a/PolAndDer.txt b/PolAndDer.txt new file mode 100644 index 0000000..c80aef1 --- /dev/null +++ b/PolAndDer.txt @@ -0,0 +1,201 @@ + Valores de x Valores del Polinomio Valores de la Derivada +-1.000000000000000000e+01 -8.560000000000000000e+02 2.760000000000000000e+02 +-9.900000000000000355e+00 -8.286890000000001919e+02 2.702300000000000182e+02 +-9.800000000000000711e+00 -8.019520000000001119e+02 2.645200000000000387e+02 +-9.700000000000001066e+00 -7.757830000000002428e+02 2.588700000000000614e+02 +-9.600000000000001421e+00 -7.501760000000003856e+02 2.532800000000000864e+02 +-9.500000000000001776e+00 -7.251250000000004547e+02 2.477500000000001137e+02 +-9.400000000000002132e+00 -7.006240000000004784e+02 2.422800000000001148e+02 +-9.300000000000002487e+00 -6.766670000000005984e+02 2.368700000000001182e+02 +-9.200000000000002842e+00 -6.532480000000007294e+02 2.315200000000001523e+02 +-9.100000000000003197e+00 -6.303610000000006721e+02 2.262300000000001887e+02 +-9.000000000000003553e+00 -6.080000000000007958e+02 2.210000000000001990e+02 +-8.900000000000003908e+00 -5.861590000000007876e+02 2.158300000000001830e+02 +-8.800000000000004263e+00 -5.648320000000009031e+02 2.107200000000002262e+02 +-8.700000000000004619e+00 -5.440130000000009431e+02 2.056700000000002433e+02 +-8.600000000000004974e+00 -5.236960000000010496e+02 2.006800000000002342e+02 +-8.500000000000005329e+00 -5.038750000000010232e+02 1.957500000000002558e+02 +-8.400000000000005684e+00 -4.845440000000010627e+02 1.908800000000002797e+02 +-8.300000000000006040e+00 -4.656970000000011396e+02 1.860700000000003058e+02 +-8.200000000000006395e+00 -4.473280000000011682e+02 1.813200000000003058e+02 +-8.100000000000006750e+00 -4.294310000000012337e+02 1.766300000000003081e+02 +-8.000000000000007105e+00 -4.120000000000012506e+02 1.720000000000003411e+02 +-7.900000000000007461e+00 -3.950290000000012469e+02 1.674300000000003479e+02 +-7.800000000000007816e+00 -3.785120000000012510e+02 1.629200000000003570e+02 +-7.700000000000008171e+00 -3.624430000000012910e+02 1.584700000000003399e+02 +-7.600000000000008527e+00 -3.468160000000013383e+02 1.540800000000003820e+02 +-7.500000000000008882e+00 -3.316250000000013642e+02 1.497500000000003979e+02 +-7.400000000000009237e+00 -3.168640000000013401e+02 1.454800000000003877e+02 +-7.300000000000009592e+00 -3.025270000000013511e+02 1.412700000000003797e+02 +-7.200000000000009948e+00 -2.886080000000013683e+02 1.371200000000004025e+02 +-7.100000000000010303e+00 -2.751010000000013633e+02 1.330300000000004275e+02 +-7.000000000000010658e+00 -2.620000000000014211e+02 1.290000000000004263e+02 +-6.900000000000011013e+00 -2.492990000000013993e+02 1.250300000000004275e+02 +-6.800000000000011369e+00 -2.369920000000013545e+02 1.211200000000004451e+02 +-6.700000000000011724e+00 -2.250730000000013717e+02 1.172700000000004650e+02 +-6.600000000000012079e+00 -2.135360000000013940e+02 1.134800000000004587e+02 +-6.500000000000012434e+00 -2.023750000000013642e+02 1.097500000000004547e+02 +-6.400000000000012790e+00 -1.915840000000013674e+02 1.060800000000004673e+02 +-6.300000000000013145e+00 -1.811570000000013181e+02 1.024700000000004820e+02 +-6.200000000000013500e+00 -1.710880000000013297e+02 9.892000000000047066e+01 +-6.100000000000013856e+00 -1.613710000000013167e+02 9.543000000000046157e+01 +-6.000000000000014211e+00 -1.520000000000013074e+02 9.200000000000048317e+01 +-5.900000000000014566e+00 -1.429690000000012731e+02 8.863000000000049283e+01 +-5.800000000000014921e+00 -1.342720000000012703e+02 8.532000000000049056e+01 +-5.700000000000015277e+00 -1.259030000000012421e+02 8.207000000000047635e+01 +-5.600000000000015632e+00 -1.178560000000012309e+02 7.888000000000049283e+01 +-5.500000000000015987e+00 -1.101250000000012079e+02 7.575000000000051159e+01 +-5.400000000000016342e+00 -1.027040000000012014e+02 7.268000000000048999e+01 +-5.300000000000016698e+00 -9.558700000000115438e+01 6.967000000000049909e+01 +-5.200000000000017053e+00 -8.876800000000113755e+01 6.672000000000049624e+01 +-5.100000000000017408e+00 -8.224100000000110811e+01 6.383000000000049567e+01 +-5.000000000000017764e+00 -7.600000000000108002e+01 6.100000000000049738e+01 +-4.900000000000018119e+00 -7.003900000000105308e+01 5.823000000000049425e+01 +-4.800000000000018474e+00 -6.435200000000102705e+01 5.552000000000049340e+01 +-4.700000000000018829e+00 -5.893300000000098748e+01 5.287000000000049482e+01 +-4.600000000000019185e+00 -5.377600000000096969e+01 5.028000000000049141e+01 +-4.500000000000019540e+00 -4.887500000000093081e+01 4.775000000000049027e+01 +-4.400000000000019895e+00 -4.422400000000089904e+01 4.528000000000048431e+01 +-4.300000000000020250e+00 -3.981700000000086703e+01 4.287000000000048061e+01 +-4.200000000000020606e+00 -3.564800000000083458e+01 4.052000000000047919e+01 +-4.100000000000020961e+00 -3.171100000000079433e+01 3.823000000000047294e+01 +-4.000000000000021316e+00 -2.800000000000076739e+01 3.600000000000046896e+01 +-3.900000000000021672e+00 -2.450900000000073575e+01 3.383000000000046725e+01 +-3.800000000000022027e+00 -2.123200000000070276e+01 3.172000000000046072e+01 +-3.700000000000022382e+00 -1.816300000000066817e+01 2.967000000000044935e+01 +-3.600000000000022737e+00 -1.529600000000063176e+01 2.768000000000044736e+01 +-3.500000000000023093e+00 -1.262500000000059330e+01 2.575000000000044054e+01 +-3.400000000000023448e+00 -1.014400000000055790e+01 2.388000000000043244e+01 +-3.300000000000023803e+00 -7.847000000000525333e+00 2.207000000000042306e+01 +-3.200000000000024158e+00 -5.728000000000491809e+00 2.032000000000041595e+01 +-3.100000000000024514e+00 -3.781000000000457106e+00 1.863000000000040757e+01 +-3.000000000000024869e+00 -2.000000000000422773e+00 1.700000000000039790e+01 +-2.900000000000025224e+00 -3.790000000003903580e-01 1.543000000000038696e+01 +-2.800000000000025580e+00 1.087999999999644807e+00 1.392000000000037829e+01 +-2.700000000000025935e+00 2.406999999999675843e+00 1.247000000000036835e+01 +-2.600000000000026290e+00 3.583999999999709196e+00 1.108000000000035712e+01 +-2.500000000000026645e+00 4.624999999999740652e+00 9.750000000000346390e+00 +-2.400000000000027001e+00 5.535999999999771326e+00 8.480000000000334381e+00 +-2.300000000000027356e+00 6.322999999999801446e+00 7.270000000000322871e+00 +-2.200000000000027711e+00 6.991999999999830351e+00 6.120000000000310081e+00 +-2.100000000000028066e+00 7.548999999999859156e+00 5.030000000000297788e+00 +-2.000000000000028422e+00 7.999999999999886313e+00 4.000000000000284217e+00 +-1.900000000000028777e+00 8.350999999999912049e+00 3.030000000000270255e+00 +-1.800000000000029132e+00 8.607999999999938368e+00 2.120000000000256790e+00 +-1.700000000000029488e+00 8.776999999999961943e+00 1.270000000000242046e+00 +-1.600000000000029843e+00 8.863999999999986557e+00 4.800000000002269118e-01 +-1.500000000000030198e+00 8.875000000000007105e+00 -2.499999999997886135e-01 +-1.400000000000030553e+00 8.816000000000027370e+00 -9.199999999998045297e-01 +-1.300000000000030909e+00 8.693000000000047578e+00 -1.529999999999820837e+00 +-1.200000000000031264e+00 8.512000000000064404e+00 -2.079999999999837534e+00 +-1.100000000000031619e+00 8.279000000000081627e+00 -2.569999999999854623e+00 +-1.000000000000031974e+00 8.000000000000095923e+00 -2.999999999999872102e+00 +-9.000000000000323297e-01 7.681000000000109296e+00 -3.369999999999889972e+00 +-8.000000000000326850e-01 7.328000000000120195e+00 -3.679999999999908233e+00 +-7.000000000000330402e-01 6.947000000000129738e+00 -3.929999999999927329e+00 +-6.000000000000333955e-01 6.544000000000137263e+00 -4.119999999999946816e+00 +-5.000000000000337508e-01 6.125000000000143885e+00 -4.249999999999966249e+00 +-4.000000000000341061e-01 5.696000000000147168e+00 -4.319999999999986073e+00 +-3.000000000000344613e-01 5.263000000000149114e+00 -4.330000000000007176e+00 +-2.000000000000348166e-01 4.832000000000149065e+00 -4.280000000000027782e+00 +-1.000000000000351719e-01 4.409000000000146358e+00 -4.170000000000049667e+00 +-3.552713678800500929e-14 4.000000000000142109e+00 -4.000000000000071054e+00 +9.999999999996411759e-02 3.611000000000135213e+00 -3.770000000000093276e+00 +1.999999999999637623e-01 3.248000000000126342e+00 -3.480000000000115890e+00 +2.999999999999634070e-01 2.917000000000114390e+00 -3.130000000000138893e+00 +3.999999999999630518e-01 2.624000000000100474e+00 -2.720000000000162288e+00 +4.999999999999626965e-01 2.375000000000083933e+00 -2.250000000000186517e+00 +5.999999999999623412e-01 2.176000000000064993e+00 -1.720000000000210694e+00 +6.999999999999619860e-01 2.033000000000042995e+00 -1.130000000000235705e+00 +7.999999999999616307e-01 1.952000000000018165e+00 -4.800000000002611067e-01 +8.999999999999612754e-01 1.938999999999991175e+00 2.299999999997135447e-01 +9.999999999999609201e-01 1.999999999999960920e+00 9.999999999996873612e-01 +1.099999999999960565e+00 2.140999999999928072e+00 1.829999999999660787e+00 +1.199999999999960210e+00 2.367999999999891969e+00 2.719999999999633822e+00 +1.299999999999959854e+00 2.686999999999852839e+00 3.669999999999606466e+00 +1.399999999999959499e+00 3.103999999999810466e+00 4.679999999999578719e+00 +1.499999999999959144e+00 3.624999999999765077e+00 5.749999999999550582e+00 +1.599999999999958789e+00 4.255999999999716898e+00 6.879999999999521165e+00 +1.699999999999958433e+00 5.002999999999664382e+00 8.069999999999492246e+00 +1.799999999999958078e+00 5.871999999999609088e+00 9.319999999999463824e+00 +1.899999999999957723e+00 6.868999999999550354e+00 1.062999999999943412e+01 +1.999999999999957367e+00 7.999999999999488409e+00 1.199999999999940314e+01 +2.099999999999957012e+00 9.270999999999423480e+00 1.342999999999937089e+01 +2.199999999999956657e+00 1.068799999999935224e+01 1.491999999999934090e+01 +2.299999999999956302e+00 1.225699999999928025e+01 1.646999999999930964e+01 +2.399999999999955946e+00 1.398399999999920240e+01 1.807999999999927709e+01 +2.499999999999955591e+00 1.587499999999912248e+01 1.974999999999924682e+01 +2.599999999999955236e+00 1.793599999999904071e+01 2.147999999999921172e+01 +2.699999999999954881e+00 2.017299999999895022e+01 2.326999999999917890e+01 +2.799999999999954525e+00 2.259199999999885833e+01 2.511999999999914479e+01 +2.899999999999954170e+00 2.519899999999875817e+01 2.702999999999910941e+01 +2.999999999999953815e+00 2.799999999999866063e+01 2.899999999999907629e+01 +3.099999999999953459e+00 3.100099999999855527e+01 3.102999999999904190e+01 +3.199999999999953104e+00 3.420799999999844943e+01 3.311999999999900268e+01 +3.299999999999952749e+00 3.762699999999833267e+01 3.526999999999897284e+01 +3.399999999999952394e+00 4.126399999999821233e+01 3.747999999999893106e+01 +3.499999999999952038e+00 4.512499999999809575e+01 3.974999999999889866e+01 +3.599999999999951683e+00 4.921599999999796893e+01 4.207999999999886143e+01 +3.699999999999951328e+00 5.354299999999783921e+01 4.446999999999881936e+01 +3.799999999999950973e+00 5.811199999999769972e+01 4.691999999999878668e+01 +3.899999999999950617e+00 6.292899999999755778e+01 4.942999999999874916e+01 +3.999999999999950262e+00 6.799999999999741362e+01 5.199999999999870681e+01 +4.099999999999949907e+00 7.333099999999726037e+01 5.462999999999866674e+01 +4.199999999999949551e+00 7.892799999999711247e+01 5.731999999999862894e+01 +4.299999999999949196e+00 8.479699999999695592e+01 6.006999999999858630e+01 +4.399999999999948841e+00 9.094399999999677675e+01 6.287999999999854595e+01 +4.499999999999948486e+00 9.737499999999661782e+01 6.574999999999850786e+01 +4.599999999999948130e+00 1.040959999999964367e+02 6.867999999999845784e+01 +4.699999999999947775e+00 1.111129999999962479e+02 7.166999999999842430e+01 +4.799999999999947420e+00 1.184319999999960658e+02 7.471999999999837883e+01 +4.899999999999947065e+00 1.260589999999958764e+02 7.782999999999833562e+01 +4.999999999999946709e+00 1.339999999999956799e+02 8.099999999999829470e+01 +5.099999999999946354e+00 1.422609999999954766e+02 8.422999999999825604e+01 +5.199999999999945999e+00 1.508479999999952668e+02 8.751999999999820545e+01 +5.299999999999945643e+00 1.597669999999950505e+02 9.086999999999815714e+01 +5.399999999999945288e+00 1.690239999999948566e+02 9.427999999999811109e+01 +5.499999999999944933e+00 1.786249999999946283e+02 9.774999999999808153e+01 +5.599999999999944578e+00 1.885759999999943943e+02 1.012799999999980258e+02 +5.699999999999944222e+00 1.988829999999941549e+02 1.048699999999979724e+02 +5.799999999999943867e+00 2.095519999999939103e+02 1.085199999999979354e+02 +5.899999999999943512e+00 2.205889999999936606e+02 1.122299999999979008e+02 +5.999999999999943157e+00 2.319999999999934062e+02 1.159999999999978400e+02 +6.099999999999944578e+00 2.437909999999933746e+02 1.198299999999978667e+02 +6.199999999999942446e+00 2.559679999999928555e+02 1.237199999999977393e+02 +6.299999999999940314e+00 2.685369999999923607e+02 1.276699999999976285e+02 +6.399999999999941735e+00 2.815039999999923452e+02 1.316799999999976478e+02 +6.499999999999943157e+00 2.948749999999922693e+02 1.357499999999976694e+02 +6.599999999999941025e+00 3.086559999999917636e+02 1.398799999999975512e+02 +6.699999999999938893e+00 3.228529999999911979e+02 1.440699999999974352e+02 +6.799999999999940314e+00 3.374719999999911124e+02 1.483199999999974352e+02 +6.899999999999941735e+00 3.525189999999911379e+02 1.526299999999974659e+02 +6.999999999999939604e+00 3.679999999999905640e+02 1.569999999999973568e+02 +7.099999999999937472e+00 3.839209999999899310e+02 1.614299999999972215e+02 +7.199999999999938893e+00 4.002879999999898928e+02 1.659199999999972306e+02 +7.299999999999940314e+00 4.171069999999897959e+02 1.704699999999972704e+02 +7.399999999999938183e+00 4.343839999999891575e+02 1.750799999999971419e+02 +7.499999999999936051e+00 4.521249999999885176e+02 1.797499999999969873e+02 +7.599999999999937472e+00 4.703359999999884735e+02 1.844799999999970339e+02 +7.699999999999938893e+00 4.890229999999884285e+02 1.892699999999970544e+02 +7.799999999999936762e+00 5.081919999999877291e+02 1.941199999999969066e+02 +7.899999999999934630e+00 5.278489999999870861e+02 1.990299999999967611e+02 +7.999999999999936051e+00 5.479999999999870397e+02 2.039999999999968168e+02 +8.099999999999937472e+00 5.686509999999869933e+02 2.090299999999968463e+02 +8.199999999999935341e+00 5.898079999999861229e+02 2.141199999999966792e+02 +8.299999999999933209e+00 6.114769999999853098e+02 2.192699999999965428e+02 +8.399999999999934630e+00 6.336639999999853217e+02 2.244799999999965792e+02 +8.499999999999936051e+00 6.563749999999853344e+02 2.297499999999966178e+02 +8.599999999999933920e+00 6.796159999999844104e+02 2.350799999999964598e+02 +8.699999999999931788e+00 7.033929999999836582e+02 2.404699999999963040e+02 +8.799999999999933209e+00 7.277119999999836182e+02 2.459199999999963495e+02 +8.899999999999934630e+00 7.525789999999835800e+02 2.514299999999963688e+02 +8.999999999999932498e+00 7.779999999999827196e+02 2.569999999999962483e+02 +9.099999999999930367e+00 8.039809999999816910e+02 2.626299999999960733e+02 +9.199999999999931788e+00 8.305279999999817164e+02 2.683199999999960710e+02 +9.299999999999933209e+00 8.576469999999816309e+02 2.740699999999961278e+02 +9.399999999999931077e+00 8.853439999999807242e+02 2.798799999999959596e+02 +9.499999999999928946e+00 9.136249999999796501e+02 2.857499999999957936e+02 +9.599999999999930367e+00 9.424959999999797446e+02 2.916799999999958573e+02 +9.699999999999931788e+00 9.719629999999797292e+02 2.976699999999958663e+02 +9.799999999999929656e+00 1.002031999999978666e+03 3.037199999999957072e+02 +9.899999999999927525e+00 1.032708999999977550e+03 3.098299999999955503e+02 diff --git a/PolinomioYDerivada.png b/PolinomioYDerivada.png new file mode 100644 index 0000000000000000000000000000000000000000..b20962639b16bdd0242cf47d4d7cf37eb1a1e63e GIT binary patch literal 40992 zcmeEug;!VY*6oi_Fc45wL>zUS*NF*9r8A(+V ziGqzpBG;x~i|<4^dfVXtDDA~%)v576H|mRi`1d*+86A5PiPnhtkL-!aV>1$ojU+26 zrhYAYxZPQAYtxFzSo20|y)N(VI^oA{wUp`9)kVeRZRL;elUI>Evh<{=N2^{n?uyt) zp7(|+PYy;|c->g=md}dp^7i)7vys28|5>}ELgZT8oK4ww$_RhQ&f01p>5dbZf0SPS zVe{~m{f_`qNy;il;{dKI#s>17EQ<5QSH=MYo6d^<`L3~U-dOz`t`y#Auj79%mUn9l-Jh=_zu1t!`s)Lj{{Kb)?BxH`o-#Z2e`0nU zf3y8(ThWP(%*@?k?>;BVZlPSewr8xnGQVZ|UD$!Td<(6&7rC{ywa+ijPmN7a-{QFQ z_Wk?xrUHu#o#pOyQuN*3-L?74PgD}w?(9)jRZYt%y!4UDFX73wTDE}@2gCZSLtkj# z-#a3qqw~%FjqT6RyZsXU%opl5xh!m2bIg5~YKy@ZV=FY~#+88`;^}Wt5bpuUt8N^2%4Q zgK8<~$9vu!EBlq3%U!xKQu5q$MfgkrBiXrg=bjfA@8RQPEOVLij*st_xBe})&O0u` zv9zqL``51{?ne(Dl5li9Szy_E3-{go;lT;*XO}+OTUYdWY-AB+{20aS6Bzh$gJcG? z;=_|t+S-i8j=yx9<4f(#6RpcRtIwUQa0=l1MZ_v|zSF3|MrMA7lP6DpEwVo#C?uqD zud~9Fb$NMNJNM!`euu#u-Icx-jngahL&w@moM>5CSU9&gY}&NxSpK8tyM=|PetdeA zt|{y^qQ@s7(0kv|KIwK+Cmx0#ry&oCV zj|fuwb1_eTf43!oSzw!si;JJXznZ)-DbA?!*4I3*1b(e%E-ttm@in# zWa2SpqmjNH9Gu;2ibIssPaH;m)BaD7-oAbNB2LWbbCG?&+|ajg-;92IcyMiHX(qXU zQ+V&I`^OA}yu3(^J9fPM@?~3fFe??Q?YS*QZ*{Qr?;jr#No@Du*QKf*IBZz1*D`|W z_?)40f+VV-un~{7Hb#gnuKu#9X0}1#QT<}kqxUOu5g#hrs=43&8iV2Y?p+wDPquM% zyrsbIBOWihvb2eX)EJiLG3_w#3E9_x-> zXU?2?`s`Wdjdfeb5X9z%T51Ia1thPEmF08EZV2I@E%}E60t1aMU0QqW*s^x;9Q(N--&6}4WKhjiHRXxqgc`426p7iA?Y2Utmaa!31A@BQ+b8%gN_;4rI zovEqBAmujO?fbRDQ>3lE-RQyv?^7MuDC~cH5Yy4wfxEgFD|m8`9fm9-gumXOOx&+M(Y&VNmAs zvavC*=GXWBe&d!rGt-6?nv2{!u3Wj&H98ucl(a9xWqNvAnS;T6NUK08Dm)^>s4hW@ z_$}ODUAepK;`~r{#1|3Q>BEbQi=X4fC>VF{tbFrkjmXkun66Nt{Wct3VkgDpUpRHT zKi<}g$Bjc=Utix?Fg}!Bft4KAd#=nW;4;b4;Xb3!W8O%8>(;HOPoIj$3cK5My&%h< zI;QvB>!lA>qL|NGtc3Bj-Nobz>880Lqkys=KduyeZ*OlII!fJVmlOk=g|3aUt@9Se zsc1~oI26Tev5jUIUkHncheC6<;p4S5Od+>#uM1@4^1f6XqqtW(XrHmM@n*{F_m1kz zNlJ2Yaq&0|s^i}+1(xzyc^;16o;?#26MIw`4xT!tWp0m$xsRHh*Wyb6yJD22adpss zTp;v)UwCM!xTIuqa`N|~A$e~$<#f%=pS{5%DabkaX;OB!(ol1@=a2IJ`}Qd#JG}ky zA;8j(!2xikKb`v24@#fT{=EK{(Dc4IMzJcQKr$O^W0`PHjsviC$6jO zd=#JU9$vHh8a+C-$Qt7{m?9c1n!5fiP2 z)?qO*EO;&nHB$?d0}{9-0_A6zl5o6A;+eY&?0d1za*B!(gT!hW*57QIkD5;9zJC2W z?(Z}|e|^A?6Q*xNc4MOsOw}U7?66+iWT8Ue75383O+tOl|Ci3-_X#ozM&yez-fd|Wp4C2$DPTloz|aU z-`;YNhbMgPMn=&Dj?nUQ;ib9$*!tqjwK4mP^v+^Oc&>aso@&T3bBK>mJMCQiC}Y*v z^gtkpt07nvw)FC+=+yDz8vo5|YHBz&73%i_cb*E8R7rAQm`)9kJ#BxBQjE>X$tiWX zDsU%mi-tu|J9(sG-CG=T#P{I0X9u=2Fvv^=?K+*1TRzd_-u2?Ty1M$lCV550{WrzM zkWkFWHPuyB#Sto;vNZH{j|7}}*x9zQE3k>tnZCKRm9rH|7~x|2^K-oFxA$_QR&CG4 ze*E~c@6Mh_BAzjR%TB`lP9q9BIy#)Tr>r}oCnqP994$h?MMXu8sFesT$KkKLBMudoTzt1Vb+{(tkm?+YT=GO|sUY{M zQwMhL+?hH&FzfH{pX&Vk$3;`qC-wa`H8n}UPZ(DPa0WZ8t21DuI^BK;$~j-WxDQ{u zP7kMEZ4VD;z_rf=G9{~)I}B;&FFDsyO3t}<_4Z0A#R#hS8!|`@>=JaD^h3!(9XJzy z_wMedBZm$p#!L8yvQg*R_n%GGEAnu2bBoB?x^?T_qN3CJ)}02)24~N1+QG!6nr%>) zl=~&~Tv&4Qeq<2QjGAK(cxYAn{h}s|+5&QJ%@nW|*Zu+IsgxA&8(w6NgD4H%>Qb+Hr0iz_>)@*3M zyq^s>yc@xYs4{OQlBiiznuerg%i+buATD7#nqXWaN{AvY$Uqv86=(OY+K#>gJio7nA|ngkZN^XRP+@Sx-xgNJ%Qu z+R7~87=XwW5fMpMprZ_ZcTrtWFGIDtzCKh^MO~h*Yb5{GpK+=q!@~+Flmw&G zpPaj0Q8e6%47o3}AOk0ZbKP4U2U$AG`RP{crooiQk8ukObaZSH*bM+P^M$m71$Bwi z`0mw#`u(X_0HXF$dry{VYigdUSekw)7n&Fz9*)HL*_YKrMzYT-3dxL&V(pWr_Hy@< zmbuJ#P8*Gfo8CM-&z0f>sNyv_dG+Gu%jrj2fo3ik8#mSH>*;+icCZ+*Z%9#W8oYMx z+Kb9c3LFwXr;%NF_IKXjKi2#GUD&nBpY*r`i(M9Sa_c9jrg(+Zxsi1SI&rIj3ld@M ziab@xZJH*Z9tlv9Z0zmT&ixn}$(oqMF(Ll;j=w+swrwezE91S@97m440ZxgvNJ)GB zT5=ydyIkzl)Rd8t(RHi#;@v=)626-v?(IKtKmq}J8)g8l=|Ox@Io2M-@o%yv?e z<1r`1p`2ZgGxw@7}!|cW_gR&gB((czBR%VxJY+bdwVs z?!Wz*+~_t{kL``$XU-O7A6vkYOmRowmf{n2(((?@2-}e(G>`ZlRCN$E6{&8UXla{g z$%P*%q-frI^e7Om0TxWdaq!@EHfqz3($hFDcSA!b^we%%x_nuJJxq)tJ?6yTW5<+S zL>J6zCem2gKYjeThV-`2F5hI^wr!lT_I7q867cC6Ny!^kzt(wsA@Oh;XDOhE$$u>J z@%?)rY;B8_kaF2lRzS)IkG?f&6M{eb`o!ocBOg3SZE9+0@WB(%ZN<}IYCUoM_!HZJ zn%nDn@@dsQSEPe>-NvS0z!LrZ{9epY4UvT#UJ-de(q1zD@l+=pKR*-F;>#Ez*W;+E z*IZqVv2#pYdiw7^e0XkPRLo@QSuR!M8ZqUCUZ0fC%Zj)=qsx~M>}T^_SvocStCb2z zIpVj?@}jdsjG&HO63xbqT|a;NAylw!ih~lob7d6f{i}N_xM7h@v_cQ08iDSG4Qq&6{s)Yqid4 zK3ejqE4VGwYkOeN_a8sL=(g5Ola+pUrt<12b4^5!|C(#Efpi{?fN66UbM&J}u{(Tn za=2bqR@zPtYUmZ&t?Be!5kmiT2S+8fEp;=cSnsH)Lzu)(@$0W%i3fUiXJ>e_@Y%%G zm(P`+$j2k36`m!frlvl>Hok{w(CX_|BW5W3`uh{n4DdM&GVIyA*A{!mux;C(g9q1z z9Z=G2Jr?Iu;UxOYt@?OXUNBMW3Dk1_@@3ynkA+_k)Edo;$C~#YI6ws`A&GWpd}X?B^UN>DXpa`F-#det$58Vk3 z4OPFT+%u zp`jUHUKs7|dE<{h`*uw(^0UGN?lmeZDonm1rB~2XP?A2x2%X#CUF14*6b&tfkWktE zq_;CSm6@2D3oOquY~OB-;8HEi$T++> zR!Q4*=NJbEwKp3Z4-dndHEUGoiXDc=@TX~w%!1dBfB5iW4B4a$c%JjUxVZS!YvUIH zpS9BU6RMh};2df%c93^rmzvZ6{M1Nd@>lD2 zs!h9I;M61)11Hs=V3*6EVy{SK#dIwSZlxH>3YPGxQ}B^_mu`l5Ou^ ziW0|P;+mS?c~XA00@yHp2GO1 zdGasRw7uNin@?Q&;Ds~l=I##mf{v9nI3QqSz|K=6H+|zZrnXzEFyx@&oSmH|@&F@` zDP0tgnRlfxZSU~6XEqKFnUgynJqB)NAqw@`vsLG;%QOalOKzPS{%E zS9ws)&{FGIh+zHv?t~bT8_YpQTNMx zYVq8X`4MA0R&9LdU!U%N5E;4Jx2Eh@2Zp658gu;b335Ke&YkCm7T#zpE-uY<=Aj=M z>?jlX*3uGs{W=-1d7~fln}qzm!|`ZMBIY#|cSha6FO5X77kw!=4^Ps)Bj@U)Pup`G zI~EKIh(Ng4DX9FOOqgAZICd+YFY_RM9Y9ekKIr1bi;_UQw>It&*UHjUNmbL;mFsk$ zVLpBOG%^M~;^1y}_OYe$YSt!UmV*Zm5)1);pJDx)HB?j$0DHXUv3n04^2ZrWa#F#K zMG}`nxll_zW!}iKS!(=2!&sKivs;oX852@BB6La|j{rB{1Op=*ulyOItGI66I!*_k zM`P2J^bw|cr^10zYsrDoR9AS{2%~y3$DllA;f__i@^2; zv5K7aSxb{ZkTGcNkz%6+oU&R*ubT8Hr*%5?`7@ybR1CBQHx;qCwDhj3>J}2U!(iiW z%?xcZ6B85SvcOH8$8ML}_O4yCb}g~)cYStDg4dq%nAp5AyJj(g?BnXNPO|v)`3ao8 zvGH*+7Z?6bEP{S4LM|kZ3J2>;mu|_1v3IvSb!zBT*VU;+y)=2@MJ6LBCyvGw*$6;l zyxGvRyFOXIUczC+w!<%Q2!YRUoqfb_)K?SXcl-8BL@WokR(Eoo{8zsY5N~>PoL6RmyWLma`(-ySk~2TZf|EM?z=Z)hjBntCV=?Wk+vPk zaN0Q+r1X6&8I4!W`Df@{?CiMN6(YSr-(;LCJZo7rku0MT_yBd~l!BsS-D4%z)DQLb zn+*&MkTFQg!UA$uR#`3j;h@-hvBrA;QjoMwkJfD17H8l8iQqEP%xD-`5%=l%Q;)nJ z{Jma@Bh7~GM;m8*lJPq)+uC*kGTcP>j3)&!=arYolX}+NoD&3G%E?2@KxxS?z*eNj zPWHA0sSRLX(>^LdQBhdvxYkR9veO%Qs^bMRt-<`x54gM3h9XMIcxCm|C9=315OC)$ zEd#%P)y~i>+B`5Y@DoQFJ53emcGOPMx+CI!U;RVp2xl%IALU+$G?+5n)CnC@6T`ZPsSEqiiRTO1;~PhS15x z=#yhQ!CwT2996((4=7RboTl93`GKJ3MwnNLmp{%wS!)8t&N zFjv$w@fcV^skq^fUSuEyZcjY%OyD4YK=ZZ(Y+F$s2$jRMwctqc)q#ZE3_N8t#3V0d zOkME?YsT7y6=xk6*-TS_uwk21+ z4nhiqzCRYYhl@*vlVD`C^h<6j3C~fIz?1kKt61EOS{s_u?LIrU8wq^;+vQlY+0Lsa z=L)Xe-AuRV6)HYN3L1C!DG5(}*!S<>Wn}4$^WSxLvI3W+4;_!()Ky-UcXNTM;Z|d# zIw9d8rlP$B51bW^+04Qc#ARH?hSn7Mpc3uNaVQIf90CYJ`dsGfMD!`MW8HoM0XJ^m zT=VMHtMlk)k^Lx0NM!VzH+%c}QKPQLfobwXMUM4cz74dXxkCaU-aR;|JG4-9^&xWi z%!!n(ZOxGdHipK-Q*po7`LR)R#`^g97+tv%fS5gx5_O!H_hvTd^|DK~qHv!l*v@COJ?&v!%R%O0( zhBxI%TQj4p(9f&nJ%BMlx%m^wlo!CDX=I(N@Nft4*v-kAR?qLvcK%cJ>Btk8KW(V4 z`SXk_$ZFTTU;UD?fshRwR2J)3FZkE$Ul2M7r?7B&mc)5}Z|v)~5sQE_76_CI(#YXW z4%7y)mmzG|lL`^tQsQsw)|AV4csecu;XDQ9?p ztzW46nQ;35@=3#fvdI&1V?Y_(8PwY5x=>;SeLyx)r zRRKGEP!B3>&Sf_^12^4z_RJoS$ef<`tgNc)ja4-{@CB4z{iArVaMx5gTDRoM_D&$vf=!j_%N~XF^#&b> zKe*SIpFh)q{P@}Mn0C`HKIP1lP*j4EV_tpz%6RG0rLl>LS3%4I>Vv!ZuTm#)T$q~( zydO67FE2nJ3baPsn?wErSMM4b*#!Inki-ai27PFq_6&N4$m2%j!^6YpFJ8QH>0{LH zKmAUVRdxzKj*JA_qflK_SNBe`{QXyG61X31Tz`{%X?aC;mrmDAh z_u4{ir(Cnf2-!(SQSl~VXZiBHMgBbY3MK1hW2#zRjONVxNo`XUE@u`c#!98%9S@KmMWjH#Db82*v0) zD{%sjpMOC*teZ!Tyj`T*juaaYU;tpUrmd}wpsDiA8rA|1BTB@LjJi*>y0Sp-TtoW$ z?Hd^h5&$7Lrm8*eK|z>BD&ayOwM)n)uZ1?#!bR8wNo}^)bD09WNA%jzU$p`Dfy)zA zvs3!7p;4q>zur46Y)e%zYp}OBxk9Wkvs#M6OJHLfNT3SQeDuJL)C3Fos{YQnRY&O# z6zOVIZ!Rnw9oVM*`}b3?TX!8hhQ-7btqgA!AC9;S-k5|SOU;rn;_oV(=|~@FBdsVF-2{{QSDfi%1=W+y{{_v_`kkO7Y&kdy`!+DI$u2 zm-d12ho*J6rnIzFhC!<4Vx!Q8X6WU&cp=4z?HB`$nCzJ_~s+JUSXgdt+nx zGBo^%0uWH(!J|%G4w9Qg%6|uS3lL&YL{V{ZsNT`XxbM`%Xjc&Pz|1K%y@171IGByk zZH;T*z746VjTKP>egy5Fsb8YWIoeqv0xVSrAf-|8?8-N8=mCgcje(rh52en(8(UI; zqHYrR0%d7(tXpEw9^En*UeN9oRGX3#685B80pT5FSkHa(y}z@|=N+&PNHs z@4(sUkiotmKSCj)@7TFh&B!QTu6;1N7b+;2dMx2hRh68>%<#9p5i7I3!Ky{MVu^DVUn3R$t$F&_C;px*lX$S7VC;H^T%6v{a z85vOz4`Fttn8WS*BrnHbEk>ZxIUPpZOMJmBTtM?-9(It!_o7glHSahAclY7L3iA(6 zT;7CyPT(him))Qc5Kg3;;Ad>q+67l0)VwCQY{?S?bq4AGDHK|!>aM=Nn_zNfVn2TP z05``eWH5B#66QOfd^-&ZIJM^Rm64GV5(!x}fK|kRv#_v`usNXB)-Ve|pAO?qW%xn0 z&(QW$+rX#E-#>a2(k#RUjb8W54!)O(LX*-E#7q(1-2CmEsGiv`c6Q8&^u#W} z9WbAe8#jEo6Hfd5aZ=Kg@Kcs8>V5WNVq}0V1kDsE@nod4f|fLk#8U^*q7ZqUjMaUT z9@dv`(AQ8&6F{3F!FY3ME){C@*+6kTm2ZN(odsc+TnnXk4N1^#R=M};bI1+P-4{+G z^nDQt8sDSq1UqD^Uqwku*Yj+gN3xTG}Ny(W@ct=339D?hR`4AC#RZ@9So;c6Yg{urh7VLmP2lo@Z1EtGxE zo-y_r3Vdk|9nUzzwwyR|BJjN>>OUlZLFb9@`PXXK^%Azb$RPhaoUCgdhP9o!>9%T= z{CZPmo?S+u?3(a{vs2B6^b8C)Xm*|?DZ3w##2Ip#83|lmbc0ZpfTBfoQtfR z0#=^7EPVkq0_J*3r*FtS@KYzUUZCyAM*=f94X9_iq5rg%xoY+14zl!bH(QXZ9rrJw zB|#pL0sv^bcX?GivYi-b>b^{X{g*Fau0rB$2}A!oxG1@&F^5g-ZCQAYBZZ3Yfk1rtp3I9r|f#Ap~J1r^$B*5 zu2(lV)IW{AbJD5}N)dJ2A5DP}jX+N)J1i|O(rw*(Q%Pir0p+hguRID4jCCZQv-%Ii z!;>a-=D17Iu9&uc*>31|o#^)gS8JABcj)QqAv^+c^iz+dkJx(LEijziRbje7;wiuh zb5BZ6ZZcmO?js%^^Be2Om(ZYOT7hAXCkXlF*}bsnHQrj}@V#&__L(wB=X;Y{D``ic zMzlT@ay^-wo0~LI;xu{z-O}fVhDvOE?2dk@_8}1wH&NEo!vWOSA=ayjQ2gU4GDbHN zdCEGbg`&TvHYz4ec@VXW2;8d!s#uL|AEdY{+-8!h)`JXKY@R3{U}k0x1UBlK>GYIF zEsiPjJSOKH{aEo~%0y5Q+E+x+D^T|?S&s`^JnHNhOA!z-Y~AX6e?MJ8a18!7g(#kN z*tRB?nkoaDRoC0pODfjJKTTQsIZ(|vkvN4{7VW9MK|c zj``xWx4frKFFrT92MP(@&Yk{Xgh2pTR##Jj*Cfa(-o#9o=9Fb%3v(Vk zctCJtvt2&41X7322%YHy7WCY%Z~gqtXz;o%?4`;J3MEAC4&a(T207msvPk@sC)8Mo z`3YrU1!GY9*I;@8`ns`S{$3a8X9DeQ-n^MmDPg9NqusH=JMN@^9UNu8;MZP!`m_n6 zLL~@{Iv{hHF81>9lZF&@4{kyf+632`5k8wP(k+^u>`lxkuP{R5 zU;V49D#8%>+-Z~r)Zg8Zkg*R1U?^|kOeTWcB82Il-d?Ut9~cS0nq?WC~U06f?YN#JAd#zlsdH6A+L= zU|0}2VDt8@auOA25&r6g|NgzS*=-lA%(wjgm;Xj${G0ig-yHJRf9v}B2O%o`$7i60 zv;D81@xNSg5TyElTybT2bY+mAGG*`cY;X$ceuUE6m}~O>ukV@N4-Te92|(J4n1Tbt z$k^Bi>Q66viKdQnI9>5G1A`9#Tk|zKMRxloRbE5$GHf|X%gj#+1r!MCet{zCDS!~i z9ZnHI144o=v}zxN&87$ajB~1`rh4-d+wtRc2^>ABG7j~^u3UfY!d7FAPZZ8Q&oyVwVEr+SeGB-8Dig-{0Xx#aFt(ha5WO; zA;qJRSINQ;93GwmvR?J|8lb;Nq3*#aRKW-uj9$NNvcT}BhlC`y*Yzxs&#D*~w%>hs z5uG`KOcC9@Uk)BVED5a)NRAAWnrr5$+b}-z<{1NHKpFLVFP*!DyW4|G#{cDkVf|i z;%+0b0U@NJjB+}J*Gj6*cJ$4O2i5Q)Y;jTt^x(fRgl6CClp?Dq&BmFWDv$gMA_PMk>cXwNc8mdKp_-RWY}Pa zhlOmhb7hGYxPoWYHmQkd;wMkT!dC@?42)J`WvjRt&!pp46i`@!qfE}LSbO= z?sTEm!lVH)wR!h(=9lh@3n&(3&~{)b?n2uRH?fM&zYz(Va>C#ccB3zWm0`H8XbURF zYlzE8fxdFB3uwj0D``c#z{ZOrpylM`koz~l5a~A8cb}SuMkAG#g=Leyy}iOC{;hzE zHy}8|w^WyHD6&iN8Xefv$`{uu#?kLyL61#nyC`3f^~p#C!U9b|+;0Gj5EEp2cJ{S| z?tkf0N|ll9)}_VYwT!2%cA=^tzwnxxjvo6!S)`YxIfDa7h=-u%j+=gFBX|U8V-iql zh~oyi9Xs`0w_j=id6$?SfSnuMFD^rHa;RE_NgjawTK^*_^E^exaHm4>NbC_!-}w$f zI(qf;B^j6kF$05`#@O)M^8`17=f&i^gj%r)dLCiWz5zxrJ}HUPx?<_%*;wH~qSXNM z1k9E|c_(yhi{>mN@YMD5gx(w!bPEa^A;F;8+=Dp%^5u*9f`D<=Mgmnc^Iv@duhed8 z@=eVA1gwP?M2|k4*Q4Wh)8-4=0jMhEqDbuy%(a54kxxsT0pHnwUV^-2pdOBsVvA(gaRY7@XE13$Qg2H48JNN+2`{YhlE%!{-WM zD2#)3RO4HWT`Vved&J!AYzWAG{c<;*IKEDu@yphBur;guxSkhpH@N z!h8A?L?w_e=rk2ATa{)Afg=<@#luT&dbFv(4G*j8-=nmOjeMn{bp4 z&WdPP?P$N|!uSQ7tpXwv_9Ze7&yX3ofUAIy&zqPes}`a^C3zt$$hG3E8Inlgi*AU= zht!~DLdv*~1!NeM>6$PjG3QsD&jvaGi;16b_8mQXl#%-)HI&JlK(+^ez~2Pdk^B^7 zOoVHu?Q=~jD8#T;RRehvR*0B?Y+IGKMqX!+0=x9O6k%d>BNa6-gL&M=yQc}{w-A5M({WM|%Y;Ky{Q4S7KU0o)o zlUJTN8f^?0@d0PNJa+)fh(7>p7YyUxuy7-d)fHMBPL6i6qFbYTleSXe0)r#T3&d3m zH;mhEm|Usve|EW+oP@&vgu6YH@ETZkmInfkBX1YfI37}EKQS}fDGj!RQ0LHLb)#I7 zl&8kC)|vFg@6y$5?{&jP^DJ96IX&my%qCD_UqQ2~SXmYT$AgMtGx1#(V=xjX)CS-^ z>vB!x1w9rS5xuV?4rviN4-4o4Lrq61*0KT)R?N_l6{ptxm-Dr2tNr3-6yeg9<$-j>)AwM0XRGeTx!;i(Pl4zN zBcrweKYs#lTt;3#-LAL+_6tm?V3A9q;?63|llG$A4;1?Bp{Ih^IIp<9O4KDp(tyP|j4hy3o@!9rJo{i>HG123d6$LYO6YdeXRhilL{2Uk{hGNDhCtssUG-#R3 zJ!REK8mpj8D6ZCVrV<|*_^t5(UPpozfr$bTDP-jQMpj|HGzrOBIM8xT>-G%HVj7GN z^b$rMcEB0S@yipdzR3NcDrsWCehmr2qqM0h2Mnw0NwCpK;Dft+dc2`fjpdbP)3JEJ zi40=Wm#-9NbZt4**_@Ez<AFFM!6W z=f|WM(GYQ;I6+vO0+@K$!?MDN!;O2=Hak~ibfLz7{0o{RqbY zPp`#*YQ=H*@M}a9TG&N%>&N^UQXnVQx2N`>{=`d9M@NEl&x}2rAUoc@lkJ;D4@DR2 zKD`5`tQ?s0;ZW}Z7x%T;;ShAWgj}J&OqxzdV}!L3+LEH8Bp6ayk&$|Vjv?#6gz7U6 zbFWDA^3#^pc`~^M8}cgiN{c#TCl6_v^X_=!KaJ^+@lOJy=&~sYViTsG^VZh1sEDbb zhzkIx5M4g7x6Re7;mbW4yLwcc41-|!7L}}jVY0>#?=JTU}h#a*N>Ly8NDr2zdoPEUn8OTfGnDCf>CJ}9H zzWG*EzsJ)riY9(Hc*6)W?s# zL!BTJAEwLJL%P}s)zpPn25!e6wXw7Z4m`eGwFA8eS~DZelM>c@v`rylVLmt}abQFs zLiqFC_?ezvE)H!}PhX!nNH`hb?79Hteqta9RH(k007RWxERE~pTe{~(MMj_zNM0D^ zOaROnIAPY$!5w%bRzj)7Y!DJfq-Qy^F>)Z1dG(IDV=HjriTBBG4$By6bXUy_4p zGKL=V+`fO)g$oxxmpa==*z;cfsZ8jLm}U}1Pk~xZOd<@omuz>RpS*j^HAm})Ad1o4}KsOCFO&oZ{2-vt)MN*RTG#?)}fS&it*AN^^>D#w&n>+OO^t^3teTYbT_x7zH zF++&lFo|MMW!@w z$va4R13}Wod<#l(FUNo}{vC$NKG^eA&{lD9bB7W`jmX^?-ddWeSjn_2!Ppo6fo!pa z@^%+yEchhrz~(6-;Df6i(p{q~U%i6tcqcGWqxFo*l9wMb3y0B0Gw@POt%NHRqjaGP z>?qqzu-ww=W7A+{KSgu`7#3Fb{GUC2GhTEN6{lWTR{9{_rsDB80w(dJqyR#M#>5yT zFB#r8e6KJ2FE2nRMS>7HJ*}UsMzoOYHuTN}c~7fzKHm!0H@ELNp}8~fTl1`IIM;M( z+QQPy&J)LiVhK;o!T!R_83ne6prADASJiV?kJ6_B6mRkw@GAak0jHa; zWiZ$DeD5gDU(?#Qy=TsfMrxWq%Z5>rBzpdQoMsD{oCS^wY3;v$1#W^>CxGR2KI+sS zj8)9d&FNZ%aZQh+UkA{8U%aW;kQg(7(T~$@`~{3?Qr9nAm^(>i-On`_!j}-6(M$^Mbj&L~+Yhwr`tr0fVYMiIKCn|ek zn@PZw7<>*I7QN6*rO*$;Row-M1sOxP{lMzBOxvwlOP;AqmMGoquy17(|3fcABmtLj z#>1mr&KdK61Q|9g1Dn&f%;{5 z!z0mTo(X0NM4`$vts_VM=Ck|mr#XFh^?{T{)+Jt7eCRcKl}(t1dPDkBJJF5d-0eHIHKJP!n&OfV&IBiRmr!Z1qD`(qWaG5&h|@~2&}j-N+UK)h=Kf^}YbXMm99KNRii^U61xv5HGd zTI{4{#gLf8&f1FW@TsCTB0Mx0NzTEY=J%nj1Dn2*wz(& zSY8@8;yzI%x;eD$a;=B(mzoQ;pFVvT>VEXVx&ODbr?AS5h)E4Y8Jcr`=ZT9-@D5eN zLfzv?J+{t{=Irj~&+Xn~sVQgV&YmoM_AL4RF{e{0*Sbo`FM@_^DRV8v{76P#UY=%b zXR$-Not<66r~Q~KgjcZz{p@ev?RqxXH*ZexblYxl&8U$#RJXkuL{?*CV-ng>r&eR~ z;tQC0w(=##vNd-x*wM6Ge&bF}5RW?ka?(p7>NP{gNXU0b(%GTTiV8>|og@8+4jpO& zv!L03f}2}iLu3ED$=i7jis-%*vhFqx77M%2%c%Z#z^hgKglK5$_Xf*^9gx3kK^<|g zc)MEZSUdIG2YJKmZZj~A^R@G$?p!WqpD4#~)467q>$a4g>p606rdPTJ#M-6wh@5@T zhOO|`Z(hs5^LeH0SF`$f@5WNKYQ3t=>Qd}=7}iK4f@x*Z~m$}ZrdZ-*ViZI zjz~O%wnL>k)3Cw-1t_z8xqM-y0q898Q^dV{oKT7Jdn*0?z=G%(&OBF5N*f# zl4fUD{Q9f8fUTcj+qGM8(+o>>u8H&dwfj>=O-!6!29gD7(7S2r+1?yMBds~(b2itV z7}#}Wqk9UQL8IG9oiuAc9>*|fu^;wu4(3o?_gaE&0Hj{)X!$}GGd1Nf%JE4eJh|Pgz}l#{aPJei^qkmF?MHK9KUTB>*;t*Y_^o4-daO)Jxft zi-Y@bTdu5msrB8vf=Bl*wT4<=zTE2Q;W7KW)KI{++(KL=%yqO(3*Ox%tJ3i^;4_Fl zBaA>~0Wt2=I!m=Hi@{KffBul5+?S)bKUyN|<-zYv#g)dvvSlt0wr0!8CFK|=UygMU zNSp0hAm2wvE!qC5rluZ^g9GRd3lzn{hR4BHCBIG{F(~C5EZ%xZ^Jlflat_|7ka-?s zjJ;I@5n2Yf2Y+4repecdds64ph?6e*qoZY$suZlEI=U17>a{~sF-;ZiR5LieeWRu*_iO$+z%5amVs_#9>0d` zZfu%Wf6p!w_xMi~Kg%)lIVij@wN#JusN<=aYiG#FXVn!I16y~$IPjL2@1|bmH&fG) zvzGlS!&e#>uE%sQu+Y88-ga2K>z_=aG1M#{>v>e)=@AG+o|qY)^>jE|vzo^_geF5K z1FdDO%l7AM$5IP<9n{7T#xgCkBZTK=20LSWDi1QSc`4<$xo`W4EsYk>ihp+LLx}jp zl$E|?m-Zi?6kJdD;_=}alWw{{NlC}zOXNZAP<73!8m+VOBr-R141E8SMjqMDK2=vS zaum9+Jy#>k6Hg)h=7%f}>ss9H&j9D&NdX(pdL#!bX?5^p1~y_b5fv-?^X;Qa(EeGM z-u^OO^!>9)n)jh+g73M^+#4yW#dmL$Q;wy=3t7xe?&huMqxP0J`nCxsG-P;rFTHDb z9kCVI$AZKS5t8+5=pcz{Yi-9Ncfq6kj)s30eM*JEC-a4-29>Mk`Tkbic>^5D^XK`gx0yu3Uy)#Su(UiuV0 z@Xxcm7cWs+jUTOb5hcY&9XIm+`@u`dA5fBub-Umq3~t)C*Hkcg&7buM+}odNa3tcs zyypt$*pscKZ_uTjM{KfXY2V8;k2ok?U!SxxOIx^Cd>`?7u+z40A`=!{Jv8EX{FC=e zf3USY64;+}i`Y{*@cudAA@qA+5vyS#R-;?)R`mC3eD?A3%2LtF>FB7gEaNx!tj5^u zz|N(!=m7@s`kT7M_Mo+v*ko*^UZk+TZovnImkG0e`jcMRs~5iy%j@QduV0&NT>ZiF zH9N5~%pm-|vZ#u(se9^LmxF?L8TF-W6UTr-U~T1}pq$e(PQ1GKJp5`}kyk|ag`Gl( zS!k9Y|9;SO&0$J%Teo7$qkj5V%Ix{R^siE6 z!lSQPHC!8E#=QyW!-n{8Kd+d*xnn6(P-lLj(@bz?GjXGMGsizS>Z$O^{3LVfqTN7~ z7Iy5>o7GslcFROIUF%_Qt#IOan?Hvr*50+l;)@Io&5!4$(N*@xh~PE{Pw{tX9a&}; z%6QuX?jV*({(tYPzsQM8GF#YX`eP2ckGiU!4T50^yDzN$Xxfzb1!LCi5ECdj(B*l@#;@Jyt!Z45o&JnaXiO((*5<8 zKcN_2%-=9`_o{i;CU@5Ho2yC0@8IwLhjqcSVM(5gJ~ULlG<&f}NA#Y5{%4PT--RXL z+>o5@CZ$_cKk2UQ_If+<#LUgj+x~TEqGmou?#|S=2$~taT>0|a)~A-Ojsnz-a7#1s znukMf41f4=$dM0Q6vTA=1y8i^_wTPeYP5*57(i^?3x{(Bkv)k{*7gspe$Ps6;m7y% zG}QLCyBAJQWy^0jymE)0skV1JkvmW_;ZU;^*f>jC%}^avP1$k+PICA4*@b4JTkGN; zbFJAhcF_NmFyD>UENDIdrSOAlNobz)iNJmjQN(g1nCpL{ZDyAMd)eHjSx2260x=6@ z#Ajr*k^Lz?KZIu55A5F;*_6GHsdmYmg{T^QHMt)=SbaCi9xFFJBX-9hA-rLAfBC9% zlbQ{}f>bj31RNTyAKlwWZKJL78M`3)o>;a|v-`&zgVF7shCt+K^{jia> z;di$Z@rVC45$Al&O`_SEL_w8=2a%TjxW6)c^$2`UMAj(NL^W2KU!}qyQ-fhf|ZKdD6jR?L*yg2Lch|s-~bC}2~ z#r$esi?h|pz}mFTj^wp$ z;rS;AW(bUiXFV4mY>+OV(wrCmY`avHB)}CROt#Cv=fUD|@ zoABz3YWmgX5tMAoS5GLcx}W;;t}nqqRq&l z%j3bG1T%bA{4QV6PkpM)#4TAo!f*C|o0=OQ%BMJzStW38 z68J#HNBkOSi86&(CL5H}6B5LU*^y7D`*+FKrBlsc<^^TXI^f%^?l%C(yFQ$IIt8qN}>M}H}5uC zCtW;QFW-7tc%K>WtavajJ<6X}wix6mCVg08wJ(^9`ka>@f~kCcyo!r>PgyPAmq$@A zVcaiDyO)T9%zhqT*+W`Up8HcvqswWpGOv-@N$`Pd$jOKY0n(4ZKid9kt5Snp}#qN1R?! z_R6E%xONI`Av(BU^)O6Kfua3L+$~0+h~4>Cka_3M`Y9Msnwl?Ny!a$7O)j*hECoEv z$7Y21Yi^)4=QkNwn@S1~3Vt1>xa?1!L<9A($#7*}YiZ0^1j7cslfA4f+Hhm$5iMNQ zht|zZ<4-LY0-8xyQ9`Z-e^;>~4`68x)afk;l5S8o%!rL&ew1jsKLr_948wDVO`% zyYt3-8?rvT&#Jj?0O#E3xiaH9gjo%Le#3L;4$0Ph`t$`RrF@8_Pijx`@|wYTSo}Ry zexEF;mPSx8=h|1G(ne*Q)#5cx5%=$JpCbH!TeodHqhIK;L; z)lDOY$uUR%C>CZ__(B*RtT3ii^ZtDU+Q@`Ys}1gQu{usA20%0|vj4Na1<~_w?JWSt zzqPk$ONsW@N;pVhB;-s`_>~e-AFBSsD965tYWn)76->T(|CqS|rnz~mmR>w;UlmPD zabZ^^zk%c+8dzx-=Y4~V*`7-lcq_=e4iGv^V1Qc?UXGCbe)l(L=onLxlP!RZDuj;$ zL+ttjbktw*d@aj=z^4m4d)co8G1n44j_RwbUXag~my>hpx{Fc~{ViZe!K3IaXk}+c zty|~jtfU#vU8``Mj`VJNwPw3s944UDU}#V`H%|kxl!@t)rHT6$jksMNxP98u?z&98 zJK%sZU~{|~1;wTrjXn{Pfh)}+%^EVPgEU<_3V1UPiX(B;X;A_F7Xdc%pV?Q^)Ze11H@PpXWngwjxGKoxP5Qk*TefDl5vGWLN@R0i--8~B&`r$T zD^{H&27-RpMA^U7$Jq_K33a6SQvcb3TF*_LM-L^AQV98zQvxaZ9+od26F+#WdD1P~ zKIpU(mdEseO8f43D*L$qW0f>el9n^D!7H}Awb91Xu7D!cyHZg;&@1sOz7}Sl2B&sIAaR z9{y^)!;=TTnM$NxrRpK!VH}sdB%b6OiWI8)cv`}aoC-fh6WP_(%C{ptewh2PwES~C zFg*SRs6)S$n5b%!BZZtWCJn{Qt`1Rp{2?m&HtX%x{-zzpHIjQuj ze)N|L2TAp5@bDpwI$E=RsT(~mkIa}qVz|kuyKsk{v~%5xZNfCC;T^1SgTmavdHfxF z1kl((B&nenk)7RoYQ~ZS|5w`d{^_y5PDGKfgR$I5*tp}ubN(qWMAMMje9(%t8+HEm z0Ag%!RXx$DQ1QC!IAZTI;d4$+Lu2Mc8I%WBPQXFpBE#>dDJ#dhM}vI2Z5j%?Bz znkXZuCSiBXfvP;ZAF2_FZr}YMlusPlo3Go?c~HA;4CirKz3u-|pL+O-$}!qZE}5fsZIK`wk3Y6AOvZE!!0UPIQr2kepG9Oxgti*OeOHP9T8r~t7ovsixnZ0Ja5 zLtmL66ANT2y|LZVAM5ja2ZJw&U?-)t@0Rb{*$A_en|WnG5TdmD?xXK*^y@`6w~V}CK2^?vt)i!w4?2U|2=5avP^6eiSPU5|2vOQ6W>KDiI{RzkIkES% z$dU7@?0n!&wVy|_8>ygci_N5wMx{|5t>ODyQgdq^^|1IOB4lVh7j)eoy^kOcsoUSk zr>a~6(9QCMH0t1ceb76F=U_R5S&%I^H(qVi^u8!T7mcY;)-wV2sO$VD@A7XL^a zS9Y_kSyND7e~E_O&HbkENd9wvG;-j{&%Cy5<$EGjMU_$5 z<)-21M_>Ky7BuHApgL8|r5gSUJu6y<{2c|a>^Yr=t0)(wr~)O}83(czEZFk>zrnp{ zWqw>(Rn{ zfPLTwjaw={o0|~jtoJU>Sn+$@9V}^~jEazn<5dkz8iHp06=S_jVm&zH7;f9<85KEy zWuYN&s|q!WIZtoG#839^VY~(2M}uIYbm&6ewYRq?z{TFdXw+pxgmDv4mwiBaLmI&q zq_MkVXT%s(YkZ%bXlVhQSD6-M3BPw)_-w1G53|N=qcv%dahw^Kc^pR=pmepJVr5{k zo@Y20wY^S%$Dnn|?w(4t>! zIb*Y)dH(!BLA~16IUU2ZgeDpab|3;$`PY~BA=}ywZ%|!rb=CV+U9A}3yiaYixK!1) znxti^HD?g`UA={|^ne`@!2Wo}8eY~JCA z-X5#Z^=8jOsVb61Yf{p*V4|cyl|k;kEg3VjygCgZ2Xs=L{8nd`B_*Mwb76bCOYUln z(1MD}tqWn{4K3?hpE`KysMOU}?CrONl>Mya=H^aZb@pP$Lv&xEn$%ysT><1DchFF8 zKSJ{SqNmwKitIrq$>x@NgDR=uXHqv!GqF)`l_MFf1`Q>J#C8XI`{O3Pjn~-Tu$aM- zWT&Pc^FxePf~OanQM=TH4~+==AQvhISvMXL4HcEw5Znk*DhIl5YOUp#*k)`uHh*HT z53rK&X1dBN9-3cko^D>V&#zkCnGWo%ztY*^b~w*&=Z0)9urK?*eA(t4+a~a-5JZI1 zuy9gEe!g4a*HtFgaihN!>j^EliTZlgyeqk)5gO~y^?r&G3a)rj+;^^zk(BJ}ZrkxtSD%h8ZFzG<8KkH8}}m6Fzub+&Fbe0pkjLHeltw}i8A79-Ehy69db>p>XYCJD}xtaW=- zj>E|_39btM$<2LIz!?EWs4EfS;a7Nh%WU;1nIy$L^%+?#YbF%TvwQ052JC$GaZz4H z##-t2YqQF>0*s$n8X7Esd~t7z2DXrP%pN&?1s8T$NJ!GbPX0j`4xwOD z*_g*2M3WCvZo6J}jk&@WHaL!!E#}V^lxyx%~d?9{No3o}mjf{oAv*zxI-?ht^rJ!s4;2BY!SY2wQ(T-?y^ZU3J zX%adJ#eL?w+XA+lg5!=Ixva>6`J7%F5EQwy$t}`Q$PsWV@nJ5iVsp@90}|x<$>&%5 zO5mjXFw)-L-OUY=xDar+fH4^&uKXd{B+;r$Beh1~@W2D2OPH| z_RHe6aU5hHRzpMnygnT_ZB(pCGgrOlR7c66X4lgb{W=AW-r#1{K!<78bW2e(i(YgU z5^Kt^5MhMy9(J>h316D*%*@QDspl3Z=68cxBr)@8^}cOQk8!#%z3F5Xo7xFPlc0lV z3lb(wzpDVUiZg?O=Z$+(USD)WS87AOLQ`KOlA&f7Z8!OJ?uL+a;Rg4uy!VVjq_oS` zYYK5q8EeC~9cEB_5IPg0XP-`HW{SVe{@qt3nyo7E#N5t&+sw9{PsX-Ok>d3Lh<#l+ z`fK;BAd_D)9`g5}Fw>~j(dR9mld&(!Y9=Sw))W8yn5TRYrz{`94|7#qRaZRkS`1rhy`TqID{kg>04k6IlEM$>`!ilBukFvTwdBFLp zLsJ$S)$4$e=O=w#2X__veyA!kDsDTzw2f^6XMV{QA3jI|!&L*SAgXFu7vpPraZg=WWezt?-o%+ zQwi>Uc72P(X8Xf0U(&fB>`v2NmV#_#t$|La#x>3}n1=TtGD4=xQBJ@idUgIe8wbTH zA4!?9-tWL1`)73kXi7&(gTMRiI}YkqNoR|aRUV@tIeDw=N>9(M zkdWYR*clhE%ZjlvN0Jj-rCFZ`eY{9#BU@tPiNAs^bvy*nl~(`<`dBo{IV}eu)XeZh z7^5%-gL!r0m;&Y&yNap-6u-uVizsE5M~$T%{4aleprosdhKkqkRogrVr*13Tbn^MP z7fP)Nh&s>@jI@lIY)y}TFCCTg(benVDx9b|N|aARKk{M8R>g=sons=T>jlUG>frt9AmB7F?YHYHnWpWmvIx4 zL)q-~4}lJEt{xQ(ykyr98D#l{3_tq9^he{(00O9;N2#d1r@NGkw%0yP@DH&c;Y#Rl zGjT`OuGac_B#u^uQb#NfL+^W!%-)#AhS$p^*tI?iyR8lZ6-5YTGcG*Le-%Nhb z&gs!|cFo0spM+}VIsuWBxD@XVP_yXkE)Aj~46a)qwMrry^L8=$|Tg|GJC@_4IlOC$xhHj zMZ`=1R^(tOmrSeDE^B`~@nGQB&hHXnBs1R^^B8BXr&g^?q)EZs`Kv`&fr0Tc^hj0P zVyVk@4vyCEYgUVm7ua2b%Wq&k+3E_VKK4YQJy)dmI*7M4&q3<;Y;=_dB_#KewgJuS|SOf7e7gRRVq z*26v>SvUT#3QH`aoFAE5238q)Cc0o4f2EAGY>?DENL|83161&9T=O=}JPvUh|LK#=pQp+I{8kP0JIz6}h)617GeSeLG5?a_Di|Wg_ zuJKQrQq8-l#~DP)-klBV!n#btDz2`Nqyuf<_FoYlx7LX-RM$Gc?#6kR5XF&Vud<69WkiihZOv?YXR zMAicBT3DwYU~yj;qnilTOeUD+ARtO&jgKjeh_}*p5_=g&r!g4ts&r#}hP{MF20%8* zirV_&a}Z*2{S3r&c^pNtgR!4`K4;yIZ!YOvb2doX{tyuXVRqMAM_G-SdW&eZ3LcUK zb)L_lU^upTqieJ{4}*CaS_or5VQ$WG)r~DM436yX&}Ezu3sXgp+V#FW#^*;mX~nNy zNy~`SX&KUfv1z9mYBjC>)z9l=sU#zoEa+`%XEEC=Umcws=-8Cs^aL7BAuDjGy zpqgX~o_%|BhcIV+B-C{@bVzFxshtYquH6?a8>Q)_wmBIpRs%7#F=1_Ix4udkqgZ7% zd7hD(*jL+!%F5-|Q(KSBX4*HUc(i$*O9eetwL^^rVdKuS#mAJA@|j$>3IEz~Z0&-N ztIU%dMVP*H`DxPF2@e$Y8O#(K&9fmYEu@OGPu1I`QWv%_?RjTaJXGxt^~H60Bc=GMbDI6@x#^t&4HP!IbPLUw-;zToEnq z%RfA;tErg@iB*LO^<|>Rch`d3&r&IKd$E`qK3c!h02i&m#MBzU^yTwDucEZl{cD+V ziW;WUKMRidVZr6G%(h;UF?{KoC_FvZsU4xNK7qGJM=?T36Eu2VS>;{J)%oc=4<;nY zgwRPzUfA?OKIt0q*Y6vP#%IksWw&=l*f;KQ+2(!-j&cqfqGb2MbStKPYmvwLJbJ{_ zYUGh|IssHCJ1kE793iT|BI>1So30!d>Dl=5J@dno{#jk+`@;0yela0Q-{j?0?k8{C zGI&zmB>aVnNQ%>njKQ=2S?+9ZmXnc^_nIz`E%WgwsWeOq`Ti$rGsQRdp~|XfMkvlX zo0vpPN~B|r!di7|oFjPBerqCt^ZB!CA5W=>$CGGf7FT-*p>Hy*y5Txe!lEPO7x2l+@sVlC zx|@3zry=5_-b|WY+OqrA;qKKqa=C-V0CoDcVGf1H!Po4~Y9*5MLK_6H)U4x`uI{GV zC@d+_a*^g_HS*4xs$TD46&;2y>ZH6$`a}EDYyPjAOC0l|G&x;4)zlWW97@6TtoEoi zwO906J}-Xjx-?(R^Nmq-f$V;L(N6v)x!@d4fAbzb{_OqiPQ1Z9+yPlNCBDJrw^_Rd zR@^j4wLM;<7iinpju4eWbGOcPRX+jB)R54i=Y3?v#n&5_Q>5B_NrcS5H=Z-@FZlYE z6W!{w)$_{Yq59W+mwjV7?@iKq@2>@wmAWpO1=9ZJ=4>2C@I-nYHwwGdG7KdYBV>cf zy8KwUuvL6rxm^HtDfIRz2w7h0!zD2brE zWzVQTenPvwW$6}wQ;FDf)^Jz6s**icMLE( zddWu^m}nVg{KV(L$nFfW6tWW82oj}Oj5aAb z_otZbJh{#c@%lKd%`{?4FYzm)E}bB|tp+tj(8Ar)Xry|EHne~>rq-@)cQEd@^sn#MdT-Hg;;9{ytR;ih1?kTqoo-2D3*Hdg@ zvX<#nW8f?4yCiVYNHrGIqefw>eos1m%T(=kSPzN1X*lB@(q=WKV@xtsIbTU)beisv zkh?1~ykAM!K2~vQ$>yY=DhaJn=46je8c4&u;2(qLuZ)Vidc+hv)`jP1S#1t{D(RM= z4Y?Nehwi`ZQCs7_tXL`%+eK0!bHlLy=h8@_(daCm<3f0z*J;w8Pa}y;8yo%Vca$@V zpP9#RrQW)%JDM5$QilJUUA3i*_Yczfmp2TIj;7sDB%Qy?Xkf3C()vAJpl!#lV%yO8y;-%_Z*s62bkiXKe54S$hal@I=!zMnLab zv=p!t;zAzhY|NJN^5OH{M2=8TBI+c zlP~NBgeMGU7C+1Odm<)VOwn6x(4Y0>V&-@d6?uj#9SQOAMuve2%*Db?(}5^rCYDo) zOqX`DRA#bs>wP}hP9<7xa0Zr%r3kUFRv#G;oW+{E0dlmTktTBA9qYNud9;P_*q1Mv z5H1O=Hk<(zl){?xG|77zV5$Se)lndDsr&Kga3ygo_b1MDQKxgC^Pgh6ag5(qPd4+K z*?cu?k&RM!R^-@Cyxt^S87zhznGIQvF~yVo*&f+~8FGwmPazha1147ul9^iubngVP4zl$Xz|p6N$ul_UJv)HE7@U-N78a` zpEK>q+O_U^xTu`@=6rfh7`Ci>O`&@F{6^^$g4wI&c}dtivHRKj?&77Vxg_tX(XXAG z>ORZyu3$$)C}#{$kyON?VMbw3P`qElLw@a%>Q;IADut|)l7V_IA-NQ@vOIZSU1sV9 z4S(~lD-ldeW;wyxy?UhN5645y+4OSm^WTpQ+A|EMzw^nwYrLk4L`hV}ysNWjBC+>P zjR1X&{===y6K&sLr(c&ip?Gu2ikOc-G&6}@k@Uhu)vWf7Ro(ZRc=YZ&4@6|!`UwH<);FdC* z&NJ~QU`EA<9$~<>@cVkQv%+N_h=88Nv$EoAjSXGjXd{)mr7l_MX^b9z_RtZr@Q53i`O~UjMj>*m<8fZ13K4+sg_% zyFu8ctOF&oC2%QqR|XufT)-TlC2JP$Fzo)oSS-ts-;cs8w7OFm#oS%1Ft^F`?dG>e z`^qovgn=b+)BCFCwRObmkQl`OShS+tjINE?IBz@ zBY28hDpxoN=_qd3fUbD`0+4Qofq+-d`iYH^(ahd+mMs0=#v9Oc(1nRI2&DYA3SVj$ z=?=lQK#=sw?CGSmXHPx)w7AUlcIFHKJ8z9-WwFc9cXHK}VWc|>$bC&Xkph^6Q5kJu zRf6a%Ejf_2UEKX7?(-o*Xd=N|x+yquzxMQ*wtlURznSsC`Qf)>UI5g1EdEk2_k%Gg}k9n-@o9m3@8223)sJs!s zkPgk6m7NfIYho00vP-c{%-WUi9D4@y4f{=tySg||ALsMsUS6`_**$4lpk`@EOw<)& zK;XCat#6IotNlK~?GyK<30IkH>{6c{b`Y_cwM1v^oZhw3|HLJWv zoP}<;lIjCn52SiwRIS({!hifEU?Qjuw7M+vW75A<3A`3LcS08G5B1ODon3kX8|=z)E9w02j|b=` zHKh6g>3IjjU0NG+1_42Zh3(vk&CllDH=?+QP@Tiaudit;ku#`0_xvh?jTg3A4w8A< zS}~~~+l+-0T>v<^ez=j0j}O$+@z+y2uZ@JevFOlhn1|J_lz(~*G+k_tm9UJEI+s8fQ>}X64?eg%L(lY zVDTTKkhtGc08phIkUHu)sdQ4>p6JUN+Cl(18FBR$75L}#9s)l^LINC6RCIK<+{B(} zDU@+CYXerm2@hr!Hefm2)w8oX$`s2C_yBh(2ryYnC|eI%%O!f469k2f)@bz-0F4Gm ze%4ETsazcR3|!H?+%lg&O}jbfnfGb|&!gR)bBp}&st*eQ3 zC$h6X1-jVHoSGgy93N@%){sl6! zIf-lsqADJ>040yHA;p)@%9?hAX0H>FZvWwuz$L1_83%fi)gb-ikjd?`u+|Sxva-55 zlUIcn&Hse)9)8}|?UomK(6(NhUVYQ>Kne^<{%UN0gf#(m+&dP1H?3KsBQKq#p&m=2 zhO2#$aum1rW#ZM7WVG(9K0P^6d`+jT;B|l>Kh7V173PQ^ z&Y!oDe(&A6L*U3@ogTrFwu&>C-^(rReEy@2jZ792T0hs{vmkbekx|9n-R)|@5HSeV z{eyDz;#KmZUCPrs!v#kCC; zfn4yPZ<3$&qkwgob34Y!VfP2`9?eX=RFSi*Ci?U*jQin;H~0XY<{VAffax`Xp*mML zxLyR{wqGwHghJ7T$=tl5_O6?yg)2Ik;dOrUu-YT{nwV#e;WfiH-2%&0~wvy1CKM%nA23d`fcZDo}j-Bco zqV6X*%o+)@O8bU|Jzkkl0Y0DKhD z7#v6%nvq;iZ=j{CVxG;{RLpDwhxuO^NMwD&qncuoV`AaT(P6k8C-&4#qdkt#HvP}* zz{U+4D*p`6tEcmAF>@IxKEC^#y@ECRmW1UxX04;mT*Kdgn&)s>e)_2pZWw&zh!ut0y@Pryd1BgjH2tTcRlANoe zIFtG(8}M)kb%9e|OUpPvxYoT5z^nT8pmq8eKJ?ehw{ijiba+TeC&mDznexz8-=*iBu89xFKNw{P=rDBUF;{Pyz;dzPd1+_3H3 zE)4sMK;(qgAu|HBjx4}bTzO^}a0PDFkOIJnnt@!U3!v+fQt2KbqtyW+1KN))GJwhG z1dYpl@LQh)E&*tX`EtR&Kz040D9G&EuCrI%-`iPXo4Ks;W|$4W2Z$y>f}oiTU`BWL z*KU?L-%y&!FPSN2?3BYGN!M>f`D%b0T_9@5>{6Nq|W9b>$0=tSVv*+0p^MP z9zV-@tVda7K*J^;4djbynCu8?dSk9z3IOwSG2;erVFyc*j7bO{dSC#+%>NvHK#D+U zG9dS84q~L0lL5@(v9Z~p+&L$*KP3{I51^-DP*;iocZrRXUj@o91>#}Fpc!<#A5?q~ zg#y65fl%bM@_Y;@!$d@wsiiS%NB>gNP>}$xK1#<#3#;zsqhc zkLiWkEtd3WmzLfJo#{StLLvI0QpH_&sC>QcnnNGgIipDJ+`tw0W06^1{qql4uU>s_ z>Ru;cF21|B64*ZilQpkh9`x0aEEiOcv%&CB24HOVJ={nk%EZ{XwDOYO2xwLaP}2AQRvCU6;5)6^uh9|1WY;9&G)=9jCM zg;{kfxiEKuP!19U@IGpL52&PQmp{DUQvu4(%%Da9#LMUW2LS9t7@^8DOO-j2o<9u| zPEj$bn46c68SMYW9&ng9emnG_iuDo=v}s=;9|cb3_O+nq+Lr#o$%zu;m4A2|%J92$ z!QuhI2f%y^#!LhC;upgwnzd?nQfY^rMZHir<>w#Q~sB2pIs@eN;H*G29Tx3#vm zejV3ExSn2(5+Jb2$8bo1+B_mE06WU#X$uf-Cs9khY{9?`L0KzHgtF_O7j zV|cq77R(HH!KH(~jbYo-&oORu|qmX<&ClZbRu# zGumtOjp(;P!C{Qrc>#hugmNC2zIMa=7V&#sno({L?)oz*z{BTHE&l?C7s-j(Ng!W1 z8oVEf;kJnU`{^Bq+p{6I9Vclx7m-Dz(}<6+0HGfcKNUqH*eXB1qTu~?_Rf+^igvQK zaJ0-Xjalyqe+Ue9SV-FPI|tML&%Hv)D@g}3yimI7@&aX-19!)%8$bTVIX=uQ7n>2< z=?`L01nT-{)NmBnYOqjZC-ESZt?CxPbJ#bBDdN8=#)qNi?R3Q`1o1yZnUzXkJx2={ z{jfCpiO&_l?tKrK+cvcf_t+8#+W)Wo@kTgMR3JHaThAQuB3d>3Pqars#N~S6UW8HC zj;)ZNa(4SqsHfy58aB5}CZY>Z>_Lrs^QTbYsICeo0L$?0A7Oy#8UEKh!m+Wf>E1(S zRaB&KO_RiQw4I3ux5khM`sxPOr0t!u*xF#-npUeF;h#X;8vgU|u_g@wU7~UK!p0Ko zh|O_#8V>`le?28?qC|kCe~W7C$pMfv!qxm~{J+9GH}gFg2>&Q)1SH3NY5o)2T@iJg z{YczxnSik5kxdwtq2#p{Xe1-<8~e?nZdYeV7+xD^At0hTw&4!dV&KOr^19QI(Cin3 z$H2d)m0z&s@D(bN2SGX6v%4!*&=CFiuN49M3>pwow*Iw*(*KR@jGWvjHR{5en^PfU z2D~^4&8-@Qr`ruzc(0iRXqh|B8mS_H4uX;yYTV@3y8v4RR<&QrCv5kT3#l)mKsUnQ zHb+D5#fx7|{HOm3?5>DTe(|M=J$badyUhydy9jLa&*;-dbW+VK&#qrbVuW)mD|R1+cO{x0AGDA`U$D;CHb)ZAD(TX#QkChUh|_O zp?#E&R?w~!cB?|D_{Dkujq6UEP`mf!y7bo7!93#|R8>;?M=S)Q<)icpkTcx(F7~Wr z6obYZ9Sv7PiqOB<#7M5zfYrjW>mD8j)Sj-T5v~Ln3tAp_Jmym*=i(q`d6 z0Q$#?(j^y8pFxJJAP~D@DmFG%+!yL`X~cA`r>oc9lIZ@_dVqv+-ODK&Qg^6=430p9 zlec}*Z=B)J+?|e=8Zs!TVNIrJT$L2+bpB7ApycJGrW|Uwp2>&KF(|qLUyL;SrQ$t3 zwxU1SB0u8c`5jePlO8IS5q~Dl#|QUl0o=~Nz}LTGSENq%=DzV*@T9&O!WXk^1N!cN z-lBh4qA*GW`nAw^zaipxAXar}`p=C7wHosJBIlkgki(KzDNQa5361=F!Ci=nnJ^&l zfQ2wFap39dNb^#C@8Ho-d!6XlPrN2^RqOnCxpdk)vs&n_iQ><)adR#cbo+Q1jZL5A z=5D0FnNk`VV>Bv%r^1=n{-UMq(}KeF=e)-yI6lS5vtw;f%75D4n<)3t)y0o|*lxe( zX4!va#_f8wqU-XRs~y{~>Yw8a-IVbM=(I{Ob(fy!$Vr;qJs2Rbj0pn2qaf6Q8CYBD zA9HVdZ_9<4QEKX7yW!RxDeAQFGNJV`Fks+gTwzH2Xmcf8~CLoig&Wy2DFqU)_S%l(#ebnnQ6$l4#?%R12TLn)xA0v~ z8YlOoIz&;A#2Fbu;-l*YMc4>iTY{Cn#EK;7fc@ucX6p_jzjE!h`%yqBTUDmRZT-NW0WMCo ze)22}uVI}H4stF(A7n|dDBu$DhKK3fLoSIDouY-pJR)QBuP?w|Q3l3m z*}py-%T0~o$Id(YzwZlsD|2?%G)K-WIH~{MS(lS5Cvc(Ej6$Vf@IwB%b`lFd2IQ;% z`!PM>_werrhN9U3f4w{ZnhJk?1pMn|hEI$9cuO4m0%~q<)&IIP{P7gn0}cK)?t{G$BEtxRDk>mCi3C08ZKqq$BXnAj03|qivKN%PAR=Dk znudT`_SP*mC#Q0-8Uqvg3@~Svl47#`niZqkq)t^xqyynHMdJEW-wUltvr*ukAl5|X6&(wgn* zI7yIDd<0%%_18|&v9h*-?`aw+t7FJs#>AL?vE-Qoy7II8WQfY&{i1-8uTyuKlBVcsDmGk zT8Hp%E@<|SX=dOH76XSu`;Q5+l7%`=Lz54JS8V{DWN?%20-qF9vv}rg}jsj z>hBU^slbGcV)yXyzzkOubw`6pf0X?tol3h$fk(8Uc)1(v^zinDV?3z-Z7KK?`G>E+npf-yBX0iQH(QGLI9&AStblLpN1ULz+K?2kg=fI)iZObRHEnnE@h z1i!S_kd{V#S1!wd@NsvxdX5?}xIt`NMg?GQKoO@>tRZLDe+oP$yYaVJFDUs`!tA~^ zlR~V9LDHvEBGLodyF>tt#MD;$~(EV)YMsU{d!bk&kWoh zFq;EUl2>496b`UGFv|vEv}R&iSVz6!0gB+(v;k`kKSqE9B*L!T-CVS#MAi&a?*Pzl z8dxMCFnpL9-GIoaDzil+AEp8*H*z7xEZBy!(dfSSKF3)z&yGT7 zE(!wCpc7#?s5@3=?zMBxKLxd^qt0@=KQNK3h0@-$MNigm}_HAq6tfIUq5y89)e=4o8L6Xth?? zh!oZVC@~}Idmt$AZF$++VPFLt-ijHiDw`ti78SqW{zMB30X@ZLst8FL*7EHroU8ZA zo`L5}DlmRqjEm;>8M+bbG1T|$5CdehZppA7Ft$R_i%=uTgKX7QVu0G)llmbJoIw2` zx>9W1Mh=;O1=ltJNI*j=2Tmb=D;k(%FnOUGVq#pea*-Pg*HpSy>ze9~8;`+bN@h#c z8<|dsavwZxtAWBsBhTBnBSCVRazZ@p_a3%5RyWqFB6J##We|JMfiex!hC4m=ETqtj8_n(1ULS^ftU;7=W?XdXx*<49b z%uIuAK=`4jre-vlcafeyuQl@s#)@7BR*}shH5u6zq=f0zAUk12o&E#PG()myu&hg< z-RAT3sVN*pvI+`)P*;LNpSgbH$|V>RIgl0swe~bP=nku7g@*nJKMLkE6e~Sc9z1xE zH_!BV=jqd@SLo@#KHdfM6P@Yn$liG`$Q2(qMAB~iyAj;W;^SRdGPz(-bom+YZ;0ra&SOkhRX5{!l(e@@L;$+872|9uJrR)U~j;zhyl%QxZiZ}DUbP?caQNIsLm4Fzl!C}7(2jy7Q5_R#J}|8 zS`7$`q(Tj;>gVweaMnXkl6YbF!Pl6Hx#*&MXRAigP;upZFZCi;${!K13@9AO0r8N# z)7R&g1e+)|M6msi&UU3e2cu}UyLT6gYo>R>pGZ^rtl%)L&JsAcqZYXp?^_I&<_$2s zlS9^4-QH##Y)Tohq3~OoP>UNp4+yZ)nnxUo!K*TXZ|MS&sGwI}T^&rXVuPkr8NYX3 z{9vU<5tX&4!N75a*GjEa;Wz;kVoPPC6+3t^Euen60V=|XZj0?;Er2Xw?VEux?OF9B z*5@Et86Lh1E0Vv|$i!qGc5rymMQ=Dd-jWj$7C5cygUzftNERUS-4F_ZH4Q=~gyXyw z^L_j=qNa&x9f4>Nh>n7|UpF9pl0oCN^5+EpPaXJnuo+5CSBTFBYmIF1s{z}=x>Gd5 zxgdH8@xZ6muiQz=V1FqGHl(4*dV$>^qD?i}HV`>8P3fRmgr}z`;>P>|$jy0d$913Z9XBp_ zUQ0*X#VLTieg=d18Ju0GfX-S}$>J0WBUk^Ri~@*A3PXzV{6-BQK9B>__Zp~}n?Qk@ z95%MI>T_C_&y+i+WRaaa>G7K*(A@Y}=m|gGBge)^e%(zZiu@D(3Mhs*3Vcy3 zqF~*fz2LBmBLWA9eIS*f(;HCS)xTeYLMe7OVBqhTSOo>|g33^~{TT4Xr@<>{u*5h5 z7qxN^K29_qy2sf-5bqUO^1qyLEtworsHw9o@C!?xA@LVg2WN9ZkP1BRbD;YB{l^at zHMMX^J#=Q+0nWq>^A|Me2MesA9Z@*6I0$aVBH1*kab1X{z4*^ROBQfknuT}RY!AbB z%I6aSkIoE=tVqimOae3DDJxr7uRa6u5}GY2gLHvOZW`!hA=?=^#;5_#57AfE&~;Ax z+)j+TNBsb_4ttb}f10z`#jurUPaO5}ZS`BOWH`L74|H>TM0NC<=9w4Nl## zaEJ{cbj@&oc0UtxQ^KEG_1D6qqcb7agk^?^^9(=1L+L)1n1!JhT2Otn1fdk2Or_1Y z05GAWN)*}O5=S%$?_S7i1KfQkAl(t^92ZcCE&*w2SfvM3J6NbC9|$76_(!UpRpFqm zIZ>Z!?+G?mJ+CE>XILS^w}`nnxF2HxWrGOLLb(Cy_k(klma?*P33X0prZngY^?hanp&f_v>X4I`&RpB0;E9tL`MKf^SIX_Qa&KVK z0o=Hx!|Y&_%F`?mL+tB-f!c%C5ol~`V&>-Vee}E!uB{WAH5-8K%ZBREqxn9_dPu0K z@*wWAfCS)$?d#u5=A=H9=#k6{BB5M1Jk5Hvo>Nonhx0*fMK zz=I9J851e8CIDLv)O*J;Hc%o9y7LBB9jv}zQ5KRG!jJ#&YxDnOS^x2;Yo2ZeIov;l SQ;^yjN=8EACR*&?lm7uatW{Y6 literal 0 HcmV?d00001 diff --git a/prueba1.py b/prueba1.py new file mode 100644 index 0000000..5659ad7 --- /dev/null +++ b/prueba1.py @@ -0,0 +1,21 @@ + +#Utilizando solo python elegir alguno de los siguientes problemas y solucionarlo (no use numpy) El archivo ejemplo.py contiene la solucion #al primer ejercicio. Puede utilizarlo para verificar su solucion o como ejemplo para resolver los demas. Los problemas fueron extraidos de #https://projecteuler.net/archives + +#a) Si hacemos una lista de todos los numeros naturales debajo de 10 que sean multiplos de 3 o 5 obtendriamos 3, 5, 6 y 9. La suma de los #multiplos es 23. Encuentre la suma de todos los multiplos de 3 y 5 debajo de 1000. +import numpy as np + +n=1000 +a= range(1,n) #defined as a list +suma=0 +for i in a: + if (i%3)==0 or (i%5)==0: + # print(i) + suma =suma+i + +print (suma) +# me dio 233168 + + + + +