|
10 | 10 | {
|
11 | 11 | "cell_type": "code",
|
12 | 12 | "execution_count": null,
|
13 |
| - "metadata": {}, |
| 13 | + "metadata": { |
| 14 | + "tags": [] |
| 15 | + }, |
14 | 16 | "outputs": [],
|
15 | 17 | "source": [
|
16 | 18 | "import warnings\n",
|
|
23 | 25 | {
|
24 | 26 | "cell_type": "code",
|
25 | 27 | "execution_count": null,
|
26 |
| - "metadata": {}, |
| 28 | + "metadata": { |
| 29 | + "tags": [] |
| 30 | + }, |
27 | 31 | "outputs": [],
|
28 | 32 | "source": [
|
29 |
| - "%matplotlib inline\n", |
| 33 | + "%matplotlib widget\n", |
30 | 34 | "# use %matplotlib widget for the adventurous"
|
31 | 35 | ]
|
32 | 36 | },
|
|
56 | 60 | {
|
57 | 61 | "cell_type": "code",
|
58 | 62 | "execution_count": null,
|
59 |
| - "metadata": {}, |
| 63 | + "metadata": { |
| 64 | + "tags": [] |
| 65 | + }, |
60 | 66 | "outputs": [],
|
61 | 67 | "source": [
|
62 | 68 | "# checking Numba JIT toolchain\n",
|
|
69 | 75 | "\n",
|
70 | 76 | "from numba import jit\n",
|
71 | 77 | "\n",
|
72 |
| - "@jit\n", |
| 78 | + "@jit(nopython=True)\n", |
73 | 79 | "def create_fractal(min_x, max_x, min_y, max_y, image, iters , mandelx):\n",
|
74 | 80 | " height = image.shape[0]\n",
|
75 | 81 | " width = image.shape[1]\n",
|
|
83 | 89 | " color = mandelx(real, imag, iters)\n",
|
84 | 90 | " image[y, x] = color\n",
|
85 | 91 | "\n",
|
86 |
| - "@jit\n", |
| 92 | + "@jit(nopython=True)\n", |
87 | 93 | "def mandel(x, y, max_iters):\n",
|
88 | 94 | " c = complex(x, y)\n",
|
89 | 95 | " z = 0.0j\n",
|
|
97 | 103 | {
|
98 | 104 | "cell_type": "code",
|
99 | 105 | "execution_count": null,
|
100 |
| - "metadata": {}, |
| 106 | + "metadata": { |
| 107 | + "tags": [] |
| 108 | + }, |
101 | 109 | "outputs": [],
|
102 | 110 | "source": [
|
103 | 111 | "# Numba speed\n",
|
|
122 | 130 | {
|
123 | 131 | "cell_type": "code",
|
124 | 132 | "execution_count": null,
|
125 |
| - "metadata": {}, |
| 133 | + "metadata": { |
| 134 | + "tags": [] |
| 135 | + }, |
126 | 136 | "outputs": [],
|
127 | 137 | "source": [
|
128 | 138 | "# Cython + Mingwpy compiler toolchain test\n",
|
|
132 | 142 | {
|
133 | 143 | "cell_type": "code",
|
134 | 144 | "execution_count": null,
|
135 |
| - "metadata": {}, |
| 145 | + "metadata": { |
| 146 | + "tags": [] |
| 147 | + }, |
136 | 148 | "outputs": [],
|
137 | 149 | "source": [
|
138 | 150 | "%%cython -a\n",
|
|
166 | 178 | {
|
167 | 179 | "cell_type": "code",
|
168 | 180 | "execution_count": null,
|
169 |
| - "metadata": {}, |
| 181 | + "metadata": { |
| 182 | + "tags": [] |
| 183 | + }, |
170 | 184 | "outputs": [],
|
171 | 185 | "source": [
|
172 | 186 | "#Cython speed\n",
|
|
189 | 203 | {
|
190 | 204 | "cell_type": "code",
|
191 | 205 | "execution_count": null,
|
192 |
| - "metadata": {}, |
| 206 | + "metadata": { |
| 207 | + "tags": [] |
| 208 | + }, |
193 | 209 | "outputs": [],
|
194 | 210 | "source": [
|
195 | 211 | "# Matplotlib 3.4.1\n",
|
|
225 | 241 | {
|
226 | 242 | "cell_type": "code",
|
227 | 243 | "execution_count": null,
|
228 |
| - "metadata": {}, |
| 244 | + "metadata": { |
| 245 | + "tags": [] |
| 246 | + }, |
229 | 247 | "outputs": [],
|
230 | 248 | "source": [
|
231 | 249 | "# Seaborn\n",
|
|
239 | 257 | {
|
240 | 258 | "cell_type": "code",
|
241 | 259 | "execution_count": null,
|
242 |
| - "metadata": {}, |
| 260 | + "metadata": { |
| 261 | + "tags": [] |
| 262 | + }, |
243 | 263 | "outputs": [],
|
244 | 264 | "source": [
|
245 | 265 | "# altair-example \n",
|
|
256 | 276 | {
|
257 | 277 | "cell_type": "code",
|
258 | 278 | "execution_count": null,
|
259 |
| - "metadata": {}, |
| 279 | + "metadata": { |
| 280 | + "tags": [] |
| 281 | + }, |
260 | 282 | "outputs": [],
|
261 | 283 | "source": [
|
262 | 284 | "# temporary warning removal\n",
|
263 | 285 | "import warnings\n",
|
264 | 286 | "import matplotlib as mpl\n",
|
265 |
| - "warnings.filterwarnings(\"ignore\", category=mpl.cbook.MatplotlibDeprecationWarning)\n", |
| 287 | + "#warnings.filterwarnings(\"ignore\", category=mpl.cbook.MatplotlibDeprecationWarning)\n", |
| 288 | + "warnings.filterwarnings(\"ignore\", category=mpl.MatplotlibDeprecationWarning)\n", |
266 | 289 | "# Holoviews\n",
|
267 | 290 | "# for more example, see http://holoviews.org/Tutorials/index.html\n",
|
268 | 291 | "import numpy as np\n",
|
|
281 | 304 | {
|
282 | 305 | "cell_type": "code",
|
283 | 306 | "execution_count": null,
|
284 |
| - "metadata": {}, |
| 307 | + "metadata": { |
| 308 | + "tags": [] |
| 309 | + }, |
285 | 310 | "outputs": [],
|
286 | 311 | "source": [
|
287 | 312 | "# Bokeh 0.12.5 \n",
|
|
305 | 330 | {
|
306 | 331 | "cell_type": "code",
|
307 | 332 | "execution_count": null,
|
308 |
| - "metadata": {}, |
| 333 | + "metadata": { |
| 334 | + "tags": [] |
| 335 | + }, |
309 | 336 | "outputs": [],
|
310 | 337 | "source": [
|
311 | 338 | "# Datashader (holoviews+Bokeh)\n",
|
|
341 | 368 | {
|
342 | 369 | "cell_type": "code",
|
343 | 370 | "execution_count": null,
|
344 |
| - "metadata": {}, |
| 371 | + "metadata": { |
| 372 | + "tags": [] |
| 373 | + }, |
345 | 374 | "outputs": [],
|
346 | 375 | "source": [
|
347 | 376 | "np.random.seed(1)\n",
|
|
353 | 382 | {
|
354 | 383 | "cell_type": "code",
|
355 | 384 | "execution_count": null,
|
356 |
| - "metadata": {}, |
| 385 | + "metadata": { |
| 386 | + "tags": [] |
| 387 | + }, |
357 | 388 | "outputs": [],
|
358 | 389 | "source": [
|
359 | 390 | "ropts = dict(colorbar=True, tools=[\"hover\"], width=350)\n",
|
|
364 | 395 | {
|
365 | 396 | "cell_type": "code",
|
366 | 397 | "execution_count": null,
|
367 |
| - "metadata": {}, |
| 398 | + "metadata": { |
| 399 | + "tags": [] |
| 400 | + }, |
368 | 401 | "outputs": [],
|
369 | 402 | "source": [
|
370 | 403 | "#bqplot\n",
|
|
381 | 414 | {
|
382 | 415 | "cell_type": "code",
|
383 | 416 | "execution_count": null,
|
384 |
| - "metadata": {}, |
| 417 | + "metadata": { |
| 418 | + "tags": [] |
| 419 | + }, |
385 | 420 | "outputs": [],
|
386 | 421 | "source": [
|
387 | 422 | "# ipyleaflet (javascript library usage)\n",
|
|
404 | 439 | {
|
405 | 440 | "cell_type": "code",
|
406 | 441 | "execution_count": null,
|
407 |
| - "metadata": {}, |
| 442 | + "metadata": { |
| 443 | + "tags": [] |
| 444 | + }, |
408 | 445 | "outputs": [],
|
409 | 446 | "source": [
|
410 | 447 | "dc.on_draw(handle_draw)\n",
|
|
414 | 451 | {
|
415 | 452 | "cell_type": "code",
|
416 | 453 | "execution_count": null,
|
417 |
| - "metadata": {}, |
| 454 | + "metadata": { |
| 455 | + "tags": [] |
| 456 | + }, |
418 | 457 | "outputs": [],
|
419 | 458 | "source": [
|
420 | 459 | "%matplotlib widget\n",
|
|
432 | 471 | {
|
433 | 472 | "cell_type": "code",
|
434 | 473 | "execution_count": null,
|
435 |
| - "metadata": {}, |
| 474 | + "metadata": { |
| 475 | + "tags": [] |
| 476 | + }, |
436 | 477 | "outputs": [],
|
437 | 478 | "source": [
|
438 | 479 | "# plotnine: giving a taste of ggplot of R langage (formerly we were using ggpy)\n",
|
|
461 | 502 | {
|
462 | 503 | "cell_type": "code",
|
463 | 504 | "execution_count": null,
|
464 |
| - "metadata": {}, |
| 505 | + "metadata": { |
| 506 | + "tags": [] |
| 507 | + }, |
465 | 508 | "outputs": [],
|
466 | 509 | "source": [
|
467 | 510 | "# Audio Example : https://github.com/ipython/ipywidgets/blob/master/examples/Beat%20Frequencies.ipynb\n",
|
468 |
| - "%matplotlib inline\n", |
| 511 | + "%matplotlib widget\n", |
469 | 512 | "import matplotlib.pyplot as plt\n",
|
470 | 513 | "import numpy as np\n",
|
471 | 514 | "from ipywidgets import interactive\n",
|
|
493 | 536 | "outputs": [],
|
494 | 537 | "source": [
|
495 | 538 | "# Networks graph Example : https://github.com/ipython/ipywidgets/blob/master/examples/Exploring%20Graphs.ipynb\n",
|
496 |
| - "%matplotlib inline\n", |
| 539 | + "%matplotlib widget\n", |
497 | 540 | "from ipywidgets import interact\n",
|
498 | 541 | "import matplotlib.pyplot as plt\n",
|
499 | 542 | "import networkx as nx\n",
|
|
596 | 639 | {
|
597 | 640 | "cell_type": "code",
|
598 | 641 | "execution_count": null,
|
599 |
| - "metadata": {}, |
| 642 | + "metadata": { |
| 643 | + "tags": [] |
| 644 | + }, |
600 | 645 | "outputs": [],
|
601 | 646 | "source": [
|
602 | 647 | "#Pandas \n",
|
603 | 648 | "import pandas as pd\n",
|
604 | 649 | "import numpy as np\n",
|
605 | 650 | "\n",
|
606 |
| - "idx = pd.date_range('2000', '2005', freq='d', closed='left')\n", |
| 651 | + "idx = pd.date_range('2000', '2005', freq='d', inclusive='left')\n", |
607 | 652 | "datas = pd.DataFrame({'Color': [ 'green' if x> 1 else 'red' for x in np.random.randn(len(idx))], \n",
|
608 | 653 | " 'Measure': np.random.randn(len(idx)), 'Year': idx.year},\n",
|
609 | 654 | " index=idx.date)\n",
|
|
623 | 668 | {
|
624 | 669 | "cell_type": "code",
|
625 | 670 | "execution_count": null,
|
626 |
| - "metadata": {}, |
| 671 | + "metadata": { |
| 672 | + "tags": [] |
| 673 | + }, |
627 | 674 | "outputs": [],
|
628 | 675 | "source": [
|
629 | 676 | "datas.query('Measure > 0').groupby(['Color','Year']).size().unstack()"
|
|
730 | 777 | {
|
731 | 778 | "cell_type": "code",
|
732 | 779 | "execution_count": null,
|
733 |
| - "metadata": {}, |
| 780 | + "metadata": { |
| 781 | + "tags": [] |
| 782 | + }, |
734 | 783 | "outputs": [],
|
735 | 784 | "source": [
|
736 | 785 | "# checking sympy \n",
|
|
750 | 799 | {
|
751 | 800 | "cell_type": "code",
|
752 | 801 | "execution_count": null,
|
753 |
| - "metadata": {}, |
| 802 | + "metadata": { |
| 803 | + "tags": [] |
| 804 | + }, |
754 | 805 | "outputs": [],
|
755 | 806 | "source": [
|
756 | 807 | "# checking Ipython-sql, sqlparse, SQLalchemy\n",
|
|
760 | 811 | {
|
761 | 812 | "cell_type": "code",
|
762 | 813 | "execution_count": null,
|
763 |
| - "metadata": {}, |
| 814 | + "metadata": { |
| 815 | + "tags": [] |
| 816 | + }, |
764 | 817 | "outputs": [],
|
765 | 818 | "source": [
|
766 | 819 | "%%sql sqlite:///.baresql.db\n",
|
|
774 | 827 | {
|
775 | 828 | "cell_type": "code",
|
776 | 829 | "execution_count": null,
|
777 |
| - "metadata": {}, |
| 830 | + "metadata": { |
| 831 | + "tags": [] |
| 832 | + }, |
778 | 833 | "outputs": [],
|
779 | 834 | "source": [
|
780 | 835 | "# checking baresql\n",
|
|
792 | 847 | {
|
793 | 848 | "cell_type": "code",
|
794 | 849 | "execution_count": null,
|
795 |
| - "metadata": {}, |
| 850 | + "metadata": { |
| 851 | + "tags": [] |
| 852 | + }, |
796 | 853 | "outputs": [],
|
797 | 854 | "source": [
|
798 | 855 | "# Transfering Datas to sqlite, doing transformation in sql, going back to Pandas and Matplotlib\n",
|
|
807 | 864 | {
|
808 | 865 | "cell_type": "code",
|
809 | 866 | "execution_count": null,
|
810 |
| - "metadata": {}, |
| 867 | + "metadata": { |
| 868 | + "tags": [] |
| 869 | + }, |
811 | 870 | "outputs": [],
|
812 | 871 | "source": [
|
813 | 872 | "# checking db.py\n",
|
|
819 | 878 | {
|
820 | 879 | "cell_type": "code",
|
821 | 880 | "execution_count": null,
|
822 |
| - "metadata": {}, |
| 881 | + "metadata": { |
| 882 | + "tags": [] |
| 883 | + }, |
823 | 884 | "outputs": [],
|
824 | 885 | "source": [
|
825 | 886 | "db.tables"
|
|
996 | 1057 | "name": "python",
|
997 | 1058 | "nbconvert_exporter": "python",
|
998 | 1059 | "pygments_lexer": "ipython3",
|
999 |
| - "version": "3.10.6" |
| 1060 | + "version": "3.10.11" |
1000 | 1061 | },
|
1001 | 1062 | "widgets": {
|
1002 | 1063 | "state": {
|
|
0 commit comments