diff --git a/Ej1a.py b/Ej1a.py new file mode 100644 index 0000000..4882df2 --- /dev/null +++ b/Ej1a.py @@ -0,0 +1,28 @@ + +#Utilizando solo python elegir alguno de los siguientes problemas y solucionarlo (no use numpy) El archivo ejemplo.py contiene la solucion #al primer ejercicio. Puede utilizarlo para verificar su solucion o como ejemplo para resolver los demas. Los problemas fueron extraidos de #https://projecteuler.net/archives + +#a) Si hacemos una lista de todos los numeros naturales debajo de 10 que sean multiplos de 3 o 5 obtendriamos 3, 5, 6 y 9. La suma de los #multiplos es 23. Encuentre la suma de todos los multiplos de 3 y 5 debajo de 1000. + +# Importamos la libreria con las funciones que se van a utilizar +import numpy as np + +# Aqui se define el numero a probar +n=1000 +# Se crea un vector que vaya de 0 a n-1 +a= range(1,n) #defined as a list +# Se define un valor auxiliar que sera la suma parcial +suma=0 +for i in a: +# Esta es la condicion se es multiplo de 3 o 5 hace lo que esta dentro del if + if (i%3)==0 or (i%5)==0: + # print(i) + suma =suma+i +# Imprime el valor final de la suma +print ("El valor final de la suma es = ",suma) +# ('El valor final de la suma es = ', 233168) + + + + + + diff --git a/Ej1b.py b/Ej1b.py new file mode 100644 index 0000000..7d81eb6 --- /dev/null +++ b/Ej1b.py @@ -0,0 +1,26 @@ + +# Importamos la libreria con las funciones que se van a utilizar +import numpy as np + +# Se definen los valores iniciales de las variables: suma, amin1, amin2 +suma = 0 +amin1=0 +amin2=1 +# Se define el corte en la serie de Fibonacci +corte=1000000 +# Valor inicial de la variable fibonacci +fibonacci=0 +while fibonacci < corte: +# Si fibonacci es impar hace la suma parcial del termino + if (fibonacci%2==1): + suma=suma+fibonacci +# print('La suma es: ',suma) +# Se actualizan los valores del termino de la serie fibonacci, amin1 y amin2 + fibonacci=amin1+amin2 +# print('El termino fibonacci es: ',fibonacci) + amin1=amin2 + amin2=fibonacci +# Se imprime el valor final de la suma +print("La suma total de los numeros impares de la serie de Fibonacci menores a ",corte," es ",suma) +#'La suma total de los numeros impares de la serie de Fibonacci menores a ', 1000000, ' es ', 1089153 + diff --git a/Ej1b_V2.py b/Ej1b_V2.py new file mode 100644 index 0000000..5e38375 --- /dev/null +++ b/Ej1b_V2.py @@ -0,0 +1,24 @@ + +# Importamos la libreria con las funciones que se van a utilizar +import numpy as np + +# Se definen los valores iniciales de las variables: suma, amin1, amin2 +suma = 0 +amin1=0 +amin2=1 +# Se define el corte en la serie de Fibonacci +corte=1000000 +# Valor inicial de la variable fibonacci +fibonacci=0 +while fibonacci < corte: +# Si fibonacci es impar hace la suma parcial del termino + if (fibonacci%2==1): + suma=suma+fibonacci +# Se actualizan los valores del termino de la serie fibonacci, amin1 y amin2 + fibonacci=amin1+amin2 + amin1=amin2 + amin2=fibonacci +# Se imprime el valor final de la suma +print("La suma total de los numeros impares de la serie de Fibonacci menores a ",corte," es ",suma) +#'La suma total de los numeros impares de la serie de Fibonacci menores a ', 1000000, ' es ', 1089153 + diff --git a/Ej1c.py b/Ej1c.py new file mode 100644 index 0000000..4132115 --- /dev/null +++ b/Ej1c.py @@ -0,0 +1,24 @@ + +# Importamos la libreria con las funciones que se van a utilizar +import numpy as np + +# Aqui se define el numero a descomponer en numeros primos +n=2*3*5*7 +print("n = ",n) +# El primer divisor de prueba se define 2, ya que todo numero es divisible por 1 +i=2 +# aux es un valor auxiliar que seria el ultimo cociente de la descomposicion con el ultimo numero primo +aux=n +# La condicion i <= n/2 se debe a que no va a haber ningun numero primo mayor a n/2 +while i <= n/2: +# print("i = ",i) + if aux%i==0: + aux=aux/i + max_div=i + print("max_div = ",max_div) + print("aux = ",aux) +# Se sube e 1 el divisor propuesto + i=i+1 +# Se imprime el ultimo valor del maximo divisor +print("max_div = ",max_div) + diff --git a/Ej1c_V2.py b/Ej1c_V2.py new file mode 100644 index 0000000..8b4b6c7 --- /dev/null +++ b/Ej1c_V2.py @@ -0,0 +1,21 @@ + +# Importamos la libreria con las funciones que se van a utilizar +import numpy as np + +# Aqui se define el numero a descomponer en numeros primos +n=600851475143 +print("n = ",n) +# El primer divisor de prueba se define 2, ya que todo numero es divisible por 1 +i=2 +# aux es un valor auxiliar que seria el ultimo cociente de la descomposicion con el ultimo numero primo +aux=n +# La condicion i <= n/2 se debe a que no va a haber ningun numero primo mayor a n/2 +while i <= n/2: + if aux%i==0: + aux=aux/i + max_div=i +# Se sube e 1 el divisor propuesto + i=i+1 +# Se imprime el ultimo valor del maximo divisor +print("max_div = ",max_div) + diff --git a/Ej2a.py b/Ej2a.py new file mode 100644 index 0000000..cd8975d --- /dev/null +++ b/Ej2a.py @@ -0,0 +1,34 @@ + +# Se importan las libreria con las funciones que se van a utilizar +import numpy as np +import matplotlib.pyplot as pp +from pylab import * + +fold='/home/janisaseba/Dropbox/documentos/cursos/TecnicasDeProgramacionCientifica/ejercicios/labdia1/mios' +# Se definen los valores de x e y +x=array([7,5,4,48,8,60,7,73,5,28,4,25,6,99,6,31,9,15,5,06]) +y=array([28,66,20,37,22,33,26,35,22,29,21,74,23,11,23,13,24,68,21,89]) + +# Grafico de los puntos en el plano x,y +fig=pp.figure() +pp.plot(x,y,"*",color='r',label='x vs y') +pp.title('Scatter plot y Vs. x') +pp.ylabel('y') +pp.grid(True) +pp.xlabel('x') +fig_fol=fold + '/xVsy_scatter.png' +print(fig_fol) +fig.savefig(fig_fol) +pp.show() +#m,b = np.polyfit(x, y, 1) +#yaux=x*m+b +##print(yaux) +##x_si=np.size(x) +##yaux_si=np.size(yaux) +##print("x.shape = ",x_si) +##print("yaux.shape = ",yaux_si) +##print(m) +##print(b) +#pp.plot(x, y, 'yo', x, yaux, '--r') +##plot(x, y, 'yo', x, m*x+b, '--k') +#pp.show() diff --git a/Ej2a_v2.py b/Ej2a_v2.py new file mode 100644 index 0000000..4f32297 --- /dev/null +++ b/Ej2a_v2.py @@ -0,0 +1,38 @@ + +# Se importan las libreria con las funciones que se van a utilizar +import numpy as np +import matplotlib.pyplot as pp +from pylab import * + +# Carpeta local +local_fol='/home/janisaseba/Dropbox/documentos/cursos/TecnicasDeProgramacionCientifica/ejercicios/labdia1/mios' +# Se definen los valores de x e y +x=array([7,5,4,48,8,60,7,73,5,28,4,25,6,99,6,31,9,15,5,06]) +y=array([28,66,20,37,22,33,26,35,22,29,21,74,23,11,23,13,24,68,21,89]) + +# Grafico de los puntos en el plano x,y +fig=pp.figure() +line1, =pp.plot(x,y,"*",color='b') +pp.title('Scatter plot y Vs. x') +pp.ylabel('Eje y') +pp.grid(True) +pp.xlabel('Eje x') +# direccion donde se va a guardar la figura +fig_fol=local_fol + '/xVsy_scatter.png' +# Se guarda la figura +fig.savefig(fig_fol) + +# Calculo de los coeficientes del ajuste lineal +m,b = np.polyfit(x, y, 1) +# Calcuo de valor de "y" segun el ajuste +yaux=x*m+b +# Grafico de los valores interpolados +line2, =pp.plot(x,yaux, '--r') +pp.legend([line1,line2], ['Valores Originales', 'Valores Interpolados']) +fig_fol2=local_fol + '/x-y_Vs_xyinterpolated_scatter.png' +# Se guarda la figura +fig.savefig(fig_fol2) +pp.show() + + + diff --git a/Ej3a.py b/Ej3a.py new file mode 100644 index 0000000..5c7c132 --- /dev/null +++ b/Ej3a.py @@ -0,0 +1,44 @@ +# Se importan las libreria con las funciones que se van a utilizar +import numpy as np +import matplotlib.pyplot as pp + +# Carpeta local +local_fol='/home/janisaseba/Dropbox/documentos/cursos/TecnicasDeProgramacionCientifica/ejercicios/labdia1/mios' +# Variable independiente - vector x +x=np.arange(-10,10,0.1) +# Coeficientes del polinomio en orden decreciente +pol=np.array([1,1,-4,4]) +# Se evalua el poliinomio en los valores de x +pol_val=np.polyval(pol,x) +# Calculo de la derivada. El primer argumento de polyder es el polinomio, el segundo es el orden de la derivada +pol_der=np.polyder(pol,1) +# se evalua la derivada en x +pol_der_val=np.polyval(pol_der,x) + +# Grafico del polinomio y su derivada en funcion de x +fig=pp.figure() +line1, =pp.plot(x,pol_val,".-",color='b') +line2, =pp.plot(x,pol_der_val,".-",color='r') +pp.title('Grafico del Polinomio y su derivada') +pp.ylabel('Eje y') +pp.grid(True) +pp.xlabel('Eje x') +pp.legend([line1,line2], ['Valores del Polinomio', 'Valores de la Derivada']) +fig_fol=local_fol + '/PolinomioYDerivada.png' +fig.savefig(fig_fol) +pp.show() + +# Se ordenan las variables en columnas +c=zip(x,pol_val,pol_der_val) +# Escritura de las variables en un archivo de texto +np.savetxt("PolAndDer.txt", c, delimiter=' ', header=" Valores de x Valores del Polinomio Valores de la Derivada", comments="") + + + + + + + + + + diff --git a/PolAndDer.txt b/PolAndDer.txt new file mode 100644 index 0000000..c80aef1 --- /dev/null +++ b/PolAndDer.txt @@ -0,0 +1,201 @@ + Valores de x Valores del Polinomio Valores de la Derivada +-1.000000000000000000e+01 -8.560000000000000000e+02 2.760000000000000000e+02 +-9.900000000000000355e+00 -8.286890000000001919e+02 2.702300000000000182e+02 +-9.800000000000000711e+00 -8.019520000000001119e+02 2.645200000000000387e+02 +-9.700000000000001066e+00 -7.757830000000002428e+02 2.588700000000000614e+02 +-9.600000000000001421e+00 -7.501760000000003856e+02 2.532800000000000864e+02 +-9.500000000000001776e+00 -7.251250000000004547e+02 2.477500000000001137e+02 +-9.400000000000002132e+00 -7.006240000000004784e+02 2.422800000000001148e+02 +-9.300000000000002487e+00 -6.766670000000005984e+02 2.368700000000001182e+02 +-9.200000000000002842e+00 -6.532480000000007294e+02 2.315200000000001523e+02 +-9.100000000000003197e+00 -6.303610000000006721e+02 2.262300000000001887e+02 +-9.000000000000003553e+00 -6.080000000000007958e+02 2.210000000000001990e+02 +-8.900000000000003908e+00 -5.861590000000007876e+02 2.158300000000001830e+02 +-8.800000000000004263e+00 -5.648320000000009031e+02 2.107200000000002262e+02 +-8.700000000000004619e+00 -5.440130000000009431e+02 2.056700000000002433e+02 +-8.600000000000004974e+00 -5.236960000000010496e+02 2.006800000000002342e+02 +-8.500000000000005329e+00 -5.038750000000010232e+02 1.957500000000002558e+02 +-8.400000000000005684e+00 -4.845440000000010627e+02 1.908800000000002797e+02 +-8.300000000000006040e+00 -4.656970000000011396e+02 1.860700000000003058e+02 +-8.200000000000006395e+00 -4.473280000000011682e+02 1.813200000000003058e+02 +-8.100000000000006750e+00 -4.294310000000012337e+02 1.766300000000003081e+02 +-8.000000000000007105e+00 -4.120000000000012506e+02 1.720000000000003411e+02 +-7.900000000000007461e+00 -3.950290000000012469e+02 1.674300000000003479e+02 +-7.800000000000007816e+00 -3.785120000000012510e+02 1.629200000000003570e+02 +-7.700000000000008171e+00 -3.624430000000012910e+02 1.584700000000003399e+02 +-7.600000000000008527e+00 -3.468160000000013383e+02 1.540800000000003820e+02 +-7.500000000000008882e+00 -3.316250000000013642e+02 1.497500000000003979e+02 +-7.400000000000009237e+00 -3.168640000000013401e+02 1.454800000000003877e+02 +-7.300000000000009592e+00 -3.025270000000013511e+02 1.412700000000003797e+02 +-7.200000000000009948e+00 -2.886080000000013683e+02 1.371200000000004025e+02 +-7.100000000000010303e+00 -2.751010000000013633e+02 1.330300000000004275e+02 +-7.000000000000010658e+00 -2.620000000000014211e+02 1.290000000000004263e+02 +-6.900000000000011013e+00 -2.492990000000013993e+02 1.250300000000004275e+02 +-6.800000000000011369e+00 -2.369920000000013545e+02 1.211200000000004451e+02 +-6.700000000000011724e+00 -2.250730000000013717e+02 1.172700000000004650e+02 +-6.600000000000012079e+00 -2.135360000000013940e+02 1.134800000000004587e+02 +-6.500000000000012434e+00 -2.023750000000013642e+02 1.097500000000004547e+02 +-6.400000000000012790e+00 -1.915840000000013674e+02 1.060800000000004673e+02 +-6.300000000000013145e+00 -1.811570000000013181e+02 1.024700000000004820e+02 +-6.200000000000013500e+00 -1.710880000000013297e+02 9.892000000000047066e+01 +-6.100000000000013856e+00 -1.613710000000013167e+02 9.543000000000046157e+01 +-6.000000000000014211e+00 -1.520000000000013074e+02 9.200000000000048317e+01 +-5.900000000000014566e+00 -1.429690000000012731e+02 8.863000000000049283e+01 +-5.800000000000014921e+00 -1.342720000000012703e+02 8.532000000000049056e+01 +-5.700000000000015277e+00 -1.259030000000012421e+02 8.207000000000047635e+01 +-5.600000000000015632e+00 -1.178560000000012309e+02 7.888000000000049283e+01 +-5.500000000000015987e+00 -1.101250000000012079e+02 7.575000000000051159e+01 +-5.400000000000016342e+00 -1.027040000000012014e+02 7.268000000000048999e+01 +-5.300000000000016698e+00 -9.558700000000115438e+01 6.967000000000049909e+01 +-5.200000000000017053e+00 -8.876800000000113755e+01 6.672000000000049624e+01 +-5.100000000000017408e+00 -8.224100000000110811e+01 6.383000000000049567e+01 +-5.000000000000017764e+00 -7.600000000000108002e+01 6.100000000000049738e+01 +-4.900000000000018119e+00 -7.003900000000105308e+01 5.823000000000049425e+01 +-4.800000000000018474e+00 -6.435200000000102705e+01 5.552000000000049340e+01 +-4.700000000000018829e+00 -5.893300000000098748e+01 5.287000000000049482e+01 +-4.600000000000019185e+00 -5.377600000000096969e+01 5.028000000000049141e+01 +-4.500000000000019540e+00 -4.887500000000093081e+01 4.775000000000049027e+01 +-4.400000000000019895e+00 -4.422400000000089904e+01 4.528000000000048431e+01 +-4.300000000000020250e+00 -3.981700000000086703e+01 4.287000000000048061e+01 +-4.200000000000020606e+00 -3.564800000000083458e+01 4.052000000000047919e+01 +-4.100000000000020961e+00 -3.171100000000079433e+01 3.823000000000047294e+01 +-4.000000000000021316e+00 -2.800000000000076739e+01 3.600000000000046896e+01 +-3.900000000000021672e+00 -2.450900000000073575e+01 3.383000000000046725e+01 +-3.800000000000022027e+00 -2.123200000000070276e+01 3.172000000000046072e+01 +-3.700000000000022382e+00 -1.816300000000066817e+01 2.967000000000044935e+01 +-3.600000000000022737e+00 -1.529600000000063176e+01 2.768000000000044736e+01 +-3.500000000000023093e+00 -1.262500000000059330e+01 2.575000000000044054e+01 +-3.400000000000023448e+00 -1.014400000000055790e+01 2.388000000000043244e+01 +-3.300000000000023803e+00 -7.847000000000525333e+00 2.207000000000042306e+01 +-3.200000000000024158e+00 -5.728000000000491809e+00 2.032000000000041595e+01 +-3.100000000000024514e+00 -3.781000000000457106e+00 1.863000000000040757e+01 +-3.000000000000024869e+00 -2.000000000000422773e+00 1.700000000000039790e+01 +-2.900000000000025224e+00 -3.790000000003903580e-01 1.543000000000038696e+01 +-2.800000000000025580e+00 1.087999999999644807e+00 1.392000000000037829e+01 +-2.700000000000025935e+00 2.406999999999675843e+00 1.247000000000036835e+01 +-2.600000000000026290e+00 3.583999999999709196e+00 1.108000000000035712e+01 +-2.500000000000026645e+00 4.624999999999740652e+00 9.750000000000346390e+00 +-2.400000000000027001e+00 5.535999999999771326e+00 8.480000000000334381e+00 +-2.300000000000027356e+00 6.322999999999801446e+00 7.270000000000322871e+00 +-2.200000000000027711e+00 6.991999999999830351e+00 6.120000000000310081e+00 +-2.100000000000028066e+00 7.548999999999859156e+00 5.030000000000297788e+00 +-2.000000000000028422e+00 7.999999999999886313e+00 4.000000000000284217e+00 +-1.900000000000028777e+00 8.350999999999912049e+00 3.030000000000270255e+00 +-1.800000000000029132e+00 8.607999999999938368e+00 2.120000000000256790e+00 +-1.700000000000029488e+00 8.776999999999961943e+00 1.270000000000242046e+00 +-1.600000000000029843e+00 8.863999999999986557e+00 4.800000000002269118e-01 +-1.500000000000030198e+00 8.875000000000007105e+00 -2.499999999997886135e-01 +-1.400000000000030553e+00 8.816000000000027370e+00 -9.199999999998045297e-01 +-1.300000000000030909e+00 8.693000000000047578e+00 -1.529999999999820837e+00 +-1.200000000000031264e+00 8.512000000000064404e+00 -2.079999999999837534e+00 +-1.100000000000031619e+00 8.279000000000081627e+00 -2.569999999999854623e+00 +-1.000000000000031974e+00 8.000000000000095923e+00 -2.999999999999872102e+00 +-9.000000000000323297e-01 7.681000000000109296e+00 -3.369999999999889972e+00 +-8.000000000000326850e-01 7.328000000000120195e+00 -3.679999999999908233e+00 +-7.000000000000330402e-01 6.947000000000129738e+00 -3.929999999999927329e+00 +-6.000000000000333955e-01 6.544000000000137263e+00 -4.119999999999946816e+00 +-5.000000000000337508e-01 6.125000000000143885e+00 -4.249999999999966249e+00 +-4.000000000000341061e-01 5.696000000000147168e+00 -4.319999999999986073e+00 +-3.000000000000344613e-01 5.263000000000149114e+00 -4.330000000000007176e+00 +-2.000000000000348166e-01 4.832000000000149065e+00 -4.280000000000027782e+00 +-1.000000000000351719e-01 4.409000000000146358e+00 -4.170000000000049667e+00 +-3.552713678800500929e-14 4.000000000000142109e+00 -4.000000000000071054e+00 +9.999999999996411759e-02 3.611000000000135213e+00 -3.770000000000093276e+00 +1.999999999999637623e-01 3.248000000000126342e+00 -3.480000000000115890e+00 +2.999999999999634070e-01 2.917000000000114390e+00 -3.130000000000138893e+00 +3.999999999999630518e-01 2.624000000000100474e+00 -2.720000000000162288e+00 +4.999999999999626965e-01 2.375000000000083933e+00 -2.250000000000186517e+00 +5.999999999999623412e-01 2.176000000000064993e+00 -1.720000000000210694e+00 +6.999999999999619860e-01 2.033000000000042995e+00 -1.130000000000235705e+00 +7.999999999999616307e-01 1.952000000000018165e+00 -4.800000000002611067e-01 +8.999999999999612754e-01 1.938999999999991175e+00 2.299999999997135447e-01 +9.999999999999609201e-01 1.999999999999960920e+00 9.999999999996873612e-01 +1.099999999999960565e+00 2.140999999999928072e+00 1.829999999999660787e+00 +1.199999999999960210e+00 2.367999999999891969e+00 2.719999999999633822e+00 +1.299999999999959854e+00 2.686999999999852839e+00 3.669999999999606466e+00 +1.399999999999959499e+00 3.103999999999810466e+00 4.679999999999578719e+00 +1.499999999999959144e+00 3.624999999999765077e+00 5.749999999999550582e+00 +1.599999999999958789e+00 4.255999999999716898e+00 6.879999999999521165e+00 +1.699999999999958433e+00 5.002999999999664382e+00 8.069999999999492246e+00 +1.799999999999958078e+00 5.871999999999609088e+00 9.319999999999463824e+00 +1.899999999999957723e+00 6.868999999999550354e+00 1.062999999999943412e+01 +1.999999999999957367e+00 7.999999999999488409e+00 1.199999999999940314e+01 +2.099999999999957012e+00 9.270999999999423480e+00 1.342999999999937089e+01 +2.199999999999956657e+00 1.068799999999935224e+01 1.491999999999934090e+01 +2.299999999999956302e+00 1.225699999999928025e+01 1.646999999999930964e+01 +2.399999999999955946e+00 1.398399999999920240e+01 1.807999999999927709e+01 +2.499999999999955591e+00 1.587499999999912248e+01 1.974999999999924682e+01 +2.599999999999955236e+00 1.793599999999904071e+01 2.147999999999921172e+01 +2.699999999999954881e+00 2.017299999999895022e+01 2.326999999999917890e+01 +2.799999999999954525e+00 2.259199999999885833e+01 2.511999999999914479e+01 +2.899999999999954170e+00 2.519899999999875817e+01 2.702999999999910941e+01 +2.999999999999953815e+00 2.799999999999866063e+01 2.899999999999907629e+01 +3.099999999999953459e+00 3.100099999999855527e+01 3.102999999999904190e+01 +3.199999999999953104e+00 3.420799999999844943e+01 3.311999999999900268e+01 +3.299999999999952749e+00 3.762699999999833267e+01 3.526999999999897284e+01 +3.399999999999952394e+00 4.126399999999821233e+01 3.747999999999893106e+01 +3.499999999999952038e+00 4.512499999999809575e+01 3.974999999999889866e+01 +3.599999999999951683e+00 4.921599999999796893e+01 4.207999999999886143e+01 +3.699999999999951328e+00 5.354299999999783921e+01 4.446999999999881936e+01 +3.799999999999950973e+00 5.811199999999769972e+01 4.691999999999878668e+01 +3.899999999999950617e+00 6.292899999999755778e+01 4.942999999999874916e+01 +3.999999999999950262e+00 6.799999999999741362e+01 5.199999999999870681e+01 +4.099999999999949907e+00 7.333099999999726037e+01 5.462999999999866674e+01 +4.199999999999949551e+00 7.892799999999711247e+01 5.731999999999862894e+01 +4.299999999999949196e+00 8.479699999999695592e+01 6.006999999999858630e+01 +4.399999999999948841e+00 9.094399999999677675e+01 6.287999999999854595e+01 +4.499999999999948486e+00 9.737499999999661782e+01 6.574999999999850786e+01 +4.599999999999948130e+00 1.040959999999964367e+02 6.867999999999845784e+01 +4.699999999999947775e+00 1.111129999999962479e+02 7.166999999999842430e+01 +4.799999999999947420e+00 1.184319999999960658e+02 7.471999999999837883e+01 +4.899999999999947065e+00 1.260589999999958764e+02 7.782999999999833562e+01 +4.999999999999946709e+00 1.339999999999956799e+02 8.099999999999829470e+01 +5.099999999999946354e+00 1.422609999999954766e+02 8.422999999999825604e+01 +5.199999999999945999e+00 1.508479999999952668e+02 8.751999999999820545e+01 +5.299999999999945643e+00 1.597669999999950505e+02 9.086999999999815714e+01 +5.399999999999945288e+00 1.690239999999948566e+02 9.427999999999811109e+01 +5.499999999999944933e+00 1.786249999999946283e+02 9.774999999999808153e+01 +5.599999999999944578e+00 1.885759999999943943e+02 1.012799999999980258e+02 +5.699999999999944222e+00 1.988829999999941549e+02 1.048699999999979724e+02 +5.799999999999943867e+00 2.095519999999939103e+02 1.085199999999979354e+02 +5.899999999999943512e+00 2.205889999999936606e+02 1.122299999999979008e+02 +5.999999999999943157e+00 2.319999999999934062e+02 1.159999999999978400e+02 +6.099999999999944578e+00 2.437909999999933746e+02 1.198299999999978667e+02 +6.199999999999942446e+00 2.559679999999928555e+02 1.237199999999977393e+02 +6.299999999999940314e+00 2.685369999999923607e+02 1.276699999999976285e+02 +6.399999999999941735e+00 2.815039999999923452e+02 1.316799999999976478e+02 +6.499999999999943157e+00 2.948749999999922693e+02 1.357499999999976694e+02 +6.599999999999941025e+00 3.086559999999917636e+02 1.398799999999975512e+02 +6.699999999999938893e+00 3.228529999999911979e+02 1.440699999999974352e+02 +6.799999999999940314e+00 3.374719999999911124e+02 1.483199999999974352e+02 +6.899999999999941735e+00 3.525189999999911379e+02 1.526299999999974659e+02 +6.999999999999939604e+00 3.679999999999905640e+02 1.569999999999973568e+02 +7.099999999999937472e+00 3.839209999999899310e+02 1.614299999999972215e+02 +7.199999999999938893e+00 4.002879999999898928e+02 1.659199999999972306e+02 +7.299999999999940314e+00 4.171069999999897959e+02 1.704699999999972704e+02 +7.399999999999938183e+00 4.343839999999891575e+02 1.750799999999971419e+02 +7.499999999999936051e+00 4.521249999999885176e+02 1.797499999999969873e+02 +7.599999999999937472e+00 4.703359999999884735e+02 1.844799999999970339e+02 +7.699999999999938893e+00 4.890229999999884285e+02 1.892699999999970544e+02 +7.799999999999936762e+00 5.081919999999877291e+02 1.941199999999969066e+02 +7.899999999999934630e+00 5.278489999999870861e+02 1.990299999999967611e+02 +7.999999999999936051e+00 5.479999999999870397e+02 2.039999999999968168e+02 +8.099999999999937472e+00 5.686509999999869933e+02 2.090299999999968463e+02 +8.199999999999935341e+00 5.898079999999861229e+02 2.141199999999966792e+02 +8.299999999999933209e+00 6.114769999999853098e+02 2.192699999999965428e+02 +8.399999999999934630e+00 6.336639999999853217e+02 2.244799999999965792e+02 +8.499999999999936051e+00 6.563749999999853344e+02 2.297499999999966178e+02 +8.599999999999933920e+00 6.796159999999844104e+02 2.350799999999964598e+02 +8.699999999999931788e+00 7.033929999999836582e+02 2.404699999999963040e+02 +8.799999999999933209e+00 7.277119999999836182e+02 2.459199999999963495e+02 +8.899999999999934630e+00 7.525789999999835800e+02 2.514299999999963688e+02 +8.999999999999932498e+00 7.779999999999827196e+02 2.569999999999962483e+02 +9.099999999999930367e+00 8.039809999999816910e+02 2.626299999999960733e+02 +9.199999999999931788e+00 8.305279999999817164e+02 2.683199999999960710e+02 +9.299999999999933209e+00 8.576469999999816309e+02 2.740699999999961278e+02 +9.399999999999931077e+00 8.853439999999807242e+02 2.798799999999959596e+02 +9.499999999999928946e+00 9.136249999999796501e+02 2.857499999999957936e+02 +9.599999999999930367e+00 9.424959999999797446e+02 2.916799999999958573e+02 +9.699999999999931788e+00 9.719629999999797292e+02 2.976699999999958663e+02 +9.799999999999929656e+00 1.002031999999978666e+03 3.037199999999957072e+02 +9.899999999999927525e+00 1.032708999999977550e+03 3.098299999999955503e+02 diff --git a/PolinomioYDerivada.png b/PolinomioYDerivada.png new file mode 100644 index 0000000..b209626 Binary files /dev/null and b/PolinomioYDerivada.png differ diff --git a/prueba1.py b/prueba1.py new file mode 100644 index 0000000..5659ad7 --- /dev/null +++ b/prueba1.py @@ -0,0 +1,21 @@ + +#Utilizando solo python elegir alguno de los siguientes problemas y solucionarlo (no use numpy) El archivo ejemplo.py contiene la solucion #al primer ejercicio. Puede utilizarlo para verificar su solucion o como ejemplo para resolver los demas. Los problemas fueron extraidos de #https://projecteuler.net/archives + +#a) Si hacemos una lista de todos los numeros naturales debajo de 10 que sean multiplos de 3 o 5 obtendriamos 3, 5, 6 y 9. La suma de los #multiplos es 23. Encuentre la suma de todos los multiplos de 3 y 5 debajo de 1000. +import numpy as np + +n=1000 +a= range(1,n) #defined as a list +suma=0 +for i in a: + if (i%3)==0 or (i%5)==0: + # print(i) + suma =suma+i + +print (suma) +# me dio 233168 + + + + +