From 55a93bc670db833e3da4da23432813add9d72d62 Mon Sep 17 00:00:00 2001 From: rasbt Date: Mon, 14 Jul 2014 15:47:15 -0400 Subject: [PATCH 01/83] more "favorite packages" added --- README.md | 12 +++++++++++- 1 file changed, 11 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index 15dad33..ad2b2bb 100644 --- a/README.md +++ b/README.md @@ -166,10 +166,20 @@ - [The IPython Notebook](http://ipython.org/notebook.html) - an interactive computational environment for combining code execution, documentation (with Markdown and LateX support), inline plots, and rich media all in one document. -- [SciPy Stack](http://www.scipy.org/index.html) - Python packages (NumPy, pandas, SciPy, IPython, Matplotlib) for scientific computing +- [matplotlib](http://matplotlib.org) - Python's favorite plotting library + +- [NumPy](http://www.numpy.org) - a library for multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays + +- [SciPy](http://www.scipy.org) - a library that provides various useful functions for numerical computing, such as modules for optimization, linear algebra, integration, interpolation, ... + + +- [pandas](http://pandas.pydata.org) - high-performance, easy-to-use data structures and data analysis tools build on top of Numpy - [Cython](http://cython.org) - C-extensions for Python, an optimizing static compiler to combine Python and C code - [Numba](http://numba.pydata.org) - an just-in-time specializing compiler which compiles annotated Python and NumPy code to LLVM (through decorators) - [scikit-learn](http://scikit-learn.org/stable/) - a powerful machine learning library for Python and tools for efficient data mining and analysis + + + From 936c755d989095234da1c9dbc293daee4c18e339 Mon Sep 17 00:00:00 2001 From: rasbt Date: Wed, 16 Jul 2014 00:44:54 -0400 Subject: [PATCH 02/83] matplotlib gallery --- README.md | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/README.md b/README.md index ad2b2bb..cfa5708 100644 --- a/README.md +++ b/README.md @@ -9,6 +9,7 @@ - [// Python tips and tutorials](#-python-tips-and-tutorials) - [// Python and the web](#-python-and-the-web) - [// Algorithms](#-algorithms) +- [// Plotting and Visualization](#-plotting-and-visualization) - [// Benchmarks](#-benchmarks) - [// Other](#-other) - [// Useful scripts and snippets](#-useful-scripts-and-snippets) @@ -76,6 +77,12 @@ - Counting points inside a hypercube [[IPython nb](http://nbviewer.ipython.org/github/rasbt/algorithms_in_ipython_notebooks/blob/master/ipython_nbs/geometry/points_in_hybercube.ipynb)] +
+###// Plotting and Visualization +[[back to top](#a-collection-of-useful-scripts-tutorials-and-other-python-related-things)] + +- a matplotlib gallery in IPython notebooks [[GitHub repo](https://github.com/rasbt/matplotlib-gallery)] +
###// Benchmarks From a52226cd70b58e686f3d48d360956602458ef38e Mon Sep 17 00:00:00 2001 From: rasbt Date: Wed, 16 Jul 2014 17:41:08 -0400 Subject: [PATCH 03/83] small wording change in closure-section --- tutorials/not_so_obvious_python_stuff.ipynb | 55 +++++++++++++++++++-- 1 file changed, 50 insertions(+), 5 deletions(-) diff --git a/tutorials/not_so_obvious_python_stuff.ipynb b/tutorials/not_so_obvious_python_stuff.ipynb index c2e2948..a3188b0 100644 --- a/tutorials/not_so_obvious_python_stuff.ipynb +++ b/tutorials/not_so_obvious_python_stuff.ipynb @@ -1,7 +1,7 @@ { "metadata": { "name": "", - "signature": "sha256:d87105a74c8f25016f90bdec495a890a988277a3f51e0589febbbac87720b033" + "signature": "sha256:5dd675ee714d0dbd00f7be378f1379f4dceaa728c56476124c1bf493d70c569e" }, "nbformat": 3, "nbformat_minor": 0, @@ -13,18 +13,60 @@ "metadata": {}, "source": [ "[Sebastian Raschka](http://sebastianraschka.com) \n", - "last updated: 05/24/2014 ([Changelog](#changelog))\n", "\n", "- [Link to this IPython Notebook on GitHub](https://github.com/rasbt/python_reference/blob/master/tutorials/not_so_obvious_python_stuff.ipynb) \n", "- [Link to the GitHub repository](https://github.com/rasbt/python_reference) \n", "\n" ] }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%load_ext watermark" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 1 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%watermark -d -u -v" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Last updated: 16/07/2014 \n", + "\n", + "CPython 3.4.1\n", + "IPython 2.0.0\n" + ] + } + ], + "prompt_number": 2 + }, { "cell_type": "markdown", "metadata": {}, "source": [ - "#### All code was executed in Python 3.4 (unless stated otherwise)" + "[More information](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/ipython_magic/watermark.ipynb) about the `watermark` magic command extension.\n", + "\n", + "([Changelog](#changelog))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" ] }, { @@ -1013,7 +1055,7 @@ "\n", "(Original source: [http://openhome.cc/eGossip/Blog/UnderstandingLambdaClosure3.html](http://openhome.cc/eGossip/Blog/UnderstandingLambdaClosure3.html))\n", "\n", - "In the first example below, we call a `lambda` function in a list comprehension, and the value `i` will be dereferenced every time we call `lambda` within the scope of the list comprehension. Since the list is already constructed when we `for-loop` through the list, it will be set to the last value 4." + "In the first example below, we call a `lambda` function in a list comprehension, and the value `i` will be dereferenced every time we call `lambda` within the scope of the list comprehension. Since the list comprehension has already been constructed and evaluated when we for-loop through the list, the closure-variable will be set to the last value 4." ] }, { @@ -1045,7 +1087,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "This, however, does not apply to generators:" + "However, by using a generator expression, we can make use of its stepwise evaluation (note that the returned variable still stems from the same closure, but the value changes as we iterate over the generator)." ] }, { @@ -4281,6 +4323,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ + "#### 07/16/2014\n", + "- slight change of wording in the [lambda-closure section](#lambda_closure)\n", + "\n", "#### 05/24/2014\n", "- new section: unorderable types in Python 2\n", "- table of contents for the Python 2 vs. Python 3 topic\n", From 0fd0ba5d01d82d68353f5dee7dfcf58cc855638e Mon Sep 17 00:00:00 2001 From: rasbt Date: Fri, 18 Jul 2014 14:13:22 -0400 Subject: [PATCH 04/83] cheatsheet upd --- tutorials/matrix_cheatsheet_only.html | 722 ++++++++++++++------------ 1 file changed, 390 insertions(+), 332 deletions(-) diff --git a/tutorials/matrix_cheatsheet_only.html b/tutorials/matrix_cheatsheet_only.html index 7624ea4..c0d1a18 100644 --- a/tutorials/matrix_cheatsheet_only.html +++ b/tutorials/matrix_cheatsheet_only.html @@ -3,9 +3,9 @@ - + - + - - - - - - - +
+ + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - \n", " \n", " \n", - " \n", " \n", " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", " \n", " \n", "
+

Task

-

MATLAB/Octave

+
+

MATLAB/Octave

-

Python +

+

Python NumPy

-

R

+
+

R

-

Julia

+
+

Julia

+

Task

+

CREATING MATRICES

+

Creating Matrices 
(here: 3x3 matrix)

-

M> +

+

M> A = [1 2 3; 4 5 6; 7 8 9]
A =
   1   2   3
   4   5   6
   7   8   9

-

P> +

+

P> A = np.array([ [1,2,3], [4,5,6], [7,8,9] ])

P> A
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])

-

R> +

+

R> A = matrix(c(1,2,3,4,5,6,7,8,9),nrow=3,byrow=T)


# equivalent to

# A = matrix(1:9,nrow=3,byrow=T)



R> A
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9

-

J> +

+

J> A=[1 2 3; 4 5 6; 7 8 9]
3x3 Array{Int64,2}:
1 2 3
4 5 6
7 8 9

+

Creating Matrices 
(here: 3x3 matrix)

+

Creating an 1D column vector

-

M> +

+

M> a = [1; 2; 3]
a =
   1
   2
   3

-

P> - a - = +

+

P> + a + = np.array([1,2,3]).reshape(1,3)

-


P> - b.shape
(1, +


P> + b.shape
(1, 3)


-

R> +

+

R> a = matrix(c(1,2,3), nrow=3, byrow=T)

R> a
[,1]
[1,] 1
[2,] 2
[3,] 3

-

J> +

+

J> a=[1; 2; 3]
3-element Array{Int64,1}:
1
2
3

+

Creating an 1D column vector

+

Creating an
1D row vector

-

M> +

+

M> b = [1 2 3]
b =
   1   2   3

-

P> +

+

P> b = np.array([1,2,3])

P> b
array([1, 2, 3])

-

# +

# note that numpy doesn't have
# explicit “row-vectors”, but 1-D
# arrays

-

P> - b.shape

-

(3,)

+

P> + b.shape

+

(3,)


-

R> +

+

R> b = matrix(c(1,2,3), ncol=3)

R> b
[,1] [,2] [,3]
[1,] 1 2 3

-

J> +

+

J> b=[1 2 3]
1x3 Array{Int64,2}:
1 2 3

# note that this is a 2D array.
# vectors in Julia are columns

+

Creating an
1D row vector

+

Creating a
random m x n matrix

-

M> +

+

M> rand(3,2)
ans =
   0.21977   0.10220
   0.38959   0.69911
   0.15624   0.65637

-

P> +

+

P> np.random.rand(3,2)
array([[ 0.29347865,  0.17920462],
       [ 0.51615758,  0.64593471],
       [ 0.01067605,  0.09692771]])

-

R> +

+

R> matrix(runif(3*2), ncol=2)
[,1] [,2]
[1,] 0.5675127 0.7751204
[2,] 0.3439412 0.5261893
[3,] 0.2273177 0.223438

-

J> +

+

J> rand(3,2)
3x2 Array{Float64,2}:
0.36882 0.267725
0.571856 0.601524
0.848084 0.858935

+

Creating a
random m x n matrix

+

Creating a
zero m x n matrix 

-

M> +

+

M> zeros(3,2)
ans =
   0   0
   0   0
   0   0

-

P> +

+

P> np.zeros((3,2))
array([[ 0.,  0.],
       [ 0.,  0.],
       [ 0.,  0.]])

-

R> +

+

R> mat.or.vec(3, 2)
[,1] [,2]
[1,] 0 0
[2,] 0 0
[3,] 0 0

-

J> +

+

J> zeros(3,2)
3x2 Array{Float64,2}:
0.0 0.0
0.0 0.0
0.0 0.0

+

Creating a
zero m x n matrix 

+

Creating an
m x n matrix of ones

-

M> +

+

M> ones(3,2)
ans =
   1   1
   1   1
   1   1

-

P> +

+

P> np.ones((3,2))
array([[ 1.,  1.],
       [ 1.,  1.],
       [ 1.,  1.]])

-

R> - mat.or.vec(3, 2) + 1
[,1] [,2]
[1,] 1 1
[2,] 1 1
[3,] - 1 1

+
+

R> + matrix(1L, + 3, 2)

[,1] + [,2]
[1,] 1 1
[2,] 1 1
[3,] 1 1

-

J> +

+

J> ones(3,2)
3x2 Array{Float64,2}:
1.0 1.0
1.0 1.0
1.0 1.0

+

Creating an
m x n matrix of ones

+

Creating an
identity matrix

-

M> +

+

M> eye(3)
ans =
Diagonal Matrix
   1   0   0
   0   1   0
   0   0   1

-

P> +

+

P> np.eye(3)
array([[ 1.,  0.,  0.],
       [ 0.,  1.,  0.],
       [ 0.,  0.,  1.]])

-

R> +

+

R> diag(3)
[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

-

J> +

+

J> eye(3)
3x3 Array{Float64,2}:
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

+

Creating an
identity matrix

+

Creating a
diagonal matrix

-

M> +

+

M> a = [1 2 3]

M> diag(a)
ans =
Diagonal Matrix
   1   0   0
   0   2   0
   0   0   3

-

P> +

+

P> a = np.array([1,2,3])

P> np.diag(a)
array([[1, 0, 0],
       [0, 2, 0],
       [0, 0, 3]])

-

R> +

+

R> diag(1:3)
[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 2 0
[3,] 0 0 3

-

J> +

+

J> a=[1, 2, 3]

# added commas because julia
# vectors are columnar

J> diagm(a)
3x3 Array{Int64,2}:
1 0 0
0 2 0
0 0 3

+

Creating a
diagonal matrix

+

ACCESSING MATRIX ELEMENTS

+

Getting the dimension
of a matrix
(here: 2D, rows x cols)

-

M> +

+

M> A = [1 2 3; 4 5 6]
A =
   1   2   3
   4   5   6

M> size(A)
ans =
   2   3

-

P> +

+

P> A = np.array([ [1,2,3], [4,5,6] ])

P> A
array([[1, 2, 3],
       [4, 5, 6]])

P> A.shape
(2, 3)

-

R> +

+

R> A = matrix(1:6,nrow=2,byrow=T)

R> A
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6


-

R> +

R> dim(A)
[1] 2 3

-

J> +

+

J> A=[1 2 3; 4 5 6]
2x3 Array{Int64,2}:
1 2 3
4 5 6

J> size(A)
(2,3)

+

Getting the dimension
of a matrix
(here: 2D, rows x cols)

+

Selecting rows 

-

M> +

+

M> A = [1 2 3; 4 5 6; 7 8 9]

% 1st row
M> A(1,:)
ans =
   1   2   3

% 1st 2 rows
M> A(1:2,:)
ans =
   1   2   3
   4   5   6

-

P> +

+

P> A = np.array([ [1,2,3], [4,5,6], [7,8,9] ])

# 1st row
P> A[0,:]
array([1, 2, 3])

# 1st 2 rows
P> A[0:2,:]
array([[1, 2, 3], [4, 5, 6]])

-

R> +

+

R> A = matrix(1:9,nrow=3,byrow=T)



# 1st row


R> A[1,]
[1] 1 2 3



# 1st 2 rows


R> A[1:2,]
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6

-

J> +

+

J> A=[1 2 3; 4 5 6; 7 8 9];
#semicolon suppresses output

#1st row
J> A[1,:]
1x3 Array{Int64,2}:
1 2 3

#1st 2 rows
J> A[1:2,:]
2x3 Array{Int64,2}:
1 2 3
4 5 6

+

Selecting rows 

+

Selecting columns

-

M> +

+

M> A = [1 2 3; 4 5 6; 7 8 9]

% 1st column
M> A(:,1)
ans =
   1
   4
   7

% 1st 2 columns
M> A(:,1:2)
ans =
   1   2
   4   5
   7   8

-

P> +

+

P> A = np.array([ [1,2,3], [4,5,6], [7,8,9] ])

# 1st column (as row vector)
P> A[:,0]
array([1, 4, 7])

# 1st column (as column @@ -412,8 +413,8 @@ A[:,0:2]
array([[1, 2], 
       [4, 5], 
       [7, 8]])

-

R> +

+

R> A = matrix(1:9,nrow=3,byrow=T)




# 1st column as row vector

R> t(A[,1])
[,1] [,2] [,3]
[1,] 1 4 7



# 1st column @@ -421,136 +422,193 @@ A[,1]
[1] 1 4 7



# 1st 2 columns

R> A[,1:2]
[,1] [,2]
[1,] 1 2
[2,] 4 5
[3,] 7 8

-

J> +

+

J> A=[1 2 3; 4 5 6; 7 8 9];

#1st column
J> A[:,1]
3-element Array{Int64,1}:
1
4
7

#1st 2 columns
J> A[:,1:2]
3x2 Array{Int64,2}:
1 2
4 5
7 8

+

Selecting columns

+

Extracting rows and columns by criteria

(here: get rows that have value 9 in column 3)

-

M> +

+

M> A = [1 2 3; 4 5 9; 7 8 9]
A =
   1   2   3
   4   5   9
   7   8   9

M> A(A(:,3) == 9,:)
ans =
   4   5   9
   7   8   9

-

P> +

+

P> A = np.array([ [1,2,3], [4,5,9], [7,8,9]])

P> A
array([[1, 2, 3],
       [4, 5, 9],
       [7, 8, 9]])

P> A[A[:,2] == 9]
array([[4, 5, 9],
       [7, 8, 9]])

-

R> - A = matrix(1:9,nrow=3,byrow=T)



R> +

+

R> + A = matrix(1:9,nrow=3,byrow=T)



R> A
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 9
[3,] 7 8 - 9



R> - matrix(A[A[,3]==9], ncol=3)
[,1] [,2] [,3]
[1,] 4 5 9
[2,] + 9



R> + A[A[,3]==9,]

+

[1] 7 8 9

+


+

-

J> +

+

J> A=[1 2 3; 4 5 9; 7 8 9]
3x3 Array{Int64,2}:
1 2 3
4 5 9
7 8 9

# use '.==' for
# element-wise check
J> A[ A[:,3] .==9, :]
2x3 Array{Int64,2}:
4 5 9
7 8 9

+

Extracting rows and columns by criteria

(here: get rows that have value 9 in column 3)

+

Accessing elements
(here: 1st element)

-

M> +

+

M> A = [1 2 3; 4 5 6; 7 8 9]

M> A(1,1)
ans =  1

-

P> +

+

P> A = np.array([ [1,2,3], [4,5,6], [7,8,9] ])

P> A[0,0]
1

-

R> +

+

R> A = matrix(c(1,2,3,4,5,9,7,8,9),nrow=3,byrow=T)


R> A[1,1]
[1] 1

-

J> +

+

J> A=[1 2 3; 4 5 6; 7 8 9];

J> A[1,1]
1

+

Accessing elements
(here: 1st element)

+

MANIPULATING SHAPE AND DIMENSIONS

+ +

Converting 
a + matrix into a row vector (by column)

+
+

M> + A = [1 2 3; 4 5 6; 7 8 9]

+

M> + A(:)

+

ans + = +

+

1 +
4
7
2
5
8
3
6
9

+
+

P> + A = np.array([[1,2,3],[4,5,6],[7,8,9]])

+

P> + A.flatten(1)

+

array([1, + 4, 7, 2, 5, 8, 3, 6, 9])

+


+

+
+

R> + A = matrix(1:9,nrow=3,byrow=T)

+


+

+

R> + as.vector(A)

+


+

+

[1] + 1 4 7 2 5 8 3 6 9

+


+

+
+

J> + A=[1 2 3; 4 5 6; 7 8 9]

+

J> + vec(A)

+

9-element + Array{Int64,1}:

+

1
4
7
2
5
8
3
6
9

+
+

Converting 
a + matrix into a row vector (by column)

+

Converting 
row to column vectors

-

M> +

+

M> b = [1 2 3]


M> b = b'
b =
   1
   2
   3

-

P> +

+

P> b = np.array([1, 2, 3])

P> b = b[np.newaxis].T
# alternatively
# b = b[:,np.newaxis]

P> b
array([[1],
       [2],
       [3]])

-

R> +

+

R> b = matrix(c(1,2,3), ncol=3)

R> t(b)
[,1]
[1,] 1
[2,] 2
[3,] 3

-

J> +

+

J> b=vec([1 2 3])
3-element Array{Int64,1}:
1
2
3

+

Converting 
row to column vectors

+

Reshaping Matrices

(here: 3x3 matrix to row vector)

-

M> +

+

M> A = [1 2 3; 4 5 6; 7 8 9]
A =
   1   2   3
   4   5   6
   7   8   9

M> @@ -559,19 +617,19 @@ =
   1   4   7   2   5   8   3   6   9

-

P> +

+

P> A = np.array([[1,2,3],[4,5,6],[7,8,9]])

P> A
array([[1, 2, 3],
       [4, 5, 9],
       [7, 8, 9]])

P> total_elements = np.prod(A.shape)

-

P> +

P> B = A.reshape(1, total_elements) 

# alternative shortcut:
# A.reshape(1,-1)

P> B
array([[1, 2, 3, 4, 5, 6, 7, 8, 9]])

-

R> +

+

R> A = matrix(1:9,nrow=3,byrow=T)



R> A
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9


R> total_elements = dim(A)[1] * dim(A)[2]

R> @@ -579,33 +637,33 @@ B
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 1 4 7 2 5 8 3 6 9

-

J> +

+

J> A=[1 2 3; 4 5 6; 7 8 9]
3x3 Array{Int64,2}:
1 2 3
4 5 6
7 8 9

J> total_elements=length(A)
9

J>B=reshape(A,1,total_elements)
1x9 Array{Int64,2}:
1 4 7 2 5 8 3 6 9

+

Reshaping Matrices

(here: 3x3 matrix to row vector)

+

Concatenating matrices

-

M> +

+

M> A = [1 2 3; 4 5 6]

M> B = [7 8 9; 10 11 12]

M> C = [A; B]
    1    2    3
    4    5    6
    7    8    9
   10   11   12

-

P> +

+

P> A = np.array([[1, 2, 3], [4, 5, 6]])

P> B = np.array([[7, 8, 9],[10,11,12]])

P> C = np.concatenate((A, B), axis=0)

P> @@ -613,33 +671,33 @@ 5, 6], 
       [ 7, 8, 9], 
       [10, 11, 12]])

-

R> +

+

R> A = matrix(1:6,nrow=2,byrow=T)

R> B = matrix(7:12,nrow=2,byrow=T)

R> C = rbind(A,B)

R> C
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12

-

J> +

+

J> A=[1 2 3; 4 5 6];

J> B=[7 8 9; 10 11 12];

J> C=[A; B]
4x3 Array{Int64,2}:
1 2 3
4 5 6
7 8 9
10 11 12

+

Concatenating matrices

+

Stacking 
vectors and matrices

-

M> +

+

M> a = [1 2 3]

M> b = [4 5 6]

M> c = [a' b']
c =
   1   4
   2   @@ -647,8 +705,8 @@ c = [a; b]
c =
   1   2   3
   4   5   6

-

P> +

+

P> a = np.array([1,2,3])
P> b = np.array([4,5,6])

P> np.c_[a,b]
array([[1, 4],
       [2, @@ -656,38 +714,38 @@ np.r_[a,b]
array([[1, 2, 3],
       [4, 5, 6]])

-

R> +

+

R> a = matrix(1:3, ncol=3)

R> b = matrix(4:6, ncol=3)

R> matrix(rbind(A, B), ncol=2)
[,1] [,2]
[1,] 1 5
[2,] 4 3


R> rbind(A,B)
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6

-

J> +

+

J> a=[1 2 3];

J> b=[4 5 6];

J> c=[a' b']
3x2 Array{Int64,2}:
1 4
2 5
3 6

J> c=[a; b]
2x3 Array{Int64,2}:
1 2 3
4 5 6

+

Stacking 
vectors and matrices

+

BASIC MATRIX OPERATIONS

+

Matrix-scalar
operations

-

M> A +

+

M> A = [1 2 3; 4 5 6; 7 8 9]

M> A * 2
ans =
    2    4    6
    8   10   12
   14   16   @@ -696,30 +754,30 @@ A - 2

M> A / 2

-

P> +

+

P> A = np.array([ [1,2,3], [4,5,6], [7,8,9] ])

P> A * 2
array([[ 2,  4,  6],
       [ 8, 10, 12],
       [14, 16, 18]])

P> A + 2

P> A - 2

P> A / 2

-

# +

# Note that NumPy was optimized for
# in-place assignments
# e.g., A += A instead of
# A = A + A

-

R> +

+

R> A = matrix(1:9, nrow=3, byrow=T)

R> A * 2
[,1] [,2] [,3]
[1,] 2 4 6
[2,] 8 10 12
[3,] 14 16 18


-

R> +

R> A + 2

R> A - 2

R> A / 2

-

J> +

+

J> A=[1 2 3; 4 5 6; 7 8 9];

# elementwise operator

J> A .* 2
3x3 Array{Int64,2}:
2 4 6
8 10 12
14 16 18

J> @@ -727,83 +785,83 @@ A .- 2;

J> A ./ 2;

+

Matrix-scalar
operations

+

Matrix-matrix
multiplication

-

M> A +

+

M> A = [1 2 3; 4 5 6; 7 8 9]

M> A * A
ans =
    30    36    42
    66    81    96
   102   126   150

-

P> +

+

P> A = np.array([ [1,2,3], [4,5,6], [7,8,9] ])

P> np.dot(A,A) # or A.dot(A)
array([[ 30,  36,  42],
       [ 66,  81,  96],
       [102, 126, 150]])

-

R> +

+

R> A = matrix(1:9, nrow=3, byrow=T)

R> A %*% A
[,1] [,2] [,3]
[1,] 30 36 42
[2,] 66 81 96
[3,] 102 126 150

-

J> +

+

J> A=[1 2 3; 4 5 6; 7 8 9];

J> A * A
3x3 Array{Int64,2}:
30 36 42
66 81 96
102 126 150

+

Matrix-matrix
multiplication

+

Matrix-vector
multiplication

-

M> +

+

M> A = [1 2 3; 4 5 6; 7 8 9]

M> b = [ 1; 2; 3 ]

M> A * b
ans =
   14
   32
   50

-

P> +

+

P> A = np.array([ [1,2,3], [4,5,6], [7,8,9] ])

P> b = np.array([ [1], [2], [3] ])

P> np.dot(A,b) # or A.dot(b)

array([[14], [32], [50]])

-

R> +

+

R> A = matrix(1:9, ncol=3)

R> b = matrix(1:3, nrow=3)



R> t(b %*% A)
[,1]
[1,] 14
[2,] 32
[3,] 50

-

J> +

+

J> A=[1 2 3; 4 5 6; 7 8 9];

J> b=[1; 2; 3];

J> A*b
3-element Array{Int64,1}:
14
32
50

+

Matrix-vector
multiplication

+

Element-wise 
matrix-matrix operations

-

M> A +

+

M> A = [1 2 3; 4 5 6; 7 8 9]

M> A .* A
ans =
    1    4    9
   16   25   36
   49   @@ -812,20 +870,20 @@ A .- A

M> A ./ A

-

P> +

+

P> A = np.array([ [1,2,3], [4,5,6], [7,8,9] ])

P> A * A
array([[ 1,  4,  9],
       [16, 25, 36],
       [49, 64, 81]])

P> A + A

P> A - A

P> A / A

-

# +

# Note that NumPy was optimized for
# in-place assignments
# e.g., A += A instead of
# A = A + A

-

R> +

+

R> A = matrix(1:9, nrow=3, byrow=T)


R> A * A
[,1] [,2] [,3]
[1,] 1 4 9
[2,] 16 25 36
[3,] 49 64 81



R> @@ -833,8 +891,8 @@ A - A

R> A / A

-

J> +

+

J> A=[1 2 3; 4 5 6; 7 8 9];

J> A .* A
3x3 Array{Int64,2}:
1 4 9
16 25 36
49 64 81

J> @@ -842,67 +900,67 @@ A .- A;

J> A ./ A;

+

Element-wise 
matrix-matrix operations

+

Matrix elements to power n

(here: individual elements squared)

-

M> A +

+

M> A = [1 2 3; 4 5 6; 7 8 9]

M> A.^2
ans =
    1    4    9
   16   25   36
   49   64   81

-

P> +

+

P> A = np.array([ [1,2,3], [4,5,6], [7,8,9] ])

P> np.power(A,2)
array([[ 1,  4,  9],
       [16, 25, 36],
       [49, 64, 81]])

-

R> +

+

R> A = matrix(1:9, nrow=3, byrow=T)

R> A ^ 2
[,1] [,2] [,3]
[1,] 1 4 9
[2,] 16 25 36
[3,] 49 64 81

-

J> +

+

J> A=[1 2 3; 4 5 6; 7 8 9];

J> A .^ 2
3x3 Array{Int64,2}:
1 4 9
16 25 36
49 64 81

+

Matrix elements to power n

(here: individual elements squared)

+

Matrix to power n

(here: matrix-matrix multiplication with itself)

-

M> A +

+

M> A = [1 2 3; 4 5 6; 7 8 9]

M> A ^ 2
ans =
    30    36    42
    66    81    96
   102   126   150

-

P> +

+

P> A = np.array([ [1,2,3], [4,5,6], [7,8,9] ])

P> np.linalg.matrix_power(A,2)
array([[ 30,  36,  42],
       [ 66,  81,  96],
       [102, 126, 150]])

-

R> +

+

R> A = matrix(1:9, ncol=3)


# requires the ‘expm’ package


R> install.packages('expm')


R> @@ -910,102 +968,102 @@ A %^% 2
[,1] [,2] [,3]
[1,] 30 66 102
[2,] 36 81 126
[3,] 42 96 150

-

J> +

+

J> A=[1 2 3; 4 5 6; 7 8 9];

J> A ^ 2
3x3 Array{Int64,2}:
30 36 42
66 81 96
102 126 150

+

Matrix to power n

(here: matrix-matrix multiplication with itself)

+

Matrix transpose

-

M> A +

+

M> A = [1 2 3; 4 5 6; 7 8 9]

M> A'
ans =
   1   4   7
   2   5   8
   3   6   9

-

P> +

+

P> A = np.array([ [1,2,3], [4,5,6], [7,8,9] ])

P> A.T
array([[1, 4, 7],
       [2, 5, 8],
       [3, 6, 9]])

-

R> +

+

R> A = matrix(1:9, nrow=3, byrow=T)


R> t(A)
[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

-

J> +

+

J> A=[1 2 3; 4 5 6; 7 8 9]
3x3 Array{Int64,2}:
1 2 3
4 5 6
7 8 9

J> A'
3x3 Array{Int64,2}:
1 4 7
2 5 8
3 6 9

+

Matrix transpose

+

Determinant of a matrix:
 A -> |A|

-

M> +

+

M> A = [6 1 1; 4 -2 5; 2 8 7]
A =
   6   1   1
   4  -2   5
   2   8   7

M> det(A)
ans = -306

-

P> A +

+

P> A = np.array([[6,1,1],[4,-2,5],[2,8,7]])

P> A
array([[ 6,  1,  1],
       [ 4, -2,  5],
       [ 2,  8,  7]])

P> np.linalg.det(A)
-306.0

-

R> +

+

R> A = matrix(c(6,1,1,4,-2,5,2,8,7), nrow=3, byrow=T)

R> A
[,1] [,2] [,3]
[1,] 6 1 1
[2,] 4 -2 5
[3,] 2 8 7

R> det(A)
[1] -306

-

J> +

+

J> A=[6 1 1; 4 -2 5; 2 8 7]
3x3 Array{Int64,2}:
6 1 1
4 -2 5
2 8 7

J> det(A)
-306.0

+

Determinant of a matrix:
 A -> |A|

+

Inverse of a matrix

-

M> +

+

M> A = [4 7; 2 6]
A =
   4   7
   2   6

M> A_inv = inv(A)
A_inv =
   0.60000  -0.70000
  -0.20000   0.40000

-

P> +

+

P> A = np.array([[4, 7], [2, 6]])

P> A
array([[4, 7], 
       [2, 6]])

P> @@ -1013,36 +1071,36 @@ A_inverse
array([[ 0.6, -0.7], 
       [-0.2, 0.4]])

-

R> +

+

R> A = matrix(c(4,7,2,6), nrow=2, byrow=T)

R> A
[,1] [,2]
[1,] 4 7
[2,] 2 6

R> solve(A)
[,1] [,2]
[1,] 0.6 -0.7
[2,] -0.2 0.4

-

J> +

+

J> A=[4 7; 2 6]
2x2 Array{Int64,2}:
4 7
2 6

J> A_inv=inv(A)
2x2 Array{Float64,2}:
0.6 -0.7
-0.2 0.4

+

Inverse of a matrix

+

ADVANCED MATRIX OPERATIONS

+

Calculating the covariance matrix 
of 3 random variables

(here: covariances of the means 
of x1, x2, and x3)

-

M> +

+

M> x1 = [4.0000 4.2000 3.9000 4.3000 4.1000]’

M> x2 = [2.0000 2.1000 2.0000 2.1000 2.2000]'

M> x3 = [0.60000 0.59000 0.58000 0.62000 0.63000]’

M> @@ -1051,8 +1109,8 @@ 7.0000e-03   1.3500e-03
   1.7500e-03   1.3500e-03   4.3000e-04

-

P> +

+

P> x1 = np.array([ 4, 4.2, 3.9, 4.3, 4.1])

P> x2 = np.array([ 2, 2.1, 2, 2.1, 2.2])

P> x3 = np.array([ 0.6, 0.59, 0.58, 0.62, 0.63])

P> @@ -1061,8 +1119,8 @@  ,  0.00135],
       [ 0.00175,  0.00135,  0.00043]])

-

R> +

+

R> x1 = matrix(c(4, 4.2, 3.9, 4.3, 4.1), ncol=5)

R> x2 = matrix(c(2, 2.1, 2, 2.1, 2.2), ncol=5)

R> x3 = matrix(c(0.6, 0.59, 0.58, 0.62, 0.63), ncol=5)



R> @@ -1070,27 +1128,27 @@ 0.02500 0.00750 0.00175
[2,] 0.00750 0.00700 0.00135
[3,] 0.00175 0.00135 0.00043

-

J> +

+

J> x1=[4.0 4.2 3.9 4.3 4.1]';

J> x2=[2. 2.1 2. 2.1 2.2]';

J> x3=[0.6 .59 .58 .62 .63]';

J> cov([x1 x2 x3])
3x3 Array{Float64,2}:
0.025 0.0075 0.00175
0.0075 0.007 0.00135
0.00175 0.00135 0.00043

+

Calculating the covariance matrix 
of 3 random variables

(here: covariances of the means 
of x1, x2, and x3)

+

Calculating 
eigenvectors and eigenvalues

-

M> +

+

M> A = [3 1; 1 3]
A =
   3   1
   1   3

M> [eig_vec,eig_val] = eig(A)
eig_vec =
  -0.70711   @@ -1098,8 +1156,8 @@ =
Diagonal Matrix
   2   0
   0   4

-

P> +

+

P> A = np.array([[3, 1], [1, 3]])

P> A
array([[3, 1],
       [1, 3]])

P> eig_val, eig_vec = np.linalg.eig(A)

P> @@ -1107,34 +1165,34 @@ eig_vec
Array([[ 0.70710678, -0.70710678],
       [ 0.70710678,  0.70710678]])

-

R> +

+

R> A = matrix(c(3,1,1,3), ncol=2)

R> A
[,1] [,2]
[1,] 3 1
[2,] 1 3

R> eigen(A)
$values
[1] 4 2

$vectors
[,1] [,2]
[1,] 0.7071068 -0.7071068
[2,] 0.7071068 0.7071068

-

J> +

+

J> A=[3 1; 1 3]
2x2 Array{Int64,2}:
3 1
1 3

J> (eig_vec,eig_val)=eig(a)
([2.0,4.0],
2x2 Array{Float64,2}:
-0.707107 0.707107
0.707107 0.707107)

+

Calculating 
eigenvectors and eigenvalues

+

Generating a Gaussian dataset:

creating random vectors from the multivariate normal
distribution given mean and covariance matrix

(here: 5 random vectors with
mean 0, covariance = 0, variance = 2)

-

% +

+

% requires statistics toolbox package
% how to install and load it in Octave:

% download the package from: 
% http://octave.sourceforge.net/packages.php
% pkg install 
% @@ -1149,8 +1207,8 @@ 3.055316
  -0.985215  -0.990936
   1.122528   0.686977
    

-

P> +

+

P> mean = np.array([0,0])

P> cov = np.array([[2,0],[0,2]])

P> np.random.multivariate_normal(mean, cov, 5)

Array([[ @@ -1160,8 +1218,8 @@  [-2.93207591, -0.07369322], 
       [-1.37031244, -1.18408792]])

-

# +

+

# requires the ‘mass’ package

R> install.packages('MASS')

R> library(MASS)


R> @@ -1172,8 +1230,8 @@ -0.4161082
[8,] -1.3236339 0.7755572
[9,] 0.2771013 1.4900494
[10,] -1.3536268 0.2338913

-

# +

+

# requires the Distributions package from https://github.com/JuliaStats/Distributions.jl

J> using Distributions

J> @@ -1184,7 +1242,7 @@ 0.370725 -0.761928 -3.91747 1.47516
-0.448821 2.21904 2.24561 0.692063 0.390495

+

Generating a Gaussian dataset:

creating random vectors from the multivariate normal
distribution given mean and covariance From 261c359168412055bc67f57fe302c32f8b03939b Mon Sep 17 00:00:00 2001 From: Jon Goodnow Date: Sat, 19 Jul 2014 16:05:12 -0400 Subject: [PATCH 05/83] fixed a typo and a broken link --- tutorials/sqlite3_howto/README.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/tutorials/sqlite3_howto/README.md b/tutorials/sqlite3_howto/README.md index 7ef88e9..e5cccec 100644 --- a/tutorials/sqlite3_howto/README.md +++ b/tutorials/sqlite3_howto/README.md @@ -29,7 +29,7 @@ _\-- written by Sebastian Raschka_ on March 7, 2014 • Conclusion The complete Python code that I am using in this tutorial can be downloaded -from my GitHub repository: [https://github.com/rasbt/python_reference/tutorials/sqlite3_howto](https://github.com/rasbt/python_reference/tutorials/sqlite3_howto) +from my GitHub repository: [https://github.com/rasbt/python_reference/tree/master/tutorials/sqlite3_howto](https://github.com/rasbt/python_reference/tree/master/tutorials/sqlite3_howto) * * * @@ -97,7 +97,7 @@ there is more information about PRIMARY KEYs further down in this section). - mport sqlite3 + import sqlite3 sqlite_file = 'my_first_db.sqlite' # name of the sqlite database file table_name1 = 'my_table_1' # name of the table to be created From 4beb09cac11d4423ad67f01fc958af257d61369f Mon Sep 17 00:00:00 2001 From: rasbt Date: Tue, 29 Jul 2014 17:34:53 -0400 Subject: [PATCH 06/83] new workaround for internal links --- Images/ipython_links_remedy2.png | Bin 0 -> 10520 bytes tutorials/table_of_contents_ipython.ipynb | 18 ++++++++++++------ 2 files changed, 12 insertions(+), 6 deletions(-) create mode 100644 Images/ipython_links_remedy2.png diff --git a/Images/ipython_links_remedy2.png b/Images/ipython_links_remedy2.png new file mode 100644 index 0000000000000000000000000000000000000000..ae3abeaa0288d32051ff622506f5866db3653196 GIT binary patch literal 10520 zcmZX3V|blGx9E;-HI38Qwr$(?P8yqy*|@Q7Ta9hAanjgnba(rmd(L_8oge#oXJ&cU zEXlf==W zmcd7KP!VY8f{CUM6{2Z#}o$oR6k5)0`Oq`}Wmh3Gk|5 zQW%yp{cn6}2&Q{KT89BJYyc>x0PNIMl51E51n>`?t!=QGg&p}QYQqnkhaQ-uryxW^ zfYK+H%--ppA`%~y@*A=_Ie?Og*s@_fb=odz@QDhUQ1GLo;~e6bhk$IRe$8SaX@3`L zMi^jcRIi#14loCs&)VQ29ZtkTXiUp&NG9un zM^hf?ynrv3!l8--mDyA`2NO=QOe_{D4Pvt-4Vm%iByl8?$K=aJ^;j>jU&$)Ju&`aQZ4 zQ1-$DWE@3I%z?Xt79fUw{y_}C0?;*zX?!QD#F%cCke3(g|2NfK;D2o+)BN|O`WFAW?e0i8(pn~vGUWF2o3(DtUi9F63%TG{= z#ypi!czw4<*k@ocKjW{^x!??tk9s|?uv;;!Ls9xCuRL23x{*+N8Fw5ph2oVElNiRp z2Sq&dM3fy%#gZ_au+;--gw+c^D+5av7UUNIr{t#?pQDQN(yR~~5!Q$ZLJsp%3zqYv zX3USj9b4Rq-^t$*dm+9diS}8UOfXMOFt#@hWxlM_qJyxF zb{+U*YFanCqP{|UW?+ZWOt2nC@H2MrE0=2~_Y@XR7K)(6qAr&+k`yjo=b&PYt?qBuCSJG-rrBCe``aS?}=b5Oac?%D{2-mLM$Y%lXx z-Osulam$dpNG;7wCWUN;-vy=!54o{Cf7L@!a%c`U>&Z^7821$i=6?Z%Nn7Y$V@1DCA@$ zW~9B7NZdedt)$C@kB{2<<;ghQIGn4H95dKS#64I5o)uY_@ZmT3Sx_z10YY}DZdeWS zWpu7MT@)AQwZI&!lkNUDszfSnHOWSkyWQhI$0*EO%!AAj2uJjK4YjlyUo5NIj|yE>xyocy^hO~Y?R$va;|hnUyIa-`UX8Y!hrIHQj@}8 z3QnH;J4@Q<#I>YQ#VAEyat-W~aK>WW63dcD=?U`ZgusKTadL};1cEV4juV3s{9 z%XAQ`1ONk zPaH2EBbpVA^gCO%>+qaDbbxvdvJKG)ArCQ(^blY6tA8)MD;cGa(DiEOvD<7x>X7d| zpK^OVhlxs#bdC&jgS@ob8r{&Yz1^%f@2E~$Nmjd{xJWrCq(Y(rZkpCwu4glv|Eym> z$UczAO2^8e6*xP%?5d0Fs;N_{sIR@b^_zX~Q1?@xT$ETOXJ1LLOfPAgZORgC@T;zw zFQu(~@e=Ye+A(_Si@J}!zYk+W0RjW?%#aGgaELDWcYO<+X7lUHBWBe+F!7TKeBWhX z8Qo){2!C@;@oahgyb>FfUKV~ei{(gdPVCWn_u6T^IJse^ zv24yJ&z|Jv^<+5O@aQOfJ9sX<6(tzwA=K0I__Z_$h2zZtWzg=l`gjwf5I5zlsaKQP zed=?+z`oR!!Vp${X#aAN*t7cKRzI9q^4z|6zhqFd)!hB;Yw6Is&E-G;a(JMdsjJ^2 zYX7(y(eB*h@A%QH|GpXTUG`|OJ>4#NZS*EO(H|taAW0s_PNex^|Hpeipuaaw__FVU z5>1g1@jBGtHU4@y^;c&}QVIFAOZH;iN^~aSJ;Awe_wn-;!e~@P>a#!1oA&kC{$fPW zioa_dJwBcvy)XZB@p09kb%@KeE!XI<7(u_B2ftm>KFRwy7{NLLSHIZjS38qIoQ>4E znqtHCZYV!*t~3sA>R&Q#^KAfl>t6$6fGvDL0D9Cud=~%}%i?C&8o`PpRr1rH4u#Q= zLDsh01wevmz-JCX{BJN=AWSa$NzC{1-~}d*{01;PTiP0cSs2$sn{e7|V{rzPgvgI}up_i95AD^*wuTOyHg{^q3g~dM>K11`54}$mp;Bpsi$Y5;dU}DbT0sIOodI11F4<67b(A>qC*aK*1@66-DPx=pn z2lV}SnUR$EABc-BKdF|y60xX*lQ}Uv0~-SqsQ^4NF)^Q$nFWuEn8bgfgJ%4sRxU1I zc^Dbp-Q5}7Ss5IhEE$=(xw#pcSQuGY=s^(l&Yt!z#vb(c&R_mR0wB24O?=81tGzEE#x!~~V>LD9n-~^aS*zEMeYp=IqQBz}5l6%AO-|b7gWtQQg*&lTx&&$f02Kf(l$!xLVxJPW zD+GWAfD!ki?(BXvH8w6RE-o%Dm8;R@fBSzlYz(b4%_AAWdvIG)P5 zzP|qWdpVA*4~zYKAnadyLXtuSvkS}1;|Dj&1roTBNu}lG^`Ozv0HN?79y3s2AtHgB z@{*F0K-~JeIyCPreYF5OV!&Tcy^ytPCVgzV#EUlUaw|w&#Q*poM*~u1=zfIiX&tlW z2K?ibiw7yh-vNdY2@VFrL0zBefUA3KOZg~h}KwD~ITK^2p3_L7M^ z@;`6FnLqS)jbM-V5PurMO46`$DUcL$MY+I}CJ*8EC}xtn?Jxkply28^C!>#+!=>%E z*g@DqfDvDDp&qO8tG9&9!Y+=7lLlYlBA|=w$%*gY4jdRNiN}nhW?YcEAS^DUAA_@0 zE2oGK1t;2)j_zYRiNdC70#zz>IS+96Uy1AI)FxfA)ufW5k$LCrMD-1|QM zH$L=^x6sDBKWM`FXQRtbM5bK)r?U0j%7lgOu8w?mrdLrF{U+RYgz-lMF^)BHW}ze( zZ1Wf1&tP?;3G6ta7(nOF#}7I2l3kB5pit>meT@FljN0zoK`yvJb1CqSel6+~>3a;O)wh7*j|gjh|I7334-BPX(b zEMP04s}nepfWZO+OJV{%x94f)d|_WAV()s~OoR(%qu3eF)G|3$5{qV{C62SSCJ}>E zaLP61%qcJVy!z2xgDIUplrXRY@WI(%@@tVv2TG2@8l=drCgq%(@wgq>9nl=xO2a2B zT|$ZGef~u7ki@Yk$muDOdV=L8Pw^+82ASMHn{4j(vR0>GvYgiy0JUv5O2f+>5ZgCt9}p@6qMd6v`3oC}hnG#{^agJd|(G-|%u689t} zM-jTVtSdrcoq!o#brA|SEc=#)J-!GV2EmW;s)|D&Zsl=P4OS>sc6(m#FfyxC#2DGI z*jqan4y0Ra1UIy$%^WuiagD3uA^uP9ajj)yZf9QA9p9V9ty*!gtwef^#@W`amC*1g z56!60nTjAt}X0a4eaM-B@NWe39=Rgk;`D~2ds)cZQE3`-~^F1#dFihMI5YC zm9{@xgam|=yf^Vs-d@>ssig}QJ2A9k*2z=Mb{6U4C3SuzYMQ|My9m`r4y1OkOJvo` zW6VGt8^`Zi=37L)c|@9*IrWE#2dfiPjL;{Dxzj#1)X`**QM`u`ZW6SnJiA)%O9RV>st5VP;k;Zgoqq(QBi! z?W*#XZoXOF7(u7G22!62#2@bAzL8RNLto+mDfgDX`gDe`s1Gp8unk1b8g^dpoA$4w z%1^oPO|Q#DLUJ{;0saYKH5|b`lIy+{O`(Y|PZ;2pO>CU12}f;b=2g~C9&x4k za!i%{iE`f#_DJr=oXo=|bEqvI)|~%1U){_J+dBL*m1T$*;U%@+fO1NK9Gud5X#m~u zt#tlws$7T%6x$S;z-~_?V0>sWxT7V=B~fpdylv>9)oE|%z2e%oShuz`n5zwCX#<_p z@9n>+h9eCZgx5k1IKu5^4nebwy$q$EK1oqHxI@-uY<`B{s&MRAwG+rvs`i|Yn~XG} zcqxE5Zj?Wxp}CO#5xS_MmNb2)1a&#rx<^w5+mk+aW?m;e9u6yG38uQYKhV5(2z$2LtUZepuS zB|;wJ2{vL{4LViv{Mft&LS^6UBifGE)2!GO`V8-liVk(Y2y|E(sli!)1i+>)cSkzn z?zO7)b#_fR3BST*72z$1a{VW-13t)+1BG(CPSp4VvHvasU>m;}Rc2>RZLBW_>i#Ex zGf@Cet>qwgL7RX;7;?brb8cZS{$J?cAAr&lW~6XX9tA)WCIL#1z9o2Vj8o%XbHe|v zMLf(P{V4A%C(7^cYuNl5DD%zdpzB%{%K3*+{6y!~j`m*|%8v(@-fSMZ49WS=d0RSF zR!v32%M+J1H9wX!i>d3I@liGnK8_b++kIz9whjr!bfGOnbPUdSGXdjO4YvJ-xh> zTTxpq%EPFaY|X~!d>^Ro8`M4*bh7DoYqU1xe;(OVC{i%#m*~X~{&!iSrn}Q}@&-tZ{Hk9N*TD&sv1=eUe&R)g>La z%mRAP4R!HwRhf!29eOCePnqNIx#;-wy7g+kn4oODXAkxM)_l?f z#bJ8osQgxW$FH<_*0RdQw!b56on_7K3wF-9sFg;p6C*pM`9sEEzweBu(eaP2Tk*mA zW`uanx}6XINwij;eJVr?=)8WA%#?YHva9EC-RGm;jrQF3qx*9+e#jGo6bcR7?fCv`rl;dN z+=wliqnxkfLwIZ*X0hfzhr@faGXqDOk_xvuY+}6db^&ma>AMbbKm%>{@M*%8_aWtv zUlh9rNgddESeLOZWa<9lLDnAvW?6h+yqCu88gCBH12IArI3yHh*U|MrZZm_ybX$d{ zu9@QHF+O*LUm1tzE8zQh5b=QTdyVa=bXO_Zb+-tvDQW$yeel3nv3irzNKt$)_4uly zJvG^YvcurQ6LPvRKg|Xmwrf)IRiNX*hQQMut7=65 z=`A~)KR~kTnocVM=8v-#(4Y|LbURds(HZwbP$i$)OvO$N>Ry4Bx!t-eB6vD4plXXR zr4VtPD{b^rzZjsPA#=VTMG#1;)?Gz$W4tOzcJ1flX)dEE>r)DJxVt_am7w0Z$La~3 z1N#8;48JRTQBXZT!+r9%HIv{UgrQVm=)2X3JBxdio6D{;6O&f{B5)riRxHA?@jJ?Y ztJgB zvi<#)ReITZpXD_|B2qiJel!Q50|WhMuObTjHRCE78d+b%PUgMvOBJw;^$Svd`%CUz zd46@d&55|qeLPpn;4vrUINxC&=56n-kq&BSgnoR=@t)%_N%fSZ^SAS-^8RVu+4i)? z<1?Lj(e@{DhpxsZ+sTP47FyS}SEoa;tar1$L&oBwJ(lU=_jar5)d2v_=0c+@!g*|ICxK+Y7BfPxmk7> zJ%cP=KjKmks|a&CP_(`19PzzM4#`4SqftIQ0&@A&%BqNq`mSe#EM2Hy1-_w`8#yHH zRy`1+0m)tK)nlZ&W>_QDCwDELp$giN_Oe*x*(Xid$>l znuZ=(lt|>eFI=Qb&&btfc~HlA9jNloknuij85_m!@G>kJ(zcGB8r)NRJ?^?S8%St? zJfsTN#m{7Xj)m{`D*ReoU>T`!{;sZ%;P188K=l1QyyW{c z{|?R}H5q@!hsngrbKy9U7X2-?6(v_8do4`QjdSYSB$DH>Xt>AHJfGVOfxxc~n=7J` z$p)#0o@3ECVsCC(D9@40WGjatd{r|`}^++hHa|rA8qjxQ4uL} zag&hMP+wAk;tMXaOEmF4YVAhPchok8_&?ihSNMfuNoSvrcskhm%6{@A6Lj>u@Xk5NCuanr zJZ4qv+m#7)(G$q?pBr~_RGpoXl%EcaZddC%cOm{h#O}E~>M6{i+>sywfDzBc2N+xC zn_^ENFkbpJyvvMs)@)!Ic6(iMF&Kwr4cdl4Evh(qoUQfjswv-e^~jRA~^r=dwEsd!4{bq1g>gz5(pC#$qX-+X+v62P!^K zT|G5bjVfWE;Ue0Z)fmdhk0Y@+U$PZN$vV-K}uWa z&Wj$oF>Q5PJlE874-g0H+SJ1Y(5WfEShAo`m*D8KXs@?6DVNc=J^G2WLgDp(lgx+Y za8~nsA3MmpW$LD@s1IAHf84G-Vi+PjGCxT0`iH0b|D5BdvYt|Y{^J`Z%!Blm1RRow z#K>Z^Au&O&{`DsN#2U@xFuY$RmHg3fHGV6|WQ#%DqJ4DyumR_^CugO0Y$YWaa_wGT zTvYDsqNbK8>gQ9-5V1**z2kd*h0)tJiav?t_DGv${ur5P?_WEdrj*RI5o+caWdWW@ z9=}78mM&}DwQ=to#&IT1q|c9T;?dXcM+)G!;=XNpKdp-{3WQ-(JNxuc>Pm?<7^#oV!jsdxWra zEf??zcZIDsu&}UC72VA+y>iMDS%1&cy`-ZNAbj}NK|O0PI3T%3%LENcXbV2{J9|@A z(PG6Wc{h9P=U9rv=`0^US`qk%vP*1L){>zQ7oHrwOxf;@r$-N*Vh}xWed~T!$F8hm z{%c#x>%++KF3DaD67~m<6gzND#wA{uKb! z9G8_OcuW?2Q~X?3rYHL$DP#{6#QfufG1(x0}&+Y5G?L!{&ji zKn`N)e@wd|+x4hZY0|!q1ig znOpI|G)x%O+sv4PCj1hx&>+n{XyEP??h7MTc3H_HC9lN@^U5S=32MP019}rha#PDK zPnN=`Z|wQtM-~cL@2T1$IQ}B3!2ZxwG&i>|?8#uq*m!*lu@|i{uHaBI4jci%Wzup|xC*au2HIo8exQM3dtOli-?oE+4BoSqon{Qi~)wdqRmr zLAA9(?b`Ta$s{yP8rqJn(eqSE4VslY<$nu)7k>Yl8*QWRs=?nrS(Zh-Sy*kYLxykF(?eC+0TSP}RPq~ec@ zR`lWy#6PaDvl6LsTgrh34Z8@ayIsfB z_&)6FNjW<6V-4Pi65Ukyr$(38$ej#wX|}j?AR_|6H;IiNqRGt@GJKD7Fd{kOVXmGQ zVpP-S`iQ15zN(w}^P+$h>YmVF7crM;9S@r8O#kvG_8wIAb7*%kwFPd|Nzg{dpHK<3~?g$ly36a8NCQn73si zAS-!&d!M~YM@v<^!T?t8fi|fG;R@GNMtUE!MQi_P+0eyxV5%VEa_z(>opsRy)8wDe z+oLiGn2v5dXNL>&b1*D$F3_u6E-?CBf|Jdh&RX>`iKjZwSiIAW4P|0 z@`FzoXP})rn3vI~b@tM)D#1urZ~tVqf4EZITX?vBKS!r3M=L3W<}HG588^0nu2xQi zG08d%|99T%bc{80jC`onk@{Ek+4ici zw)^+Ln?kYEFO1_|2v%||`v{{qgd^I*e?rYD)OD7XDd#D%u?RX1PI*2iD-^@gs(PPg z9Tj&L7gG#jVqmi0U=Cdm1eV7d3cz?Wz+X)~W?@sC#llmrKCeY(#cs#hd z=^!~D4~xDk6VZ#51qMA;lBUT~j7ocLa>75;e?(=SnH9rI7ovy2=P)vIKQ?5#V%#z& zvm;-_3sHGIKXLr+IVk|bt8eR&aC@GepTM1uhM^5dDij+~1k42K>-!}Lf6D5ofiZPU-0cHM{ ze3h?SM5$Upk=|mt8j@DB$4N$7_j^M^u3_4s$ty%@s*m9g>;zyQsZUPp$$HC&d%%}$ zJxa*%5D`I4w5QG8^mFsDmxubs+Utr6S5x+r%|G^LZwG{a{oB;1%Hm<-EyK>{hl^LL9gSGUt5`416%`FNLQVJPT7DsEfa`j0Nt;Cc8+I zOoWF|p-LGQyrZX2cErZ7jiF)6<@Y?^>|gMD|{o6 zAANY=2tC3or!ZQ5y4{rL3t=CP?b0~SO1_lvsxkq=f}RzIUt-DTN$XFl*(dS(3~7 z@6v8b0%Xat>Q7C`}a0>T9@Q*ZMC@4+!D}CenC*B7PieOoyEx?o$ P02\n", "
\n", + "\n", + "### Solution 2: line break between the id-anchor and text:\n", + "\n", + "![img of format problem](https://raw.githubusercontent.com/rasbt/python_reference/master/Images/ipython_links_remedy2.png)\n", + "\n", + "(this alternative workaround was kindly submitted by [Ryan Morshead](https://github.com/rmorshea))\n", + "\n", + "
\n", + "
\n", "
\n", "


" ] @@ -223,7 +229,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Solution 2: using header cells" + "### Solution 3: using header cells" ] }, { From 4b34d71b463eca2143e31c3482690c8c78a8bead Mon Sep 17 00:00:00 2001 From: rasbt Date: Tue, 29 Jul 2014 19:51:21 -0400 Subject: [PATCH 07/83] cheatsheet upd --- tutorials/matrix_cheatsheet_only.html | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/tutorials/matrix_cheatsheet_only.html b/tutorials/matrix_cheatsheet_only.html index 7624ea4..8d9762c 100644 --- a/tutorials/matrix_cheatsheet_only.html +++ b/tutorials/matrix_cheatsheet_only.html @@ -14,6 +14,13 @@ + + From b8ad2a5aa31eeb6a1c90c431ba429b420b3393cd Mon Sep 17 00:00:00 2001 From: rasbt Date: Wed, 30 Jul 2014 00:22:19 -0400 Subject: [PATCH 08/83] watermark notice --- README.md | 2 +- ipython_magic/README.md | 8 ++++++++ ipython_magic/images/watermark_ex1.png | Bin 0 -> 22863 bytes ipython_magic/watermark.ipynb | 9 ++++++++- 4 files changed, 17 insertions(+), 2 deletions(-) create mode 100644 ipython_magic/README.md create mode 100644 ipython_magic/images/watermark_ex1.png diff --git a/README.md b/README.md index cfa5708..b28d8b4 100644 --- a/README.md +++ b/README.md @@ -125,7 +125,7 @@ ###// Useful scripts and snippets [[back to top](#a-collection-of-useful-scripts-tutorials-and-other-python-related-things)] -- [IPython magic function %watermark](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/ipython_magic/watermark.ipynb) - for printing date- and time-stamps and various system info +- [watermark](https://github.com/rasbt/watermark) - An IPython magic extension for printing date and time stamps, version numbers, and hardware information. - [Shell script](./useful_scripts/prepend_python_shebang.sh) for prepending Python-shebangs to .py files. diff --git a/ipython_magic/README.md b/ipython_magic/README.md new file mode 100644 index 0000000..fb167a8 --- /dev/null +++ b/ipython_magic/README.md @@ -0,0 +1,8 @@ +watermark +========= + +An IPython magic extension for printing date and time stamps, version numbers, and hardware information + +![](./images/watermark_ex1.png) + +**watermark is now located and maintained in a separate GitHub repository:** [https://github.com/rasbt/watermark](https://github.com/rasbt/watermark) \ No newline at end of file diff --git a/ipython_magic/images/watermark_ex1.png b/ipython_magic/images/watermark_ex1.png new file mode 100644 index 0000000000000000000000000000000000000000..6e95b0338f57920b9338b4f4b7a28ab53bac4cd3 GIT binary patch literal 22863 zcmd?RRa_=9vp$Hs`{3?6xVt+HKDfKP4Q|8W?(Xgm0}Sr&?(Poz!gv1XoZY?J>wPcy zb-I&ECDlnid8(Q)1vzne7;G3IARu^22@xeAAmClV^)nO*;O~cN-WA|Rn7Od9f~2r8 zp@M_0iMf?A5D+DLMGUVrs321CM#K~)G#05DOboav?fLF+QJMN7$mCGbP#6o>mh`ab zs2vBQXV6otdL(PKJBCm;j6{Q+AVR2~4MH#w;;r-!VI^=JNSA{pS5tly2)mT<%A{4G zVf2|n`hlhWdA1vttsq2_Py-o7OAp#Oje=6_QHmea6w9Azo(@C;1qYQC8x-5v)pN{0ClbtiRM87@OxYkGYnTLWWy zH)}h9(SU$>+_(Uj*2Yfygl^VWHjZ3wyu@EMxB%Cmw;6~Dzp6M{@)E1dDi8|WIv5kO z(zDPr67#_j5)$$_7@2S>iHQAIb3log*v!evj*Ef8)zy{Wm6_hw!IXiClarHy@jJu! z?{t6~bdK&ePWoI+)uzncLbBe#+H1uyuCgB_{st=)Zse(bL$? z{C|3~as01g0S3tM`GkRqo{{0dWdoY>eBR|!Fn2SyQWr6|HnwpD^ufo%!NT)Z|Nr&m ze|r31Ej9k9<#$%b|K0L`J^8PeJPe-$_+JD1&uo3&1xyzo3=hM9Pdy)ubF~`_5Rd?n zq=?`TH{i1jcrVm}l*^ELa+mSK{ytJav{Vx7K{5x_X}c#ghm+mqfD=!L<>1MM(2c!3 zjIHU21hz<~q}}mcI*blW+I8|=QV~hR7RcNXQ3jRlge&M!#tN_m31g*}FkDgxhiIkz zT9~qb7tD3bb4_G8R#rEo7p9i3e3>av7w2_=-vqOvn_IG;0Eh$-G@;*+?51H{oBJXc z=`XNoAe3w{1&tl|ughc*z_q+zK%lJ1XVv&UVvd)sCFLTy4&P(%cet#yaHdZQz@&^m zVAKp1?N;N)j{Bo2?n9%unkGgadaswgh`jg{32Hx|hL*Bk7YFQCGsa<>Vt`NtKz8Id z^P>2k39oyG9^|Oe!lmh3L@F7yG+ulz%F4^jQsw@P9l_aJep1RC%CVMzft;kGceB z4{RHf&+5_Lq(r}lJz{a8tRMiINa&G*6qk$V2AF?Mholft!W}6m(jwefRSB?bFSI!J z7x9{JHH*Km<$Zo=#ISoyiT~U1w%nZk=J3S2prfHe9Zj{SZ^Z+Uru;`hlEiYI)A3+B zeBq*V_duHZ{c@f2p2_}^f`9eSWEZy}ePa9Sy%5K?DLNM{Ug9I8FVL(G3 z6hOlXO-7kNUa#!WwGYrKj=h)SSKk8rTzESS`U4Q@v|0@o2(~A)`#d`k>9iZSd(de* z>uAIV34HEW!;PgGjJI+wy2ugocP{Lc z1ZEjDME6ef#-*-(F8GyOMpSv;G;4tkm@oOihVB2Qz2);|Aq5{--GyPb$ct}Qr_n*I zwEtE36KtiM^^33ShUdnC#qf5G+Y&|9TS%2!SL0j5@x*u)VU6yE2U+XkNg}(?TH71s zKxf-_%EvRPljETN^L8ydKbP3x{e{<6C4-Os(uVJqXGiuD5$;FWGsd24Y1a2n``ZN! z-li?0^K}CJd}w1anx(I4@;e-9em%Z` z*GmQlWT{aQ;Q>!|mZ~x&rQgKoXXgfUBWT9>)U4J0zpSiSY$`D z)%m=y+m4+>Qh)!3SMh%0$Iqu7;9fQAZ6SBj?FL&0ugS+fcAitYB)d#pEfJQFMI#) ze%3(2(2aD?4fL+u zT&ttuqA0qRNiX5YEnEK8h1XFo17Cv&lW4bF(=(UrF~cJEH!^er-A9wL3DZQ=TQ19_ zhV9CW`_A`@f-ARnI2Hy;ksTv8992^^nX~vF+MAHQ=s3y353t9!{PtJ%sbyuM-HKYo zx81OXs46&{R#Epe+O&_U6^lKV)vxXNryU5{n8u9izoBnJ^xDq{6YG+Ar!ZEzO)f*c zuE=d~i||n_{MQTBf;NwB6S~kPju^AZ(ZWJVmvzQ2 zKAdyD&R^x-pUMCA>_M;kM{T3PFLf&Kebb_g7ulB!D*o`6eN_46c)<&E@n}G?!Q(M| zC-=B0IWff^h5tS_700CMdaC`PH88j$r?wlw-;>%H8Z>}i}=*XK$tq(3~H9`0*Tg_ZjiX)bLpIw!us0@wA#z--Ovp`Fq! zgnOgRJE3JW|=^Nw#!f`0O~^dR%n;aTV6)bGul(QnHyK@B1(nB+vV>D4V41 zz7MHOo}asAev@RY-qUf9M!H^oowmPktdf5kfdly)J&L!u{f*neu=BNg>i#j3@#%Hn zvT5}lD?-ch#qsu`%@(ZF*>KNt!j9iRL%eyS!(OB%w%q-YA0PkqelGC!kQWl){274Dt1Z&i5lL(8|Q{wzSOV*B*5gRSUZg*Y)&5m9feW|Cg5lCs&w;6>Etk z=#<}J8gKoLP}v_HDoz}BtoeA!fd37JJwJaD5;>>b!9`_V9v_uST|h}uCC0r@qK|kA ztfaiSa!@MTDDj=!;H)5`C;dNjCag!xfVG#Xzy-+bMD7TAD?(FL6#pKpt52 z_8zvi33n8HS7C_61o;Qu)}POSPyh}(J46ttNG%o6v|&@3VuSk|ANs#5XD;$pu}|b6 z0|z|Wk?kjl7{Df1#q^SgCBglF0}`3&|MAumdhO6ZbTr+U(nkO|g83#k<;ZzYasFti zIr6g~!20zQxMvwOGDB?y{*UXgh03lS2k~$FnzA7Yfa^Bmp*uuVF4&sB_{k_(0+ZtuTKD<=E$}<3Ye3RXZ*npaAvhn)HOA z;)}~sV{$e(^%QP%lc%cPjO^^}imSQqtu%C$-@H6}uu#Fz(Zz940=Ua8OYzKWySZik zmUkvsd*WieR0MLM9Enoml0(5mt}%v&sKn4tU!WSIRMEx|>F~o7;ArvlLM$lZm21cQ zCWkgRhjL=U(aosE04T*y5DE?xUO$9u?t8)9zzCUJR#05*@62l4tmVx$YN1(fFNfcb zX{0ha31n9~d8Fh|Wv+WtsO4jUcELs<7wjxlyGqM8RX_WyktS*4sD=^R2q^;Bo=uqi z97Xoj-G!@vc?rQ~@|Zi2yXWa`z|PSpjV@7AN{tR-p#7{M zXiV{?%61Ll>64kEv9hqWt4c@ z)7f32TzmldB~;>n=xAi*D=Rs!xAX}!ySOomkYkG`2qJl%pb(4m_)uXfxYpH0jW4}J z0gFcCTWKWlB%d#@3|KhL$?g2IrjlmBLy7>fx<74(t3x(M-9WyN!nss{R^lcEYw2W! z)W8OO7!@!50raGs_BrMB6v6|jw$g)u4bdqg`CQT_ct7chZs|)iLeU~Es5qLniv|as zxcJr2KedGgKky)$g9e9rJATZ&Y;{Kc!t`#;B}~ zq#BN{Bu_3aRnMDG+7B@0l5}9df|iiJ96xAh4B)0)cq3 zT3@+^k2iJHN$$}qdwCJS)?CU}QBRnE7QNX?hZkt6Qb0}N($nw7*}WvOws@UboFTwLzb!-Fhrr@Npkq`H2i!Q=`~ z8d^^rvdq%4dtp0Bo=%4E3OF((8-Ypvn1}A_oz7i>kNoKNl{ywuI-6drm0y(@OzW(U z2kR2faJBtWZ*Gh33?>_jcYdz2>e_)tWO2lT%pz_uIe$uo$j}vho)0d6@J}b#eOLNs zdOJ3)l1`RJhp;u%SNrEbgT;^VYX_#MxGbOwUgnlKE%o1FxX;0*$`|GtYNE{Jv{kh6 zOmut|TSwjmH7=K66HLfiWp5GNxlrF$UjiEN?PX$%YPM<3J&l1MX)HCK6tJ>ao&EThEYPGZ9;ZAK0BWVHv;;Y{vxQSi{spArU^L#M z)I9`|X>jq>IW~uUp1?>Ia%(ZPbnKPi9Nf=y4G<0o*4}^%Tb}rP+_^8Gl+sPff z^1Xwha)zg22~JinXt1WTV1dOA8$QQdew-w%StO_rl5KXvcD*8yz3G9jGPDRq$=Dti zU}#C%?8SWd*+q$FlYrin2lsM|Wpryo4f6Z|VB(^OAkb(?RrkTF*1iHa6L<5>A0eAf z0(^ID;)A9Etlz?2LgIydd+B-e_sc=AdJR~{2|F2Oj1h0mh?v{aSRNM3*Tka98Co1| zl?9>e1}@GEPXI?&%L%jYGl%8HWkKPn-lJ=&s?}t5qGMh?e*|-`jA`!HAI_Xw;4eDW zE^dr5s+1-!?b(zyN<_HTu79P~B73vmms!i@|BNS;?29d7;|OWGs$27_dXpf@b(*oV zGik~~tN^FA2q(O>elH5Z@&lN5msr7zHI&=>h+eUHCh73nhh`uih*Br695uw9`Ov0- zs%qF#xuX}PXhie)U{v#>M*#d@LHkTXO__FG7SkplavVEeEe{;-c3&`HIJ%W!65Rir zppJkLSz%G?ZhvrjW%~!rE#CEhRR&C0>(Uwm216l6rm&N~Vm*>}I}rqZOLXu*gquVY zj19ARTh8{0^dFl;AR=o=#_k;k9ZD>?89%7V;XjA~ti=*^{5};qGER6phQ!|L^3oD2 z*rl^Ji=wJFH}_p2{zip0ujfbb3r3MVe?A&GjbN!IbCJO2nE`I+bXjrfU@=j%?M>AB z``-rw%~)#PX$&t1=qxJL`T2cYVae~|Cc`tXHKT`?43wp2B#fY+J2trAbo`yD9|(8Y z7i?+=6T9=bzjguD3jQjuf6^@%I}sg#Gre9al7KOw-DspF%q)s`pO;p(wH5o4Fgne-wOO<7%g+PHWzUO}G_|$t4P7|J zZ8PzRc^6_5t^QbVMM&}eS5fm+=Dbrgm+dVi^Jz}69J9$BqPC=uu62}<&X>C=XCYBX zlf)ziypNt2wY3*IZ`3jB_-KMU!cUkhMGQo85+gJSqZE&aKoun~8|o1fb#^WG#}3b? zk&c7wNAwil-AR0Uts?jb?Yn-DX)yevVuQw0^uoH~6eX1T?8?jOJ$~BSo_zRThLjM? zSp}|jZEnL%kMte<~)4g`@7T!pn8lKRfXj+98RCR23`J;e*Dowu_ojcuyGP zghc|Fgk|O-e<*JYb}?Z+;H7dYB|Cp2+k9y#MkpXA5kUIDrqGj4A}j6Q7Kve-oDhyJ zpn)S|%!|vHZOqv_kD%CO(V;+nY*R2CfB4|`wzf^ag84xeDcK{VA#5+)G&c$2k)|F1 zQXzC%_Z?;pA+2trw17%v0}~rVNHu^ma^|8MTLZZ+3tgWMXDh2~qTKMwnXt$W3I|PO zYHQycqL>q2I40IcAYix^iWGo!CG^n1!l^7voo;h&#$&Kq{qKJqpVEgkC=dAI@7>CL zT+yy~O9eS)pDyqDan4ab;EtX5YzPEBv|;YqN*?Ap7iBbslAs@n5`!ybkqOSazSiKRW^FP)~OZ3~?qv>2St1^vC& zDjQOH1&rd$gRgtXd}HJlBbCqL@t2J|gopcO^hp$TroQF{vFQdw&|559otNM4L8?wm z_ZZuhlqlQko>Y>>Y8o7IEFm(j&gVu?sH4}TOhFABVia6ll!Tw(fW6I;28v!XtvhY~@_&@sG$TSRj765= zKmKL@`SMSzE>YoU>`iVZEpMR%x!Jk{_DxCa1ggU^9D^FZ>)D2^h%o~O6>8ifA`P)A zo_*eS;q%@nd_99V{8*>6RIOMyy3faKKXqi>^D%gdXhXQ~kd?RyTNW+Bfh2N|2<;yk zqBS$Ebv{C|$N4%3vVrtN>=SX_0L4LMxMWROp5))4+@(^g=2tW%*-C{+sMNHHK5at7SWrPu51Uu|YmX3{>0f)q6T@18H>X1ULn*ndSuCv&Hhm; zl!_yH%>5h}+P`g#u7X|=<_}UM0X9#oraD32A))DPo))&Kuv;%ceK0>x-*R2Q-Tbw0 zHw%DCsmznHGuRK__UdLnZnB@Sod>5xc6O6UA0+(5VE#I*M+^9X9C&-BaNN8PH9-vO zvNc%@medjC>mck`5g2|&79_I409A~%g))-As1LxqDVaSu-JvMed-|zA!12=q9BmY= zDq8rb+vVs2l(KX)DdGR?8F@f$rosWJFhxKBMO>C%q6``az1Vc83#}$S0s;bryjb{t z?|*nL6lgT>o@6YJ$B53&rIby*U+&l((xsi3h$9&B@Uol-pf!FA3p#b}%+O-SH(hp3 zuYO)cn#dFTjYX+<)iB61i03pz>_WuNPnI`nIbdFY7xh0hZZZzMdt`I|8GJ?)W>N%d z=U?UaPn}xLJ^>xj5A~V5Oie%F zSx;&_p>CZZ^z1maT52tV8Ik4nj%Vg_fHjQ= z=tw2P!`IxmeA-YEQ)NCyEUYm91~{DXH2a=g)2fBz`kx4|-e@a}FJKT-OkZBz%6Kwd}89(%ZO6jho ziZb-+((}}3fL)Xm1g8AlyHA{&SJ_OwH})O4o>yn-x@R5v zy3^7YnJm69A}o$>hB5VOx%ZTuHzF+faNUGp8o+>M2x*jI8+2bCZ zf0fh$JRCj^C+(L(k_7-lD3I7xgTBl|1HiS0WB|$>2%rM$Cz%KK_h0E($&d^Xu`A!L z#{E=I59E`~6IfJ7|0XL;z|Aa8rZ;A*fI|WkR2&-w6P{YGQjGK9%-^CItuq z(Kl52D%E`IrRt!L@HHI2PwY)-RSxt2b#Tct!(8iKot^pz0<;}3VT0KRp(Bo?dq;@m z)2Mcyq#$8~Lpkb0?EtXa)6=7frl&GMoJYr`6fwbTZI->^+y`np(mnKB`EZp?K0okr z^4CddnJ=w&Xji4Rdc}n#|0&r|zA(Km({ffhQmpcb=q*Xqz-(}Y&_;&zb>a&)<7-N) z+i%cEDTRYBgO)Q5#dEUQ89hd)lPj-YwOd}@t+GWnN==P8qujrPj|8})+Oy);dfm$~;*{O1h+F8vwl>er`(Hr7~u@2-VKVu6? zrw;5$l&dRPF<95P580I)Im%lO#qMK6&NY))VWLJ>GU;*cHdxkYyFgkoVLPiH9*`Pl z*6BJ&SdL_JCbGyEbv`PRxEcv@Ez4G*VujIxA4z#FniP+N%PstO3pP$f)(oF(#i_Dq zQp9t?I;^-Iyq;jedckVBTru6iq?2BhyDFJq9unf7HG((n8vmCbPcj2nIp(IiEiUso zT&$ue8})*J8=4yI?DY43Jsw0wF?+#EY?YR@ym0|UcyY2A-5K_M7-m8(m@(d2o(cdu z=6MZH{}VLc-eVy)Shtz{#uYhvdTVLbM@-9f9Qdb&8K_+5{&femaXKwI<7a8Z4;iIbgReW^52qWI=Q5oBm1<}tyB3wO}Y4>iuKDx z>w7NMajUU^*o^|>ggQu^GbPZqPrJw{E!S-=l$9%h)imqGN;YM5uI!-3Z90_N7tzvP z((nxO@JR-!5~N%*9ZTmiSY_4BaEW?WmS7}PUE)geRG_sYvFoJy*4qof!Dv(>Eg~4A z8vl6QW`Em_`-R8S(;?0f)!LAOP=nR+4*k=NI%2_=IaE_x{}48Ez#hT9{MjX=WkUA{ zM?DNZ{SbR$ni;I~rB!xH7j9`orLQ|UM1H8w7w@!-T2xpinW{aM<} zsnJYDZTShXRE5LDe>e#uEn{gktdsDV=Kp4Zc57zrh0jZ3wVt=bsY=U1xeEWV;*pOa z1Qg@;U&ZGIoKvmHAS98vGqGqrMhi>lp=$qYTJ~gZznp1nG9eqViqfr(>0dwD#+7BLtpwd8|?|Y_9&B`vNl%F zz+f*I&aeTi2&Imix00x7gdCnBK{&6uR1H*G<{xBF#g%N;Et8&!Y5&lWc17~A(SV=S zgi7}bnOhW+cVccEgYjXGP{Vdnm%$r?#Bpa6h*jIRMZ3j@rRMNt#a#;=0W16sHwJU{ zgd*o)h_gqiORHZs);tE4gr9VQkm31MT_^1|J`=81Fs*PpKQ1<3&q{07wr3yUMKlRk zxfIWpwucXSG}wzW%G-2kC{l@nc_7I`1}D3VO&=UdJe(Q=iQ#r11F4`73HczHTw)|n zZ@tQXx&nMac>sktWBxq|7y&lJTR9b&Sf-%nz;zwWRNn&a8>^p-!r?SR1?KeL4MT>{ z{SvucJu5b-7Yi;zF9{EN0ya9#t7HVp2!9O?#&6O$O^PVFbwGHvm+FG_{7k)aV=f&1cqgg*lM`5ZH8?T?iHB`+ zZ@=qD@m=2-XGZjEZ6ai>A!ptbJ70-q*b&g_8=cLumC8c4=VUJ|jtYhpw7|O2sy5iv zJqZ&XAaIoxj;8eLANW2eWbV?f?_N{d7wUwwQ(fq%b;gLQ27vi^f^BZtuUT)ndcP2)=rAKq3GZUTPn*V*9>3|*X z6H@VgW4G9@DOC0Co0yC(2n-Z(bm8Ubs%jE(QWW*rb>FBo zV}agM2zBMx(2{Aq%o!zZymK+D#j^RR08$?`7aT+<^x}wc^YI2*Ou$6}{pcu-h`zMd z@i8Bf_mFdEDVtAwmZm!MFdrMUtl>1_jSIAU10+*rcJk(&aQmaAGShXzMu_L4 zlO4O#JoYebz?mVzziq2S_Xs<(-JC0Vt-Pqx@_&*4bo z2i@CuxPU`r6!~;n=+G=lYiTW0zW7G5cUgs>3%>Z3vKXb6ozyL?+w%R}MY8-h?S}Se z2@wQlABcaVy~Pii$nu4j-j5#$T0I4=&tlQ#wbF*p4<1C-{cjl_XByfPRuT_%$j`MW zdfv_(X~^u9fR*g~@nEJsuR%FM*nbHi8+$+LYReCvHwjaz3T|8oRa4RmZsxi_WGFj; zd{A&Gqp6LSP-bz$5<6Zd&7{{!RLxQ8QuF{r60y$@Q#X{SC(>5sb20}|(vihk+n*Nj zPuzgOdvUaSOI}}7=21thBvbA4T-;rF+h^>TjG4$Qwj_B!i%p9B3$T+_dz;bM*#y13 zEi&^w|I@$F8?<2;etq%!N0~#2`ew+A0TZ0Z4b;nuU!hx37kqW2`oRpAm* zN3fh#f@T6HlX|k?13%gW>E&%pr=`Xz?{}tbQhtL}Hq0OR4segs?ng8eRbBIVc`nUj zfkD0#LalFc={(3w@-06Wa#+g41}}UbUh3}x+=noW(OaYE9^Uh&jX}JdI_U6-n}Nc9 za-)*7l4&{Eh-cG&_^_lfAS3jua@AV_gWuo$EOB@E_wryvy1UiYK~G_QsUmBuLxzxQ zFprztT(1z~K&nlOEQ*iq)|Be6kn*ys6V*EjG9hn;ZKR&QP1vp06&0)^K3$`Z##9prpCjzefRAX?@i z(r~WZl;j6RJ-CjIxYqvpqa4#=yxu+`k-OhF3vX3#Sb|GzE9*GiS1)beKCMEIVk0=% zTS*3UEJri`3N@j~&B@M3{*162= z7)qo~jA;eZFJE^&%45;?S)B^ zX&h%inQnyRI2Sn#mz=y}&=!!lD`lf@#~4CG;L$0YqCm$fVQtg#treOu@b4#Th-MkAesb=bD3jdZ4e$meatXmm*hXe@i9XN@!d;R_G z527UmpnMqb1aoeH7vIC+^Ux>8Iip^b&$Dm8V=wmhdc0u1ayDOt=awY;@XMP(Q z(m+-sNT&Gh;_w<7%MsVseBX>N(&|b~kx8+tGizdPK#vsF+EkUMWsfX6&VZ zNH9@gqwx7!#^&G$ty_N?o|N(EvuOVdy`-;gTpdbcU11mauo_sQobi)E?{%lipiN>o z23ldg(Q?e*@9cS{1E7o&)8W(+$I|K}wS>-$OiiR_v5aEz{v=9+{8!x{VC@tC>P^3E zE|t4NknyIjN!jzemqqV&2Se-psxHyNfTk#FE>1Z=TB3p6z&~1tS4>Y`b09r(XOarj z=#oT8m-<-_{dX2m^{85Wj1IR?KtaM1KSzH%f{aP$eF8xW+lY$DT`F+RiU=rDg)&ZM zh{3HcmGm6KW6@49Ht!-vhcP(L6_ZJH$waavHYoP=F4jRSbAe*qrTNE=jM0n`ek+oe zrgwA`C#K;p++ls6Z~lflDRK1m@si4rxB!(cF@C@u*OO8{Zpp^u$X!BJ`TdzECF@Lv z6z+^FF-8~+Aap=OUAxRmZoi`o)rtN)wzl?q__%ZwW57^Yv9lZn$do^OhB&Ntc!~3H zpsV4a31T5JIBfyNbe4EbHIlG%vn2L#93EFs?i2UaD^>OJbDu?ZUjo3dD zWc>Xr2gL1UFmi($Hw_IH(fx18QNpC~hOsG%q1v-{CdR7KF=UPuz<6*s(BI2kbTGsp z)9;*qQdSk0jKyF?^$%a`L(U;npldAnsc-mLuW5gHq^Uh#ZQo3ejMB^Obtom=wLCDn z+1wH?|R_cMEHYteA*i#dn|&=2(A&`rLw zqJMG#I1C2dm#b3FDCFm>QkXpeQOT$XM*awHxIHP&&r?%>)QLlCNP;>y0jni%FgVlk z@Hmn7NJXFh*%`%)v@erh8p!w+K6%n!OQiz|@XxdU(t7(tLY ze}OCW=tY5v=U}et2sT48ZDC>WwNmbETlF=CjmbI0 zFz6_EWsfk{(R(egV&9L>j)9*2r7iCl#EXrtD$|b`!7#zUb*_$}WuO*IdR!uB=!!|d z@8IjDH1ATKPt@un=^z7?N?>2Polft@T4lKrM>;4MGsF8MXT8W4!Pqr6dslvqi0G)_ zMbgo$64olW1>YgJYIM0@2q?jv`DlB4zd=ZUY;MuVm2iodJbz^_tc|Jp4bU@zB_{kBlC?hYp-rT@tjNg-3- zNAfyf0nIzF`E=EVd^13aqzzfieZ#CSgGLeZ9xX}DorBK2O&0WqPfok?q#LFCWyU!; zA%kdItw>&BvHL(uxa4t=dgoyhBs^y_>Gzg8w7ntC)~>Mn1VjkpId-%TgsX=oNIJx= zq8C%tD+7O}FoGDXL3!v?q&RYV2gIV1hHrI7lj<{Vn4QSkeGtGf`qSld6Cx;8NAX+n z!M|6r!(O?_N7B4m&HLoyoZpIC!}KnxdRzcrYey!#n5c-dp=iMj$QTbQ=#4(2b0(!; z{a<`-YRfEYWGGGw35nmg*##GF^{`(ZGtv7JVbmO=iMHLyJkU@!gK{T%_(dF8aWI>| znO3?MI8do6ebB}s1;i3-3-3M9Af^Q57Z2*4u;C%{%+oMtZCcm3U2v3>jSdhALtDUR zJOj6~zkSE)=Lx;dDq{W-07^Gak6>3W|r(cq}1GJz1?$DpYeEjF`&sT{#*9Pu92pnW&m(Nu$S zbD_lh5z?cK!~prY%|r5gQ}UOlWR@cvu*rfsG;rq2h%_5loZ^7n>F>W!0-eV_`Ij1p zI$cLssg^c2lV@D->x{kL5?_@?k1rO0D zYAce40aj1=#Ey}Z%27z+mX_+=q@IITkYAYqqEKiJ@F*Aja#o#}vPois;$6Ov327JF zHQMOjyAT!!A94+eTCNN1su@RT{zU6)aULx9FRs+sAX8(caAf1BHXSx+GoESK7)7_T zi7AfrV2oBBReP#axmcrpVt|C;+34)~0n@~=N;s2*h)DFTLkeJBJHE?P8gY!ZmoW-8 zG+X6Dyt|&P$}=+AD7Cmn7i~!MI(U9Z_A`b2qPqReloX6TM=nj5m5(`(b03q6?f6#F zGxe2c>*=965IX>D?c1i0MFoUSgB z#o+s6vB6Ds7psevr)S6UA#;;;ix&?SbLD34Hom#F9;$Z*2C9Y{7QCev+l9qv^T9%N2$7CZd(6(u_7;RBG*=|vJ3`U`}~rr;s0ki0P* zDUv+4_}r2k721bLOD}!P71~-_=f1-#^_*AP2V*)DL+|f?@4}vKsta_h5@_>{U6Alv z_NE(r>XVLrdtNW`2l*?`qt1ubG*Ad0>ct&<5x7TZcV6dd z8}Iwp)q-dvw)(KZJHnN{A%t}ld1$LQ{vlSId?$ldkVhvQdA7K~$srj5nAn8#pOFJI zD73VY7~MRwpweYy<-_{oLu-Nb3JlRO$9Z$vO*lx>gRI$+(4bBPL&2%yn&#xL)%HxV zz80%gW$TkXIit{NG(FVqZ)|rF&U&lU;#*z<_e0&!@Z>jI*0BV@ZtOIOBXic8QwTij ze=vDF!k_v-M%l|2ai-Y1kjZbxZX+!n&fB7qpW`VD!c6IPQv_H&`x$NA6c_=E{vbi% z%6VRo1Xm_7U}c4a+ z^yL8~!n)PP=P^-9PH8?V_)ULQ%2w=M|0X1yuV{e)2v`DZCfHY1DggkGkH#UfDDuVs zH@BnXVjucG)GNpZN>@Fe=F%KB{lOvysh<5)Rhf~|k7ob?Hnk@B+L3CSSi&)j3XG$1 zEwKBN1gr_FsQUm?Uk?QdD=NnM)O4fye4otOS=#1(SpJW!KcCzmauJ?1Rz2{>T9b1% zUr+*+LLsA~LVN>E`kx$4tzI2NaZ*&xtii;6chjlIEjK-S(#C5LCfW_zPBNd)0tE#N z(OCO#knhosB46#3exT6LVvvYK3FGg#JZGx!c}T1Ko=uwD!<@x>@0K?eT@blayu3^G zeD!=7K?>or{(7l8hTzI_sNkO2Vxl|&?)NL<6AHM1h<1kTc2uPM?{HW*Eo_)7)iUHI zSgU4Ypssq}PB-nqSQiC|4qqR-9xrVK!RmRXq#73bDHo;4!Kbav{=BZUla?kQw12>EDVY73fewmqSe&em@DP`-t5j=$Bg3#)wywZT3C}dJGt$PT z-~aq(q+4B=u@>B9lL_eg?@hY^D8U~a-B`^cHL-<|f|qYd<3fQ`us8T1bV9zluQZY9 zr1Lb`o32`!*1q?1AIHC}Vu9cDPXg>FFA$$I)|S^=(O07SMVLuR<`KUC)1=c!~SV}DzVGSFt}nmH_d4_E;*2*ST(Zcq;ZtiM-ED}haj9&tOd^Wvutb!5&Z4m=28gi+vwkF zvkVQ(2agP1@>EFNL7TcdBAPVJea*8@B$>?SwuWe@x08u+C!R$enP>v~DomWY8LRkg4gF7ssjQyL@XhwM0 zOh~KQhDNmbF%Q#d>OvuiN5P)n9ZwI57Cy=!FMWyxL4ZK=4}_uJc;t(^@CS;TwCZE> zJV?c+W)HDCk_I7@U1C4bO=T?qX^71I8Go&GOMf)EgAobIk-*Pf2N_k60}E$cIDAlp zm{0{B9qojt3LRk3SCUq~WVUx0l$ac-EF@~vi8Srw)4ovAVuq3M@N`?Et-Jv<{~rt6 zXi#k#Tl}Pq1yJc_wV6s8{r|pl7z(NVYC84OOW*okzP?8+Bn5;lm9MMy^8og1UIcv6 z(7E`B;~wzcf*+M6VDpUUvHJQ7gP!g4q|r$7=S}nz+oB{37~>IK zA)sa0K~RgzcRI8DxcytJURgd|X97uyZLLq&&UndW*#C(>qi%E=%eu2V@+l}UWqa}} zlZm@n;)pDO-CVerAhq6Nqfj97>geh)Bc^|&ZTC&%<_+uPm1T82Snq5=Le}@8&c<33T(#C4X>dXIz6?8wcmz)UmgfJK}tey-F($RS@h<1aOT5ARWEqRCvr)7 zJlO-%Xfcl2k`W5Rht9ALB6AF@Z0D_)-QB9qcmWCDcg}ZZYOLk+cX05XovoevtWGjB z-~oq=VTRd%x>~&?!Kt*o9vm1~?YGewV1DEJn5$qW!`SoM4Qx|C5;7e`^sRb$Iz`=6 z*ZX8^g6KUWVhs zI-yFQhylR|1?x&7QuvCpjNVfzhC^@yJRXE_Ny90VVjL!ndnkpQ=P1O!h#1=+DI5$J z3lS}11LVcTQ!flhZ$_o2aphF2ru^m`U^}#I+gu>YIBRvgY4}_gr?#WPqz5IjNUpY# zN?U(?>a$o`#N&1Fdz_^Ylf14=lCaslUx`~vtp4(Naw|tNI2s}FFu8|zH+-N(l1WTT zRIi_JFboog6BjzfZJao>vOSnO_An!-x`3J$T3 zPe#KYi2Fz7K%;hjr2Nb6w?tHuw+Y0`BdyT;~(KRAR9`?LBAP*07p*LQ;150cmp-$cOfW9@g z@HcKLpEIOe{6`;!MrAlQB{I)gUB(Ds(QZ6NV^{Nu-o{Gcf3ogN_TR)RQItRZ93=<| z!oB+jFo~Ioa2Efr|A481T~La)NdpN77%02CbMy%lq09k$D99?pqt`j8iAi@VCm9lm zSZkx8^@Fl06T%eS2QXJJGQ3Amg0)Hfg#S#@uKsNogbhOYdM-UJY`snBX0+9Mg2SCN-On%4*<^3i4 zlPDs96NY9Qr7SQ(#?>ZQdJr!J+{?X$+z&I=hLWi9bTQr^VKb9P=wR%{9vGT}G!eGb zvB*ON1!?lki&ZRFCBzmCqb+h&2cRVgY#MGoBRX|L{BiG)=_`jcVob$cR!6AAa!ZCl zDm`T7&8V*s9^yuVB_kdbRNOH{xSfXSeVAly@X)&?b~g9rux@aArNsDQmyAVBZ5Fs$ zO#_?Hge8OIONdUSXnP}NmKKh7J?tS{&5QtAu&^#Th70K%%yrmsi`uveGbPDh9}8e) zg)n}O%Ja$vNsDq{=pT(j;S_ua?P9&&(&yCpNH}}?)pe;QM#BHq##u*26?SW!h7qJex&#I!g^}(Oq>+$Nx)GF= zW+(wc>24UhyCkHBlrAL%>6D=nxM%RYcipw_oqx})bIz=J-@V_xpXawFbYk_X&Vhzp z@*dKwbM`oR|K9O~f|`!iHTln!gb5_iOf+mzS{Tw$1o(S$Hai0>WqrFtQO_QJ@aoO= zh8h{8MuVOCa6V%@x8YPxgj3`{%%mZXLe0nRLE?-Blt}-Om(=(4z3s&t6<+gs1)zv{ z)Rck#~Z>uBz`q1#M=~L7Z(~bD9Uic`sRoRTgAG!P(3!f_G zRs|!sK2K>f=7m!z`%Y!u)hI-jjnoi zbn1<-K2{PQ|BzHF_Qz|Nhc9~YWU3C@B|R&_*`_2F&Dy$KT7Iidm0l^plZI^^mbjW= z!gb)W2taik~Sg?lIg=V4#RxI-#ow-hVec=pjREDSfCMzYugp_SS{tIl1)>_cq{wVR6(1IcxDfNUWFHTc2b{F3B(JS9y9!i8#w9^r(_NRPR) z&U_23|CCVE8u*R5k#Ro0`Xl@3UOlOa-?ma6?&jS4#_PKcYBXrT?gv}t-uZ! zEE|{Jes#7Z*fZ$=N;Bd{4w-ej$H*v%h{}#)Ajs`eekraMrb_m;V1}`#@-UK z<;&g`6)7ii6aI$rP3Mi=kaO=v-3^r4s{UVlE=|4zj7~+^3KMekX2)2vsFfK}{$v6l z0yh^OLJchsT)f5cWpOhCtz^FejovCx(~9W>+&?~3i>fS!b3WK0>dSKV*+z%eZAYT9E9p&@qzwVf#Dys1H?g zK9lEepCU4RqC!_E8TQDs3KE{+QbA}1O3bzVKs`2NPijh!O`RGqp2V=QYrFoT#FZHv z-FVf@6rqbwf~kZl4ubRiiLEbMC|~t)8cgp<&UJ8mfoSlwS8tD3j>wTbb_kkl7{9~* z*g!)zWiy--I7-BNp>>OCLrK*MMgP6#J983l`>rqf$?)~b1hr-|m0(M(%S>5($kOgB z4QiTVrY2`qiMG?)8~?ouU>#?1rxcV@0#t%e{f6=@m1Y)td7f0*Hk@ z=J~l1J!^k3RFbtjMd~e1L1FBrY|5Se-qBhKmbD%4_F?sYfi5gevP2S$+M}6*hN&1a zhJ@4)GS%Y0mz0le;AHXOXK*8RGOovu`jDe+3UHxJgChS|3;WRGN^=d6b3k}_fsqfj zg9?Ce<)%hbg^wKVSGd~GRG>x_|KZ=)l(XS*FCUKQ+sNJ;DzgR^lsNGqffc~akq}07 z=LH~CiTgQd@&OxIait9@TPX8_-?5U z^up5QT+QnxDTVfq#?5=Fa^EZNK;P4a5qtBs(Y972^~y<4Dlke1pUy62O8zBUwOTqM z7)wXf7)O4)-AZutK?z!bJGDHKNELxz@3sqC$O z35l~9K}|cn(EM<1`BwCHlPP9NTkU{iwf8UQQP0xQ7A(Z9&k(ncSFa%$^0h3N58cME z3T&~SQ=6cas{FDUlkTu`;LBQ@J(!FqaYv$+e=#C_9qDQU%{1NN^pNY$_KyJI1X_!t z@!{XM`Vp8Hw6KX%`%bJDZ6{GX#)cHqJ@+Ov5$C}1Ypktjh*r7nYW#jfKFX3)Y`GQ3 z^hSHYtBms3uoWT8xTSrM9V%fP=2v6n<@55s4Z2ppQXAUl84SG({+Q9qX_UcQ5IZh!PLXjOP`_(RCnq`dW{+0DI!kA0*mUcyV0D(Eb)SJ%#O_@Dcoj=P|& zE8n^6DFZ*eaBBWFzJ1|mbj+S@=`U8cn`Mh)!=7L^9{IGgwq#BJ&j!yQoNr5&IE3Ic zooGZ^JbjY28)S-&X8^JenGbzO@ss50tdlEvtC%DO`CLeGeo?g$JxY*gWPC}q(r&C> zp9-)-jeIa7+Du6QF-t^X%qYx#$7XxMEm^fmQ$NcQ-}<9a&49*FwQ?NO(Hi+^aB1!g zdAPU-Yhg>5kV~G@#S;o!rk-^noY=}1BR?X+Yh{jv-<}3oGGeHuPny89KT~w&f7__@ zFmoBdl68SYQ~fFc8Or|fjp1xUB&H-*=|JqfbEc-#m^=4jnD$IW-&bXJ`kz0ms$faU zUwJsC2^wK2-D1FdDq=)%F1G#;yu>c41h|L>>a8t*L-1VW<1&%-lDg5N#_4t%sYT;; z#_y}Tt+Dqq?arq-E$r_%AdLP(x0y!rKJatVWx_qbk^@9=x=44SmeI8bNtO0D8Hri! z>8y7A34^ZR^(c-u7|G}4CSf<~g3_m$Hx$ghQMcBvqu8tH)H|Dkhq{5{2iN3!0VAE` zdSNWUifIZ1k$NZNjHh6a`Ts9uX-QDQmz%?lHG4|bNbTrhG;6=Qp6I)Be1D<6#z`@G zT?w2Sa*;B}{kqG)8kiYP4Cyg1NX7lw|C>=NUbjB;s?FX-f4?C&ZB zh;6H%p?p1WfhGZgy7W`7RX!E30bPK_i}oi-wV(~oeJ04j3yOm_>&+C5uv`CzFQ7`IYrbKtEK~EOh<4`n z$IP$sYS{CZdcl4)lui(zq*oxy0{qJC0KCY5(@E&iU{7`jCe0i`_feCHS>re6n!F-L zYvg@U4n~$6-+}^F?~wuv5-H0JRg8bUOB|AWQ2L-zrG$*fPzRtvR~x<}fxHc%C$Q=0 z6TA|b5_F(Y^h*>1iSk*dVtiu2#>Nhkt==OCn|0-c(NNM;y`z19nl(I-I5_?fBlv~q ztcIKhWU@m7+#ySNezNsC#Uy-L5scMn)2Jdbk|}gDQIOHE_2B(C0%MEDh8#ff_!fe@ zxs1@V5+!cUD$0~>v>K|;Kfdvu6?A;#jJS~$)-8$&hZ|CRdw8pZC@ERlFCzt3@qza= zXV56AX?I-bQ2TP1NTlLpp?!OcxV!pG&u_-st@aNUQrV6%yhVhjl?ixeWBUe7REcJZ#Z1` zf9LRF>q)SPk2ZIc!_YPG4x;-THcW6~u2IwcmU^KU|)z zy@NB5$WyP(w>C?2^5!`PDed7ryQyoZThQs~nvnd^R0<7u7;EQN$9zcZ?OW?OIoe%A zqx7bI8U8Ct*9};Ev*;e26(vO`x<$Wzx~$0vN<@luoOT{_Q4U&yGR>LWBpi)UfntwJ~W zrPUz|XitNxTTPdk3^-q`<6c0c0Odh5ie z^i^`0LedG~_=eKIi^j8`F3f7H*p6(dTn zb~}KkY8iSp*uM0boU-dusz!H!s$mLe0avDlE`9kln>67Mhnzawg0W*8yS*L7apd47 zifgBASl{(v+@~StNuy-3o)ZDvuBP#Td$$-}nn5t5q zpiXg+#J*iHrBGialUnH>--ms0ri?;BYf2w=3pF{DuR%Pce5tZiG-1g@R z8k=+k&1RqBb!AMYhd0mH+b35o*K1e&Jz<Z8x^y(OJaspc|D(tns6-yP~dBEqFwOzcFIaokNJE%5n1B%Z`E{k~D6U z%|P*^AP&0NUp!&Yx&(r{5=!Px6of<*vR#htpkReaWuFO@e;`Vqy)cJCGWH^)d)MtO zd5e=bqk+6^qz>zb&YFSrIMDEoNXn>ijvf-zgM2%YuN?;wUZq2At|Etu(g^}4Jw$Bt zwq1i|9XCR&pLMgh5T4Rylbocg8SuZghcl*jZlpdulla&ibP(>|ohQu$=~KESsqflx z7p9@J&1K{9WF@>enZQ7#X|?1&+Dg_~C43+LQMk{ejGUhzn!TJ`scPfbQJXe9;^P{< zcCgdn)zT2y&5-t!1O6R-msH*Hb>XcVeCl!&&Qa_w(^X&c;(0lwIbm+Ek&w3@KAzn* zU4SkD=Txgvj)HX*D|xaGPYjRG^=U2Q2)$Gh;`gq7(OVV$CMkUBwsTF?p14p;sR!^q z5;^jP&v0Q2Jy6p08~{%qA(a|-WfQS|{h<0gpr_lQ>x>$4N}4XleP3voy{*^UnCf=PAu2tLae=7((l` ztjn@$Nj-w?$}qrZ+&LK--vw0yo|AAY?D7AUL>KAuxhVIwNjx*}=RCN}X3PbNrl7sa zO)@nV60lbetQ2sS`b#RgRpugT0+sh+=2!3eeNDVX=>S2NOoEkHCFkgs2haQq`& zn@oUQZp?e~>M1fsXS)LVTG={880gFZqIe{b%W*^LIPMPx@oFduZrf$NVB{B90+EGO r*O+ejeq_>UbH)Uazs?W-0e0M3h+^qSCgxdF$w%Hz5-Qj literal 0 HcmV?d00001 diff --git a/ipython_magic/watermark.ipynb b/ipython_magic/watermark.ipynb index 3c2433e..d88d6b8 100644 --- a/ipython_magic/watermark.ipynb +++ b/ipython_magic/watermark.ipynb @@ -1,7 +1,7 @@ { "metadata": { "name": "", - "signature": "sha256:ae521d31a2ed8eb2f249825915f64611628365cb0ced53ef18be691238c0018e" + "signature": "sha256:968e6f47972d4ab9e2ef4eef6906343257267ccf094fcae08da24fec3647743d" }, "nbformat": 3, "nbformat_minor": 0, @@ -23,6 +23,13 @@ "
" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**watermark is now located and maintained in a separate GitHub repository:** [https://github.com/rasbt/watermark](https://github.com/rasbt/watermark)" + ] + }, { "cell_type": "heading", "level": 1, From 87dbf3e1dbc2e0bef42d66bf16e61fd9114518f1 Mon Sep 17 00:00:00 2001 From: rasbt Date: Wed, 30 Jul 2014 15:32:25 -0400 Subject: [PATCH 09/83] numpy nan quickguide --- README.md | 2 + tutorials/numpy_nan_quickguide.ipynb | 770 +++++++++++++++++++++++++++ 2 files changed, 772 insertions(+) create mode 100644 tutorials/numpy_nan_quickguide.ipynb diff --git a/README.md b/README.md index cfa5708..8b4e165 100644 --- a/README.md +++ b/README.md @@ -48,6 +48,8 @@ - A collection of useful regular expressions [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/useful_regex.ipynb)] +- Quick guide for dealing with missing numbers in NumPy [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/numpy_nan_quickguide.ipynb)] +
diff --git a/tutorials/numpy_nan_quickguide.ipynb b/tutorials/numpy_nan_quickguide.ipynb new file mode 100644 index 0000000..dfc9572 --- /dev/null +++ b/tutorials/numpy_nan_quickguide.ipynb @@ -0,0 +1,770 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:7553ded8e8dc9e6faf09cd22747b33a3ae9039743491e88025fb61ea45203063" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to python_reference](https://github.com/rasbt/python_reference)]" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%load_ext watermark" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 1 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%watermark -v -p numpy -d -u" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Last updated: 30/07/2014 \n", + "\n", + "CPython 3.4.1\n", + "IPython 2.0.0\n", + "\n", + "numpy 1.8.1\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[More information](https://github.com/rasbt/watermark) about the `watermark` magic command extension." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Quick guide for dealing with missing numbers in NumPy" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is just a quick overview of how to deal with missing values (i.e., \"NaN\"s for \"Not-a-Number\") in NumPy and I am happy to expand it over time. Yes, and there will also be a separate one for pandas some time!\n", + "\n", + "I would be happy to hear your comments and suggestions. \n", + "Please feel free to drop me a note via\n", + "[twitter](https://twitter.com/rasbt), [email](mailto:bluewoodtree@gmail.com), or [google+](https://plus.google.com/+SebastianRaschka).\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Sections" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- [Sample data from a CSV file](#Sample-data-from-a-CSV-file)\n", + "- [Determining if a value is missing](#Determining-if-a-value-is-missing)\n", + "- [Counting the number of missing values](#Counting-the-number-of-missing-values)\n", + "- [Calculating the sum of an array that contains NaNs](#Calculating the sum of an array that contains NaNs)\n", + "- [Removing all rows that contain missing values](#Removing-all-rows-that-contain-missing-values)\n", + "- [Convert missing values to 0](#Convert-missing-values-to-0)\n", + "- [Converting certain numbers to NaN](#Converting-certain-numbers-to-NaN)\n", + "- [Remove all missing elements from an array](#Remove-all-missing-elements-from-an-array)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Sample data from a CSV file" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's assume that we have a CSV file with missing elements like the one shown below." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "
" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%%file example.csv\n", + "1,2,3,4\n", + "5,6,,8\n", + "10,11,12," + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Overwriting example.csv\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `np.genfromtxt` function has a `missing_values` parameters which translates missing values into `np.nan` objects by default. This allows us to construct a new NumPy `ndarray` object, even if elements are missing." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "
" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import numpy as np\n", + "ary = np.genfromtxt('./example.csv', delimiter=',')\n", + "\n", + "print('%s x %s array:\\n' %(ary.shape[0], ary.shape[1]))\n", + "print(ary)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "3 x 4 array:\n", + "\n", + "[[ 1. 2. 3. 4.]\n", + " [ 5. 6. nan 8.]\n", + " [ 10. 11. 12. nan]]\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Determining if a value is missing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A handy function to test whether a value is a `NaN` or not is to use the `np.isnan` function." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "np.isnan(np.nan)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 37, + "text": [ + "True" + ] + } + ], + "prompt_number": 37 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It is especially useful to create boolean masks for the so-called \"fancy indexing\" of NumPy arrays, which we will come back to later." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "np.isnan(ary)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 5, + "text": [ + "array([[False, False, False, False],\n", + " [False, False, True, False],\n", + " [False, False, False, True]], dtype=bool)" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Counting the number of missing values" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In order to find out how many elements are missing in our array, we can use the `np.isnan` function that we have seen in the previous section. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "np.count_nonzero(np.isnan(ary))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 8, + "text": [ + "2" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we want to determine the number of non-missing elements, we can simply revert the returned `Boolean` mask via the handy \"tilde\" sign." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "np.count_nonzero(~np.isnan(ary))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 9, + "text": [ + "10" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Calculating the sum of an array that contains `NaN`s" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we will find out via the following code snippet, we can't use NumPy's regular `sum` function to calculate the sum of an array." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "np.sum(ary)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 10, + "text": [ + "nan" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Since the `np.sum` function does not work, use `np.nansum` instead:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "print('total sum:', np.nansum(ary))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "total sum: 62.0\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "print('row sums:', np.nansum(ary, axis=0))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "row sums: [ 16. 19. 15. 12.]\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "print('column sums:', np.nansum(ary, axis=1))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "column sums: [ 10. 19. 33.]\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Removing all rows that contain missing values" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, we will use the `Boolean mask` again to return only those rows that DON'T contain missing values. And if we want to get only the rows that contain `NaN`s, we could simply drop the `~`." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ary[~np.isnan(ary).any(1)]" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 14, + "text": [ + "array([[ 1., 2., 3., 4.]])" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Convert missing values to 0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Certain operations, algorithms, and other analyses might not work with `NaN` objects in our data array. But that's not a problem: We can use the convenient `np.nan_to_num` function will convert it to the value 0." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ary0 = np.nan_to_num(ary)\n", + "ary0" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 15, + "text": [ + "array([[ 1., 2., 3., 4.],\n", + " [ 5., 6., 0., 8.],\n", + " [ 10., 11., 12., 0.]])" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Converting certain numbers to NaN" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Vice versa, we can also convert any number to a `np.NaN` object. Here, we use the array that we created in the previous section and convert the `0`s back to `np.nan` objects." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ary0[ary0==0] = np.nan\n", + "ary0" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 16, + "text": [ + "array([[ 1., 2., 3., 4.],\n", + " [ 5., 6., nan, 8.],\n", + " [ 10., 11., 12., nan]])" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Remove all missing elements from an array" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is one is a little bit more tricky. We can remove missing values via a combination of the `Boolean` mask and fancy indexing, however, this will have the disadvantage that it will flatten our array (we can't just punch holes into a NumPy array)." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ary[~np.isnan(ary)]" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 17, + "text": [ + "array([ 1., 2., 3., 4., 5., 6., 8., 10., 11., 12.])" + ] + } + ], + "prompt_number": 17 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Thus, this is a method that would better work on individual rows:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "x = np.array([1,2,np.nan])\n", + "\n", + "x[~np.isnan(np.array(x))]" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 21, + "text": [ + "array([ 1., 2.])" + ] + } + ], + "prompt_number": 21 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file From 447f588960ecbf91c82a35a550d75a3e10781062 Mon Sep 17 00:00:00 2001 From: rasbt Date: Thu, 31 Jul 2014 00:20:22 -0400 Subject: [PATCH 10/83] typo fix --- tutorials/example.csv | 3 ++ tutorials/numpy_nan_quickguide.ipynb | 42 ++++++++++++++-------------- 2 files changed, 24 insertions(+), 21 deletions(-) create mode 100644 tutorials/example.csv diff --git a/tutorials/example.csv b/tutorials/example.csv new file mode 100644 index 0000000..65329b8 --- /dev/null +++ b/tutorials/example.csv @@ -0,0 +1,3 @@ +1,2,3,4 +5,6,,8 +10,11,12, \ No newline at end of file diff --git a/tutorials/numpy_nan_quickguide.ipynb b/tutorials/numpy_nan_quickguide.ipynb index dfc9572..acbbeed 100644 --- a/tutorials/numpy_nan_quickguide.ipynb +++ b/tutorials/numpy_nan_quickguide.ipynb @@ -1,7 +1,7 @@ { "metadata": { "name": "", - "signature": "sha256:7553ded8e8dc9e6faf09cd22747b33a3ae9039743491e88025fb61ea45203063" + "signature": "sha256:b2597ea4263c11dd6774b227e7a3a5626197c4863e6895002657fd55d02b55d9" }, "nbformat": 3, "nbformat_minor": 0, @@ -39,10 +39,10 @@ "output_type": "stream", "stream": "stdout", "text": [ - "Last updated: 30/07/2014 \n", + "Last updated: 31/07/2014 \n", "\n", "CPython 3.4.1\n", - "IPython 2.0.0\n", + "IPython 2.1.0\n", "\n", "numpy 1.8.1\n" ] @@ -161,7 +161,7 @@ "output_type": "stream", "stream": "stdout", "text": [ - "Overwriting example.csv\n" + "Writing example.csv\n" ] } ], @@ -258,13 +258,13 @@ { "metadata": {}, "output_type": "pyout", - "prompt_number": 37, + "prompt_number": 5, "text": [ "True" ] } ], - "prompt_number": 37 + "prompt_number": 5 }, { "cell_type": "markdown", @@ -292,7 +292,7 @@ { "metadata": {}, "output_type": "pyout", - "prompt_number": 5, + "prompt_number": 6, "text": [ "array([[False, False, False, False],\n", " [False, False, True, False],\n", @@ -300,7 +300,7 @@ ] } ], - "prompt_number": 5 + "prompt_number": 6 }, { "cell_type": "markdown", @@ -351,13 +351,13 @@ { "metadata": {}, "output_type": "pyout", - "prompt_number": 8, + "prompt_number": 7, "text": [ "2" ] } ], - "prompt_number": 8 + "prompt_number": 7 }, { "cell_type": "markdown", @@ -385,13 +385,13 @@ { "metadata": {}, "output_type": "pyout", - "prompt_number": 9, + "prompt_number": 8, "text": [ "10" ] } ], - "prompt_number": 9 + "prompt_number": 8 }, { "cell_type": "markdown", @@ -435,13 +435,13 @@ { "metadata": {}, "output_type": "pyout", - "prompt_number": 10, + "prompt_number": 9, "text": [ "nan" ] } ], - "prompt_number": 10 + "prompt_number": 9 }, { "cell_type": "markdown", @@ -474,13 +474,13 @@ ] } ], - "prompt_number": 11 + "prompt_number": 10 }, { "cell_type": "code", "collapsed": false, "input": [ - "print('row sums:', np.nansum(ary, axis=0))" + "print('column sums:', np.nansum(ary, axis=0))" ], "language": "python", "metadata": {}, @@ -489,17 +489,17 @@ "output_type": "stream", "stream": "stdout", "text": [ - "row sums: [ 16. 19. 15. 12.]\n" + "column sums: [ 16. 19. 15. 12.]\n" ] } ], - "prompt_number": 12 + "prompt_number": 11 }, { "cell_type": "code", "collapsed": false, "input": [ - "print('column sums:', np.nansum(ary, axis=1))" + "print('row sums:', np.nansum(ary, axis=1))" ], "language": "python", "metadata": {}, @@ -508,11 +508,11 @@ "output_type": "stream", "stream": "stdout", "text": [ - "column sums: [ 10. 19. 33.]\n" + "row sums: [ 10. 19. 33.]\n" ] } ], - "prompt_number": 13 + "prompt_number": 12 }, { "cell_type": "markdown", From 841401ab65a23d77c86b8126dc28d5deb6c141b1 Mon Sep 17 00:00:00 2001 From: rasbt Date: Sat, 2 Aug 2014 22:36:17 -0400 Subject: [PATCH 11/83] Sorting a list of tuples by the last last elements of the tuple --- howtos_as_py_files/sort_list_of_tuples_by_ele.py | 10 ++++++++++ 1 file changed, 10 insertions(+) create mode 100644 howtos_as_py_files/sort_list_of_tuples_by_ele.py diff --git a/howtos_as_py_files/sort_list_of_tuples_by_ele.py b/howtos_as_py_files/sort_list_of_tuples_by_ele.py new file mode 100644 index 0000000..972d35d --- /dev/null +++ b/howtos_as_py_files/sort_list_of_tuples_by_ele.py @@ -0,0 +1,10 @@ +# Sebastian Raschka 09/02/2014 +# Sorting a list of tuples by the last last elements of the tuple + +a_list = [(1,3,'c'), (2,3,'a'), (1,2,'b')] + +sorted_list = sorted(a_list, key=lambda e: e[::-1]) + +print(sorted_list) + +# prints [(2, 3, 'a'), (1, 2, 'b'), (1, 3, 'c')] \ No newline at end of file From b6f54765e7b9f7e0f7da90adcf3c89b5b417c582 Mon Sep 17 00:00:00 2001 From: rasbt Date: Sat, 2 Aug 2014 23:21:53 -0400 Subject: [PATCH 12/83] Sorting a list of tuples by the last last elements of the tuple --- howtos_as_py_files/sort_list_of_tuples_by_ele.py | 9 +++++++++ 1 file changed, 9 insertions(+) diff --git a/howtos_as_py_files/sort_list_of_tuples_by_ele.py b/howtos_as_py_files/sort_list_of_tuples_by_ele.py index 972d35d..ed8470a 100644 --- a/howtos_as_py_files/sort_list_of_tuples_by_ele.py +++ b/howtos_as_py_files/sort_list_of_tuples_by_ele.py @@ -1,6 +1,15 @@ # Sebastian Raschka 09/02/2014 # Sorting a list of tuples by the last last elements of the tuple + +# Here, we make use of the "key" parameter of the in-built "sorted()" function +# (also available for the ".sort()" method), which let's us define a function +# that is called on every element that is to be sorted. In this case, our +# "key"-function is a simple lambda function that returns the last item +# from every tuple. + + + a_list = [(1,3,'c'), (2,3,'a'), (1,2,'b')] sorted_list = sorted(a_list, key=lambda e: e[::-1]) From b87aec3ee9bcf27ed81ab5dc8a5cb772f0e182ed Mon Sep 17 00:00:00 2001 From: rasbt Date: Sat, 2 Aug 2014 23:24:12 -0400 Subject: [PATCH 13/83] Sorting a list of tuples by the last last elements of the tuple --- howtos_as_py_files/sort_list_of_tuples_by_ele.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/howtos_as_py_files/sort_list_of_tuples_by_ele.py b/howtos_as_py_files/sort_list_of_tuples_by_ele.py index ed8470a..845774d 100644 --- a/howtos_as_py_files/sort_list_of_tuples_by_ele.py +++ b/howtos_as_py_files/sort_list_of_tuples_by_ele.py @@ -1,5 +1,5 @@ # Sebastian Raschka 09/02/2014 -# Sorting a list of tuples by the last last elements of the tuple +# Sorting a list of tuples by the last elements of the tuple # Here, we make use of the "key" parameter of the in-built "sorted()" function From 6e74774e869eb1e2ce6a159af9aa9bda40ec6172 Mon Sep 17 00:00:00 2001 From: rasbt Date: Sun, 3 Aug 2014 11:32:03 -0400 Subject: [PATCH 14/83] comment about reverse --- .../sort_list_of_tuples_by_ele.py | 25 +++++++++++++++---- 1 file changed, 20 insertions(+), 5 deletions(-) diff --git a/howtos_as_py_files/sort_list_of_tuples_by_ele.py b/howtos_as_py_files/sort_list_of_tuples_by_ele.py index 845774d..4a94d4b 100644 --- a/howtos_as_py_files/sort_list_of_tuples_by_ele.py +++ b/howtos_as_py_files/sort_list_of_tuples_by_ele.py @@ -1,6 +1,5 @@ # Sebastian Raschka 09/02/2014 -# Sorting a list of tuples by the last elements of the tuple - +# Sorting a list of tuples by starting with the last element of the tuple (=reversed tuple) # Here, we make use of the "key" parameter of the in-built "sorted()" function # (also available for the ".sort()" method), which let's us define a function @@ -9,11 +8,27 @@ # from every tuple. - -a_list = [(1,3,'c'), (2,3,'a'), (1,2,'b')] +a_list = [(1,3,'c'), (2,3,'a'), (3,2,'b'), (2,2,'b')] sorted_list = sorted(a_list, key=lambda e: e[::-1]) print(sorted_list) -# prints [(2, 3, 'a'), (1, 2, 'b'), (1, 3, 'c')] \ No newline at end of file +# prints [(2, 3, 'a'), (2, 2, 'b'), (3, 2, 'b'), (1, 3, 'c')] + + + +# If we are only interesting in sorting the list by the last element +# of the tuple and don't care about a "tie" situation, we can also use +# the index of the tuple item directly instead of reversing the tuple +# for efficiency. + + + +a_list = [(1,3,'c'), (2,3,'a'), (3,2,'b'), (2,2,'b')] + +sorted_list = sorted(a_list, key=lambda e: e[-1]) + +print(sorted_list) + +# prints [(2, 3, 'a'), (3, 2, 'b'), (2, 2, 'b'), (1, 3, 'c')] \ No newline at end of file From d3c58e595bf3b583f9147232c911f0d4dffbadfa Mon Sep 17 00:00:00 2001 From: rasbt Date: Tue, 5 Aug 2014 01:12:12 -0400 Subject: [PATCH 15/83] readme re-categorization --- README.md | 76 +++++++++++++++++++++++++++++++++---------------------- 1 file changed, 46 insertions(+), 30 deletions(-) diff --git a/README.md b/README.md index 0453457..d4480cf 100644 --- a/README.md +++ b/README.md @@ -65,7 +65,7 @@ ###// Algorithms [[back to top](#a-collection-of-useful-scripts-tutorials-and-other-python-related-things)] -*The algorithms category was moved to a separate GitHub repository [rasbt/algorithms_in_ipython_notebooks](https://github.com/rasbt/algorithms_in_ipython_notebooks)* +*The algorithms category has been moved to a separate GitHub repository [rasbt/algorithms_in_ipython_notebooks](https://github.com/rasbt/algorithms_in_ipython_notebooks)* @@ -83,44 +83,60 @@ ###// Plotting and Visualization [[back to top](#a-collection-of-useful-scripts-tutorials-and-other-python-related-things)] -- a matplotlib gallery in IPython notebooks [[GitHub repo](https://github.com/rasbt/matplotlib-gallery)] +*The matplotlib-gallery in IPython notebooks has been moved to a separate GitHub repository [matplotlib-gallery](https://github.com/rasbt/matplotlib-gallery)* + +**Featured articles**: + +- Preparing Plots for Publication [[IPython nb](http://nbviewer.ipython.org/github/rasbt/matplotlib-gallery/blob/master/ipynb/publication.ipynb)]
###// Benchmarks [[back to top](#a-collection-of-useful-scripts-tutorials-and-other-python-related-things)] -*The benchmark category was moved to a separate GitHub repository [One-Python-benchmark-per-day](https://github.com/rasbt/One-Python-benchmark-per-day)* - -- **1** - Reversing strings [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day1_string_reverse.ipynb)] -- **2** - Calculating sample means [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day2_mean_values.ipynb)] -- **3** - 6 different ways to count elements using a dict [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day3_dictionary_counting.ipynb)] -- **4** - Python vs. Cython vs. Numba [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day4_python_cython_numba.ipynb)] -- **4.2** - (C)Python compilers - Cython vs. Numba vs. Parakeet [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day4_2_cython_numba_parakeet.ipynb)] -- **5** - Comparing 9 ways for flattening lists of sublists [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day5_flattening_lists.ipynb)] -- **6** - Determining if a string is a number [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day6_string_is_number.ipynb)] -- **7** - Speeding up NumPy array expressions with Numexpr [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day7_numpy_numexpr.ipynb)] -- **7.2** - Just-in-time compilers for NumPy array expressions [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day7_2_jit_numpy.ipynb)] -- **8** - Calculating square roots and exponents [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day8_sqrt_and_exp.ipynb)] -- **9** - The most Pythonic way to check if a string ends with a particular substring [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day9_string_endswith.ipynb)] -- **10** - Cython - Bridging the gap between Python and Fortran [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day10_fortran_lstsqr.ipynb)] -- **11** - The `deque` container data type [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day11_deque_container.ipynb)] -- **12** - Lightning fast insertion into sorted lists via the `bisect` module [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day12_insert_into_sorted_list.ipynb)] -- **13** - Parallel processing via the multiprocessing module [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/multiprocessing_intro.ipynb)] -- **14** - Python's and NumPy's in-place operator functions [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day14_inplace_operators.ipynb)] -- **15** - Array indexing in NumPy: Extracting rows and columns [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day15_array_indexing_numpy.ipynb)] -- **16** - Vectorizing a classic for-loop in NumPy [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day16_numpy_vectorization.ipynb)] -- **17** - Stacking NumPy arrays [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day17_numpy_stacking.ipynb)] - - -###// Other +*The benchmark category has been moved to a separate GitHub repository [One-Python-benchmark-per-day](https://github.com/rasbt/One-Python-benchmark-per-day)* + +**Featured articles**: + +- (C)Python compilers - Cython vs. Numba vs. Parakeet [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day4_2_cython_numba_parakeet.ipynb)] +- Just-in-time compilers for NumPy array expressions [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day7_2_jit_numpy.ipynb)] +- Cython - Bridging the gap between Python and Fortran [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day10_fortran_lstsqr.ipynb)] +- Parallel processing via the multiprocessing module [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/multiprocessing_intro.ipynb)] +- Vectorizing a classic for-loop in NumPy [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day16_numpy_vectorization.ipynb)] + +
+ + +
+###// Benchmarks [[back to top](#a-collection-of-useful-scripts-tutorials-and-other-python-related-things)] -- Happy Mother's [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/other/happy_mothers_day.ipynb?create=1)] +*The benchmark category has been moved to a separate GitHub repository [One-Python-benchmark-per-day](https://github.com/rasbt/One-Python-benchmark-per-day)* + +**Featured articles**: + +- (C)Python compilers - Cython vs. Numba vs. Parakeet [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day4_2_cython_numba_parakeet.ipynb)] +- Just-in-time compilers for NumPy array expressions [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day7_2_jit_numpy.ipynb)] +- Cython - Bridging the gap between Python and Fortran [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day10_fortran_lstsqr.ipynb)] +- Parallel processing via the multiprocessing module [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/multiprocessing_intro.ipynb)] +- Vectorizing a classic for-loop in NumPy [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day16_numpy_vectorization.ipynb)] + +
+ + +###// Python and "Data Science" +[[back to top](#a-collection-of-useful-scripts-tutorials-and-other-python-related-things)] + +*The "data science"-related posts have been moved to a separate GitHub repository [pattern_classification](https://github.com/rasbt/pattern_classification)* + +**Featured articles**: -- Numeric matrix manipulation - The cheat sheet for MATLAB, Python NumPy, R, and Julia [[Markdown](./tutorials/matrix_cheatsheet.md)] +- Entry Point: Data - Using Python's sci-packages to prepare data for Machine Learning tasks and other data analyses [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/python_data_entry_point.ipynb)] +- About Feature Scaling: Standardization and Min-Max-Scaling (Normalization) [[IPython nb](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/preprocessing/about_standardization_normalization.ipynb)] +- Principal Component Analysis (PCA) [[IPython nb](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/dimensionality_reduction/projection/principal_component_analysis.ipynb)] +- Linear Discriminant Analysis (LDA) [[IPython nb](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/dimensionality_reduction/projection/linear_discriminant_analysis.ipynb)] +- Kernel density estimation via the Parzen-window technique [[IPython nb](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/parameter_estimation_techniques/parzen_window_technique.ipynb)] -- Python Book Reviews [[Markdown](./other/python_book_reviews.md)]
@@ -131,7 +147,7 @@ - [Shell script](./useful_scripts/prepend_python_shebang.sh) for prepending Python-shebangs to .py files. -- convert 'tab-delimited' to 'comma-separated' CSV files [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/useful_scripts/fix_tab_csv.ipynb?create=1)] +- convert 'tab-delimited' to 'comma-separated' CSV files [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/useful_scripts/fix_tab_csv.ipynb)] - A random string generator [function](./useful_scripts/random_string_generator.py) From 031c17005f7862ddabf44f9401de754fc773eff1 Mon Sep 17 00:00:00 2001 From: rasbt Date: Tue, 5 Aug 2014 01:13:58 -0400 Subject: [PATCH 16/83] readme re-categorization --- README.md | 15 +-------------- 1 file changed, 1 insertion(+), 14 deletions(-) diff --git a/README.md b/README.md index d4480cf..7973fbe 100644 --- a/README.md +++ b/README.md @@ -11,6 +11,7 @@ - [// Algorithms](#-algorithms) - [// Plotting and Visualization](#-plotting-and-visualization) - [// Benchmarks](#-benchmarks) +- [// Python and "Data Science"](#-python-and-data-science) - [// Other](#-other) - [// Useful scripts and snippets](#-useful-scripts-and-snippets) - [// Links](#-links) @@ -90,21 +91,7 @@ - Preparing Plots for Publication [[IPython nb](http://nbviewer.ipython.org/github/rasbt/matplotlib-gallery/blob/master/ipynb/publication.ipynb)] -
-###// Benchmarks -[[back to top](#a-collection-of-useful-scripts-tutorials-and-other-python-related-things)] - -*The benchmark category has been moved to a separate GitHub repository [One-Python-benchmark-per-day](https://github.com/rasbt/One-Python-benchmark-per-day)* - -**Featured articles**: -- (C)Python compilers - Cython vs. Numba vs. Parakeet [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day4_2_cython_numba_parakeet.ipynb)] -- Just-in-time compilers for NumPy array expressions [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day7_2_jit_numpy.ipynb)] -- Cython - Bridging the gap between Python and Fortran [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day10_fortran_lstsqr.ipynb)] -- Parallel processing via the multiprocessing module [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/multiprocessing_intro.ipynb)] -- Vectorizing a classic for-loop in NumPy [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day16_numpy_vectorization.ipynb)] - -

From d07be79be853dd881e9bdcb1b424900d15cd0dc4 Mon Sep 17 00:00:00 2001 From: rasbt Date: Tue, 5 Aug 2014 01:15:18 -0400 Subject: [PATCH 17/83] readme re-categorization --- README.md | 8 ++++++++ 1 file changed, 8 insertions(+) diff --git a/README.md b/README.md index 7973fbe..47ba722 100644 --- a/README.md +++ b/README.md @@ -103,9 +103,13 @@ **Featured articles**: - (C)Python compilers - Cython vs. Numba vs. Parakeet [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day4_2_cython_numba_parakeet.ipynb)] + - Just-in-time compilers for NumPy array expressions [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day7_2_jit_numpy.ipynb)] + - Cython - Bridging the gap between Python and Fortran [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day10_fortran_lstsqr.ipynb)] + - Parallel processing via the multiprocessing module [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/multiprocessing_intro.ipynb)] + - Vectorizing a classic for-loop in NumPy [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day16_numpy_vectorization.ipynb)]
@@ -119,9 +123,13 @@ **Featured articles**: - Entry Point: Data - Using Python's sci-packages to prepare data for Machine Learning tasks and other data analyses [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/python_data_entry_point.ipynb)] + - About Feature Scaling: Standardization and Min-Max-Scaling (Normalization) [[IPython nb](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/preprocessing/about_standardization_normalization.ipynb)] + - Principal Component Analysis (PCA) [[IPython nb](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/dimensionality_reduction/projection/principal_component_analysis.ipynb)] + - Linear Discriminant Analysis (LDA) [[IPython nb](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/dimensionality_reduction/projection/linear_discriminant_analysis.ipynb)] + - Kernel density estimation via the Parzen-window technique [[IPython nb](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/parameter_estimation_techniques/parzen_window_technique.ipynb)] From bdd74ca15c98b57f197590918570504e24bc6575 Mon Sep 17 00:00:00 2001 From: rasbt Date: Tue, 19 Aug 2014 09:57:13 -0400 Subject: [PATCH 18/83] short lambda example --- howtos_as_py_files/lambda_function.py | 11 +++++++++++ 1 file changed, 11 insertions(+) create mode 100644 howtos_as_py_files/lambda_function.py diff --git a/howtos_as_py_files/lambda_function.py b/howtos_as_py_files/lambda_function.py new file mode 100644 index 0000000..9da0c9c --- /dev/null +++ b/howtos_as_py_files/lambda_function.py @@ -0,0 +1,11 @@ +# Sebastian Raschka 08/2014 + +# Lambda functions are just a short-hand way or writing +# short function definitions + +def square_root1(x): + return x**0.5 + +square_root2 = lambda x: x**0.5 + +assert(square_root1(9) == square_root2(9)) \ No newline at end of file From f0b01ab5db7e9121e7570e77a0b4ac5aa3232106 Mon Sep 17 00:00:00 2001 From: rasbt Date: Tue, 19 Aug 2014 23:14:00 -0400 Subject: [PATCH 19/83] python patterns --- README.md | 44 +++++++++++++++++++++++++------------------- 1 file changed, 25 insertions(+), 19 deletions(-) diff --git a/README.md b/README.md index 47ba722..845c16d 100644 --- a/README.md +++ b/README.md @@ -140,9 +140,9 @@ - [watermark](https://github.com/rasbt/watermark) - An IPython magic extension for printing date and time stamps, version numbers, and hardware information. -- [Shell script](./useful_scripts/prepend_python_shebang.sh) for prepending Python-shebangs to .py files. +- [Shell script](./useful_scripts/prepend_python_shebang.sh) For prepending Python-shebangs to .py files. -- convert 'tab-delimited' to 'comma-separated' CSV files [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/useful_scripts/fix_tab_csv.ipynb)] +- Convert 'tab-delimited' to 'comma-separated' CSV files [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/useful_scripts/fix_tab_csv.ipynb)] - A random string generator [function](./useful_scripts/random_string_generator.py) @@ -156,50 +156,56 @@ -- [PyPI - the Python Package Index](https://pypi.python.org/pypi) - the official repository for all open source Python modules and packages +- [PyPI - the Python Package Index](https://pypi.python.org/pypi) - The official repository for all open source Python modules and packages. -- [PEP 8](http://legacy.python.org/dev/peps/pep-0008/) - The official style guide for Python code +- [PEP 8](http://legacy.python.org/dev/peps/pep-0008/) - The official style guide for Python code. +
**// News** -- [Python subreddit](http://www.reddit.com/r/Python/) - my favorite resource to catch up with Python news and great Python-related articles +- [Python subreddit](http://www.reddit.com/r/Python/) - My favorite resource to catch up with Python news and great Python-related articles. -- [Python community on Google+](https://plus.google.com/communities/103393744324769547228) - a nice and friendly community to share and discuss everything about Python +- [Python community on Google+](https://plus.google.com/communities/103393744324769547228) - A nice and friendly community to share and discuss everything about Python. -- [Python Weekly](http://www.pythonweekly.com) - A free weekly newsletter featuring curated news, articles, new releases, jobs etc. related to Python +- [Python Weekly](http://www.pythonweekly.com) - A free weekly newsletter featuring curated news, articles, new releases, jobs etc. related to Python. +
**// Resources for learning Python** -- [Learn Python The Hard Way](http://learnpythonthehardway.org/book/) - one of the most popular and recommended resources for learning Python +- [Learn Python The Hard Way](http://learnpythonthehardway.org/book/) - The popular and probably most recommended resource for learning Python. + +- [Dive Into Python](http://www.diveintopython.net) / [Dive Into Python 3](http://getpython3.com/diveintopython3/) - A free Python book for experienced programmers. -- [Dive Into Python](http://www.diveintopython.net) / [Dive Into Python 3](http://getpython3.com/diveintopython3/) - a free Python book for experienced programmers +- [The Hitchhiker’s Guide to Python](http://docs.python-guide.org/en/latest/) - A free best-practice handbook for both novices and experts. -- [The Hitchhiker’s Guide to Python](http://docs.python-guide.org/en/latest/) - a free best-practice handbook for both novices and experts +- [Think Python - How to Think Like a Computer Scientist](http://www.greenteapress.com/thinkpython/) - An introduction for beginners starting with basic concepts of programming. -- [Think Python - How to Think Like a Computer Scientist](http://www.greenteapress.com/thinkpython/) - an introduction for beginners starting with basic concepts of programming +- [Python Patterns](http://matthiaseisen.com/pp/topics/t003/) - A directory of proven, reusable solutions to common programming problems. + +
**// My favorite Python projects and packages** -- [The IPython Notebook](http://ipython.org/notebook.html) - an interactive computational environment for combining code execution, documentation (with Markdown and LateX support), inline plots, and rich media all in one document. +- [The IPython Notebook](http://ipython.org/notebook.html) - An interactive computational environment for combining code execution, documentation (with Markdown and LateX support), inline plots, and rich media all in one document. -- [matplotlib](http://matplotlib.org) - Python's favorite plotting library +- [matplotlib](http://matplotlib.org) - Python's favorite plotting library. -- [NumPy](http://www.numpy.org) - a library for multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays +- [NumPy](http://www.numpy.org) - A library for multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays. -- [SciPy](http://www.scipy.org) - a library that provides various useful functions for numerical computing, such as modules for optimization, linear algebra, integration, interpolation, ... +- [SciPy](http://www.scipy.org) - A library that provides various useful functions for numerical computing, such as modules for optimization, linear algebra, integration, interpolation, ... -- [pandas](http://pandas.pydata.org) - high-performance, easy-to-use data structures and data analysis tools build on top of Numpy +- [pandas](http://pandas.pydata.org) - High-performance, easy-to-use data structures and data analysis tools build on top of NumPy. -- [Cython](http://cython.org) - C-extensions for Python, an optimizing static compiler to combine Python and C code +- [Cython](http://cython.org) - C-extensions for Python, an optimizing static compiler to combine Python and C code. -- [Numba](http://numba.pydata.org) - an just-in-time specializing compiler which compiles annotated Python and NumPy code to LLVM (through decorators) +- [Numba](http://numba.pydata.org) - A just-in-time specializing compiler which compiles annotated Python and NumPy code to LLVM (through decorators) -- [scikit-learn](http://scikit-learn.org/stable/) - a powerful machine learning library for Python and tools for efficient data mining and analysis +- [scikit-learn](http://scikit-learn.org/stable/) - A powerful machine learning library for Python and tools for efficient data mining and analysis. From 03444284a1c0febb113fe7fae7d257b15efe81bc Mon Sep 17 00:00:00 2001 From: rasbt Date: Tue, 19 Aug 2014 23:45:06 -0400 Subject: [PATCH 20/83] link upd --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 845c16d..a1872c6 100644 --- a/README.md +++ b/README.md @@ -184,7 +184,7 @@ - [Think Python - How to Think Like a Computer Scientist](http://www.greenteapress.com/thinkpython/) - An introduction for beginners starting with basic concepts of programming. -- [Python Patterns](http://matthiaseisen.com/pp/topics/t003/) - A directory of proven, reusable solutions to common programming problems. +- [Python Patterns](http://matthiaseisen.com/pp/) - A directory of proven, reusable solutions to common programming problems.
From fd65f8598fa664932bca8a89ad4e1bf900785add Mon Sep 17 00:00:00 2001 From: rasbt Date: Sun, 14 Sep 2014 13:18:56 -0400 Subject: [PATCH 21/83] sparsify_matrix.py --- useful_scripts/sparsify_matrix.py | 36 +++++++++++++++++++++++++++++++ 1 file changed, 36 insertions(+) create mode 100644 useful_scripts/sparsify_matrix.py diff --git a/useful_scripts/sparsify_matrix.py b/useful_scripts/sparsify_matrix.py new file mode 100644 index 0000000..27c864c --- /dev/null +++ b/useful_scripts/sparsify_matrix.py @@ -0,0 +1,36 @@ +# Sebastian Raschka 2014 +# +# Sparsifying a matrix by Zeroing out all elements but the top k elements in a row. +# The matrix could be a distance or similarity matrix (e.g., kernel matrix in kernel PCA), +# where we are interested to keep the top k neighbors. + +print('Sparsify a matrix by zeroing all elements but the top 2 values in a row.\n') + +A = np.array([[1,2,3,4,5],[9,8,6,4,5],[3,1,7,8,9]]) + +print('Before:\n%s\n' %A) + + +k = 2 # keep top k neighbors +for row in A: + sort_idx = np.argsort(row)[::-1] # get indexes of sort order (high to low) + for i in sort_idx[k:]: + row[i]=0 + +print('After:\n%s\n' %A) + + +""" +Sparsify a matrix by zeroing all elements but the top 2 values in a row. + +Before: +[[1 2 3 4 5] + [9 8 6 4 5] + [3 1 7 8 9]] + +After: +[[0 0 0 4 5] + [9 8 0 0 0] + [0 0 0 8 9]] + +""" \ No newline at end of file From 01fbbeb69c196c6f77663867fc511316da7f7eae Mon Sep 17 00:00:00 2001 From: rasbt Date: Tue, 23 Sep 2014 13:31:37 -0400 Subject: [PATCH 22/83] make bitstring func --- howtos_as_py_files/make_bitstring.py | 14 ++++++++++++++ 1 file changed, 14 insertions(+) create mode 100644 howtos_as_py_files/make_bitstring.py diff --git a/howtos_as_py_files/make_bitstring.py b/howtos_as_py_files/make_bitstring.py new file mode 100644 index 0000000..fc2baa4 --- /dev/null +++ b/howtos_as_py_files/make_bitstring.py @@ -0,0 +1,14 @@ +# Generating a bitstring from a Python list or numpy array +# where all postive values -> 1 +# all negative values -> 0 + +def make_bitstring(ary) + return np.where(ary > 0, 1, 0) + + +### Example: + +ary1 = np.array([1, 2, 0.3, -1, -2]) +make_bitstring(ary1) + +# returns array([1, 1, 1, 0, 0]) \ No newline at end of file From 21e4d5e813963cd2b05561425e0d68e0fd04a47b Mon Sep 17 00:00:00 2001 From: rasbt Date: Tue, 23 Sep 2014 13:34:17 -0400 Subject: [PATCH 23/83] bitstring --- howtos_as_py_files/make_bitstring.py | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/howtos_as_py_files/make_bitstring.py b/howtos_as_py_files/make_bitstring.py index fc2baa4..fb27089 100644 --- a/howtos_as_py_files/make_bitstring.py +++ b/howtos_as_py_files/make_bitstring.py @@ -6,9 +6,12 @@ def make_bitstring(ary) return np.where(ary > 0, 1, 0) +def faster_bitstring(ary) + return np.where(ary > 0).astype('i1') + ### Example: ary1 = np.array([1, 2, 0.3, -1, -2]) make_bitstring(ary1) -# returns array([1, 1, 1, 0, 0]) \ No newline at end of file +# returns array([1, 1, 1, 0, 0]) From 89bf31755685ce547f25e777d0229987a97df93e Mon Sep 17 00:00:00 2001 From: rasbt Date: Fri, 26 Sep 2014 14:17:54 -0400 Subject: [PATCH 24/83] python patterns 1 --- howtos_as_py_files/README.md | 10 + howtos_as_py_files/closures.py | 17 - howtos_as_py_files/cmd_line_args_1_sysarg.py | 24 - howtos_as_py_files/cpu_time.py | 18 - howtos_as_py_files/date_time.py | 13 - howtos_as_py_files/diff_files.py | 21 - howtos_as_py_files/doctest_example.py | 47 - howtos_as_py_files/file_browsing.py | 80 - howtos_as_py_files/get_filename.py | 63 - howtos_as_py_files/get_minmax_indeces.py | 12 - howtos_as_py_files/id_file1.txt | 3 + howtos_as_py_files/id_file2.txt | 3 + howtos_as_py_files/lambda_function.py | 11 - howtos_as_py_files/make_bitstring.py | 17 - howtos_as_py_files/my_file.pkl | Bin 0 -> 58 bytes howtos_as_py_files/namedtuple_example.py | 5 - howtos_as_py_files/normalize_data.py | 15 - howtos_as_py_files/numpy_matrix.py | 36 - howtos_as_py_files/os_shutil_fileops.py | 22 - howtos_as_py_files/patterns.ipynb | 1486 +++++++++++++++++ howtos_as_py_files/pickle_module.py | 23 - howtos_as_py_files/pil_image_processing.py | 0 .../python2_vs_3_version_info.py | 24 - howtos_as_py_files/read_file.py | 44 - howtos_as_py_files/reg_expr_1_basics.py | 101 -- howtos_as_py_files/reg_expr_2_operators.py | 127 -- .../sort_list_of_tuples_by_ele.py | 34 - .../sorting_multiple_lists_by_col.py | 39 - howtos_as_py_files/timeit_test.py | 24 - howtos_as_py_files/zen_of_python.py | 24 - 30 files changed, 1502 insertions(+), 841 deletions(-) create mode 100644 howtos_as_py_files/README.md delete mode 100755 howtos_as_py_files/closures.py delete mode 100644 howtos_as_py_files/cmd_line_args_1_sysarg.py delete mode 100755 howtos_as_py_files/cpu_time.py delete mode 100644 howtos_as_py_files/date_time.py delete mode 100644 howtos_as_py_files/diff_files.py delete mode 100644 howtos_as_py_files/doctest_example.py delete mode 100644 howtos_as_py_files/file_browsing.py delete mode 100755 howtos_as_py_files/get_filename.py delete mode 100644 howtos_as_py_files/get_minmax_indeces.py create mode 100644 howtos_as_py_files/id_file1.txt create mode 100644 howtos_as_py_files/id_file2.txt delete mode 100644 howtos_as_py_files/lambda_function.py delete mode 100644 howtos_as_py_files/make_bitstring.py create mode 100644 howtos_as_py_files/my_file.pkl delete mode 100644 howtos_as_py_files/namedtuple_example.py delete mode 100644 howtos_as_py_files/normalize_data.py delete mode 100644 howtos_as_py_files/numpy_matrix.py delete mode 100644 howtos_as_py_files/os_shutil_fileops.py create mode 100644 howtos_as_py_files/patterns.ipynb delete mode 100755 howtos_as_py_files/pickle_module.py delete mode 100644 howtos_as_py_files/pil_image_processing.py delete mode 100644 howtos_as_py_files/python2_vs_3_version_info.py delete mode 100755 howtos_as_py_files/read_file.py delete mode 100644 howtos_as_py_files/reg_expr_1_basics.py delete mode 100644 howtos_as_py_files/reg_expr_2_operators.py delete mode 100644 howtos_as_py_files/sort_list_of_tuples_by_ele.py delete mode 100644 howtos_as_py_files/sorting_multiple_lists_by_col.py delete mode 100644 howtos_as_py_files/timeit_test.py delete mode 100644 howtos_as_py_files/zen_of_python.py diff --git a/howtos_as_py_files/README.md b/howtos_as_py_files/README.md new file mode 100644 index 0000000..840e737 --- /dev/null +++ b/howtos_as_py_files/README.md @@ -0,0 +1,10 @@ +Sebastian Raschka +last updated: 09/26/2014 + +# A collection of useful Python patterns + + +new_msg("Hello, World") +# prints: "My message: Hello, World" + +# print(dir(create_message.__closure__)) \ No newline at end of file diff --git a/howtos_as_py_files/closures.py b/howtos_as_py_files/closures.py deleted file mode 100755 index dc8dfea..0000000 --- a/howtos_as_py_files/closures.py +++ /dev/null @@ -1,17 +0,0 @@ -# Python 3.x -# sr 11/04/2013 -# closures -# - -def create_message(msg_txt): - def _priv_msg(message): # private, no access from outside - print("{}: {}".format(msg_txt, message)) - return _priv_msg # returns a function - -new_msg = create_message("My message") -# note, new_msg is a function - -new_msg("Hello, World") -# prints: "My message: Hello, World" - -# print(dir(create_message.__closure__)) diff --git a/howtos_as_py_files/cmd_line_args_1_sysarg.py b/howtos_as_py_files/cmd_line_args_1_sysarg.py deleted file mode 100644 index b8f8cbf..0000000 --- a/howtos_as_py_files/cmd_line_args_1_sysarg.py +++ /dev/null @@ -1,24 +0,0 @@ -# Getting command line arguments via sys.arg -# sr 11/30/2013 - -import sys - -def error(msg): - """Prints error message, sends it to stderr, and quites the program.""" - sys.exit(msg) - - -args = sys.argv[1:] # sys.argv[0] is the name of the python script itself - -try: - arg1 = int(args[0]) - arg2 = args[1] - arg3 = args[2] - print("Everything okay!") - -except ValueError: - error("First argument must be integer type!") - -except IndexError: - error("Requires 3 arguments!") - diff --git a/howtos_as_py_files/cpu_time.py b/howtos_as_py_files/cpu_time.py deleted file mode 100755 index 472cae7..0000000 --- a/howtos_as_py_files/cpu_time.py +++ /dev/null @@ -1,18 +0,0 @@ -# sr 10/29/13 -# Calculates elapsed CPU time in seconds as float. - -import time - -start_time = time.clock() - -i = 0 -while i < 10000000: - i += 1 - -elapsed_time = time.clock() - start_time -print "Time elapsed: {} seconds".format(elapsed_time) - -# prints "Time elapsed: 1.06 seconds" -# on 4 x 2.80 Ghz Intel Xeon, 6 Gb RAM - - diff --git a/howtos_as_py_files/date_time.py b/howtos_as_py_files/date_time.py deleted file mode 100644 index 28e7bcc..0000000 --- a/howtos_as_py_files/date_time.py +++ /dev/null @@ -1,13 +0,0 @@ -# Sebastian Raschka, 03/2014 -# Date and Time in Python - -import time - -# print time HOURS:MINUTES:SECONDS -# e.g., '10:50:58' -print(time.strftime("%H:%M:%S")) - - -# print current date DAY:MONTH:YEAR -# e.g., '06/03/2014' -print(time.strftime("%d/%m/%Y")) diff --git a/howtos_as_py_files/diff_files.py b/howtos_as_py_files/diff_files.py deleted file mode 100644 index 9399695..0000000 --- a/howtos_as_py_files/diff_files.py +++ /dev/null @@ -1,21 +0,0 @@ -# Sebastian Raschka, 2014 -# -# Print lines that are different between 2 files. Insensitive -# to the order of the file contents. - -id_set1 = set() -id_set2 = set() - -with open('id_file1.txt', 'r') as id_file: - for line in id_file: - id_set1.add(line.strip()) - -with open('id_file2.txt', 'r') as id_file: - for line in id_file: - id_set2.add(line.strip()) - -diffs = id_set2.difference(id_set1) - -for d in diffs: - print(d) -print("Total differences:",len(diffs)) diff --git a/howtos_as_py_files/doctest_example.py b/howtos_as_py_files/doctest_example.py deleted file mode 100644 index 246ecf8..0000000 --- a/howtos_as_py_files/doctest_example.py +++ /dev/null @@ -1,47 +0,0 @@ -# doctest example -# Sebastian Raschka 11/19/2013 - -def subtract(a, b): - """ - Subtracts second from first number and returns result. - >>> subtract(10, 5) - 5 - >>> subtract(11, 0.7) - 10.3 - """ - return a-b - -def hello_world(): - """ - Returns 'Hello, World' - >>> hello_world() - "Hello, World" - >>> hello_world() - 'Hello, World' - """ - return "Hello, World" - - -if __name__ == "__main__": # is 'false' if imported - import doctest - doctest.testmod() - - -""" RESULTS - -sebastian ~/Desktop> python3 doctest_example.py -********************************************************************** -File "doctest_example.py", line 17, in __main__.hello_world -Failed example: - hello_world() -Expected: - "Hello, World" -Got: - 'Hello, World' -********************************************************************** -1 items had failures: - 1 of 2 in __main__.hello_world -***Test Failed*** 1 failures. -sebastian ~/Desktop> - -""" diff --git a/howtos_as_py_files/file_browsing.py b/howtos_as_py_files/file_browsing.py deleted file mode 100644 index ce1cb5f..0000000 --- a/howtos_as_py_files/file_browsing.py +++ /dev/null @@ -1,80 +0,0 @@ -# File system operations using Python -# sr 11/30/2013 - - -import os -import shutil -import glob - -# working directory -c_dir = os.getcwd() # show current working directory -os.listdir(c_dir) # shows all files in the working directory -os.chdir('~/Data') # change working directory - - -# get all files in a directory -glob.glob('/Users/sebastian/Desktop/*') - -# e.g., ['/Users/sebastian/Desktop/untitled folder', '/Users/sebastian/Desktop/Untitled.txt'] - - - -# walk -tree = os.walk(c_dir) -# moves through sub directories and creates a 'generator' object of tuples -# ('dir', [file1, file2, ...] [subdirectory1, subdirectory2, ...]), -# (...), ... - - - -#check files: returns either True or False -os.exists('../rel_path') -os.exists('/home/abs_path') -os.isfile('./file.txt') -os.isdir('./subdir') - - - -# file permission (True or False -os.access('./some_file', os.F_OK) # File exists? Python 2.7 -os.access('./some_file', os.R_OK) # Ok to read? Python 2.7 -os.access('./some_file', os.W_OK) # Ok to write? Python 2.7 -os.access('./some_file', os.X_OK) # Ok to execute? Python 2.7 -os.access('./some_file', os.X_OK | os.W_OK) # Ok to execute or write? Python 2.7 - - - -# join (creates operating system dependent paths) -os.path.join('a', 'b', 'c') -# 'a/b/c' on Unix/Linux -# 'a\\b\\c' on Windows -os.path.normpath('a/b/c') # converts file separators - - - -# os.path: direcory and file names -os.path.samefile('./some_file', '/home/some_file') # True if those are the same -os.path.dirname('./some_file') # returns '.' (everythin but last component) -os.path.basename('./some_file') # returns 'some_file' (only last component -os.path.split('./some_file') # returns (dirname, basename) or ('.', 'some_file) -os.path.splitext('./some_file.txt') # returns ('./some_file', '.txt') -os.path.splitdrive('./some_file.txt') # returns ('', './some_file.txt') -os.path.isabs('./some_file.txt') # returns False (not an absolute path) -os.path.abspath('./some_file.txt') - - - - -# create and delete files and directories -os.mkdir('./test') # create a new direcotory -os.rmdir('./test') # removes an empty direcotory -os.removedirs('./test') # removes nested empty directories -os.remove('file.txt') # removes an individual file -shutil.rmtree('./test') # removes directory (empty or not empty) - -os.rename('./dir_before', './renamed') # renames directory if destination doesn't exist -shutil.move('./dir_before', './renamed') # renames directory always - -shutil.copytree('./orig', './copy') # copies a directory recursively -shutil.copyfile('file', 'copy') # copies a file - diff --git a/howtos_as_py_files/get_filename.py b/howtos_as_py_files/get_filename.py deleted file mode 100755 index a05f92a..0000000 --- a/howtos_as_py_files/get_filename.py +++ /dev/null @@ -1,63 +0,0 @@ -# Python 2.7 -# prompt user for file of specific type(s). -# 11/01/13 sebastian raschka - -import os.path - -def get_filename(file_type): - '''repeatedly prompts user for a file of specific type. - arguments: - file_type: list with accepted file types as strings. - returns: - (string): absolute path to the specified input file. - ''' - while True: - print "\n\nplease enter a file name, \nor type --help to get"\ - " a list of the accepted file formats" - file_name = raw_input(": ") - if file_name == "--help": - print "\naccepted file format(s): ", - for f in file_type: - print f, - continue - if not os.path.isfile(file_name): - print "\n\nsorry, this file doesn't exist. please try again.\n" - continue - if not (file_name.split(".")[-1] in file_type): - print "\nplease provide a file in correct format." - continue - break - return os.path.abspath(file_name) - -#get_filename(["txt", "doc"]) - - -# =========================== -# EXAMPLE -# =========================== - -''' -[bash]~/Desktop >python get_filename.py - - -please enter a file name, -or type --help to get a list of the accepted file formats -: --help - -accepted file format(s): txt doc - -please enter a file name, -or type --help to get a list of the accepted file formats -: test.tx - - -sorry, this file doesn't exist. please try again. - - - -please enter a file name, -or type --help to get a list of the accepted file formats -: test.txt -[bash]~/Desktop > -''' - diff --git a/howtos_as_py_files/get_minmax_indeces.py b/howtos_as_py_files/get_minmax_indeces.py deleted file mode 100644 index 1fe5b2a..0000000 --- a/howtos_as_py_files/get_minmax_indeces.py +++ /dev/null @@ -1,12 +0,0 @@ -# Sebastian Raschka, 03/2014 -# Getting the positions of min and max values in a list - -import operator - -values = [1, 2, 3, 4, 5] - -min_index, min_value = min(enumerate(values), key=operator.itemgetter(1)) -max_index, max_value = max(enumerate(values), key=operator.itemgetter(1)) - -print('min_index:', min_index, 'min_value:', min_value) -print('max_index:', max_index, 'max_value:', max_value) diff --git a/howtos_as_py_files/id_file1.txt b/howtos_as_py_files/id_file1.txt new file mode 100644 index 0000000..a600893 --- /dev/null +++ b/howtos_as_py_files/id_file1.txt @@ -0,0 +1,3 @@ +1234 +2342 +2341 \ No newline at end of file diff --git a/howtos_as_py_files/id_file2.txt b/howtos_as_py_files/id_file2.txt new file mode 100644 index 0000000..d05914a --- /dev/null +++ b/howtos_as_py_files/id_file2.txt @@ -0,0 +1,3 @@ +5234 +3344 +2341 \ No newline at end of file diff --git a/howtos_as_py_files/lambda_function.py b/howtos_as_py_files/lambda_function.py deleted file mode 100644 index 9da0c9c..0000000 --- a/howtos_as_py_files/lambda_function.py +++ /dev/null @@ -1,11 +0,0 @@ -# Sebastian Raschka 08/2014 - -# Lambda functions are just a short-hand way or writing -# short function definitions - -def square_root1(x): - return x**0.5 - -square_root2 = lambda x: x**0.5 - -assert(square_root1(9) == square_root2(9)) \ No newline at end of file diff --git a/howtos_as_py_files/make_bitstring.py b/howtos_as_py_files/make_bitstring.py deleted file mode 100644 index fb27089..0000000 --- a/howtos_as_py_files/make_bitstring.py +++ /dev/null @@ -1,17 +0,0 @@ -# Generating a bitstring from a Python list or numpy array -# where all postive values -> 1 -# all negative values -> 0 - -def make_bitstring(ary) - return np.where(ary > 0, 1, 0) - - -def faster_bitstring(ary) - return np.where(ary > 0).astype('i1') - -### Example: - -ary1 = np.array([1, 2, 0.3, -1, -2]) -make_bitstring(ary1) - -# returns array([1, 1, 1, 0, 0]) diff --git a/howtos_as_py_files/my_file.pkl b/howtos_as_py_files/my_file.pkl new file mode 100644 index 0000000000000000000000000000000000000000..f24f8982047bec1fe6c3ff9aa77a5183b85cb094 GIT binary patch literal 58 zcmZo*t}SHH@MetQWME(@&d*I%C`qj-DP;6!%3$\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Table of Contents" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- [Bitstrings from positive and negative elements in a list](#Bitstrings-from-positive-and-negative-elements-in-a-list)\n", + "- [Command line arguments 1 - sys.argv](#Command-line-arguments-1---sys.argv)\n", + "- [Data and time basics](#Data-and-time-basics)\n", + "- [Differences between 2 files](#Differences-between-2-files)\n", + "- [Differences between successive elements in a list](#Differences-between-successive-elements-in-a-list)\n", + "- [Doctest example](#Doctest-example)\n", + "- [File browsing basics](#File-browsing-basics)\n", + "- [File reading basics](#File-reading-basics)\n", + "- [Indices of min and max elements from a list](#Indices-of-min-and-max-elements-from-a-list)\n", + "- [Lambda functions](#Lambda-functions)\n", + "- [Private functions](#Private-functions)\n", + "- [Namedtuples](#Namedtuples)\n", + "- [Normalizing data](#Normalizing-data)\n", + "- [NumPy essentials](#NumPy-essentials)\n", + "- [Pickling Python objects to bitstreams](#Pickling-Python-objects-to-bitstreams)\n", + "- [Python version check](#Python-version-check)\n", + "- [Runtime within a script](#Runtime-within-a-script)\n", + "- [Sorting lists of tuples by elements](#Sorting-lists-of-tuples-by-elements)\n", + "- [Sorting multiple lists relative to each other](#Sorting-multiple-lists-relative-to-each-other)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%load_ext watermark" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 1 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%watermark -d -a \"Sebastian Raschka\" -v" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Sebastian Raschka 26/09/2014 \n", + "\n", + "CPython 3.4.1\n", + "IPython 2.0.0\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[More information](https://github.com/rasbt/watermark) about the `watermark` magic command extension." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Bitstrings from positive and negative elements in a list" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Generating a bitstring from a Python list or numpy array\n", + "# where all postive values -> 1\n", + "# all negative values -> 0\n", + "\n", + "import numpy as np\n", + "\n", + "def make_bitstring(ary):\n", + " return np.where(ary > 0, 1, 0)\n", + "\n", + "\n", + "def faster_bitstring(ary):\n", + " return np.where(ary > 0).astype('i1')\n", + "\n", + "### Example:\n", + "\n", + "ary1 = np.array([1, 2, 0.3, -1, -2])\n", + "print('input values %s' %ary1)\n", + "print('bitstring %s' %make_bitstring(ary1))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "input values [ 1. 2. 0.3 -1. -2. ]\n", + "bitstring [1 1 1 0 0]\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Command line arguments 1 - sys.argv" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%%file cmd_line_args_1_sysarg.py\n", + "import sys\n", + "\n", + "def error(msg):\n", + " \"\"\"Prints error message, sends it to stderr, and quites the program.\"\"\"\n", + " sys.exit(msg)\n", + "\n", + "args = sys.argv[1:] # sys.argv[0] is the name of the python script itself\n", + "\n", + "try:\n", + " arg1 = int(args[0])\n", + " arg2 = args[1]\n", + " arg3 = args[2]\n", + " print(\"Everything okay!\")\n", + "\n", + "except ValueError:\n", + " error(\"First argument must be integer type!\")\n", + "\n", + "except IndexError:\n", + " error(\"Requires 3 arguments!\")" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Overwriting cmd_line_args_1_sysarg.py\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "% run cmd_line_args_1_sysarg.py 1 2 3" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Everything okay!\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "% run cmd_line_args_1_sysarg.py a 2 3" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "ename": "SystemExit", + "evalue": "First argument must be integer type!", + "output_type": "pyerr", + "traceback": [ + "An exception has occurred, use %tb to see the full traceback.\n", + "\u001b[0;31mSystemExit\u001b[0m\u001b[0;31m:\u001b[0m First argument must be integer type!\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Data and time basics" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import time\n", + "\n", + "# print time HOURS:MINUTES:SECONDS\n", + "# e.g., '10:50:58'\n", + "print(time.strftime(\"%H:%M:%S\"))\n", + "\n", + "# print current date DAY:MONTH:YEAR\n", + "# e.g., '06/03/2014'\n", + "print(time.strftime(\"%d/%m/%Y\"))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "13:28:05\n", + "26/09/2014\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Differences between 2 files" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%%file id_file1.txt\n", + "1234\n", + "2342\n", + "2341" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Writing id_file1.txt\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%%file id_file2.txt\n", + "5234\n", + "3344\n", + "2341" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Writing id_file2.txt\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Print lines that are different between 2 files. Insensitive\n", + "# to the order of the file contents.\n", + "\n", + "id_set1 = set()\n", + "id_set2 = set()\n", + "\n", + "with open('id_file1.txt', 'r') as id_file:\n", + " for line in id_file:\n", + " id_set1.add(line.strip())\n", + "\n", + "with open('id_file2.txt', 'r') as id_file:\n", + " for line in id_file:\n", + " id_set2.add(line.strip()) \n", + "\n", + "diffs = id_set2.difference(id_set1)\n", + "\n", + "for d in diffs:\n", + " print(d)\n", + "print(\"Total differences:\",len(diffs))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "5234\n", + "3344\n", + "Total differences: 2\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Differences between successive elements in a list" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from itertools import islice\n", + "\n", + "lst = [1,2,3,5,8]\n", + "diff = [j - i for i, j in zip(lst, islice(lst, 1, None))]\n", + "print(diff)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "[1, 1, 2, 3]\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Doctest example" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "def subtract(a, b):\n", + " \"\"\"\n", + " Subtracts second from first number and returns result.\n", + " >>> subtract(10, 5)\n", + " 5\n", + " >>> subtract(11, 0.7)\n", + " 10.3\n", + " \"\"\"\n", + " return a-b\n", + "\n", + "if __name__ == \"__main__\": # is 'false' if imported\n", + " import doctest\n", + " doctest.testmod()\n", + " print('ok')" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "ok\n" + ] + } + ], + "prompt_number": 17 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "def hello_world():\n", + " \"\"\"\n", + " Returns 'Hello, World'\n", + " >>> hello_world()\n", + " 'Hello, World'\n", + " \"\"\"\n", + " return 'hello world'\n", + "\n", + "if __name__ == \"__main__\": # is 'false' if imported\n", + " import doctest\n", + " doctest.testmod()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "**********************************************************************\n", + "File \"__main__\", line 4, in __main__.hello_world\n", + "Failed example:\n", + " hello_world()\n", + "Expected:\n", + " 'Hello, World'\n", + "Got:\n", + " 'hello world'\n", + "**********************************************************************\n", + "1 items had failures:\n", + " 1 of 1 in __main__.hello_world\n", + "***Test Failed*** 1 failures.\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "File browsing basics" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import os\n", + "import shutil\n", + "import glob\n", + "\n", + "# working directory\n", + "c_dir = os.getcwd() # show current working directory\n", + "os.listdir(c_dir) # shows all files in the working directory\n", + "os.chdir('~/Data') # change working directory\n", + "\n", + "\n", + "# get all files in a directory\n", + "glob.glob('/Users/sebastian/Desktop/*')\n", + "\n", + "# e.g., ['/Users/sebastian/Desktop/untitled folder', '/Users/sebastian/Desktop/Untitled.txt']\n", + "\n", + "# walk\n", + "tree = os.walk(c_dir) \n", + "# moves through sub directories and creates a 'generator' object of tuples\n", + "# ('dir', [file1, file2, ...] [subdirectory1, subdirectory2, ...]), \n", + "# (...), ...\n", + "\n", + "#check files: returns either True or False\n", + "os.exists('../rel_path')\n", + "os.exists('/home/abs_path')\n", + "os.isfile('./file.txt')\n", + "os.isdir('./subdir')\n", + "\n", + "\n", + "# file permission (True or False\n", + "os.access('./some_file', os.F_OK) # File exists? Python 2.7\n", + "os.access('./some_file', os.R_OK) # Ok to read? Python 2.7\n", + "os.access('./some_file', os.W_OK) # Ok to write? Python 2.7\n", + "os.access('./some_file', os.X_OK) # Ok to execute? Python 2.7\n", + "os.access('./some_file', os.X_OK | os.W_OK) # Ok to execute or write? Python 2.7\n", + "\n", + "# join (creates operating system dependent paths)\n", + "os.path.join('a', 'b', 'c')\n", + "# 'a/b/c' on Unix/Linux\n", + "# 'a\\\\b\\\\c' on Windows\n", + "os.path.normpath('a/b/c') # converts file separators\n", + "\n", + "\n", + "# os.path: direcory and file names\n", + "os.path.samefile('./some_file', '/home/some_file') # True if those are the same\n", + "os.path.dirname('./some_file') # returns '.' (everythin but last component)\n", + "os.path.basename('./some_file') # returns 'some_file' (only last component\n", + "os.path.split('./some_file') # returns (dirname, basename) or ('.', 'some_file)\n", + "os.path.splitext('./some_file.txt') # returns ('./some_file', '.txt')\n", + "os.path.splitdrive('./some_file.txt') # returns ('', './some_file.txt')\n", + "os.path.isabs('./some_file.txt') # returns False (not an absolute path)\n", + "os.path.abspath('./some_file.txt')\n", + "\n", + "\n", + "# create and delete files and directories\n", + "os.mkdir('./test') # create a new direcotory\n", + "os.rmdir('./test') # removes an empty direcotory\n", + "os.removedirs('./test') # removes nested empty directories\n", + "os.remove('file.txt') # removes an individual file\n", + "shutil.rmtree('./test') # removes directory (empty or not empty)\n", + "\n", + "os.rename('./dir_before', './renamed') # renames directory if destination doesn't exist\n", + "shutil.move('./dir_before', './renamed') # renames directory always\n", + "\n", + "shutil.copytree('./orig', './copy') # copies a directory recursively\n", + "shutil.copyfile('file', 'copy') # copies a file\n", + "\n", + " \n", + "# Getting files of particular type from directory\n", + "files = [f for f in os.listdir(s_pdb_dir) if f.endswith(\".txt\")]\n", + " \n", + "# Copy and move\n", + "shutil.copyfile(\"/path/to/file\", \"/path/to/new/file\") \n", + "shutil.copy(\"/path/to/file\", \"/path/to/directory\")\n", + "shutil.move(\"/path/to/file\",\"/path/to/directory\")\n", + " \n", + "# Check if file or directory exists\n", + "os.path.exists(\"file or directory\")\n", + "os.path.isfile(\"file\")\n", + "os.path.isdir(\"directory\")\n", + " \n", + "# Working directory and absolute path to files\n", + "os.getcwd()\n", + "os.path.abspath(\"file\")" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "File reading basics" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Note: rb opens file in binary mode to avoid issues with Windows systems\n", + "# where '\\r\\n' is used instead of '\\n' as newline character(s).\n", + "\n", + "\n", + "# A) Reading in Byte chunks\n", + "reader_a = open(\"file.txt\", \"rb\")\n", + "chunks = []\n", + "data = reader_a.read(64) # reads first 64 bytes\n", + "while data != \"\":\n", + " chunks.append(data)\n", + " data = reader_a.read(64)\n", + "if data:\n", + " chunks.append(data)\n", + "print(len(chunks))\n", + "reader_a.close()\n", + "\n", + "\n", + "# B) Reading whole file at once into a list of lines\n", + "with open(\"file.txt\", \"rb\") as reader_b: # recommended syntax, auto closes\n", + " data = reader_b.readlines() # data is assigned a list of lines\n", + "print(len(data))\n", + "\n", + "\n", + "# C) Reading whole file at once into a string\n", + "with open(\"file.txt\", \"rb\") as reader_c:\n", + " data = reader_c.read() # data is assigned a list of lines\n", + "print(len(data))\n", + "\n", + "\n", + "# D) Reading line by line into a list\n", + "data = []\n", + "with open(\"file.txt\", \"rb\") as reader_d:\n", + " for line in reader_d:\n", + " data.append(line)\n", + "print(len(data))\n" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Indices of min and max elements from a list" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import operator\n", + "\n", + "values = [1, 2, 3, 4, 5]\n", + "\n", + "min_index, min_value = min(enumerate(values), key=operator.itemgetter(1))\n", + "max_index, max_value = max(enumerate(values), key=operator.itemgetter(1))\n", + "\n", + "print('min_index:', min_index, 'min_value:', min_value)\n", + "print('max_index:', max_index, 'max_value:', max_value)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "min_index: 0 min_value: 1\n", + "max_index: 4 max_value: 5\n" + ] + } + ], + "prompt_number": 19 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Lambda functions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Lambda functions are just a short-hand way or writing\n", + "# short function definitions\n", + "\n", + "def square_root1(x):\n", + " return x**0.5\n", + " \n", + "square_root2 = lambda x: x**0.5\n", + "\n", + "assert(square_root1(9) == square_root2(9))" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 20 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Private functions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "def create_message(msg_txt):\n", + " def _priv_msg(message): # private, no access from outside\n", + " print(\"{}: {}\".format(msg_txt, message))\n", + " return _priv_msg # returns a function\n", + "\n", + "new_msg = create_message(\"My message\")\n", + "# note, new_msg is a function\n", + "\n", + "new_msg(\"Hello, World\")" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "My message: Hello, World\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Namedtuples" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from collections import namedtuple\n", + "\n", + "my_namedtuple = namedtuple('field_name', ['x', 'y', 'z', 'bla', 'blub'])\n", + "p = my_namedtuple(1, 2, 3, 4, 5)\n", + "print(p.x, p.y, p.z)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "1 2 3\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Normalizing data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "def normalize(data, min_val=0, max_val=1):\n", + " \"\"\"\n", + " Normalizes values in a list of data points to a range, e.g.,\n", + " between 0.0 and 1.0. \n", + " Returns the original object if value is not a integer or float.\n", + " \n", + " \"\"\"\n", + " norm_data = []\n", + " data_min = min(data)\n", + " data_max = max(data)\n", + " for x in data:\n", + " numerator = x - data_min\n", + " denominator = data_max - data_min\n", + " x_norm = (max_val-min_val) * numerator/denominator + min_val\n", + " norm_data.append(x_norm)\n", + " return norm_data" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 28 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "normalize([1,2,3,4,5])" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 31, + "text": [ + "[0.0, 0.25, 0.5, 0.75, 1.0]" + ] + } + ], + "prompt_number": 31 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "normalize([1,2,3,4,5], min_val=-10, max_val=10)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 30, + "text": [ + "[-10.0, -5.0, 0.0, 5.0, 10.0]" + ] + } + ], + "prompt_number": 30 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "NumPy essentials" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import numpy as np\n", + "\n", + "ary1 = np.array([1,2,3,4,5]) # must be same type\n", + "ary2 = np.zeros((3,4)) # 3x4 matrix consisiting of 0s \n", + "ary3 = np.ones((3,4)) # 3x4 matrix consisiting of 1s \n", + "ary4 = np.identity(3) # 3x3 identity matrix\n", + "ary5 = ary1.copy() # make a copy of ary1\n", + "\n", + "item1 = ary3[0, 0] # item in row1, column1\n", + "\n", + "ary2.shape # tuple of dimensions. Here: (3,4)\n", + "ary2.size # number of elements. Here: 12\n", + "\n", + "\n", + "ary2_t = ary2.transpose() # transposes matrix\n", + "\n", + "ary2.ravel() # makes an array linear (1-dimensional)\n", + " # by concatenating rows\n", + "ary2.reshape(2,6) # reshapes array (must have same dimensions)\n", + "\n", + "ary3[0:2, 0:3] # submatrix of first 2 rows and first 3 columns \n", + "\n", + "ary3 = ary3[[2,0,1]] # re-arrange rows\n", + "\n", + "\n", + "# element-wise operations\n", + "\n", + "ary1 + ary1\n", + "ary1 * ary1\n", + "numpy.dot(ary1, ary1) # matrix/vector (dot) product\n", + "\n", + "numpy.sum(ary1, axis=1) # sum of a 1D array, column sums of a 2D array\n", + "numpy.mean(ary1, axis=1) # mean of a 1D array, column means of a 2D array" + ], + "language": "python", + "metadata": {}, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Pickling Python objects to bitstreams" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import pickle\n", + "\n", + "#### Generate some object\n", + "my_dict = dict()\n", + "for i in range(1,10):\n", + " my_dict[i] = \"some text\"\n", + "\n", + "#### Save object to file\n", + "pickle_out = open('my_file.pkl', 'wb')\n", + "pickle.dump(my_dict, pickle_out)\n", + "pickle_out.close()\n", + "\n", + "#### Load object from file\n", + "my_object_file = open('my_file.pkl', 'rb')\n", + "my_dict = pickle.load(my_object_file)\n", + "my_object_file.close()\n", + "\n", + "print(my_dict)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "{1: 'some text', 2: 'some text', 3: 'some text', 4: 'some text', 5: 'some text', 6: 'some text', 7: 'some text', 8: 'some text', 9: 'some text'}\n" + ] + } + ], + "prompt_number": 35 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Python version check" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import sys\n", + "\n", + "def give_letter(word):\n", + " for letter in word:\n", + " yield letter\n", + "\n", + "if sys.version_info[0] == 3:\n", + " print('executed in Python 3.x')\n", + " test = give_letter('Hello')\n", + " print(next(test))\n", + " print('in for-loop:')\n", + " for l in test:\n", + " print(l)\n", + "\n", + "# if Python 2.x\n", + "if sys.version_info[0] == 2:\n", + " print('executed in Python 2.x')\n", + " test = give_letter('Hello')\n", + " print(test.next())\n", + " print('in for-loop:') \n", + " for l in test:\n", + " print(l)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "executed in Python 3.x\n", + "H\n", + "in for-loop:\n", + "e\n", + "l\n", + "l\n", + "o\n" + ] + } + ], + "prompt_number": 36 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Runtime within a script" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import time\n", + "\n", + "start_time = time.clock()\n", + "\n", + "for i in range(10000000):\n", + " pass\n", + "\n", + "elapsed_time = time.clock() - start_time\n", + "print(\"Time elapsed: {} seconds\".format(elapsed_time))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Time elapsed: 0.49176900000000057 seconds\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import timeit\n", + "elapsed_time = timeit.timeit('for i in range(10000000): pass', number=1)\n", + "print(\"Time elapsed: {} seconds\".format(elapsed_time))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Time elapsed: 0.3550995970144868 seconds\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Sorting lists of tuples by elements" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Here, we make use of the \"key\" parameter of the in-built \"sorted()\" function \n", + "# (also available for the \".sort()\" method), which let's us define a function \n", + "# that is called on every element that is to be sorted. In this case, our \n", + "# \"key\"-function is a simple lambda function that returns the last item \n", + "# from every tuple.\n", + "\n", + "a_list = [(1,3,'c'), (2,3,'a'), (3,2,'b'), (2,2,'b')]\n", + "\n", + "sorted_list = sorted(a_list, key=lambda e: e[::-1])\n", + "\n", + "print(sorted_list)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "[(2, 3, 'a'), (2, 2, 'b'), (3, 2, 'b'), (1, 3, 'c')]\n" + ] + } + ], + "prompt_number": 37 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# prints [(2, 3, 'a'), (2, 2, 'b'), (3, 2, 'b'), (1, 3, 'c')]\n", + "\n", + "# If we are only interesting in sorting the list by the last element\n", + "# of the tuple and don't care about a \"tie\" situation, we can also use\n", + "# the index of the tuple item directly instead of reversing the tuple \n", + "# for efficiency.\n", + "\n", + "a_list = [(1,3,'c'), (2,3,'a'), (3,2,'b'), (2,2,'b')]\n", + "\n", + "sorted_list = sorted(a_list, key=lambda e: e[-1])\n", + "\n", + "print(sorted_list)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "[(2, 3, 'a'), (3, 2, 'b'), (2, 2, 'b'), (1, 3, 'c')]\n" + ] + } + ], + "prompt_number": 38 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Sorting multiple lists relative to each other" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\"\"\"\n", + "You have 3 lists that you want to sort \"relative\" to each other,\n", + "for example, picturing each list as a row in a 3x3 matrix: sort it by columns\n", + "\n", + "########################\n", + "If the input lists are\n", + "########################\n", + "\n", + " list1 = ['c','b','a']\n", + " list2 = [6,5,4]\n", + " list3 = ['some-val-associated-with-c','another_val-b','z_another_third_val-a']\n", + "\n", + "########################\n", + "the desired outcome is:\n", + "########################\n", + "\n", + " ['a', 'b', 'c'] \n", + " [4, 5, 6] \n", + " ['z_another_third_val-a', 'another_val-b', 'some-val-associated-with-c']\n", + "\n", + "########################\n", + "and NOT:\n", + "########################\n", + "\n", + " ['a', 'b', 'c'] \n", + " [4, 5, 6] \n", + " ['another_val-b', 'some-val-associated-with-c', 'z_another_third_val-a']\n", + "\n", + "\n", + "\"\"\"\n", + "\n", + "list1 = ['c','b','a']\n", + "list2 = [6,5,4]\n", + "list3 = ['some-val-associated-with-c','another_val-b','z_another_third_val-a']\n", + "\n", + "print('input values:\\n', list1, list2, list3)\n", + "\n", + "list1, list2, list3 = [list(t) for t in zip(*sorted(zip(list1, list2, list3)))]\n", + "\n", + "print('\\n\\nsorted output:\\n', list1, list2, list3 )" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "input values:\n", + " ['c', 'b', 'a'] [6, 5, 4] ['some-val-associated-with-c', 'another_val-b', 'z_another_third_val-a']\n", + "\n", + "\n", + "sorted output:\n", + " ['a', 'b', 'c'] [4, 5, 6] ['z_another_third_val-a', 'another_val-b', 'some-val-associated-with-c']\n" + ] + } + ], + "prompt_number": 49 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/howtos_as_py_files/pickle_module.py b/howtos_as_py_files/pickle_module.py deleted file mode 100755 index 81afd92..0000000 --- a/howtos_as_py_files/pickle_module.py +++ /dev/null @@ -1,23 +0,0 @@ -# sr 10/29/13 -# The pickle module converts Python objects into byte streams -# to save them as a file on your drive for re-use. -# -# module documentation http://docs.python.org/2/library/pickle.html - -import pickle - -#### Generate some object -my_dict = dict() -for i in range(1,1000): - my_dict[i] = "some text" - -#### Save object to file -pickle_out = open('my_file.pkl', 'wb') -pickle.dump(my_dict, pickle_out) -pickle_out.close() - -#### Load object from file -my_object_file = open('my_file.pkl', 'rb') -my_dict = pickle.load(my_object_file) -my_object_file.close() - diff --git a/howtos_as_py_files/pil_image_processing.py b/howtos_as_py_files/pil_image_processing.py deleted file mode 100644 index e69de29..0000000 diff --git a/howtos_as_py_files/python2_vs_3_version_info.py b/howtos_as_py_files/python2_vs_3_version_info.py deleted file mode 100644 index 19e7bb2..0000000 --- a/howtos_as_py_files/python2_vs_3_version_info.py +++ /dev/null @@ -1,24 +0,0 @@ -# Sebastian Raschka 04/10/2014 - -import sys - -def give_letter(word): - for letter in word: - yield letter - -if sys.version_info[0] == 3: - print('executed in Python 3.x') - test = give_letter('Hello') - print(next(test)) - print('in for-loop:') - for l in test: - print(l) - -# if Python 2.x -if sys.version_info[0] == 2: - print('executed in Python 2.x') - test = give_letter('Hello') - print(test.next()) - print('in for-loop:') - for l in test: - print(l) diff --git a/howtos_as_py_files/read_file.py b/howtos_as_py_files/read_file.py deleted file mode 100755 index 567ae0c..0000000 --- a/howtos_as_py_files/read_file.py +++ /dev/null @@ -1,44 +0,0 @@ -# Different methods to read from text files -# sr 11/18/2013 -# Python 3.x - -# Note: rb opens file in binary mode to avoid issues with Windows systems -# where '\r\n' is used instead of '\n' as newline character(s). - - -# A) Reading in Byte chunks -reader_a = open("file.txt", "rb") -chunks = [] -data = reader_a.read(64) # reads first 64 bytes -while data != "": - chunks.append(data) - data = reader_a.read(64) -if data: - chunks.append(data) -print (len(chunks)) -reader_a.close() - - -# B) Reading whole file at once into a list of lines -with open("file.txt", "rb") as reader_b: # recommended syntax, auto closes - data = reader_b.readlines() # data is assigned a list of lines -print (len(data)) - - -# C) Reading whole file at once into a string -with open("file.txt", "rb") as reader_c: - data = reader_c.read() # data is assigned a list of lines -print (len(data)) - - -# D) Reading line by line into a list -data = [] -with open("file.txt", "rb") as reader_d: - for line in reader_d: - data.append(line) -print (len(data)) - - - - - diff --git a/howtos_as_py_files/reg_expr_1_basics.py b/howtos_as_py_files/reg_expr_1_basics.py deleted file mode 100644 index 5fafab8..0000000 --- a/howtos_as_py_files/reg_expr_1_basics.py +++ /dev/null @@ -1,101 +0,0 @@ -# Examples for using Python's Regular expression module "re" -# sr 11/30/2013 - -import re - -'''OVERVIEW - '|' means 'or' - '.' matches any single character - '()' groups into substrings -''' - - - - - -# read in data -fileobj = '''abc mno -def pqr -ghi stu -jkl vwx''' - -data = fileobj.strip().split('\n') - - -# A >> if 's' in line -print (50*'-' + '\nA\n' + 50*'-') -for line in data: - if re.search('abc', line): - print(">>", line) - else: - print(" ", line) - -''' --------------------------------------------------- -A --------------------------------------------------- ->> abc mno - def pqr - ghi stu - jkl vwx''' - - - -# B >> if 's' in line or 'r' in line -print (50*'-' + '\nB\n' + 50*'-') -for line in data: - if re.search('abc|efg', line): - print(">>", line) - else: - print(" ", line) - -''' --------------------------------------------------- -B --------------------------------------------------- ->> abc mno - def pqr - ghi stu - jkl vwx ----------------''' - - -# C >> -# use () to remember which object was found and return a match object -print (50*'-' + '\nC\n' + 50*'-') -for line in data: - match = re.search('(abc|efg)', line) # note the parantheses - if match: - print(match.group(1)) # prints 'abc' if found, else None - # match.group(0) is the whole pattern that matched - -''' --------------------------------------------------- -C --------------------------------------------------- -abc''' - - - -# read in data -fileobj = '''2013-01-01 -2012-02-02 -ghi stu -2012-03-03''' - -data = fileobj.strip().split('\n') - - -# D >> use '.' to match 'any character' -print (50*'-' + '\nD\n' + 50*'-') -for line in data: - match = re.search('(2012)-(..)-(..)', line) # note the parantheses - if match: - print(match.group(1), match.group(2), match.group(3)) - -''' --------------------------------------------------- -D --------------------------------------------------- -2012 02 02 -2012 03 03''' diff --git a/howtos_as_py_files/reg_expr_2_operators.py b/howtos_as_py_files/reg_expr_2_operators.py deleted file mode 100644 index 4994159..0000000 --- a/howtos_as_py_files/reg_expr_2_operators.py +++ /dev/null @@ -1,127 +0,0 @@ -# Examples for using Python's Regular expression module "re" -# sr 11/30/2013 - -import re - -'''OVERVIEW - '*' matches all characters that follow (0 or more) - '+' matches all characters that follow (1 or more) - '?' makes the previous character optional - '{4}' previous character must match exactly 4 times - '{2-4}' previous character must match exactly 2-4 times - '[0-9]' matches all characters in the set of numbers 0 to 9 - '[A-Z]' matches all characters in the set of A to Z - '\d' matches all digits, e.g., '4', '9' ... - '\D' matches all NON-digit characters - '\s' matches all space characters: '', '\t', '\r', '\n' - '\S' matches all NON-space characters - '\w' matches all non-punctuation characters (i.e., letters and digits) - '\W' matches all NON-letter and NON-digit characters - '^bla' NOT-matches 'bla' - 'let$' matches 'let' but not 'letter' - '\b' matches transition between non-word characters and word characters - -''' - -data = '''2013-01-01 -2012-02-02 -aaaa-02-02 -aa-02-02 --04-04 -2000 02-02 -ghi stu -2012-03-03'''.strip().split('\n') - - -# A >> '*' matches all characters that follow (0 or more) -print (50*'-' + '\nA\n' + 50*'-') - -for line in data: - match = re.search('(.*)-(..)-(..)', line) # note the parantheses - if match: - print(match.group(1), match.group(2), match.group(3)) - -''' --------------------------------------------------- -A --------------------------------------------------- -2013 01 01 -2012 02 02 -aaaa 02 02 -aa 02 02 - 04 04 -2012 03 03 -''' - - -# B >> '+' matches all characters that follow (1 or more) -print (50*'-' + '\nB\n' + 50*'-') - -for line in data: - match = re.search('(.+)-(..)-(..)', line) # note the parantheses - if match: - print(match.group(1), match.group(2), match.group(3)) - -''' --------------------------------------------------- -B --------------------------------------------------- -2013 01 01 -2012 02 02 -aaaa 02 02 -aa 02 02 -2012 03 03 -''' - - -# C >> '?' makes the previous character optional -print (50*'-' + '\nC\n' + 50*'-') - -for line in data: - match = re.search('(.+)-?(..)-(..)', line) # note the parantheses - if match: - print(match.group(1), match.group(2), match.group(3)) - -''' --------------------------------------------------- -C --------------------------------------------------- -2013- 01 01 -2012- 02 02 -aaaa- 02 02 -aa- 02 02 -- 04 04 -2000 02 02 -2012- 03 03 -''' - -# D >> '{4}' previous character must match exactly 4 times -print (50*'-' + '\nD\n' + 50*'-') - -for line in data: - match = re.search('(a{4})-(..)-(..)', line) # note the parantheses - if match: - print(match.group(1), match.group(2), match.group(3)) - -''' --------------------------------------------------- -D --------------------------------------------------- -aaaa 02 02 -''' - -# E >>'{2-4}' previous character must match exactly 2-4 times -print (50*'-' + '\nE\n' + 50*'-') - -for line in data: - match = re.search('(a{2,4})-(..)-(..)', line) # note the parantheses - if match: - print(match.group(1), match.group(2), match.group(3)) - -''' --------------------------------------------------- -E --------------------------------------------------- -aaaa 02 02 -aa 02 02 -''' diff --git a/howtos_as_py_files/sort_list_of_tuples_by_ele.py b/howtos_as_py_files/sort_list_of_tuples_by_ele.py deleted file mode 100644 index 4a94d4b..0000000 --- a/howtos_as_py_files/sort_list_of_tuples_by_ele.py +++ /dev/null @@ -1,34 +0,0 @@ -# Sebastian Raschka 09/02/2014 -# Sorting a list of tuples by starting with the last element of the tuple (=reversed tuple) - -# Here, we make use of the "key" parameter of the in-built "sorted()" function -# (also available for the ".sort()" method), which let's us define a function -# that is called on every element that is to be sorted. In this case, our -# "key"-function is a simple lambda function that returns the last item -# from every tuple. - - -a_list = [(1,3,'c'), (2,3,'a'), (3,2,'b'), (2,2,'b')] - -sorted_list = sorted(a_list, key=lambda e: e[::-1]) - -print(sorted_list) - -# prints [(2, 3, 'a'), (2, 2, 'b'), (3, 2, 'b'), (1, 3, 'c')] - - - -# If we are only interesting in sorting the list by the last element -# of the tuple and don't care about a "tie" situation, we can also use -# the index of the tuple item directly instead of reversing the tuple -# for efficiency. - - - -a_list = [(1,3,'c'), (2,3,'a'), (3,2,'b'), (2,2,'b')] - -sorted_list = sorted(a_list, key=lambda e: e[-1]) - -print(sorted_list) - -# prints [(2, 3, 'a'), (3, 2, 'b'), (2, 2, 'b'), (1, 3, 'c')] \ No newline at end of file diff --git a/howtos_as_py_files/sorting_multiple_lists_by_col.py b/howtos_as_py_files/sorting_multiple_lists_by_col.py deleted file mode 100644 index 7c534cb..0000000 --- a/howtos_as_py_files/sorting_multiple_lists_by_col.py +++ /dev/null @@ -1,39 +0,0 @@ -# Sebastian Raschka 2014 - -""" -You have 3 lists that you want to sort "relative" to each other, -for example, picturing each list as a row in a 3x3 matrix: sort it by columns - -######################## -If the input lists are -######################## - - list1 = ['c','b','a'] - list2 = [6,5,4] - list3 = ['some-val-associated-with-c','another_val-b','z_another_third_val-a'] - -######################## -the desired outcome is: -######################## - - ['a', 'b', 'c'] - [4, 5, 6] - ['z_another_third_val-a', 'another_val-b', 'some-val-associated-with-c'] - -######################## -and NOT: -######################## - - ['a', 'b', 'c'] - [4, 5, 6] - ['another_val-b', 'some-val-associated-with-c', 'z_another_third_val-a'] - - -""" - -list1 = ['c','b','a'] -list2 = [6,5,4] -list3 = ['some-val-associated-with-c','another_val-b','z_another_third_val-a'] - - -list1, list2, list3 = zip(*sorted(zip(list1, list2, list3))) diff --git a/howtos_as_py_files/timeit_test.py b/howtos_as_py_files/timeit_test.py deleted file mode 100644 index 31bb93e..0000000 --- a/howtos_as_py_files/timeit_test.py +++ /dev/null @@ -1,24 +0,0 @@ -# Sebastian Raschka, 03/2014 -# comparing string formating: %s and .format() - -import timeit - -format_res = timeit.timeit("['{}'.format(i) for i in range(10000)]", number=1000) - -binaryop_res = timeit.timeit("['%s' %i for i in range(10000)]", number=1000) - -print('{}: {}\n{}: {}'.format('format()', format_res, '%s', binaryop_res)) - -################################ -# On my machine -################################ -# -# Python 3.4.0 -# MacOS X 10.9.2 -# 2.5 GHz Intel Core i5 -# 4 GB 1600 Mhz DDR3 -# -################################ -# format(): 2.815331667999999 -# %s: 1.630353775999538 -################################ diff --git a/howtos_as_py_files/zen_of_python.py b/howtos_as_py_files/zen_of_python.py deleted file mode 100644 index d82cacd..0000000 --- a/howtos_as_py_files/zen_of_python.py +++ /dev/null @@ -1,24 +0,0 @@ ->>> import this -""" -The Zen of Python, by Tim Peters - -Beautiful is better than ugly. -Explicit is better than implicit. -Simple is better than complex. -Complex is better than complicated. -Flat is better than nested. -Sparse is better than dense. -Readability counts. -Special cases aren't special enough to break the rules. -Although practicality beats purity. -Errors should never pass silently. -Unless explicitly silenced. -In the face of ambiguity, refuse the temptation to guess. -There should be one-- and preferably only one --obvious way to do it. -Although that way may not be obvious at first unless you're Dutch. -Now is better than never. -Although never is often better than *right* now. -If the implementation is hard to explain, it's a bad idea. -If the implementation is easy to explain, it may be a good idea. -Namespaces are one honking great idea -- let's do more of those! -""" From aea7c4403ece6c71a1ebd8ad7f37d511619521bb Mon Sep 17 00:00:00 2001 From: rasbt Date: Fri, 26 Sep 2014 14:20:59 -0400 Subject: [PATCH 25/83] linked A random collection of useful Python patterns --- README.md | 2 ++ howtos_as_py_files/README.md | 10 ---------- python_patterns/README.md | 3 +++ .../id_file1.txt | 0 .../id_file2.txt | 0 {howtos_as_py_files => python_patterns}/my_file.pkl | Bin .../patterns.ipynb | 0 7 files changed, 5 insertions(+), 10 deletions(-) delete mode 100644 howtos_as_py_files/README.md create mode 100644 python_patterns/README.md rename {howtos_as_py_files => python_patterns}/id_file1.txt (100%) rename {howtos_as_py_files => python_patterns}/id_file2.txt (100%) rename {howtos_as_py_files => python_patterns}/my_file.pkl (100%) rename {howtos_as_py_files => python_patterns}/patterns.ipynb (100%) diff --git a/README.md b/README.md index a1872c6..e2e1ee8 100644 --- a/README.md +++ b/README.md @@ -51,6 +51,8 @@ - Quick guide for dealing with missing numbers in NumPy [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/numpy_nan_quickguide.ipynb)] +- A random collection of useful Python patterns [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/python_patterns/patterns.ipynb)] +
diff --git a/howtos_as_py_files/README.md b/howtos_as_py_files/README.md deleted file mode 100644 index 840e737..0000000 --- a/howtos_as_py_files/README.md +++ /dev/null @@ -1,10 +0,0 @@ -Sebastian Raschka -last updated: 09/26/2014 - -# A collection of useful Python patterns - - -new_msg("Hello, World") -# prints: "My message: Hello, World" - -# print(dir(create_message.__closure__)) \ No newline at end of file diff --git a/python_patterns/README.md b/python_patterns/README.md new file mode 100644 index 0000000..084d5c2 --- /dev/null +++ b/python_patterns/README.md @@ -0,0 +1,3 @@ +# A collection of useful Python patterns + +[View](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/python_patterns/patterns.ipynb) the IPython Notebook. \ No newline at end of file diff --git a/howtos_as_py_files/id_file1.txt b/python_patterns/id_file1.txt similarity index 100% rename from howtos_as_py_files/id_file1.txt rename to python_patterns/id_file1.txt diff --git a/howtos_as_py_files/id_file2.txt b/python_patterns/id_file2.txt similarity index 100% rename from howtos_as_py_files/id_file2.txt rename to python_patterns/id_file2.txt diff --git a/howtos_as_py_files/my_file.pkl b/python_patterns/my_file.pkl similarity index 100% rename from howtos_as_py_files/my_file.pkl rename to python_patterns/my_file.pkl diff --git a/howtos_as_py_files/patterns.ipynb b/python_patterns/patterns.ipynb similarity index 100% rename from howtos_as_py_files/patterns.ipynb rename to python_patterns/patterns.ipynb From 5a8f0a63c77b578eac904dd06357fa9aa59dc518 Mon Sep 17 00:00:00 2001 From: rasbt Date: Fri, 26 Sep 2014 14:24:11 -0400 Subject: [PATCH 26/83] linked A random collection of useful Python patterns --- python_patterns/patterns.ipynb | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/python_patterns/patterns.ipynb b/python_patterns/patterns.ipynb index 42fb3aa..d3a8f93 100644 --- a/python_patterns/patterns.ipynb +++ b/python_patterns/patterns.ipynb @@ -1,7 +1,7 @@ { "metadata": { "name": "", - "signature": "sha256:0d6c2b08bbaff6330460e1379004dabcfdd16f3712b1fb820c0315a3f70294f5" + "signature": "sha256:51af96cc55143f75f6699c3e53aeead72f1b503d1759501f341f13fbc3436a4c" }, "nbformat": 3, "nbformat_minor": 0, @@ -12,7 +12,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "[Go back](#https://github.com/rasbt/python_reference) to the `python_reference` repository." + "[Go back](https://github.com/rasbt/python_reference) to the `python_reference` repository." ] }, { From 3f0841a4f6f9de967b7538a6776d652facd60004 Mon Sep 17 00:00:00 2001 From: rasbt Date: Fri, 26 Sep 2014 18:07:47 -0400 Subject: [PATCH 27/83] patterns changed to snippets --- README.md | 2 +- python_patterns/README.md | 2 +- python_patterns/patterns.ipynb | 4 ++-- 3 files changed, 4 insertions(+), 4 deletions(-) diff --git a/README.md b/README.md index e2e1ee8..69640db 100644 --- a/README.md +++ b/README.md @@ -51,7 +51,7 @@ - Quick guide for dealing with missing numbers in NumPy [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/numpy_nan_quickguide.ipynb)] -- A random collection of useful Python patterns [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/python_patterns/patterns.ipynb)] +- A random collection of useful Python snippets [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/python_patterns/patterns.ipynb)]
diff --git a/python_patterns/README.md b/python_patterns/README.md index 084d5c2..37a1770 100644 --- a/python_patterns/README.md +++ b/python_patterns/README.md @@ -1,3 +1,3 @@ -# A collection of useful Python patterns +# A collection of useful Python snippets [View](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/python_patterns/patterns.ipynb) the IPython Notebook. \ No newline at end of file diff --git a/python_patterns/patterns.ipynb b/python_patterns/patterns.ipynb index d3a8f93..5b6e031 100644 --- a/python_patterns/patterns.ipynb +++ b/python_patterns/patterns.ipynb @@ -1,7 +1,7 @@ { "metadata": { "name": "", - "signature": "sha256:51af96cc55143f75f6699c3e53aeead72f1b503d1759501f341f13fbc3436a4c" + "signature": "sha256:f89c18f0692550a8e1f3a2999eda339bc0905a2dd1413049101148918e7a6c5e" }, "nbformat": 3, "nbformat_minor": 0, @@ -20,7 +20,7 @@ "level": 1, "metadata": {}, "source": [ - "A random collection of useful Python patterns" + "A random collection of useful Python snippets" ] }, { From 14996364a2e32ad13840cff27c0874024ee50b2e Mon Sep 17 00:00:00 2001 From: rasbt Date: Fri, 26 Sep 2014 18:09:11 -0400 Subject: [PATCH 28/83] snippet upd --- python_patterns/patterns.ipynb | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/python_patterns/patterns.ipynb b/python_patterns/patterns.ipynb index 5b6e031..fc3e45f 100644 --- a/python_patterns/patterns.ipynb +++ b/python_patterns/patterns.ipynb @@ -1,7 +1,7 @@ { "metadata": { "name": "", - "signature": "sha256:f89c18f0692550a8e1f3a2999eda339bc0905a2dd1413049101148918e7a6c5e" + "signature": "sha256:0c9d8c8b65b0eec5bb7c2a2790f08a1e49daf27dac2c9dcfe8d85ce958046a2c" }, "nbformat": 3, "nbformat_minor": 0, @@ -27,7 +27,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "I just cleaned my hard drive and found a couple of useful Python patterns that I had some use for in the past. I thought it would be worthwhile to collect them in a IPython notebook for personal reference and share it with people who might find them useful too. \n", + "I just cleaned my hard drive and found a couple of useful Python snippets that I had some use for in the past. I thought it would be worthwhile to collect them in a IPython notebook for personal reference and share it with people who might find them useful too. \n", "Most of those snippets are hopefully self-explanatory, but I am planning to add more comments and descriptions in future." ] }, From 3f81eadf98547948604762f1827f63644e341130 Mon Sep 17 00:00:00 2001 From: rasbt Date: Thu, 9 Oct 2014 14:21:43 -0400 Subject: [PATCH 29/83] english language detect. snippet --- python_patterns/patterns.ipynb | 58 +++++++++++++++++++++++++++++++++- 1 file changed, 57 insertions(+), 1 deletion(-) diff --git a/python_patterns/patterns.ipynb b/python_patterns/patterns.ipynb index fc3e45f..2a769ba 100644 --- a/python_patterns/patterns.ipynb +++ b/python_patterns/patterns.ipynb @@ -1,7 +1,7 @@ { "metadata": { "name": "", - "signature": "sha256:0c9d8c8b65b0eec5bb7c2a2790f08a1e49daf27dac2c9dcfe8d85ce958046a2c" + "signature": "sha256:714a46a359c5b1c3e7e7bd4d19d73221f9def5bcb806840be82541070041d29e" }, "nbformat": 3, "nbformat_minor": 0, @@ -57,6 +57,7 @@ "- [Differences between 2 files](#Differences-between-2-files)\n", "- [Differences between successive elements in a list](#Differences-between-successive-elements-in-a-list)\n", "- [Doctest example](#Doctest-example)\n", + "- [English language detection](#English-language-detection)\n", "- [File browsing basics](#File-browsing-basics)\n", "- [File reading basics](#File-reading-basics)\n", "- [Indices of min and max elements from a list](#Indices-of-min-and-max-elements-from-a-list)\n", @@ -595,6 +596,61 @@ "
" ] }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "English language detection" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import nltk\n", + "\n", + "def eng_ratio(text):\n", + " ''' Returns the ratio of non-English to English words from a text '''\n", + "\n", + " english_vocab = set(w.lower() for w in nltk.corpus.words.words()) \n", + " text_vocab = set(w.lower() for w in text.split() if w.lower().isalpha()) \n", + " unusual = text_vocab.difference(english_vocab)\n", + " diff = len(unusual)/len(text_vocab)\n", + " return diff\n", + " \n", + "text = 'This is a test fahrrad'\n", + "\n", + "print(eng_ratio(text))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "0.2\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, { "cell_type": "heading", "level": 2, From 32b66da48e2f545d0d66e86f5220fe7980ce65c1 Mon Sep 17 00:00:00 2001 From: kzhk75 Date: Thu, 23 Oct 2014 23:24:41 +0100 Subject: [PATCH 30/83] Update scope_resolution_legb_rule.ipynb --- tutorials/scope_resolution_legb_rule.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/tutorials/scope_resolution_legb_rule.ipynb b/tutorials/scope_resolution_legb_rule.ipynb index a47fd1d..143e8ba 100644 --- a/tutorials/scope_resolution_legb_rule.ipynb +++ b/tutorials/scope_resolution_legb_rule.ipynb @@ -457,7 +457,7 @@ "\n", "def a_func():\n", " a_var = 'local value'\n", - " print(a_var, '[ a_var inside a_func() ]')\n", + " print(a_var, '[ a_var in a_func() ]')\n", "\n", "a_func()\n", "print(a_var, '[ a_var outside a_func() ]')" From b145519291b6b4ee3c82e37ec336cf2d65cfe9fa Mon Sep 17 00:00:00 2001 From: kzhk75 Date: Thu, 23 Oct 2014 23:43:47 +0100 Subject: [PATCH 31/83] Update scope_resolution_legb_rule.ipynb To match the above and following sentences. --- tutorials/scope_resolution_legb_rule.ipynb | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/tutorials/scope_resolution_legb_rule.ipynb b/tutorials/scope_resolution_legb_rule.ipynb index 143e8ba..93f01a2 100644 --- a/tutorials/scope_resolution_legb_rule.ipynb +++ b/tutorials/scope_resolution_legb_rule.ipynb @@ -416,7 +416,7 @@ "global value [ a_var outside a_func() ]\n", "\n", "**c)** \n", - "
global value [ a_var in a_func() ]  \n",
+      "
global value [ a_var inside a_func() ]  \n",
       "global value [ a_var outside a_func() ]
\n", "\n", "\n" @@ -457,7 +457,7 @@ "\n", "def a_func():\n", " a_var = 'local value'\n", - " print(a_var, '[ a_var in a_func() ]')\n", + " print(a_var, '[ a_var inside a_func() ]')\n", "\n", "a_func()\n", "print(a_var, '[ a_var outside a_func() ]')" @@ -475,11 +475,11 @@ "
raises an error
\n", "\n", "**b)** \n", - "
local value [ a_var in a_func() ]\n",
+      "
local value [ a_var inside a_func() ]\n",
       "global value [ a_var outside a_func() ]
\n", "\n", "**c)** \n", - "
global value [ a_var in a_func() ]  \n",
+      "
global value [ a_var inside a_func() ]  \n",
       "global value [ a_var outside a_func() ]
\n" ] }, From 4ac59a474db8c0820f8ba9026a9c418d653d1652 Mon Sep 17 00:00:00 2001 From: rasbt Date: Fri, 19 Dec 2014 13:11:05 -0500 Subject: [PATCH 32/83] combinations --- useful_scripts/combinations.py | 71 ++++++++++++++++++++++++++++++++++ 1 file changed, 71 insertions(+) create mode 100755 useful_scripts/combinations.py diff --git a/useful_scripts/combinations.py b/useful_scripts/combinations.py new file mode 100755 index 0000000..5dbe91d --- /dev/null +++ b/useful_scripts/combinations.py @@ -0,0 +1,71 @@ +#!/usr/bin/env python + +# Sebastian Raschka 2014 +# Functions to calculate factorial, combinations, and permutations +# bundled in an simple command line interface. + +def factorial(n): + if n == 0: + return 1 + else: + return n * factorial(n-1) + +def combinations(n, r): + numerator = factorial(n) + denominator = factorial(r) * factorial(n-r) + return int(numerator/denominator) + +def permutations(n, r): + numerator = factorial(n) + denominator = factorial(n-r) + return int(numerator/denominator) + +assert(factorial(3) == 6) +assert(combinations(20, 8) == 125970) +assert(permutations(30, 3) == 24360) + + + + +if __name__ == '__main__': + + import argparse + parser = argparse.ArgumentParser( + description='Script to calculate the number of combinations or permutations ("n choose r")', + formatter_class=argparse.RawTextHelpFormatter, + + prog='Combinations', + epilog='Example: ./combinations.py -c 20 3' + ) + + parser.add_argument('-c', '--combinations', type=int, metavar='NUMBER', nargs=2, + help='Combinations: Number of ways to combine n items with sequence length r where the item order does not matter.') + + parser.add_argument('-p', '--permutations', type=int, metavar='NUMBER', nargs=2, + help='Permutations: Number of ways to combine n items with sequence length r where the item order does not matter.') + + parser.add_argument('-f', '--factorial', type=int, metavar='NUMBER', help='n! e.g., 5! = 5*4*3*2*1 = 120.') + + parser.add_argument('--version', action='version', version='%(prog)s 1.0') + + args = parser.parse_args() + + if not any((args.combinations, args.permutations, args.factorial)): + parser.print_help() + quit() + + if args.factorial: + print(factorial(args.factorial)) + + if args.combinations: + print(combinations(args.combinations[0], args.combinations[1])) + + if args.permutations: + print(permutations(args.permutations[0], args.permutations[1])) + + if args.factorial: + print(factorial(args.factorial)) + + + + \ No newline at end of file From 9fc9d1ee54c5f837770a8bbdc4b5291d2493df77 Mon Sep 17 00:00:00 2001 From: rasbt Date: Tue, 23 Dec 2014 22:33:39 -0500 Subject: [PATCH 33/83] pandas sum tricks --- README.md | 8 +- benchmarks/pandas_sum_tricks.ipynb | 450 +++++++++++++++++++++++++++++ 2 files changed, 457 insertions(+), 1 deletion(-) create mode 100644 benchmarks/pandas_sum_tricks.ipynb diff --git a/README.md b/README.md index 69640db..e880d27 100644 --- a/README.md +++ b/README.md @@ -100,10 +100,16 @@ ###// Benchmarks [[back to top](#a-collection-of-useful-scripts-tutorials-and-other-python-related-things)] -*The benchmark category has been moved to a separate GitHub repository [One-Python-benchmark-per-day](https://github.com/rasbt/One-Python-benchmark-per-day)* + +- Simple tricks to speed up the sum calculation in pandas [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/benchmarks/pandas_sum_tricks.ipynb)] + +
+*More benchmarks can be found in the separate GitHub repository [One-Python-benchmark-per-day](https://github.com/rasbt/One-Python-benchmark-per-day)* **Featured articles**: + + - (C)Python compilers - Cython vs. Numba vs. Parakeet [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day4_2_cython_numba_parakeet.ipynb)] - Just-in-time compilers for NumPy array expressions [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day7_2_jit_numpy.ipynb)] diff --git a/benchmarks/pandas_sum_tricks.ipynb b/benchmarks/pandas_sum_tricks.ipynb new file mode 100644 index 0000000..ccf454e --- /dev/null +++ b/benchmarks/pandas_sum_tricks.ipynb @@ -0,0 +1,450 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:8222de4af96dc6569eddec8d75df6855e8bac273e12e8739fffc42aafd712ba2" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%load_ext watermark \n", + "%watermark -d -v -a 'Sebastian Raschka' -p numpy,pandas" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Sebastian Raschka 23/12/2014 \n", + "\n", + "CPython 3.4.2\n", + "IPython 2.3.1\n", + "\n", + "numpy 1.9.1\n", + "pandas 0.15.2\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "4 Simple Tricks To Speed up the Sum Calculation in Pandas" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "I wanted to improve the performance of some passages in my code a little bit and found that some simple tweaks can speed up the `pandas` section significantly. I thought that it might be one useful thing to share -- and no Cython or just-in-time compilation is required! " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In my case, I had a large dataframe where I wanted to calculate the sum of specific columns for different combinations of rows (approx. 100,000,000 of them, that's why I was looking for ways to speed it up). Anyway, below is a simple toy DataFrame to explore the `.sum()` method a little bit." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "df = pd.DataFrame()\n", + "\n", + "for col in ('a', 'b', 'c', 'd'):\n", + " df[col] = pd.Series(range(1000), index=range(1000))" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 2 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "df.tail()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
abcd
995 995 995 995 995
996 996 996 996 996
997 997 997 997 997
998 998 998 998 998
999 999 999 999 999
\n", + "" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 3, + "text": [ + " a b c d\n", + "995 995 995 995 995\n", + "996 996 996 996 996\n", + "997 997 997 997 997\n", + "998 998 998 998 998\n", + "999 999 999 999 999" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's assume we are interested in calculating the sum of column `a`, `c`, and `d`, which would look like this:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "df.loc[:, ['a', 'c', 'd']].sum(axis=0)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 4, + "text": [ + "a 499500\n", + "c 499500\n", + "d 499500\n", + "dtype: int64" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, the `.loc` method is probably the most \"costliest\" one for this kind of operation. Since we are only intersted in the resulting numbers (i.e., the column sums), there is no need to make a copy of the array. Anyway, let's use the method above as a reference for comparison:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# 1\n", + "%timeit -n 1000 -r 5 df.loc[:, ['a', 'c', 'd']].sum(axis=0)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "1000 loops, best of 5: 1.28 ms per loop\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Although this is a rather small DataFrame (1000 x 4), let's see by how much we can speed it up using a different slicing method:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# 2\n", + "%timeit -n 1000 -r 5 df[['a', 'c', 'd']].sum(axis=0)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "1000 loops, best of 5: 1.03 ms per loop\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, let us use the Numpy representation of the `NDFrame` via the `.values` attribue:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# 3\n", + "%timeit -n 1000 -r 5 df[['a', 'c', 'd']].values.sum(axis=0)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "1000 loops, best of 5: 721 \u00b5s per loop\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "While the speed improvements in #2 and #3 were not really a surprise, the next \"trick\" surprised me a little bit. Here, we are calculating the sum of each column separately rather than slicing the array." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "[df[col].values.sum(axis=0) for col in ('a', 'c', 'd')]" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 8, + "text": [ + "[499500, 499500, 499500]" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# 4\n", + "%timeit -n 1000 -r 5 [df[col].values.sum(axis=0) for col in ('a', 'c', 'd')]" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "1000 loops, best of 5: 64.8 \u00b5s per loop\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this case, this is an almost 10x improvement!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "One more thing: Let's try the Einstein summation convention [`einsum`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.einsum.html)." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from numpy import einsum\n", + "[einsum('i->', df[col].values) for col in ('a', 'c', 'd')]" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 10, + "text": [ + "[499500, 499500, 499500]" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# 5\n", + "%timeit -n 1000 -r 5 [einsum('i->', df[col].values) for col in ('a', 'c', 'd')]" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "1000 loops, best of 5: 57.2 \u00b5s per loop\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Conclusion:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Using some simple tricks, the column sum calculation improved from 1280 to 57.2 \u00b5s per loop (approx. 22x faster!)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file From 731425d79418c4177b24641f312cee586caac463 Mon Sep 17 00:00:00 2001 From: rasbt Date: Wed, 24 Dec 2014 11:01:30 -0500 Subject: [PATCH 34/83] plots --- benchmarks/pandas_sum_tricks.ipynb | 332 ++++++++++++++++++++- pandas_sum_tricks.ipynb | 450 +++++++++++++++++++++++++++++ 2 files changed, 773 insertions(+), 9 deletions(-) create mode 100644 pandas_sum_tricks.ipynb diff --git a/benchmarks/pandas_sum_tricks.ipynb b/benchmarks/pandas_sum_tricks.ipynb index ccf454e..db58109 100644 --- a/benchmarks/pandas_sum_tricks.ipynb +++ b/benchmarks/pandas_sum_tricks.ipynb @@ -1,7 +1,7 @@ { "metadata": { "name": "", - "signature": "sha256:8222de4af96dc6569eddec8d75df6855e8bac273e12e8739fffc42aafd712ba2" + "signature": "sha256:3de4720b58999a1f88844021c43acd1d6d6db6da3315538f9faac86a69424446" }, "nbformat": 3, "nbformat_minor": 0, @@ -22,7 +22,9 @@ "output_type": "stream", "stream": "stdout", "text": [ - "Sebastian Raschka 23/12/2014 \n", + "The watermark extension is already loaded. To reload it, use:\n", + " %reload_ext watermark\n", + "Sebastian Raschka 24/12/2014 \n", "\n", "CPython 3.4.2\n", "IPython 2.3.1\n", @@ -32,7 +34,7 @@ ] } ], - "prompt_number": 1 + "prompt_number": 18 }, { "cell_type": "markdown", @@ -224,7 +226,7 @@ "output_type": "stream", "stream": "stdout", "text": [ - "1000 loops, best of 5: 1.28 ms per loop\n" + "1000 loops, best of 5: 1.37 ms per loop\n" ] } ], @@ -258,7 +260,7 @@ "output_type": "stream", "stream": "stdout", "text": [ - "1000 loops, best of 5: 1.03 ms per loop\n" + "1000 loops, best of 5: 986 \u00b5s per loop\n" ] } ], @@ -292,7 +294,7 @@ "output_type": "stream", "stream": "stdout", "text": [ - "1000 loops, best of 5: 721 \u00b5s per loop\n" + "1000 loops, best of 5: 687 \u00b5s per loop\n" ] } ], @@ -346,7 +348,7 @@ "output_type": "stream", "stream": "stdout", "text": [ - "1000 loops, best of 5: 64.8 \u00b5s per loop\n" + "1000 loops, best of 5: 64.4 \u00b5s per loop\n" ] } ], @@ -408,7 +410,7 @@ "output_type": "stream", "stream": "stdout", "text": [ - "1000 loops, best of 5: 57.2 \u00b5s per loop\n" + "1000 loops, best of 5: 55.7 \u00b5s per loop\n" ] } ], @@ -433,9 +435,321 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Using some simple tricks, the column sum calculation improved from 1280 to 57.2 \u00b5s per loop (approx. 22x faster!)" + "Using some simple tricks, the column sum calculation improved from 1370 to 57.7 \u00b5s per loop (approx. 25x faster!)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "What about larger DataFrames?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So, what does this trend look like for larger DataFrames?" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import timeit\n", + "import random\n", + "from numpy import einsum\n", + "import pandas as pd\n", + "\n", + "def run_loc_sum(df):\n", + " return df.loc[:, ['a', 'c', 'd']].sum(axis=0)\n", + "\n", + "def run_einsum(df):\n", + " return [einsum('i->', df[col].values) for col in ('a', 'c', 'd')]\n", + "\n", + "orders = [10**i for i in range(4, 8)]\n", + "loc_res = []\n", + "einsum_res = []\n", + "\n", + "for n in orders:\n", + "\n", + " df = pd.DataFrame()\n", + " for col in ('a', 'b', 'c', 'd'):\n", + " df[col] = pd.Series(range(n), index=range(n))\n", + " \n", + " print('n=%s (%s of %s)' %(n, orders.index(n)+1, len(orders)))\n", + "\n", + " loc_res.append(min(timeit.Timer('run_loc_sum(df)' , \n", + " 'from __main__ import run_loc_sum, df').repeat(repeat=5, number=1)))\n", + "\n", + " einsum_res.append(min(timeit.Timer('run_einsum(df)' , \n", + " 'from __main__ import run_einsum, df').repeat(repeat=5, number=1)))\n", + "\n", + "print('finished')" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "n=10000 (1 of 4)\n", + "n=100000 (2 of 4)" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "n=1000000 (3 of 4)" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "n=10000000 (4 of 4)" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "finished" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%matplotlib inline" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 24 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from matplotlib import pyplot as plt\n", + "\n", + "def plot_1():\n", + " \n", + " fig = plt.figure(figsize=(12,6))\n", + " \n", + " plt.plot(orders, loc_res, \n", + " label=\"df.loc[:, ['a', 'c', 'd']].sum(axis=0)\", \n", + " lw=2, alpha=0.6)\n", + " plt.plot(orders,einsum_res, \n", + " label=\"[einsum('i->', df[col].values) for col in ('a', 'c', 'd')]\", \n", + " lw=2, alpha=0.6)\n", + "\n", + " plt.title('Pandas Column Sums', fontsize=20)\n", + " plt.xlim([min(orders), max(orders)])\n", + " plt.grid()\n", + "\n", + " #plt.xscale('log')\n", + " plt.ticklabel_format(style='plain', axis='x')\n", + " plt.legend(loc='upper left', fontsize=14)\n", + " plt.xlabel('Number of rows', fontsize=16)\n", + " plt.ylabel('time in seconds', fontsize=16)\n", + " \n", + " plt.tight_layout()\n", + " plt.show()\n", + " \n", + "plot_1()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAGpCAYAAABhxcywAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VFX+x/H3SSihJDSpkhCKVEEIRYUICazYUNdVWYpS\nbKyKLq4FAV2IKOiKLBZsiwKKKLpi/+EqQghBpYsg0oQQJRQFpHfO748zGVMmPZlJ+byeJ0+45965\n99yZM2S+c875HmOtRURERERERAomKNAVEBERERERKQ0UXImIiIiIiBQCBVciIiIiIiKFQMGViIiI\niIhIIVBwJSIiIiIiUggUXImIiIiIiBQCBVciIqWEMWaGMeasMSYi0HXxF2NMvDHmbKDrISIiAgqu\nRESy5QlW0v6cNsb8aoz5yhjTP9D186FYLV5ojAk3xjxpjFlpjNlvjDlpjNltjPnSGHOvMSasEC5T\nrO65KBhjOhtj3jLGbDfGHDfGHDDGbDHGfGKMedAYUznQdRQRESgX6AqIiJQAFojz/Ls80Aq4Fog1\nxnSy1t4fsJplZgJdgVTGmNuAF4AKwHfAW8B+oCbQDZgCPArUDlQdSwJjzE3ATFw7XAC8DxwDIoFo\n4EpP2dYAVVFERDwUXImI5IK19rG028aYnsCXwAhjzHPW2u2BqVnxZIwZCLwK7ANuttbO83HMhcBU\nf9etJPH0SE0FzgCXWWsX+jjmImCvv+smIiKZaVigiEg+WGsXABtxPUWdAIwxfzbGzDLGbDLGHPb8\nrDDG3GOMydSjlGaOVCNjzDBjzFpjzDFjzC5jzCtZDZkzxvzJGLPYGHPEGLPXGPOBMaZlVnU1xgwx\nxrxvjNlqjDnqGVKW6AmAfB3fxBjzqmfY2VHPNb43xrxkjKmZ03NjjAkFnsP1tPTzFVh5nsOlQFcf\nj+9ljPncGLPPMwRuozFmYm6HEHru96wxZnAW+88aYxZmKBvnKe9hjOnved2OGGNSjDHPGGMqeI77\nkzFmkTHmoGeY45u+nhNjTJIxZpsxprIx5mljTLLnXjYbYx7KzX14nA+EAut8BVYA1tpvrbUH0lw7\n0nMv07O4/0zz1IwxMZ7HjDXGdPI8/7977vF9Y0y457imxpg5nqGxR40xC40x7Xxco64xZpLntTvs\nOc8GY8x0Y0zjPNy/iEiJop4rEZH8Sw2YUuf8TMT1MHwD7ACqAb2AZ4HOwKAszvM00Bv4GPgc6Anc\nDjTzPP6PCxpzAzAHOO75vRO4BPga+D6L878IrAPiPcefgxtK9qYxpoW19p9pzl8fWI77QP8Z8B4Q\nAjQBbgKex/VGZecGoAbwjbV2fnYHWmtPZri/YcBLwCHPtfcAscBI4GpjTLe0gUQOspuLldW+e4Ar\ngA+AhcBlwH1AbWPMx8As4FPgZdzQxoFALdzzmfH85YEvgPq45/I0cB3wpDEmJGNvaBZ+8/xuYIyp\nbK09movHpK1DXvd1xj3X8biex3a4Orc1xlwHJAA/ADNwwxL/AnxpjGlirT0C3t62Jbg28wXwEe69\nEglcg3tdt+XhPkRESg5rrX70ox/96CeLH+AscMZH+Z88+04D4Z6yxj6OM7gPomeBLhn2pZYnAQ3T\nlAcDizz7Oqcpr4ob/nUCiMpwrsmpdQUiMuzzVa/ywHzgJNAgTfk9nvPc4+MxlYCQXDxnr3nO8Vge\nn+tGnnv7HWieYd9UzzlfyVAen/H1AYZ4jh2UzWu6IEPZOE/5fqBFmvIKuMD0DC6ovCTDa/uF53EX\nZDhfkqf8U6BimvLanmvsB8rl8nlZ6jnXauAuoD1QIZvjIz3Hv57Ffl/PWYznMWeB/hn2TfOU/w6M\nyrDvEc++e9OUXe0pe8bHtcsBVQv6vtSPfvSjn+L6o2GBIiI5M57hUuOMMU8YY/6L62GywBRr7c8A\n1tpM38Zbay1uiBy43ilfHrPW/pLmMWeA1CFdndMcdy2uR2i2tXZVhnOMAw76OnkW9TqF69EqR/re\nsdQejeM+HnPMWpup3If6nt+/ZHtUZjfhgr4XrLWbMuwbAxwGbkodoldEnrPWbkzdsK5nbQ4ukPrY\nWrs4zT6L68kC18OTkcUFHSfSPOZXXA9lNaB5Lut0Ay4gugCXIGQVcNgYs9QY85BnGGZhWWytfTtD\n2UzP773Akxn2veH5fYGPc/lqQ6ettYcLVkURkeJLwwJFRHJnrOe3xfU6LAJes9bOTj3AGFMLeBA3\nRKwJkDE99rlZnHuFj7LUwKRGmrIoz+9FGQ+21h40xnwHdM+4z7h1r0bigqhwXA9UWg3S/PtjYAIw\n1RhzGa5nJtFauz6Luhem1PtbkHGHtfZ3Y8xq3BDIlmQ9BLKgfL0WOz2/V/rYl+L53dDHvgPWWl8Z\n/H72/K7hY18mnuC9p2de3aVAR6ALLvDuDNxljImx1ibl5nw5yO7+v/MElGn5uv943LDYh40xUcA8\nINHzeK1JJiKlmoIrEZGcWWttcHYHGGOq4+YqReKGcc3ADSM7jfsQ/XegYhYP/91H2WnP77TXreb5\nvTuL8+zyUa8mwDKgOm6+zOfAAdwwt8bA4LT1stYmG2O64HrCLsfNqcEY8zMwyVr7fBbXTiv1w7iv\ngCM7qfe3M4v9OzMcVxR8zec6nYt95X3s8/W6pn1Mtm0qI2vtBmBD6rYxpgXwOnAx8G/c3KiCytP9\nW2tPG5erpXyaskPGZTCMw82xusyz6zdjzIvA49ba0xnPJSJSGii4EhEpHLfhAqtxNnPa9otxwVVB\npX64rZvF/no+yv6BW1dqiLX2jbQ7jFsEOVNGPc+H+H7GmGDccK8/4eZiPWuMOWKtfT2Hei4GhuJ6\nyv6Zw7Fppd5ffeBHH/vrZzguK6m9I5n+xnmC4FLBWrvRGHMzsAWX9CNVlvfvUeTPgbV2B+49gTGm\nNS5Jy9249hBE3tqFiEiJoTlXIiKFo5nn9/s+9vUopGukDkuLybjDGFMNl+gg47CtZp6yPNfLWnvG\nWrvKWvsvoL+n+Npc1PO/uF67i40xvbI7MMP8qdR5ZDE+jquOu79j+A680trv+R3hY1+nHB5b0qTO\nX0qb6j/1/sMzHuxJZ5/buV6Fwlq73lr7Am5II+SuDYmIlEgKrkRECkdq0oi0PQgYYzoAowrpGh/h\nPjgPMMZ0zLBvHOBrHahtuA/eGet1GZ6ehQzlUZ5ALaPUXrEcU4F7Ehbc69mcY4zxmcjD06O3NE3R\nLOAUcI8xpmmGw8fj0sPP8iTjyM5yXO/NAGOMd36ZZz2qf+VU/+LEs2bVvb7W+DJuPN4Yz2ZCarm1\n9hBu+GC0MaZVmuODcVklQ4q4zq2NMb56V3PdhkRESioNCxQRKRxv4JJZTDHGxOKGap0HXIXrNepX\n0AtYa48YY+7AZa9bbIyZg5tnFQ20wX3AzpjQ4kXcEL33PFkOd+IWpr0MeBf4a4bjBwF3GGMSga24\nYK4pLr32cWBKLus62xPYvAB87km28Y3nfLVw84TaAb+mecx2Y8wIXNr1VcaYd3HrPPUALsL1WI30\ncbl0CzRba3cZY94Cbga+M8b8Hy7wvAKXDKR9bu6hmKiOe87/ZYxZgltj6hBQBzfUrjFuDt79GR73\nNC4l/hLP634cF2AHA2vwnd2vsPQGnjbGfA1sxq1V1hDXY3XGUzcRkVJJwZWISCGw1u40xlyCS1Ud\njQtefgTuBL7Cd3BlyX6hV1/Xed8Yczkue2Ff3IfmBFzwMQqXTS/t8Ws9wd7juECvHPAdLvnBATIH\nV7Nxazt1xWWlq4TLXDgbt25RrrMGWmtfM8b8DxiOGxI2AKiCC7DWASNwCRnSPuYlY8wW4AHgelzG\nxWRcj9MEa23GdPNZPYe344KO/ri1obbjFnOe5OOesztPTvuyktMCvrk933rca9Ub9xr3xc2hO4IL\n4N8CnrXW7k13AWune3q2/oELmPfhej7H4IL9vN5PXnyOG5LYHZfQIgyXVfB/wGRr7bdFeG0RkYAy\nmbOqFvEFjXkd9wd+j7W2rY/9A4GHcN9EHgLutNYWVcpdERERERGRQhGIOVfTcel9s7IV6G6tbYcb\nY/+qX2olIiIiIiJSAH4Prjyr2+/PZv831trUNLtLyfs6KSIiIiIiIn5X3LMF3gr8X6ArISIiIiIi\nkpNim9DCMwH7FqBboOsiIiIiIiKSk2IZXBlj2gH/AS631vocQmiM8W8mDhERERERKRGstSbnowpf\nsQuujDERwFzgJmvtluyO9XemQymbhgwZwowZMwJdDSkj1N7EX9TWxJ/U3sSf3EoUgeH34MoY8zZu\nQchzjDE/49ZqKQ9grX0F+CdQA3jJ88ScstZ28Xc9RVJFRkYGugpShqi9ib+orYk/qb1JWeH34Mpa\n2z+H/bcBt/mpOiIiIiIiIoWiuGcLFAm46tWrB7oKUoaovYm/qK2JP6m9SVmh4EokB+3btw90FaQM\nUXsTf1FbE39Se5OywpTUpBDGGFtS6y4iIiIiIkXDGKNsgYUpkBlCRESk9NCXeCIikhelMrgC/UEU\nEZGCKe1f1MXHxxMTExPoakgZofYmZYXmXImIiIiIiBSCUjnnyjPO0s81EhGR0kR/S0RESqZAzrlS\nz5WIiIiIiEghUHAlIiJSBsXHxwe6ClKGqL1JWaHgSkREREREpBAouCrm+vTpw9ChQ73bR48e5YYb\nbqB69eoEBQWRnJyc7vj4+HiCgoLYt29foVw/9XxBQUFceeWVBT5fZGQkQUFBBAcHs2fPnkKoYcky\nfPhwYmNjs9wfExPjfb5XrVoFpH8Nrr76an9VNc9uvfVWxo0bV6jnbNy4MZMnTy7Uc+bWiRMnCA8P\n57vvvgvI9UWKmjK3iT+pvUlZoeCqmDPGpEsH/Prrr7N48WKWLFnCrl27aNiwoV/qsX79et5+++0C\nn8cYw9ixY9m5cye1a9cGICkpiaCgvDXFIUOGEBcXl6fHxMTEMHPmzFwdGx8fT+PGjfN0/hkzZmQb\nOKVK+3pmvI8PP/yQZcuWpTu+W7du7Ny5k759+xbb1NAbN27k/fff57777ivU865YsYI777yzUM+Z\n1rhx4zj33HOpXLkysbGxrF+/3ruvYsWK3HfffYwZM6bIri8iIiKli4KrEmbLli20atWKNm3aUKdO\nnTwHJflVp04dqlWrVijnCg0NpU6dOgUKFDIGnUX1mKKQNvtYxjpVr16dc845J93x5cuXp27duoSE\nhBTbzGUvvvgiV199daG1kVS1atWiUqVKhXrOVE899RSTJ0/mhRdeYPny5dSpU4dLL72Uw4cPe48Z\nMGAAX375Jdu2bSuSOogEkubAiD+pvUlZoeCqGDl69ChDhgwhNDSUevXqMXHixHT7Y2JieO6550hI\nSCAoKIiePXvm6rxz586lbdu2hISEEBERwYQJE9LtP3nyJKNHjyYyMpKQkBCaNm3K888/X2j3lVf7\n9u2jf//+hIeHU7lyZc4//3xmzJiR6bj8BBppH3PgwAHuvPNOGjRoQKVKlWjdujXvvvtuQaqezpkz\nZ3jggQeoWbMmNWvW5L777uPMmTPZ1qkgDhw4wM0330zdunWpVKkSTZs25dlnn/XuDwoKYu7cueke\nExkZyTPPPJPumJdffplrrrmGKlWq0KJFC+Lj40lOTqZ3795UrVqVqKgovv/++3TnmTNnDtdcc026\nslmzZtG5c2fCwsKoW7cuffv2JSUlxbt//Pjx1K9fn19//dVb1r9/fzp27Mjp06d91u+VV16hefPm\nVKpUidq1a3P55Zf7fE5zYq1lypQpjBo1iuuuu442bdowc+ZMDh06xOzZs73H1atXj86dO/POO+/k\n+RoiIiJS9pQLdAUCZdiwwj/nK68U7PEPPPAA8+fPZ+7cuTRo0IC4uDgSEhK4/vrrAfjggw944IEH\n2LhxI3PnzqVChQo5nnPlypX07duXRx99lIEDB7Js2TKGDRtGWFgYw4cPB2Dw4MEkJiby3HPP0aFD\nB3755Re2b9+e7Xnj4+Pp2bMn8fHxdO/evWA3TvqhcsePH6dTp06MGjWKsLAwvvzyS4YNG0ZERES6\ngDI/vVCpj7HWcuWVV3LgwAFmzJhBixYt2LRpE0ePHs33+TP2Qj3zzDNMmzaNadOm0a5dO1544QVm\nz55Nx44dfdapoB555BHWrVvHZ599Rt26ddm6dWu6wCU3dQZ4/PHHeeaZZ5g8eTJjx46lf//+tGnT\nhr///e9MnTqVESNGMHjwYFavXg3Ahg0b2LNnD507d053nlOnTjF+/HhatmzJr7/+ysiRI+nfvz+L\nFi0CYMyYMXz55ZfccsstfPLJJ7zxxht8/PHHrF69mnLlymWq34oVKxg+fDhvvPEG0dHR7N+/n4UL\nF3qv99Zbb/G3v/0t2/t99dVX6d+/P9u2bWP37t307t3buy8kJITu3bvz9ddfc8cdd3jLu3TpwqJF\nixg1alS25xYpaTQHRvxJ7U3KijIbXBU3hw8f5vXXX2f69OlceumlAEyfPj3dnKoaNWpQqVIlypcv\nT506dXJ13smTJxMTE8PYsWMBaNasGZs3b+app55i+PDhbN68mTlz5vD55597P2hGRkYSHR2d7Xmr\nVKlCy5YtqVy5cn5uN53IyMh0vQ8NGjTg/vvv927ffvvtLFiwgLffftsbXE2fPj3P10n7QXz+/Pl8\n++23rF+/nhYtWgDQqFEj7/6YmBi2bt2ap/MPHjyYwYMHe7enTJnCyJEjueGGGwB49tln+d///pfu\nMfm5j6wkJycTFRVFp06dAAgPD8/XeQYPHsxf//pXAEaPHs3bb7/NyJEjvck0HnroIWJjY9m3bx81\na9Zk8+bNAERERKQ7T9pELJGRkbz44ou0bt2alJQUGjRoQFBQELNmzeKCCy7goYce4pVXXmHy5Mk0\nb948y/urUqUKV199NVWrViU8PJx27dp591977bVcfPHF2d5b6vtm165dANStWzfT/rS9a+Cex48+\n+ijb84qIiIhAGQ6uCtrLVNh++uknTp48me7DYZUqVWjbtm2Bzrthwwb69OmTrqxbt27ExcVx+PBh\nVq9eTVBQUK4SMaTVuXPndJP/C9OZM2d48sknmTNnDikpKZw4cYKTJ0/muY7ZWb16NfXr1/cGVoXt\nwIED7Nq1K93raYzhwgsv5Oeffy6Sa955553ccMMNrFy5kksvvZSrr746X72KaQOW1GAkbTtMLduz\nZw81a9bk4MGDVKxYMdP8v1WrVhEXF8eaNWvYt2+fd/hjcnIyDRo0AFxA9uyzzzJkyBD69OnDsGy6\nlHv37k2jRo1o3Lgxl112Gb179+Yvf/kLVatWBaBq1arefxdExp68sLAwDhw4UODzihQ38fHx6k0Q\nv1F7k7JCc66KucKYj5PVOYpDcgdfJk2axOTJkxk5ciQLFixgzZo1/PnPf+bEiROBrlqBFWVCissv\nv5zt27fzwAMP8Ntvv3HVVVdxyy23ePcbYzJd/9SpU5nOU758+XSPyars7NmzAFSrVo0TJ054twGO\nHDnCZZddRtWqVZk1axYrVqzg888/B9wcv7QWLVpEcHAwycnJmfalVbVqVVatWsW7775LREQEEydO\npGXLluzcuRNwwwJDQ0Oz/UnNeFmvXj0Adu/ene4au3fv9u5LdfDgQapXr55lvURERERSKbgqJpo2\nbUr58uX55ptvvGVHjhxh3bp1BTpvq1atWLJkSbqyxMREwsPDqVKlCu3bt+fs2bMsWLCgQNcpTImJ\niVxzzTUMHDiQdu3a0bhxYzZu3FiowWBUVBQ7d+5kw4YNhXbOtKpVq0b9+vXTvZ7WWpYtW1akQW2t\nWrW46aabmD59OtOmTWPmzJneAKp27drphrzt3r3bG5gURLNmzQDSrbm2YcMG9u7dy4QJE4iOjqZ5\n8+aZAhlwyVZmz57NwoULOXDgQI7zmoKDg4mNjWXChAl8//33HDlyhM8++wxwwwLXrFmT7U/q0MbG\njRtTr149vvjiC++5jx8/TmJiIl27dk13ze3bt2c5VFGkJFMvgviT2puUFWV2WGBxU7VqVW699VZG\njhxJ7dq1qV+/Po899li63gBfRo0axfLly5k/f77P/ffffz+dO3cmLi6O/v37s3z5ciZPnuzNRNi8\neXP69u3LbbfdxrPPPpsuocVNN92U5XWXLVvGoEGDePPNNzMlMiioFi1aMGfOHJYsWUKtWrV4/vnn\nSUpKombNmoV2jV69enHhhRdy/fXX8+9//5vzzjuPLVu2cPToUa699tpCucbf//53Jk6cSPPmzTn/\n/PN58cUX2bVrF+eee26hnD/ja//Pf/6Tjh070rp1a06fPs3cuXO9QTtAz549mTp1Kl27diUoKIjR\no0cTEhJS4Hq0aNGC2rVrs2zZMiIjIwE33K9ixYo8//zz3HXXXfz44488+uij6R63Y8cObr/9diZO\nnEh0dDRvvvkmPXv25Morr6RXr15A+p6+Tz/9lJ9++onu3btTs2ZNFi5cyKFDh2jVqhWQt2GBxhhG\njBjBhAkTaNmyJeeddx6PP/44oaGhDBgwIN2xy5Yty5QJUURERIqnNLnJAkI9V8XIpEmTiI2N5brr\nrqNXr160a9cu05yZjNnddu3alSnxQtr9HTp04L333uP999+nbdu2jB49mlGjRnH33Xd7j3njjTcY\nMGAA9957L61atWLo0KEcPHgw27oePXqUzZs3c+zYMW/ZuHHjCmXdrUceeYQuXbpwxRVX0KNHD0JD\nQxk4cGC2j8nrtY0xzJs3j27dunHTTTfRunVr7rvvPp/D5OCPhY7feOONXF/j/vvvZ+jQodx2221c\ndNFFADneR051Tivjax8SEsKYMWNo37490dHRHDlyhE8++cS7/5lnnqFJkybExMTQt29fbr/99lwl\nRvHV05a2zBhDv379+Pjjj71ltWvXZubMmXz44Ye0adOG8ePH8+9//zvTAsodO3ZkxIgRAERHR/Pw\nww8zZMgQ9u/fn+k6NWrU4KOPPuLSSy+lVatWTJ48mddee41u3brleA++PPTQQ9x3333cfffddO7c\nmd27d/PFF19QpUoV7zG7d+9m5cqV9OvXL1/XECnOtO6Q+JPamxS1Xbtg9mwYOTKw9TDFdVHSnBhj\nbHZziUrqfRU3qSnXf/31V2rVqpXtsYMHD2bPnj3Mmzcvy2MaN27M8OHD02UDLAy5uXZBLFy4kKuu\nuor169d7e2eKSlJSEk2aNGHFihVERUV5y4cMGcLevXvTBUzFxcaNG7nwwgtJSkoqVfOTnnnmGRYs\nWOAdeihlS2n/W6IEA+JPam9SFKyFH36ABQvc71Svvmqw1gYkuYB6riRbqT0HkZGR3vW2fLHWsnDh\nwlwtPjxmzBhCQ0P57bffCqWOebl2fs2bN4+HH364yAOrK664gvPPPz9dj83ixYupWrUqs2fPLrZJ\nSFq0aMENN9yQbtHiku7EiRNMmTKFJ554ItBVESkS+qAr/qT2JoXpxAlYtAjGjYPnn3eBVYUK0L27\nKwsk9VxJto4fP+5NglClSpVM6wLlVXJyMqdPnwZcwFYYwwhLk5SUFI4fPw5Aw4YNqVChQqG/BiKS\nO/pbIiJSvOzdCwsXQmIipM5MqVkTYmIgOhpSR/Z7/v8OyDfSCq5ERER8KO1/SzRMS/xJ7U3yy1rY\nvNkN/VuzBlJzvTVrBj17QocOkPG7+kAGV8oWKCIiIiIixcqpU7BiBXz1Ffz8sysLDoYLL4RevaBR\no8DWLyvquRIREfFBf0tERPzvwAE3nyohAQ4dcmVhYW4+VffuUK1azudQz5WIiIiIiJRZ27e7XqoV\nK+DMGVcWHu56qTp1As+yncWegisREZEySHNgxJ/U3sSXs2dh9WoXVP30kysLCoKoKDefqlkzKKaJ\nkrOk4EpERERERPzmyBGX8S8+Hvbtc2WVKsEll7jMfzksrVqsac6ViIiID/pbIiJSuFJSXNa/pUvh\n5ElXVq+e66W66CKoWLFwrhPIOVdaZKgYiYmJISgoiKCgIJYtW5brx82YMYPQ0NAirFnhOn36NC1b\ntmTRokU+9yclJREUFMSqVav8XLOc9enTh6FDh3q3jx49yg033ED16tUJDg5m+/bt3vW7goOD2bNn\nT6FdOygoiLlz56bbDgoKKvLXPhCvx5o1awgPD/eu+ZWdjz76iPPOO4/y5ctzyy23+KF2uZeb92bj\nxo2ZPHlyga+V0/uqNJs0aRKNGzfOcv/111+faYHr+Ph473vo6quvLuoqioiUWdbC99/DlCkQFweL\nF7vAqk0buPdet+hvjx6FF1gFmoKrYsQYwy233MKuXbuIiorK9eP69evHtm3birBmhWvGjBmcc845\n9OjRw1sWFBREcnIyABEREezatYsLLrig0K45bty4dEFRfhljMGkG/77++ussXryYJUuWsHPnTsLD\nwzHGMHbsWHbu3Ent2rULfM2s7Nq1iylTphTZ+QPpggsuoEOHDjz//PM5Hnvrrbdy4403kpycnOkD\ndEmwYsUK7rzzzgKfJ6f3VW7k530yZMgQ4uLicnVsaqCeF/Hx8dkGTr5kvI8xY8YwYcIEjh496i3r\n1q0bO3fupG/fvune02VJfHx8oKsgZYjaW9lz/Lhb8HfsWJg6FX78ESpUcIFUXJwLrNq0KXlzqnKi\nOVfFTOXKlalTp06eHhMSEkJISEgR1ajwvfDCC9xzzz1Z7g8KCsrxOThx4gQHDx7MdfBSVB+etmzZ\nQqtWrWjTpk268tDQ0Dy/jnlVp04dwsLCivQagTRo0CAeeughHnzwwSyP2b9/P/v27aN3797Ur18/\n39c6efIkFSpUyPfjC6JWIQ0sz+l9lRv5eZ9k/MKhOMhYn6ioKGrXrs27777LkCFDAChfvjx169Yl\nJCSEI0eOBKCWIiKl02+/uaF/X38Nx465slq1IDYWunWDypUDW7+ipp6rEmDHjh3069ePmjVrUrNm\nTfr06cOWLVu8+zMOPRo3bhxt27blnXfeoWnTpoSFhXHdddexd+9e7zFr166lV69eVKtWjdDQUNq3\nb+/9Vil1uMy+1BmGZB4alnrM559/TlRUFJUrV6Z79+7s2LGDBQsW0K5dO0JDQ7nmmmvYv3+/9zzr\n16/n++8kOT2GAAAgAElEQVS/55prrsnyfnMzDG3Xrl00bNiQP//5z8ydO5eTqQN3s5CfeRNHjx5l\nyJAhhIaGUq9ePSZOnJhuf0xMDM899xwJCQkEBQXRs2fPbM+3YcMGrrnmGqpXr05oaChdu3Zl3bp1\n3vqNHz+e8PBwQkJCaNeuHR9//HGe65xR165deeCBB9KVHTx4kEqVKvHhhx8CMGvWLDp37kxYWBh1\n69alb9++pKSkZHnO3LQPcK/1VVdd5T3vgAED2L17t3d/dm0Q4Morr+SXX37hm2++ybIeqYFJz549\nCQoKIiEhAYC5c+fStm1bQkJCiIiIYMKECekeGxkZSVxcHLfccgs1atTg5ptvzvJ+Z86c6T1XvXr1\nvB/OAZKTk7nuuusICwsjLCyM66+/nh07dmR5Ll8iIyN55plnvNtBQUH85z//4cYbb6Rq1ao0bdqU\nt956K9tz5OZ9dfbsWW699VaaNGlC5cqVad68OU8//XS690Z+5xelfdzJkycZPXo0kZGRhISE0LRp\n01z1QObFv/71L+rVq0doaCiDBw/m8OHDWdYn1bXXXsvbb79dqPUo6ZS5TfxJ7a10sxY2boSXXoJH\nHnHZ/44dg/POg7/9DR5/HC69tPQHVlCGe66GfTKs0M/5ytWvFPo5jx49SmxsLNHR0SQkJFChQgWe\nfvpp/vSnP/Hjjz9SqVIln49LSkrivffe46OPPuLw4cP069ePMWPG8PLLLwMwYMAAOnTowEsvvUS5\ncuVYu3Ztvnq/xo0bx/PPP09YWBgDBgygb9++VKxYkddee42goCBuvPFG4uLivMPXEhISCA8Pz9Tj\nlNdvvhs1asQ333zDm2++yV133cUdd9xBv379GDRoEF26dMl0fH6+XX/ggQeYP38+c+fOpUGDBsTF\nxZGQkMD1118PwAcffMADDzzAxo0bmTt3brY9HykpKURHR3PJJZcwf/58atasyfLlyznjWchhypQp\nTJo0iVdeeYVOnTrx5ptv8pe//IWVK1cWaHjkzTffzBNPPMHTTz/tvf/333+fypUrc9VVVwFw6tQp\nxo8fT8uWLfn1118ZOXIk/fv3L9DcnZ07d9K9e3duv/12Jk+ezKlTpxg9ejTXXnst3377LZBzG6xc\nuTJt2rRh0aJFXHzxxZmu0a1bN3744QfatGnD3Llz6dq1KzVq1GDlypX07duXRx99lIEDB7Js2TKG\nDRtGWFgYw4cP9z5+8uTJPProozzyyCNZBhWvvPIKI0aMYOLEifTp04fDhw+zcOFCwAUr1157LVWq\nVCE+Ph5rLcOHD+fPf/4zy5cvz/Vz5attPvbYYzz11FM89dRTTJs2jVtuuYXu3bsTHh7u8xy5eV+d\nPXuWhg0b8t5771G7dm2WLl3KHXfcQa1atbxz1fLbC5X2MYMHDyYxMZHnnnuODh068Msvv5CUlOTz\n2Pyc/9133+XRRx/lhRdeIDY2lnfffZcnn3ySc845J93xGa/TuXNnnn32Wc6ePZvnoYkiIuLbqVOw\nbJnrqfrlF1dWrhx07uzWp8riz1apVmaDq5LinXfeAdzcnlQvv/wydevW5dNPP+XGG2/0+bjTp0+n\n69G64447mD59und/cnIyDz74IM2bNwegSZMm+arf+PHj6datGwB/+9vfuOeee1i1ahXt27cH3Aet\n//73v97jN2/eTKNGjTKdJzXIyIuoqCiioqKYNGkS//vf/3jzzTeJjY0lIiKCQYMGMWjQIM4991wA\nxo4dm6dzHz58mNdff53p06dz6aWXAjB9+nQaNmzoPaZGjRpUqlSJ8uXL5zgEcOrUqYSGhvLee+9R\nrpx726V9zidNmsSDDz5Iv379ALyB3KRJk3jzzTfzVPe0+vbty4gRI1i4cKG3Z+2tt97ixhtvpLxn\nNb60c1MiIyN58cUXad26NSkpKTRo0CBf133ppZdo3759ut6+mTNnUqtWLVasWEGnTp1y1QYjIiLY\ntGmTz2uUL1/eG0zUrFnT+xpMnjyZmJgY72verFkzNm/ezFNPPZUuuIqJicnUq5fR+PHjue+++xgx\nYoS3LLVtf/XVV6xdu5atW7cSEREBwOzZs2nWrBkLFizIsSczO4MGDWLAgAHeOjz77LMsXrzYW5ZR\nbt5X5cqVSzc3KiIigpUrV/L22297g6u8vk+AdP+vbN68mTlz5vD555/Tu3dvwLWp6Oho77/z+l6P\niYlh69at3u0pU6YwZMgQbr/9dgBGjx7NwoUL+Sl1gZQs7iMiIoKjR4+yY8eOLIPUskbrDok/qb2V\nLr//DosWQUICpA4eCAtzadQvucT9u6wqs8FVUfQyFYWVK1eybdu2TBnHjh07lu4DR0aNGjVK95j6\n9euny1z3j3/8g9tuu42ZM2fSq1cvrr/+elq0aJHn+rVr187779QPt23btk1Xlva6Bw8epEqVKnm6\nRps2bbyT8rt3785nn32Wbn9wcDBXXnklV155Jb/99htDhw5lzJgxbN68OV1Qmhc//fQTJ0+eTNdj\nUqVKlXT3lherV68mOjraG1ildfDgQXbu3OkNUlNFR0fzf//3f/m6XqpatWpx+eWX89Zbb9GzZ09S\nUlKIj49n3Lhx3mNWrVpFXFwca9asYd++fd5enOTk5HwHVytXriQhISFTuzXG8NNPP9GpU6dctcHQ\n0FAOHDiQp2tv2LCBPn36pCvr1q0bcXFxHD58mKpVq2KMoVOnTtmeZ8+ePaSkpNCrVy+f+3/88Uca\nNGjgDazAZf5r0KAB69evL1BwlfZ9FRwcTO3atbPNPJnb99XLL7/MtGnTSE5O5tixY5w6dYrIyMh8\n1zOj1atXExQURGxsbKGdM6MNGzZwxx13pCu76KKL0g2V9iV1fuKBAwcUXImI5NO2ba6XauVKSP2u\nrFEjl0q9UyfXa1XW6Sko5s6ePUv79u2ZM2dOpn01atTI8nGpvRKpjDGcPXvWuz127FgGDhzIvHnz\n+N///kdcXBwvv/wyQ4cO9Q6ZSTtU6tSpUzleJ3UYTnBwcJbXrVatGhs2bMiy3r58/vnn3uv7GgZp\nrWXJkiXMmjWL9957j9DQUEaNGsWtt96ap+vkRn7npORnvRxrbaEkCrjpppu4/fbbefHFF3nnnXeI\niIjw9iQcOXKEyy67jN69ezNr1izq1KnDr7/+yiWXXJLlPLbctA9rLX369GHSpEmZHp8ahGfXBlMd\nPHgwX4lBslsDL1Veg/y8KOjrltP7N6PcvK/mzJnDfffdxzPPPEPXrl0JCwvjhRde4IMPPihQXUuK\ngwcPAlC9evUA16T4UC+C+JPaW8l15gysWuXmUaUmpw4Kgo4d3dC/Jk1KX8a/gtDA82KuY8eObNmy\nhVq1atGkSZN0P9kFV7nRrFkz7rnnHj799FNuvfVWpk2bBuAdapU2qcF3331XoGulvWZeUkMDhIeH\ne+85bUa4TZs28c9//pOmTZtyxRVXcPz4cd577z2SkpJ44okn8j3UEaBp06aUL18+XTKFI0eOeBNQ\n5FWHDh1ITEz0GaSGhYXRoEEDEhMT05UnJiZmykKYH6lr+Hz66ae89dZb6YaWbdiwgb179zJhwgSi\no6Np3rx5uqQTvuSmfURFRbFu3ToiIiIytduqVat6j8uqDabavn075513Xp7ut1WrVixZsiRdWWJi\nIuHh4XkKqOrUqcO5557L/Pnzs7xOSkoK27dv95Zt3bqVlJQUWrdunac6F1Ru3leJiYlceOGF3HXX\nXbRv354mTZqwZcuWQs301759e86ePcuCBQsK7ZwZtWrVKlOSk2+//TbH+9i+fTuVK1fOd2+siEhZ\nc/gwzJsHY8bAtGkusKpSBS67DJ54Au64A5o2VWCVkYKrYm7gwIHUrVuXa6+9loSEBLZt20ZCQgIP\nPPBAjsNgsnLs2DHuvvtuFi1aRFJSEkuXLk33Qb5Zs2aEh4czbtw4Nm/ezBdffMHjjz9eKPdzySWX\n8PPPP/Prr78W6DzJycm0bt2ar7/+mnHjxrF7925mzJhRoKFYaVWtWpVbb72VkSNHMn/+fH744Qdu\nueWWbHsPsnPXXXdx+PBh+vbty4oVK9iyZQtvv/02a9asAeDBBx9k0qRJvPPOO96gMTExMcc5QRl9\n8MEHtGzZMl3gExISwvXXX8/48eNZvXo1N910k3dfREQEFStW5Pnnn2fr1q189tlnPProo9leIzft\n4+677+bAgQP89a9/ZdmyZWzdupX58+czbNgwDh8+zPHjx7Ntg+CSuaxfv57u3bvn6Tm4//77WbRo\nEXFxcWzatIm33nqLyZMn89BDD+XpPODWR5oyZQpTpkxh06ZNfPfdd94Ffy+99FLatWvHwIEDWbly\nJStWrGDgwIF07NixSIfF+ZKb91WLFi1YtWoVn3/+OZs3b2b8+PHe7IqFpXnz5vTt25fbbruNuXPn\nsm3bNhYvXsysWbMK7Rp///vfmTlzJtOmTWPz5s1MnDgxV4uuL1u2jG7duimZRRpad0j8Se2t5Nix\nA958Ex5+GD78EPbvh/r1YeBAmDgR/vIXqFkz0LUsvvRXppirVKkSCQkJNGnShBtvvJFWrVoxZMgQ\nfv/9d2qmadlpv7XNKuNXalm5cuX4/fffGTJkCC1btuQvf/kLXbt29X5oLF++PO+88w5bt27lggsu\nIC4ujokTJ2Y6Z3bXyKoubdq0oW3btnz00UfZ3ndO30LXrl2bpKQk5s+fz6BBg6icx9yeM2bMyHGB\n1UmTJhEbG8t1111Hr169aNeuXaYP+rnNrtagQQMSEhI4efIksbGxREVFMXXqVO/wr3vvvZcHH3yQ\nhx56yPv8pKYTz4sDBw6wefNmTp8+na78pptu4vvvvycqKoqWLVt6y2vXrs3MmTP58MMPadOmDePH\nj+ff//53tq91btpH/fr1WbJkCUFBQVx++eWcf/75DB8+nJCQECpWrEhwcHC2bRDgs88+Izw83Gem\nwKzqBq6X8L333uP999+nbdu2jB49mlGjRnH33Xfn/on0+Nvf/sbUqVP5z3/+Q9u2bbniiitYv369\nd/9HH31E7dq1iY2NpWfPnjRo0MCb4j6r+hWF3Lyvhg0bRt++fRkwYABdunQhOTmZ+++/P9vz5uZ9\nktEbb7zBgAEDuPfee2nVqhVDhw71DsnzJSgoiMceeyzX5+/bty/jxo1jzJgxREVF8cMPP/CPf/wj\nx8d98skn9O/fP1N5cVujS0QkEM6ehTVr4N//hsceg8RElwmwbVsYMcItBNy9O1SsGOiaFn8mv3NI\nAs0YY7ObV1ES7ysmJoa2bdsW+powxc20adOYPn16pqFb/jR27Fjmzp3LmjVrCv2b7MaNGzN8+PAc\nP7gWhhkzZnDPPfdw6NChIr+Wv1199dV0794920WE5Q9F8b4qyvcJwLZt22jWrBmJiYk5BtEFsXLl\nSq644gqSkpIyfREzZMgQ9u7dyyeffJLpcSX1b4mISG4dPw5LlsDChZA6+KFiReja1S36W7duYOuX\nX57/vwPy7Zl6rooRYwyvvvoqoaGhrFy5MtDVKTJDhw5l7969BVpHqaDmzZvH1KlTi2yI0JgxYwgN\nDeW3334rkvODG7p45513lspv3r///nu+++477rnnnkBXpcQoivdVUb9P5s2bx+DBg4s0sAKYMGEC\njzzySLrAavHixVStWpXZs2eXyveQiEh29uyBOXNg5Eh4910XWJ1zDtx4Izz1FPTrV3IDq0BTz1Ux\nkpKSwvHjxwFo2LBhtovSSvGVnJzsHZYXGRlZZB9MU1PxBwUFFWo6bZGy4Pjx4965iVWqVKGuj08R\nJfVvSW5p3SHxJ7W3wLMWNmxwqdTXrnXbAC1auFTq7dq5LIClQSB7rpSKvRhRFqvSIe26R0WpINkQ\nRcq6kJAQvYdEpEw4eRKWLnVBVWq+q/LloUsXF1Q1bBjY+pU26rkSERHxQX9LRKQk278f4uNh8WI4\ncsSVVasGMTFwySUQGhrI2hUt9VyJiIiIiEiBWOvWo/rqK7fwb+oKMo0bu16qqCgop0//RUpPr4iI\nSBmkOTDiT2pvRev0aRdMffUVJCW5sqAg6NQJevUCjYL2n1IbXCn7k4iIiIiUZocOQUICLFoEBw64\nsipV3JpUPXpAjRqBrV9ZVCrnXImIiIiIlFa//OJ6qZYvd4v9AjRo4HqpunSBsp5wukzNuTLGvA5c\nBeyx1rbN4pjngCuAo8AQa+1qP1ZRRERERKRYOXsW1qxxWf82bXJlxsAFF7j5VC1auG0JrEBks58O\nXJ7VTmPMlUAza+15wB3AS/6qmIgv8fHxga6ClCFqb+IvamviT2pv+Xf0KHz5JTz6KLz8sgusQkJc\nL9Vjj8Fdd0HLlgqsigu/91xZaxcbYyKzOeQaYKbn2KXGmOrGmLrW2t3+qJ+IiIiISKDt3u16qb75\nBk6ccGW1a7teqq5dXYAlxU9A5lx5gqtPfA0LNMZ8Aky01n7t2Z4PjLTWrsxwnOZciYiIiEipYS38\n+KObT7Vu3R/lrVq5oOr8810WQMlemZpzlUsZnwyfUdSQIUOIjIwEoHr16rRv396b5jO1+1nb2ta2\ntrWtbW1rW9vaLs7bF18cw9Kl8Prr8ezdCw0axFC+PISFxdOhA9x4Y/Gqb3HbTv13Umoe+gAqjj1X\nLwPx1tp3PNsbgB4ZhwWq50r8JT4+3vsmFilqam/iL2pr4k9qb77t2wcLF0JioptbBS59ekwMREdD\n1aoBrV6JpZ6r9D4GhgPvGGMuAn7XfCsRERERKQ2shZ9+cvOpVq92WQDBLfTbsydERUFwcGDrKPnn\n954rY8zbQA/gHGA3MBYoD2CtfcVzzAu4jIJHgKHW2lU+zqOeKxEREREpEU6fhhUr3Hyq5GRXFhwM\nHTu6zH+emS5SCALZc6VFhEVEREREisjBg5CQAIsWuX+DG+7Xowd07w7Vqwe2fqVRIIOroEBcVKQk\nSTtZUqSoqb2Jv6itiT+VxfaWnAwzZsCoUfDJJy6watgQBg2CJ5+Ea65RYFUaFcc5VyIiIiIiJc7Z\ns/Ddd27o35YtrswYaN/eDf077zwt9lvaaVigiIiIiEgBHD3qMv4tXOgyAAJUqgTdukFsLJxzTmDr\nV9YoW6CIiIiISAmzc6cLqL75Bk6edGV167qA6uKLISQksPUT/1NwJZIDrc0h/qT2Jv6itib+VJra\nm7Xwww8ulfoPP/xR3rq1S6V+/vka+leWKbgSEREREcnBiROuh2rBAtjtWYG1QgW46CIXVNWvH9j6\nSfGgOVciIiIiIlnYu9cN/UtMhGPHXFnNmhATA9HRUKVKQKsnPmjOlYiIiIhIMWEtbN7seqnWrHFZ\nAAGaNXO9VB06QJAWNBIfFFyJ5KA0jROX4k/tTfxFbU38qaS0t1OnYMUKl0r9559dWXDwH0P/GjUK\nbP2k+FNwJSIiIiJl2oEDsGgRJCTAoUOuLCwMund3P9WqBbZ+UnJozpWIiIiIlElJSW7o34oVcOaM\nK4uIcL1UnTtDOXVDlEiacyUiIiIi4gdnzsB337mhfz/95MqCgiAqygVVzZoplbrkn6biieQgPj4+\n0FWQMkTtTfxFbU38qTi0tyNH4PPPYcwYePVVF1hVrgy9e8Pjj8OwYXDeeQqspGDUcyUiIiIipVZK\nihv6t3QpnDzpyurVc71UF10EFSsGtn5SumjOlYiIiIiUKtbC2rUuqPrxxz/Kzz/fBVWtW6uHqjTT\nnCsRERERkQI6fhy+/tot+rtnjyurUAG6doXYWNdjJVKUNOdKJAfFYZy4lB1qb+IvamviT0Xd3n77\nDd59Fx5+GObMcYFVrVpwww3w1FPQv78CK/EP9VyJiIiISIljLWzc6Ib+ff+92wZo3twN/bvgApcF\nUMSfNOdKREREREqMU6dg2TKXSn3HDldWrpxbl6pXLwgPD2z9JPA050pEREREJBu//w7x8bB4MRw+\n7MqqVYMePeCSSyAsLKDVEwE050okR5qXIP6k9ib+orYm/lSQ9rZtG7z2GoweDfPmucCqUSO45RaY\nMAGuukqBlRQf6rkSERERkWLlzBlYtcoN/du2zZUFBUHHjm7oX5MmSqUuxZPmXImIiIhIsXD4MCQk\nwKJFbhggQJUqbthfjx5Qs2Zg6yclg+ZciYiIiEiZtWOHy/q3dKlLWAHQoIFbm+rCC6FixcDWTyS3\nFFyJ5CA+Pp6YmJhAV0PKCLU38Re1NfEnX+3t7FlYu9YN/du48Y/ytm3d0L+WLTX0T0oeBVciIiIi\n4jfHj8OSJbBwIfz6qyurWBG6dnU9VXXrBrZ+IgWhOVciIiIiUuT27HEB1ddfuwAL4JxzXEDVrRtU\nqhTY+knpoTlXIiIiIlLqWAsbNrihf+vWuW2AFi3c0L+2bV0WQJHSQsGVSA40L0H8Se1N/EVtTYrS\nyZMuOcWCBZCSAikp8TRqFEOXLtCzJzRsGOgaihQNBVciIiIiUij274f4eFi8GI4ccWXVqkHjxnD3\n3RAaGtDqiRQ5zbkSERERkXyzFrZudb1Uq1a5LIDgAqqePSEqCsrp63zxI825EhEREZES5fRpWLnS\nBVVJSa4sOBg6d3ZBVZMmAa2eSEBoCqFIDuLj4wNdBSlD1N7EX9TWJL8OHYLPPoPRo+H1111gVbUq\nXHEFPPEE3HZb5sBK7U3KCvVciYiIiEiOfv7Z9VItXw6nTrmyc891vVQXXgjlywe2fiLFgeZciYiI\niIhPZ8/CmjUuqNq0yZUZA+3auaCqRQu3LVKcaM6ViIiIiBQbR4/CkiUu899vv7mykBC32G9MDNSp\nE8jaiRRfmnMlkgONExd/UnsTf1FbE19274a334aHH4b//tcFVrVrw1//Ck89BX375i+wUnuTskI9\nVyIiIiJlmLWwfr0b+rdu3R/lrVq5oX/nnw9B+jpeJFc050pERESkDDpxAr791gVVu3a5svLl4aKL\nXFDVoEFg6yeSX5pzJSIiIiJ+sXevm0uVmOjmVgHUqOHmUkVHu7TqIpI/6uQVyYHGiYs/qb2Jv6it\nlS3WwubN8Mor8Mgj8MUXLrBq2hRuv92tT3X55UUXWKm9SVmhnisRERGRUur0aVixAr76CpKTXVlw\nMHTpAr16QWRkQKsnUupozpWIiIhIKXPwICxaBAkJ7t/geqV69IDu3aF69cDWT6Qoac6ViIiIiBTY\n9u0uQcXy5XDmjCsLD3cJKjp3dgkrRKToKLgSyUF8fDwxMTGBroaUEWpv4i9qa6XH2bPw3Xdu6N+W\nLa7MGGjf3g39O+88tx1Iam9SVii4EhERESmBjhxxGf/i42HfPldWqZLL+BcTA+ecE8jaiZRNmnMl\nIiIiUoLs3AkLF8I338DJk66sbl2IjYWLL4aQkMDWTyTQNOdKRERERLJkLfzwgxv6t379H+WtW7uh\nf23aBH7on4gouBLJkcaJiz+pvYm/qK2VDCdOuB6qBQtg925XVqECXHSRS1JRv35g65dbam9SVii4\nEhERESlmfvvNzaVKTIRjx1xZzZpuLlV0NFSpEsjaiUhW/D7nyhhzOTAFCAamWWufyrD/HGAWUA8X\n/E2y1s7wcR7NuRIREZFSw1rYvNkN/fv+e5cFEKBZM9dL1aEDBAUFto4iJUEg51z5NbgyxgQDG4E/\nATuA5UB/a+2PaY4ZB1S01o7yBFobgbrW2tMZzqXgSkREREq8U6fculQLFsDPP7uy4GC3LlXPntCo\nUWDrJ1LSBDK48vf3H12ALdbaJGvtKeAd4NoMx+wEwjz/DgP2ZgysRPwpPj4+0FWQMkTtTfxFbS3w\nfv8dPv4YRo2CmTNdYBUWBn36wJNPwtChpSewUnuTsiJXc66MMd2AGtbaTz3btYCpQBvgC+Aha+2Z\nXJzqXODnNNu/ABdmOOY/wAJjTAoQCvTNTR1FRERESoKkJNdLtWIFnPF8eoqIcL1UnTtDOc2IFymx\ncjUs0BizGJhvrY3zbL8OXA98BVwGPGWtfSwX57keuNxae7tn+ybgQmvtPWmOeQQ4x1o7whjTFPgS\nuMBaeyjDuTQsUEREREqEM2dg9WoXVP30kysLCoL27V1Q1ayZUqmLFJaSsM5VS+ApAGNMBeAG4D5r\n7WvGmBHAMCDH4Ao3zyo8zXY4rvcqra7AEwDW2p+MMduAFsCKjCcbMmQIkZGRAFSvXp327dt703ym\ndj9rW9va1ra2ta1tbQdqe968eNauhX37Yti/H1JS4qlYEfr3jyEmBtaujWfHDjjvvOJRX21ruyRu\np/47KSmJQMttz9UxoLe1drExJhpIAOpZa/cYY3oA86y1lXNxnnK4BBW9gBRgGZkTWkwGDlhr44wx\ndYGVQDtr7b4M51LPlfhFfHy8900sUtTU3sRf1NaKVkqK66VauhROnnRl9eq5XqqLLoKKFQNbP39T\nexN/Kgk9VylAe2AxcDmwzlq7x7OvBnA0Nyex1p42xgwH/odLxf6atfZHY8wwz/5XgAnAdGPMGlzC\njYcyBlYiIiIixY21sHatC6p+/PGP8vPPd0FV69Ya+idS2uW252o8MAIXFF0FjLXW/suzLw7Xq3Vx\nUVbUR53UcyUiIiIBd/w4fP01LFwIezxfPVeoAF27Qmys67ESEf8pCT1XccBx4GJgIjA5zb72wHuF\nXC8RERGRYu3XX11AtWSJC7AAatVyAVW3blA5xwkTIlLa+HUR4cKknivxF40TF39SexN/UVvLH2th\n40Y39O/77902QPPmbujfBRe4LICSntqb+FNJ6LkSERERKbNOnXLJKRYsgB07XFm5ctCliwuqwsOz\nf7yIlA1Z9lx5UqBbIDXqy6qbyADWWtuk8KuXNfVciYiISFH7/XeIj4fFi+HwYVdWrRr06AGXXAJh\nYQGtnoj4UFx7rhZl2O4J1AWWAHs8/+4G7MItJiwiIiJSKmzd6nqpVq1yCwADREa6XqqOHV2vlYhI\nRln+12CtHZL6b2PMHUAXoKu19pc05eG4DIJfF2EdRQJK48TFn9TexF/U1jI7c8YFU199Bdu2ubKg\nILUICZkAACAASURBVBdM9eoFTZoolXp+qb1JWZHb710eAkanDawArLU/G2PG4dam+k8h101ERESk\nyB065Ib9LVrkhgECVKnihv3FxECNGgGtnoiUILld5+oY8Fdr7cc+9l0LzLHWhhRB/bKrk+ZciYiI\nSL798osb+rdsmUtYAdCggRv6d+GFbq0qESl5AjnnKrfB1SrgCG6x4GNpyisDXwCVrbVRRVZL33VS\ncCUiIiJ5cvYsrF3rhv5t3PhHedu2buhfy5Ya+idS0hXXhBZpPQj8H7DdGPN/wG6gHnAlEOb5LVIq\naZy4+JPam/hLWWtrx465xX7j493ivwAhIdC1q1v0t06dgFav1Ctr7U3KrlwFV9bar4wx7YFHgO64\nwGonLpnF49baDUVXRREREZH82bMHFi6Er7+G48dd2TnnuICqWzeoVCmw9ROR0iVXwwKLIw0LFBER\nEV+shQ0b3NC/devcNkCLFm7oX9u2LgugiJROJWFYoIiIiEixdvIkLF3qklSkpLiy8uWhSxeXpKJh\nw8DWT0RKv1wHV8aYGKA/EA6kzQxoAGut7Vm4VRMpHjROXPxJ7U38pTS1tf373VyqxYvhyBFXVr06\n9Ojh0qmHhga0ekLpam8i2clVcGWMGQa8BOwDNgEni7JSIiIiItmxFrZudUP/Vq92WQABGjd2Q/86\ndIByGp8jIn6W21Tsm4DlwFBrbbEIrDTnSkREpOw5fRpWrnRD/5KSXFlwMERFuaF/TZoEtHoiUgyU\nhDlX5wJ3FpfASkRERMqWQ4cgIQEWLYIDB1xZ1apu2F9MjBsGKCISaLnNlbMK0HdBUibFx8cHugpS\nhqi9ib+UlLb2888wcyY8/DB8/LELrM49F26+GZ58Ev78ZwVWJUFJaW8iBZXbnqt7gNnGmE3W2kVF\nWSEREREp286ehTVr3NC/TZtcmTFwwQVu6F+LFm5bRKS4ye2cq5+BMCAUOALsx5MlkD+yBUYUYT19\n1UlzrkREREqRo0dhyRK36O/eva4sJMQt9hsbC7VrB7Z+IlIylIQ5V1/lsF9RjoiIiOTL7t2ul+qb\nb+DECVdWu7brpera1QVYIiIlQa56rooj9VyJv2htDvEntTfxl0C3NWth/XoXVK1b90d5q1YuqGrb\nVkP/SpNAtzcpW0pCz5WIiIhIgZ04Ad9+64KqXbtcWfnycNFFLqhq0CCw9RMRKYhc91wZY9oBY4Ee\nQA3cgsLxwGPW2rVFVcFs6qOeKxERkRJi716Ij4fERDe3CqBGDZdG/ZJLoEqVQNZOREqTQPZc5Tah\nRWdgEXAM+BjYDdQDrgZCgB7W2hVFWE9fdVJwJSIiUoxZC1u2uF6q775zWQABmjZ1vVQdOrgFgEVE\nClNJCK7m47IF9rLWHkpTHgrMBw5aay8tslr6rpOCK/ELjRMXf1J7E38pyrZ2+jQsX+6CquRkVxYc\nDJ06uaAqMrJILivFmP5vE38qCXOuLgIGpQ2sAKy1/9/encdZWd4H//9cMyyyySIIoiguuKIgoiyy\nDJgmJl1s0sbEZjNJmzS/ps/TX/t6qqZpkzRpYvr8+iRdniYmsUljk5q1JmbRWOCACiKERWQRQVEW\nRRAURNaZ6/fHdcY5jjPMGTjnPufM+bxfr/Pi3Nd9z32+g1+B71zX9b33hxC+CHy75JFJkqSasm8f\nLFwIixal9wCDBsGsWenlw34l9XTFzlztBz4QY/xxB+feAfx7jHFQGeI7XkzOXEmSVAWeeSbNUi1b\nBs3NaWzMmDRLdfXVqWGFJGWlVpYFDiYtC9xXMD6Q9AwslwVKklRHWlrSPqp589K+Kkit0ydMgOuu\ng3HjbKUuqTJqobi6hraGFj8DngPOAN4G9AeaYoyPljHOjmKyuFImXCeuLJlvysqJ5tqBA6njXy4H\ne/aksX79YMaM1Plv+PBSRqmewj/blKWq33MVY3w0hDAF+Bvgetpasc8HPluJVuySJCk7zz2Xlv49\n8ggcOZLGRo5MS/+mTYO+fSsbnyRVg6Kfc1VtnLmSJKm8YoS1a9PSv3Xr2sYvvTQt/bvsMpf+Sao+\nVT9zFUI4HRgaY3yig3MXAXtijLtKHZwkScre4cOweDEsWAA7d6axPn3SDNWcOXDGGZWNT5KqVUOR\n1/0r8OednPsz4P+WJhyp+uRyuUqHoDpivikrHeXa7t3wgx/ALbfA3XenwmrYMHjHO+D22+EP/sDC\nSifGP9tUL4p9ztW1wMc7OfcrLK4kSapJMcKTT6alf489lroAAlxwQVr6N3EiNBT7o1hJqnPFdgs8\nBPxmjHFeB+feBPw8xpjpVlb3XEmSdOKOHk3PpZo/H7ZuTWONjem5VHPnwjnnVDY+STpRVb/nCtgO\nTCU906q9a0it2SVJUpV76SVYtCi99u9PY6eeCrNmwezZ6b0k6cQUO9H/A+C2EMJvFQ7mj28Dvl/q\nwKRq4TpxZcl8U7ls2QJ33gmf+AT8/OfwxBM5zj4bPvhB+MIX4Ld/28JK5eOfbaoXxc5cfRaYBfw0\nhPAcaSbrLGAUsAT4THnCkyRJJ6q5GVauTEv/Nm9OYw0NMGkSzJwJ73mPrdQlqZSKfs5VCKEP8F7g\nzcBpwG7gfuA/YozHyhZh5/G450qSpA4cOAAPPgi5HOzdm8b694cZM6CpCU47rZLRSVJ5VXLPlQ8R\nliSph9ixI3X9W7o0NawAGDUqNaiYOhX6Ztp6SpIqoxYaWgAQQpgAzCTNXN0RY3w+hDAO2Blj3FeO\nAKVKy+VyNDU1VToM1QnzTd0VI6xZk5b+rV/fNj5+fCqqLr2046V/5pqyZL6pXhRVXIUQ+gLfAd6R\nH4rAvcDzwBeBjcCt5QhQkiS90aFDsHhxKqp27UpjffvCtGmpqBo5srLxSVI9KvY5V/8f8GHgT4AH\ngJ3A5BjjihDCHwF/EmOcWNZI3xiTywIlSXVn1y5YsAAefjgVWADDh6e9VNdem/ZWSVI9q4VlgTcB\nfx1j/G4Iof3XbAHGljIoSZLUJkZ44ok0S/XYY+kY4MIL0yzVhAmpC6AkqbKKLa5OA9Z1cq4BcIus\neizXiStL5psKHT2amlPMnw/bt6exXr3gmmtSUTVmzInf21xTlsw31Ytii6stwHRgfgfnrgaeKFVA\nkiTVu717YeHC1E79lVfS2ODBMHs2zJoFgwZVNj5JUseK3XN1G/BXwEeBHwMHgMnAEOCHwKdjjP9U\nxjg7isk9V5KkHuWpp9Is1YoV6QHAAGPHplmqq65Ks1aSpOOr+udc5fdZ/QdwI3AE6AMcAk4B/hN4\nb9aVjsWVJKknOHYsFVPz58PTT6exhgaYNCkVVeed13ErdUlSx6q+uHrt4hBmAtcDpwMvAvfFGHPl\nCa3LWCyulAnXiStL5lv92L8/LfvL5eDll9PYgAEwc2bq/Dd0aHk/31xTlsw3ZakWugUCEGN8EHiw\nTLFIktTjbduWZqkefTQ1rAAYPTrNUk2ZAn36VDY+SdKJK3ZZ4EXAkBjj0vxxP+BTwGXAr2KM/1z0\nB4ZwPfBloBH4Rozxix1c0wR8CegN7I4xNnVwjTNXkqSa0NKSWqjPn59aqre64opUVF18sUv/JKlU\nqn5ZYAjhAWBljPEv88f/B/g48DhwBfBnMcZ/KeI+jaTOgm8CtgPLgJtijOsLrhkCPAy8Jca4LYQw\nPMa4u4N7WVxJkqrawYPpYb8LFsDu/N9kp5wC06fDnDlw+umVjU+SeqJKFlfFPnLwCmAxvFYgvR+4\nNcY4Cfgs8EdF3ucaYFOMcUuM8ShwN3BDu2v+APhRjHEbQEeFlZSlXC5X6RBUR8y3nuGFF+Duu+HW\nW+EHP0iF1YgRcOONcPvt8K53Vb6wMteUJfNN9aLYPVeDgdYi50pgGPCD/PFC4H8VeZ8zga0Fx9uA\nKe2uGQf0DiEsAAYB/xhjvKvI+0uSVBExwoYNMG8erFnTNn7RRXDddXD55akLoCSp5yq2uNpJKnoe\nAn4D2BxjbC2SBgLHirxPMev4egOTgOuA/sCSEMIjMcYn21948803M3bsWACGDBnCxIkTX+tE0/oT\nEo89PtnjpqamqorH4559bL7V3vEDD+RYtw5eeqmJHTtgx44cvXrBO97RxJw5sGlTjr17oaGhOuL1\n2GOPPe5px63vt2zZQqUVu+fqn4F3kp519UHgjhjjJ/LnbgVuzC8R7Oo+U0kPHL4+f3wb0FLY1CKE\ncAvQL8b46fzxN0gt33/Y7l7uuZIkVczevZDLpXbqBw6ksSFDoKkptVMfOLCS0UlS/aqFPVe3AfcC\nbwF+AvxdwbkbgF8VeZ/lwLgQwtgQQh/gXcBP213zE2BGCKExhNCftGxwXZH3l0qu8KciUrmZb9Ut\nRti8Gb72NfjEJ+C++1Jhde658Id/CJ//PLz1rbVRWJlrypL5pnpR1LLAGOMrdNK0IsY4rdgPizEe\nCyF8HLif1Ir9zhjj+hDCR/Pn74gxbggh3Ac8BrQAX48xWlxJkirm2DFYvjy1Un/mmTTW2AhXX51a\nqZ93XmXjkyRVh6KWBVYjlwVKkspt/35YtAgWLoSXX05jAwemZX9NTWkZoCSpulRyWWCxDS0kSaob\nW7emrn/LlqVZK4Azz0xd/665Bnr3rmx8kqTqZHEldSGXy73WlUYqN/OtclpaYPXqtPRv48Y0FgJM\nmJCKqgsvTMc9hbmmLJlvqhcWV5Kkuvbqq/Dww7BgAbz4Yho75RS49lqYMyc9/FeSpGK450qSVJee\nfz7NUi1ZAkeOpLHTT08NKqZNSwWWJKn2uOdKkqQMxAjr1qWi6vHH28YvuSQVVZdf3rOW/kmSslV0\ncRVCaAJuAsYAhT/PC0CMMc4tbWhSdXCduLJkvpXH4cPwyCOpqHr++TTWuzdMnZqKqtGjKxtfJZhr\nypL5pnpRVHGVfw7VV4A9wEbgSDmDkiSpFF58EXI5eOihtLcKYOjQ1EZ95kwYMKCS0UmSepqi9lyF\nEDYCy4APxhirorByz5UkqSMxwqZNaZZq1arUBRDg/PNT17+JE9MDgCVJPVMt7Lk6E/hYtRRWkiS1\nd+xYei7V/Pnw7LNprLERpkxJS//Gjq1oeJKkOtBQ5HUrgPPKGYhUrXK5XKVDUB0x37pv3z649164\n7Tb41rdSYTVoEPzmb8IXvgAf+pCFVUfMNWXJfFO9KHbm6k+B74YQNsYYF5YzIEmSivHMMzBvHixf\nDs3NaWzMmDRLdfXVqWGFJElZKnbP1VbgVGAQcADYS75LIG3dAs8uY5wdxeSeK0mqMy0tsHJlWvq3\naVMaa2iACRNSUTVunK3UJane1cKeq3ldnLfKkSSVzYEDqeNfLgd79qSxfv1gxozU+W/48EpGJ0lS\nUtTMVTVy5kpZ8dkcypL59nrPPZdmqR55BI7kWyqNHJlmqaZNg759KxtfLTPXlCXzTVmqhZkrSZIy\nESM8/ngqqtataxu/7LJUVF12mUv/JEnVqdOZqxDC+4GfxxhfDCF8gC6W/sUYv12G+DrlzJUk9SyH\nDsGSJbBgAezcmcb69EkzVHPmwBlnVDY+SVJtqOTM1fGKqxZgaozx0fz744oxFtvWvSQsriSpZ9i9\nOxVUDz8MBw+msWHDUkE1Ywb071/Z+CRJtaValwWeB+woeC/VJdeJK0v1km8xwpNPplbqq1enY4AL\nLoDrroOJE1MXQJVPveSaqoP5pnrRaXEVY9zS0XtJkk7U0aPw6KNpP9W2bWmsV6/0XKq5c+HsTB/q\nIUlSadktUJJUdi+9BAsXwqJF8MoraezUU2HWLJg9O72XJKkUqnVZoCRJJ2XLlrT079e/hubmNHb2\n2Wnp3+TJadZKkqSewr/WpC64TlxZ6gn51twMK1akpX9PPZXGGhpg0qRUVJ1/vq3Uq0FPyDXVDvNN\n9cLiSpJUEgcOwIMPQi4He/emsf79U8e/piY47bRKRidJUvm550qSdFJ27EhL/5YuTQ0rAEaNSrNU\nU6ZA376VjU+SVF9qZs9VCGEEMBUYBvws/4DhfsCRGGNzOQKUJFWfGGHNmlRUbdjQNj5+fOr6d+ml\nLv2TJNWfooqrEEIA/jfwp0BvIAJXAy8C9wAPA39bphilinKduLJU7fl26BAsXpz2U+3alcb69oVp\n01JRNXJkZeNT8ao919SzmG+qF8XOXN0G/AnwGeABYGnBuXuB92FxJUk91gsvwIIFqbA6dCiNDR+e\n9lJde23aWyVJUr0ras9VCOEp4Bsxxs+HEHoBR4DJMcYVIYS3Av8RY8x0q7J7riSpvGKEJ55Is1SP\nPZaOAS68MM1STZiQugBKklRNamHP1ZnAkk7OHQEGlCYcSVKlHT2amlPMnw/bt6exXr3gmmtSUTVm\nTGXjkySpWhX7M8cdwOWdnLsCeLo04UjVJ5fLVToE1ZFK5tvevXDPPXDLLXDXXamwGjwYfud34Pbb\n4QMfsLDqSfyzTVky31Qvip25+j7wNyGEFRTMYIUQLgL+Avh6GWKTJJVZjPD006nr34oV0NKSxseO\nTa3UJ01Ks1aSJKlrxe656g/cD1wLPAOcQ5qtGgMsBt4SYzxcxjg7isk9V5J0go4dS8XUvHmwZUsa\na2hIxdTcuXDeebZSlyTVpkruuSr6IcL5RhY3AdcDpwO7gfuA78QYj5Utws7jsbiSpG7avx8efBBy\nOXj55TQ2YADMnJk6/w0dWsnoJEk6eTVRXFUbiytlxWdzKEvlyrdt29Is1bJlqWEFwOjRaZZqyhTo\n06fkH6kq559typL5pizVQrfA1wkhvKERRoyx5eTDkSSVSktLaqE+f35qqQ5pqd8VV6Si6uKLXfon\nSVIpdWfP1aeAdwJn8caiLMYYG0sf3nFjcuZKkjpw8CA8/HB66O/u3WnslFNg+nSYMwdOP72y8UmS\nVE61MHP1f4H3APcCd5OebVXIKkeSKmznzlRQLV4Mh/MthkaMSAXV9OnQr19l45MkqacrdubqReBv\nY4z/WP6QiuPMlbLiOnFlqbv5FiOsX5+W/q1Z0zZ+8cVp6d/ll6cugFJ7/tmmLJlvylItzFwdAdaV\nMxBJUvGOHIFHHkkzVTt2pLHevVNzijlz4KyzKhufJEn1qNiZq78HTosxfrj8IRXHmStJ9WjPntRG\n/aGH4MCBNDZkSGqjPnMmDBxYyegkSaq8qm/FHkLoDdwJjCI9THhv+2tijP9W8uiOH5PFlaS6ECNs\n3pyW/q1cmboAApx7Llx3XXrwb2OmLYUkSapetVBcTQF+Qnp4cIdijJmu6re4UlZcJ64sFebbsWOw\nfHkqqp55Jp1vbISrrkr7qc49t3Jxqvb5Z5uyZL4pS7Ww5+pfgReBPwKe4I3dAiVJJbJvHyxaBAsX\npveQlvvNmgWzZ6dlgJIkqfoUO3N1EPj9GOPPyx9ScZy5ktTTbN0K8+bBsmVp1grgzDPT0r9rrkkN\nKyRJ0vHVwszVRmBAOQORpHrU0gKrVqWlf08+mcZCgIkT09K/Cy9Mx5IkqfoVu0/qVuCTIYSx5QtF\nqk65XK7SIagHevVVeOAB+OQn4Y47UmF1yikwalSOz34WPvYxuOgiCyuVj3+2KUvmm+pFsTNXnwBG\nAE+EEDby+m6BAYgxxlmlDk6Seprnn0+zVEuWpGdVAZx+epqlmjYtPbtqxIjKxihJkk5MsXuuckAk\nFVIdiTHGOSWMq0vuuZJUK2KEtWtTUbV2bdv4JZek/VTjxztDJUlSqVR9K/ZqZHElqdodPpxmoubP\nTzNWAH36wJQpaaZq9OjKxidJUk9UyeIq02dTSbXIdeLqrhdfhB/+EG65Bb773VRYDR0K73gH3H47\nvPe9nRdW5puyYq4pS+ab6kWne65CCLOAlTHG/fn3xxVjXFTMB4YQrge+DDQC34gxfrGT664GlgA3\nxhh/XMy9JalSYoRNm9Is1apVqQsgwPnnp6V/EyemBwBLkqSeq9NlgSGEFmBqjPHR/PvjiTHGLv/Z\nEEJoJD2E+E3AdmAZcFOMcX0H1z0AvAp8M8b4ow7u5bJASRV39CgsX56eT7V1axprbITJk1NRdc45\nlY1PkqR6U63PuZoLrC94XwrXAJtijFsAQgh3AzcUfE6rPwV+CFxdos+VpJLatw8WLoRFi9J7gEGD\nYNYsmD0bBg+ubHySJCl7nRZXMcZcR+9P0pnA1oLjbcCUwgtCCGeSCq65pOLK6SlVVC6Xo6mpqdJh\nqEo880yapVq+HJqb09iYMWmWavJk6N375O5vvikr5pqyZL6pXhT1nKsQwlPA22OMqzs4dznwkxjj\neUXcqphC6cvArTHGGEIIdN7+XZIy0dICK1emomrz5jTW0ABXXpmKqgsusJW6JEkq/iHCY4G+nZw7\nJX++GNuBMQXHY0izV4WuAu5OdRXDgbeGEI7GGH/a/mY333wzY8emjx4yZAgTJ0587acirV1pPPb4\nZI+bmpqqKh6Pszu++uomHnoI/v3fc+zfD6NHN9GvHwwdmmPiRLjhhtJ/vvnmsccee+yxx907bn2/\nZcsWKq3Yhwi/1tyig3N/DHw+xjisiPv0IjW0uA7YATxKBw0tCq7/JnBvR90CbWghqVyeey7NUi1d\nCkeOpLGRI9Ms1dSp0LezHzVJkqSKq8qGFiGE/xf484Khe0MIR9pd1g8YBtxdzIfFGI+FED4O3E9q\nxX5njHF9COGj+fN3dCd4KQu5XO61n5Co54oRHn88tVJft65t/LLL0gN/L7ssm6V/5puyYq4pS+ab\n6sXxlgU+DczLv38/qW367nbXHAbWAt8o9gNjjL8EftlurMOiKsb4wWLvK0kn4tAhWLIEFiyAnTvT\nWJ8+MG0azJkDZ5xR2fgkSVLtKHZZ4LeAv40xPlX2iIrkskBJJ2P37lRQPfwwHDyYxoYNSwXVjBnQ\nv39l45MkSSemkssCiyquqpHFlaTuihE2bkxL/1avTscA48alpX8TJ6YugJIkqXZV5Z4rSYnrxGvf\n0aPw6KOpqNqW70/aqxdcfXUqqs4+u7LxFTLflBVzTVky31QvLK4k9VgvvQQLF8KiRfDKK2ns1FNh\n9myYNSu9lyRJKhWXBUrqcbZsSa3Uf/1raG5OY2efnVqpT56cZq0kSVLP5LJASTpJzc2wYkVa+vdU\nvvVOQwNcdVVa+nf++dm0UpckSfXLrdtSFwqf/q3q88or8Mtfwl/9FXzjG6mw6t8f3vxm+Nzn4CMf\ngQsuqJ3CynxTVsw1Zcl8U71w5kpSTdq+Pc1SLV2aGlZAeibV3LkwZQr07VvZ+CRJUv1xz5WkmtHS\nAmvWpKJqw4a28csvT0XVJZfUzgyVJEkqD/dcSdJxHDqUHva7YAHs2pXG+vaFadNSUTVyZGXjkyRJ\nAvdcSV1ynXjlvPACfO97cMst8P3vp8Jq+HB45zvh9tvhppt6XmFlvikr5pqyZL6pXjhzJamqxAhP\nPJFaqa9Zk44BLrwwtVK/4orUBVCSJKnauOdKUlU4cgQefTTtp9q+PY317g1XX52W/o0ZU9n4JElS\nbXDPlaS6tXcv5HLw4INw4EAaGzwYmppg5kwYNKiS0UmSJBXPxTVSF1wnXnoxpudRff3r8IlPwH33\npcJq7Fj48Ifh85+Ht72tPgsr801ZMdeUJfNN9cKZK0mZOXYMVqxI+6m2bEljDQ0weXLaT3XuubZS\nlyRJtcs9V5LKbv/+tOwvl4OXX05jAwakZX9NTTB0aCWjkyRJPYl7riT1SNu2pVmqZcvg6NE0Nnp0\nmqW65hro06ey8UmSJJWSxZXUhVwuR1NTU6XDqBktLfDYY6mo2rgxjYWQWqjPnQsXX+zSv+Mx35QV\nc01ZMt9ULyyuJJXEq6/C4sWwYAHs3p3GTjkFpk+HOXPg9NMrG58kSVK5uedK0knZuTM9m2rJEjh8\nOI2NGJFmqaZPTwWWJElSVtxzJammxAjr16eias2atvGLL05F1eWXpy6AkiRJ9cTiSuqC68TbHD4M\nS5emouq559JY794wZUoqqs48s7Lx9QTmm7JirilL5pvqhcWVpC7t2ZPaqD/0UHrYL8CQIamN+syZ\nMHBgJaOTJEmqDu65ktShGGHz5jRLtXJl6gIIcN55aZZq0iRobKxsjJIkSe2550pS1Th2DJYvT63U\nn302jTU2pudSzZ0L555b2fgkSZKqlVvOpS7kcrlKh5CJffvgZz+D226Db34zFVYDB8Lb3gaf/zx8\n+MMWVlmol3xT5ZlrypL5pnrhzJVU5559Ni39W7YszVpBakxx3XVptqp378rGJ0mSVCvccyXVoZYW\nWLUqFVVPPpnGQoAJE9LSvwsvTMeSJEm1xj1XkjLx6qup49+CBakDIEC/fnDttTBnDgwfXtn4JEmS\napl7rqQu9IR14s8/D9/9LtxyC/zoR6mwOv10ePe74fbb4Z3vtLCqFj0h31QbzDVlyXxTvXDmSuqh\nYoS1a9PSv7Vr28YvvTQt/Rs/3qV/kiRJpeSeK6mHOXwYHnkkFVXPP5/G+vSBKVNSUTV6dGXjkyRJ\nKif3XEk6aS++mPZSPfQQHDyYxoYOTXupZsyAAQMqG58kSVJP554rqQvVvE48Rti4Eb76VfjkJ+GB\nB1Jhdf758JGPpOdTveUtFla1pJrzTT2LuaYsmW+qF85cSTXo6FFYvhzmzYOtW9NYY2Na+nfddXDO\nOZWNT5IkqR6550qqIS+/DAsXwqJFsH9/Ghs0CGbPhlmzYPDgysYnSZJUae65knRczzyTZqmWL4fm\n5jQ2ZkyapZo8GXr3rmx8kiRJsriSupTL5Whqasr8c1taYOXKVFRt3pzGGhpg0qTU9e+CC2yl3hNV\nKt9Uf8w1Zcl8U72wuJKqzIED8OCDkMvB3r1prF+/1PFvzhw47bSKhidJkqROuOdKqhI7dqRnUy1d\nCkeOpLFRo9Is1dSp0LdvZeOTJEmqBe65kupUjLBmTSqq1q9vG7/ssrSf6tJLXfonSZJUKyyupC6U\nY534oUOwZEl66O/OnWmsTx+YNi0t/TvjjJJ+nGqI+xKUFXNNWTLfVC8srqQM7d6dZqkWL04PDiBj\n+wAAGuNJREFU+wUYNiwt/bv2Wujfv7LxSZIk6cS550oqsxhh48ZUVK1enY4Bxo1LRdXEiakLoCRJ\nkk6ee66kHujoUXj00VRUbduWxnr1gquvTvupxoypbHySJEkqLX9eLnUhl8t16/qXXoJ77oFbb4Vv\nfzsVVqeeCr/92/CFL8DNN1tYqXPdzTfpRJlrypL5pnrhzJVUIk8/nWapfv1raG5OY+eck5b+TZ6c\nZq0kSZLUc7nnSjoJzc2wYgXMm5eKK0j7p668Mi39O+88W6lLkiRlyT1XUo155RV48EFYuBD27k1j\nAwbAjBnQ1JQ6AEqSJKm+uOdK6kLhOvHt2+Guu9J+qnvuSYXVGWfAe96T9lO94x0WVjo57ktQVsw1\nZcl8U72oyMxVCOF64MtAI/CNGOMX251/D/CXQAD2Ax+LMT6WeaAS0NKSWqjPnw8bNrSNX3552k91\nySUu/ZMkSVIF9lyFEBqBJ4A3AduBZcBNMcb1BddMA9bFGF/OF2KfjjFObXcf91yprA4dgocfhgUL\nYNeuNNa3L0yfDnPmwMiRlY1PkiRJb1Rve66uATbFGLcAhBDuBm4AXiuuYoxLCq5fCpyVZYCqby+8\nkAqqxYtTgQUwfHgqqKZPh/79KxufJEmSqlMliqszga0Fx9uAKce5/sPAL8oakepejGnJ3/z5sGZN\nOga46CI49dQcH/pQEw3uUFQGcrkcTU1NlQ5DdcBcU5bMN9WLShRXRa/lCyHMAT4EXNvR+Ztvvpmx\nY8cCMGTIECZOnPja/7itGyc99vh4x9OnN7F0Kdx5Z44XX4TRo5vo3RsGDsxx1VXwznc2kcvBokXV\nEa/HHnvscamOW1VLPB737ONW1RKPxz3ruPX9li1bqLRK7LmaStpDdX3++DagpYOmFlcAPwaujzFu\n6uA+7rnSCdu7F3K51E79wIE0NngwNDXBzJkwaFAlo5MkSdKJqrc9V8uBcSGEscAO4F3ATYUXhBDO\nJhVW7+2osJJORIzw1FNp6d+KFakLIMDYsemBv5MmQS+f/CZJkqQTlPk/JWOMx0IIHwfuJ7VivzPG\nuD6E8NH8+TuAvwGGAl8Jqcf10RjjNVnHqp7h2LFUTM2bB62zxQ0NMHlyKqrOPff4rdRzudxr089S\nuZlvyoq5piyZb6oXFfk5fYzxl8Av243dUfD+D4E/zDou9Sz798OiRbBwIbz8chobMABmzYLZs2Ho\n0MrGJ0mSpJ4l8z1XpeKeK3Vm69a09G/ZMjh6NI2NHp1mqa65Bvr0qWx8kiRJKp9623MllVxLC6xe\nnYqqjRvTWAgwYQLMnZtaqh9v6Z8kSZJ0siyuVNNefRUefjh1/tu9O42dckp62O+cOXD66Sf/Ga4T\nV5bMN2XFXFOWzDfVC4sr1aSdO9Ms1ZIlcPhwGhsxIs1STZ+eCixJkiQpS+65Us2IEdatS0XV44+3\njV9ySSqqxo9PXQAlSZJUv9xzJR3H4cOwdGlqpf7882msd2+YMiUVVWeeWdn4JEmSJAB/zq+qtWcP\n/OhHcOut8J3vpMJq6FB4+9vh9tvhfe/LprDK5XLl/xApz3xTVsw1Zcl8U71w5kpVJUbYvDkt/Vu5\nMnUBBDjvvDRLNWkSNDZWNkZJkiSpI+65UlU4dgyWL09L/559No01NsJVV6XnU40dW9HwJEmSVCPc\nc6W6tW8fLFwIixal9wADB8KsWTB7NgwZUtn4JEmSpGK550oV8eyz8K1vwW23wc9+lgqrs86C978/\n7ae64YbqKaxcJ64smW/KirmmLJlvqhfOXCkzLS2walVa+rdpUxoLASZOTEv/xo1Lx5IkSVItcs+V\nyu7VV+Ghh2DBgtQBEKBfP7j2WpgzB4YPr2x8kiRJ6jncc6Ue6bnnUkG1ZAkcOZLGRo5MBdW0aXDK\nKZWNT5IkSSoliyuVVIywdm1qpb52bdv4pZemVurjx9fe0r9cLkdTU1Olw1CdMN+UFXNNWTLfVC8s\nrlQShw+nGar582HnzjTWpw9MnZqKqjPOqGx8kiRJUrm550onZfduyOXSnqqDB9PYsGHQ1AQzZsCA\nAZWMTpIkSfXGPVeqKTHCk0+mWarVq1MXQIALLkizVFdeCQ02+ZckSVKdsbhS0Y4ehWXLUlG1dWsa\na2yEKVNSK/VzzqlsfOXiOnFlyXxTVsw1Zcl8U72wuFKXXn4ZFi6ERYtg//40duqpMGtWeg0eXNn4\nJEmSpGrgnit1asuWNEu1fDk0N6exs89OS/8mT4bevSsaniRJkvQG7rlS1WhuhlWrYN482Lw5jTU0\nwKRJqai64ILaa6UuSZIkZcG2AwLgwAG47z74q7+Cr30tFVb9+8Ob3wyf+xx89KMwblx9Fla5XK7S\nIaiOmG/KirmmLJlvqhfOXNW5HTvS0r+lS+HIkTQ2alSapZo6Ffr2rWx8kiRJUq1wz1UdihHWrElF\n1fr1bePjx6ei6tJL63OGSpIkSbXPPVfKxKFDsHgxLFgAL7yQxvr0gWnTUlE1alRl45MkSZJqmcVV\nD9fcnB74u3JlWvp38GAaP+00mDMHrr027a1S53w2h7Jkvikr5pqyZL6pXlhc9UBHjsC6danr32OP\npWYVrS68MM1STZiQugBKkiRJKg33XPUQr76aCqlVq2Dt2rbmFJCW+115ZXo21VlnVS5GSZIkqdzc\nc6UT8tJLsHp1WvK3cWPbg34Bxo5NBdXEie6lkiRJkrJgcVVjdu5Ms1MrV8LTT7eNNzTAxRenYmri\nRBg6tHIx9jSuE1eWzDdlxVxTlsw31QuLqyoXIzz7bCqoVq1Kz6Vq1bs3XHZZKqauuAIGDKhcnJIk\nSVK9c89VFWppgU2b0uzUqlWwZ0/buf79UyE1cWJ6HpUP+ZUkSZLauOdKHD2aHui7cmVqTPHKK23n\nhgxpW+534YXQ2Fi5OCVJkiR1zOKqgg4ehDVr0uzU44/D4cNt50aObGtIMXYshIrU3gLXiStb5puy\nYq4pS+abuhJjpDk209zSzLGWY697NcdmjjYfpTl2cK7d9c2xuesPKyOLq4y9/HJbh78nnnh9h79z\nzknF1JVXpg5/FlSSJEkqhdbipZjipH0h09zSzNGWo50WPse7X3eKo57APVcZ2LWrrcPfU0+lJhWQ\nOvyNG9e25G/YsMrGKUmSpBMTY+z2LEtnxUmxhUyxxVHrddWusaGRXg29Xns1hkZ6N/amMbQbb3dd\n67Wt728cf6N7rnqSGGHbtraCavv2tnO9e6dGFK0d/gYOrFyckiRJtaIlthRdSFSikKmF4qWr4qSj\nQqaj6zu7pndD79dd293iKPSAZVsWVyXS0gKbN7e1TN+9u+1cv35w+eVpud9ll9nhr9a4TlxZMt+U\nFXNN7bXEli6Lk/ZFR7HFyWNLH+PCqy58w327Uxy1xJZK/xZ1qTvFSftrOypOOitmTqQ46inFS7Wz\nuDoJx46lDn+rVqV9VPv3t50bPBgmTEgzVBddBL38nZYkqW7FGInEbs2ynGgh093lYq3XlrN42fH8\nDnY9u+uk7hFCOKFZls6Kk2ILmWKLo4bQYPEi91x116FDr+/wd+hQ27kRI9o6/J13ng0pJEnKSozx\ndTMvXRUS7YuUjq4rdmlZscVRtf+bqyE0dFqcFFt0dHZd+2u7Wxz1auhFIFi8qCg+56rK7d/f1uFv\nw4Y0Y9VqzJi2gmr0aAsqSVLPVNhprJhCorvFycksF2t9VbvW4qWYGZTuFDInsuG/o89vCA2V/i2S\nap7FVSd2725rSLF5c1uHvxBe3+Fv+PDKxqnyc1+CsmS+1a/jtUnuaClYdwqZjtoqr1u2jvOuPK+o\ne7Z+frVrPzNSjg33xe6T6eh+9Vy8+Geb6oXFVV6Mqatfa0OKrVvbzvXqBZdckoqpCRNg0KDKxSlJ\nOjGtbZKLLSROdLlYR4VMMbM8WRcvO/bu4NCuQ11fWKC7syzFFjKd7Wkpdpan9XqXjEmqtLrecxVj\neu7UypWpoNpVsM/ylFNg/Pi05G/8+HQsSepca5vkUs+ydHffS2efXwszLye64T6LtsoWL5JqhXuu\nMnTsGDzxRCqoVq+Gffvazg0alGamrrwSLr7YDn+SqktHbZKrqZCplTbJnRUnpe4c1t3iyOJFkmpf\nXZQPhw+nzn6rVqVOfwcPtp0bPrxt/9T550ND/S6HVidcJ14fCjuNdWdGpLPlXcUuF2t/z00rNjFm\nwpgOP7/ai5fCNsldFSftC5Qs2irbJvn1/LNNWTLfVC96bHH1yitpZmrVqvQsqqNH286deWZbh7+z\nzrLDn5SF1s36xc6ydLTvpRzLxQqvr4Zl0nsO7uGUAx2vQ27faaw7G+6LLXo62yfTVXHUWrxIklTP\netSeqxhh8WJ45BHYtAlaWlqvTc+dai2oRoyoQMBSmbVvk1zqWZbOru9OIVPtWpdmlaqtcXeXlh1v\nBqfeO41JklQs91yVwHPPwV13pbbpAI2NcNllbUv+Tj21svGp9nW3TXKpl4sd75612Ca5q0LiZAqZ\nzpaNHa+QsXiRJEknK/PiKoRwPfBloBH4Rozxix1c80/AW4FXgZtjjCs7u19zM9x/P/z856lZxeDB\n8Pa3p4KqX79yfRcqh/ZtkrsqJE50lqW7hcyWVVsYNX5UTRQvJzIj0tnm/GKXi3WnOHK/S9fcl6Cs\nmGvKkvmmepFpcRVCaAT+BXgTsB1YFkL4aYxxfcE1bwMuiDGOCyFMAb4CTO3ofs88A9/+Nmzblo5n\nzIDf+z3o37/M30iNOl6b5HIsFyu2OGp9Vetm/eeefI4Rl6a1pN0pTk62c1h3iyOLl55h1apV/gNE\nmTDXlCXzTfUi65mra4BNMcYtACGEu4EbgPUF1/wO8O8AMcalIYQhIYSRMcad7W92++1pX9WIEfDe\n96b26Vlrv0m/owdHHm+sowdVdnfseEVR4bXVWry0Kuw0lkXnsGKLoy8s+wKf+c3P2GlMmXjppZcq\nHYLqhLmmLJlvqhdZF1dnAlsLjrcBU4q45izgDcXV3sYNTLm2hVmzmznUu5kVz6WZmVIUKd0ZqxWt\nnca62zmsmOvaX9vd4qhXQy8CoSqLl9aYJUmSpOPJurgqtjVh+39hd/h1DdO/xIZBsGHVyQV1sjpq\nWdzdsfbFSFfXti9Uihlzs/6J2bJlS6VDUB0x35QVc01ZMt9ULzJtxR5CmAp8OsZ4ff74NqClsKlF\nCOGrQC7GeHf+eAMwu/2ywBBCbfaQlyRJklRW9dKKfTkwLoQwFtgBvAu4qd01PwU+DtydL8Ze6mi/\nVaV+wyRJkiSpI5kWVzHGYyGEjwP3k1qx3xljXB9C+Gj+/B0xxl+EEN4WQtgEHAA+mGWMkiRJknQi\nMl0WKEmSJEk9lR0O1GOEEMaEEBaEENaGEB4PIfyP/PiwEMIDIYSNIYRfhRCGFHzNbSGEJ0MIG0II\nby4YvyqEsCZ/7h8LxvuGEL6XH38khHBOwbkP5D9jYwjh/QXj54YQlua/5u4QQu/y/24oKyGExhDC\nyhDCvflj801lkX80yQ9DCOtDCOtCCFPMN5VDPnfW5vPku/ncMNdUEiGEfwsh7AwhrCkYq9r8CiH8\nU358dQjhyi6/wRijL1894gWMAibm3w8EngAuAf4e+Mv8+C3A7fn3lwKrgN7AWGATbbO5jwLX5N//\nArg+//7/Af41//5dwN3598OAzcCQ/GszMDh/7vvAjfn3XwH+uNK/V75Kmnd/DnwH+Gn+2HzzVa5c\n+3fgQ/n3vYDB5puvMuTZWOApoG/++HvAB8w1XyXMsZnAlcCagrGqzC/gbcAv8u+nAI90+f1V+jfY\nl69yvYB7gDcBG4CR+bFRwIb8+9uAWwquvw+YCpwBrC8Yfzfw1YJrpuTf9wJ25d/fBHyl4Gu+mv+6\nAOwCGvLjU4H7Kv1746tkOXYW8N/AHODe/Jj55qscuTYYeKqDcfPNV6lzbRjph5ND83lwL/Ab5pqv\nEufZWF5fXFVlfgF3AO/qKM7OXi4LVI8UUkfKK4GlpP8JWjtO7gRG5t+PJj2kutU20kOs249vz49D\nwUOuY4zHgJdDCKcd517DSB0vWzq4l2rfl4D/BbQUjJlvKodzgV0hhG+GEFaEEL4eQhiA+aYSizHu\nAf4BeJbU2fmlGOMDmGsqr2rNr9Gt9yr4mrOO941YXKnHCSEMBH4E/M8Y4/7CczH92CGrLi52i+nB\nQgi/BbwQY1zJGx98DphvKqlewCTSUpdJpG66txZeYL6pFEII5wN/RppZGA0MDCG8t/Aac03lVIX5\n1f7v+ON+jcWVepT8BsQfAXfFGO/JD+8MIYzKnz8DeCE/vh0YU/DlZ5F+IrGd1/9UonW89WvOzt+r\nF2mt7osd3GtMfmwPMCSE0FBwr+0n+W2qOkwHfieE8DTwn8DcEMJdmG8qj23AthjjsvzxD0nF1vPm\nm0psMrA4xvhi/qf+PwamYa6pvKr1786OPv+4uWdxpR4jhBCAO4F1McYvF5z6KWkzLvlf7ykYf3cI\noU8I4VxgHPBojPF5YF9InbgC8D7gJx3c6/eBefn3vwLeHFI3r6Gk9en353/6sgB4ZwefrxoWY/xE\njHFMjPFc0prt+THG92G+qQzyebI1hHBhfuhNwFrSfhjzTaW0AZgaQuiXz5E3Aesw11Re1fp350+B\n9wOEEKaSlg+2Ll/sWKU3tPnyVaoXMIO092UVsDL/up60lva/gY35/7GGFHzNJ0idZzYAbykYvwpY\nkz/3TwXjfUkdZZ4EHgHGFpz7YH78SeADBePnkvZ+PUnqutS70r9Xvkqee7Np6xZovvkqV55NAJYB\nq0mzCYPNN19lyrW/JBXva0hdKnuba75KmF//SdrPd4S0n+mD1ZxfwL/kP2M1MKmr78+HCEuSJElS\nCbgsUJIkSZJKwOJKkiRJkkrA4kqSJEmSSsDiSpIkSZJKwOJKkiRJkkrA4kqSJEmSSsDiSpJ6iBDC\nzSGElhDC3hDCkHbneuXPfaoCcX06/9lV/XdOCKEhhPDlEMJzIYTmEMKPKx2TJKm2VPVfdJKkEzIY\nuKWTc5V6uGEtPFTx94H/AXwRmE56kKokSUWzuJKknudXwJ+GEE6vdCAFQllvHkLfEtzmkvyv/xhj\nXBpj3NSNz28MITSWIAZJUg2zuJKknudz+V8/ebyLWpfrdTD+rRDC0wXHY/PL+v44hHB7COH5EMK+\nEMJdIYT+IYSLQggPhBD2hxCeDCG8r5OPvDSEsCCEcCCEsCOE8JkQwuuKrhDCiBDCV0MI20IIh0II\n60MIf9TumtbljzNDCD8IIewFHunie70+hLAkhPBqCOGlEMJ/hRAuLDi/BWhdMtmcv//7j3O/lhDC\n50IIt+Z/rw4D4/Pn3htCWB1COBhC2BVC+HYIYVTB1/5zCOHJdvf7df6e5xeM/V0I4fmC47eEEBbn\n498fQtgQQvjr433fkqRsWVxJUs/zHPAvwEdCCGd3cW1ny/U6Gr8NGAm8D/gb4F3AN4D/An4C/C7w\nGPCtEMKlHXz9PaRZtRuA7wJ/nb8PACGEU4GHgOtJhc7bgHuBr4QQPt7B/b4DbAZ+j86XQRJCuB74\nObAPuBH4GKkQeiiEMDp/2e8C38q/n5p//aKze+bdDLwV+PN8rM+FED4CfBtYC7wduBV4C7AwhDAg\n/3XzgfNDCGPy8Q0FJgKvAnML7j8XWJC/5jzgp/nv90bgt4H/A/TvIkZJUoZ6VToASVLJRdK+oY+S\nipQPH+fazpbrdTT+ZIzxg/n3D4QQZgLvBt4bY/wupBkY4HdI+5f+tt3Xfy3G+Pf59/+dL6b+IoTw\npRjjPuB/AmcD42OMm/PXzc835/hUCOFfY4yFM20/iDHeepzvrdXngE3AW1u/PoSwBNgI/AXwFzHG\nVSGEHQAxxkeLuGerN8cYD+fv2Qh8FlgQY/yD1gtCCBuAB4EPAf8MLCT9N2oC7gJmAy8DPwbmAF8P\nIQwErgK+mb/NJKA38LEY4yv5sVw34pQkZcCZK0nqgWKMe4F/AN5fuPztJP2y3fET+V/vL/jcl4AX\ngLM6+Prvtzv+HjCQ/HI60ozVI8CWfHfDXiGEXqTZrtOA9rNh/9VVwPnZoiuB7xUWZjHGLcDDpMLm\nRN3XWljlXQSMIM2ovSbG+DDwTOtnxRj3AKuB6/KXzCUVSv9NKq4AZpF+ALogf7wSOAp8L4Twe1W2\nn06SlGdxJUk915eAPaQZpFJ069vb7vjIccZP6eDrd3ZyfGb+19NJBcjR/D1aX98nxX9au69/roiY\nh5Jm4Tq6dicwrIh7dKb9PYd1Mt76WUMLjhfQVkjNyR8vAEaGEC7Jj22PMT4JkJ/Jewvp7+27SEsQ\nl4QQZp1E/JKkErO4kqQeKsZ4APgC8E7Snp72DkF6Bla78dMoT+v0Ue2OR+Z/3Z7/dTdpNmlyB6+r\ngV+3+/piYtybv679Z7fG82IR9+hM+8/fk//1jE4+a0/BcQ4YE0KYRpqRmx9j3AmsJ81kvbbf6rUP\nizEXY3wrqdX+m4BjwM9DCO2LTklShVhcSVLP9q+k4uXvOjj3TP7Xy1sH8vubppcplhvbHb8b2A+s\nyR/fR2qHvjXGuKKD1yt0U77A/DVwY+FDjEMI55C+z9wJfB+d2UCaoXp34WAIYTppL1nhZy0Emkmz\nirtijGvz4/NJDTom0K64ahVjPBpjXAD8b2AAMLZk34Ek6aTY0EKSerAY45EQwt8CX+vg9C9IjRS+\nHkL4FGkp31+SCp6TeS5VZ1/7h/kCZzlpiduHgU/FGPfnz3+J1IHwwRDCl0gNJwYAFwMzYoy/e4Lx\n/DWpW+DPQghfIe3z+gxpVusfTvCebxBjbAkh/A1wRwjhLtLeqzNJhe1G4N8Krt0XQlhB2ndVuBdt\nAfAnpFmx+a2DIYQ/BmaS/pttA4aTujduBx4v1fcgSTo5zlxJUs/S0VK5bwJPtj8XY3wZ+C2ghfQP\n/L8D/pH0D/xiltzFTq5rP9Z63Q3Ab5Datv8B8NkY42cL4tlHmk36Bam1+n3AnaS24/M7uGdRYoz3\nA78JDCE10fgKqVX6jBjj84WXdue+nXzW10mt6i8ntZ7/Iqnhx+wY48F2l7f+Ps/vYOyZGOMzBeOr\nSIXmF/L3+2dSW/a57ZpqSJIqKMRYjmX1kiRJklRfnLmSJEmSpBKwuJIkSZKkErC4kiRJkqQSsLiS\nJEmSpBKwuJIkSZKkErC4kiRJkqQSsLiSJEmSpBKwuJIkSZKkErC4kiRJkqQS+P8BCETaKHSkNQEA\nAAAASUVORK5CYII=\n", + "text": [ + "" + ] + } + ], + "prompt_number": 26 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It looks like that the benefit of calculating the sums separately for each column becomes even larger the more rows the DataFrame has." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Another question to ask: How does this scale if we have a growing number of columns?" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import timeit\n", + "import random\n", + "from numpy import einsum\n", + "import pandas as pd\n", + "\n", + "def run_loc_sum(df, n):\n", + " return df.loc[:, 0:n-1].sum(axis=0)\n", + "\n", + "def run_einsum(df, n):\n", + " return [einsum('i->', df[col].values) for col in range(0,n-1)]\n", + "\n", + "orders = [10**i for i in range(2, 5)]\n", + "loc_res = []\n", + "einsum_res = []\n", + "\n", + "for n in orders:\n", + "\n", + " df = pd.DataFrame()\n", + " for col in range(n):\n", + " df[col] = pd.Series(range(1000), index=range(1000))\n", + " \n", + " print('n=%s (%s of %s)' %(n, orders.index(n)+1, len(orders)))\n", + "\n", + " loc_res.append(min(timeit.Timer('run_loc_sum(df, n)' , \n", + " 'from __main__ import run_loc_sum, df, n').repeat(repeat=5, number=1)))\n", + "\n", + " einsum_res.append(min(timeit.Timer('run_einsum(df, n)' , \n", + " 'from __main__ import run_einsum, df, n').repeat(repeat=5, number=1)))\n", + "\n", + "print('finished')" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "n=100 (1 of 3)\n", + "n=1000 (2 of 3)" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "n=10000 (3 of 3)" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "finished" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n" + ] + } + ], + "prompt_number": 35 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from matplotlib import pyplot as plt\n", + "\n", + "def plot_2():\n", + " \n", + " fig = plt.figure(figsize=(12,6))\n", + " \n", + " plt.plot(orders, loc_res, \n", + " label=\"df.loc[:, 0:n-1].sum(axis=0)\", \n", + " lw=2, alpha=0.6)\n", + " plt.plot(orders,einsum_res, \n", + " label=\"[einsum('i->', df[col].values) for col in range(0,n-1)]\", \n", + " lw=2, alpha=0.6)\n", + "\n", + " plt.title('Pandas Column Sums', fontsize=20)\n", + " plt.xlim([min(orders), max(orders)])\n", + " plt.grid()\n", + "\n", + " #plt.xscale('log')\n", + " plt.ticklabel_format(style='plain', axis='x')\n", + " plt.legend(loc='upper left', fontsize=14)\n", + " plt.xlabel('Number of columns', fontsize=16)\n", + " plt.ylabel('time in seconds', fontsize=16)\n", + " \n", + " plt.tight_layout()\n", + " plt.show()\n", + " \n", + "plot_2()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAGpCAYAAABhxcywAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8VUX+//HXJIQWQhHpBEJTirTQEZCyYC8sioqCwYar\ngq4rILoKiIKF9YdtXRtlFRYXRWX1qyCGEEBUOiIgQaqEKk16m98fc+9NDzch996U9/PxyCOcOefM\nmXPvhNxP5jNzjLUWERERERERuTBhoW6AiIiIiIhIYaDgSkREREREJA8ouBIREREREckDCq5ERERE\nRETygIIrERERERGRPKDgSkREREREJA8ouBIRKSKMMZONMeeMMbVC3ZZgMcYkGGPOhbodIiJSNCi4\nEhG5AJ5gJfXXGWPMXmPMt8aY20Pdvkzkq4cbGmOijTEvGGOWGWMOGGNOGWN2G2O+McYMMcaUzYPL\n5Kt7DgRjTBtjzFRjzFZjzAljzCFjzEZjzP+MMUONMaVD3UYRkaKgWKgbICJSCFhgtOffEUAj4Eag\nmzGmtbX2byFrWUYm1A3wMsbcC7wBFAdWAlOBA8BFwOXABOBpoFKo2lgQGGPuBKbg+mE88AlwHIgB\nOgHXeMo2haiJIiJFhoIrEZE8YK19NvW2MaY78A3wqDHmNWvt1tC0LH8yxtwBvAPsB/pba7/K5Jh2\nwJvBbltB4hmRehM4C1xprZ2XyTHtgd+D3TYRkaJIaYEiIgFgrY0HfsGNFLUGMMbcZIz50BizwRhz\nxPO11Bgz2BiTYUQp1Ryp2saYQcaYn4wxx40xu4wxb2eVMmeM+ZMxZoEx5qgx5ndjzKfGmIZZtdUY\nE2eM+cQYs8kYc8yTUrbQEwBldnxdY8w7nrSzY55rrDbGvGWMueh8r40xJgp4DTfScltmgZXnNfwB\n6JjJ+T2MMV8bY/Z7UuB+McaM8zeF0HO/54wxd2Wx/5wxZl66slGe8iuMMbd73rejxphkY8w/jDHF\nPcf9yRgz3xhz2JPm+EFmr4kxZosxZrMxprQx5mVjzDbPvSQZY4b5cx8elwFRwJrMAisAa+331tpD\nqa4d47mXSVncf4Z5asaYrp5zRhpjWnte/4Oee/zEGBPtOa6eMeYjT2rsMWPMPGNMs0yuUcUYM97z\n3h3x1LPeGDPJGFMnB/cvIpKvaORKRCRwvAGTd87PONwIw2JgB1AO6AG8CrQBBmRRz8tAL2AW8DXQ\nHbgPqO85P+WCxtwMfASc8HzfCXQGvgNWZ1H/P4E1QILn+ItxqWQfGGMutdY+k6r+asAS3Af6L4EZ\nQEmgLnAn8DpuNCo7NwMVgMXW2rnZHWitPZXu/gYBbwF/eK69B+gGDAeuN8ZcnjqQOI/s5mJltW8w\ncDXwKTAPuBL4K1DJGDML+BD4AvgXLrXxDqAi7vVMX38EMAeohnstzwC9gReMMSXTj4ZmYZ/ne3Vj\nTGlr7TE/zkndhpzua4N7rRNwI4/NcG1uaozpDSQCPwOTcWmJfwa+McbUtdYeBd9o2yJcn5kDfI77\nWYkBbsC9r5tzcB8iIvmHtVZf+tKXvvSVyy/gHHA2k/I/efadAaI9ZXUyOc7gPoieA9qm2+ct3wLU\nTFUeDsz37GuTqrwMLv3rJBCbrq5XvG0FaqXbl1m7IoC5wCmgeqrywZ56BmdyTimgpB+v2fueOp7N\n4Wtd23NvB4FL0u1701Pn2+nKE9K/P0Cc59gB2byn8enKRnnKDwCXpiovjgtMz+KCys7p3ts5nvOa\np6tvi6f8C6BEqvJKnmscAIr5+br84KlrBfAg0AIons3xMZ7jJ2axP7PXrKvnnHPA7en2vecpPwiM\nSLfv7559Q1KVXe8p+0cm1y4GlLnQn0t96Utf+grVl9ICRUQunPGkS40yxjxvjPkYN8JkgQnW2u0A\n1toMf4231lpcihy40anMPGut/S3VOWcBb0pXm1TH3YgbEZpmrV2ero5RwOHMKs+iXadxI1rFSDs6\n5h3ROJHJOcettRnKM1HN8/23bI/K6E5c0PeGtXZDun1PAUeAO70pegHymrX2F++GdSNrH+ECqVnW\n2gWp9lncSBa4EZ70LC7oOJnqnL24EcpywCV+tulmXEDUHLdAyHLgiDHmB2PMME8aZl5ZYK39T7qy\nKZ7vvwMvpNv3b8/35pnUlVkfOmOtPXJhTRQRCR2lBYqI5I2Rnu8WN+owH3jfWjvNe4AxpiIwFJci\nVhdIvzx2jSzqXppJmTcwqZCqLNbzfX76g621h40xK4Eu6fcZ99yr4bggKho3ApVa9VT/ngWMBd40\nxlyJG5lZaK1dm0Xb85L3/uLT77DWHjTGrMClQDYk6xTIC5XZe7HT831ZJvuSPd9rZrLvkLU2sxX8\ntnu+V8hkXwae4L27Z15dT6AV0BYXeLcBHjTGdLXWbvGnvvPI7v5XegLK1DK7/wRcWuwTxphY4Ctg\noed8PZNMRAo0BVciIhfOWmvDszvAGFMeN1cpBpfGNRmXRnYG9yH6EaBEFqcfzKTsjOd76uuW83zf\nnUU9uzJpV13gR6A8br7M18AhXJpbHeCu1O2y1m4zxrTFjYRdhZtTgzFmOzDeWvt6FtdOzfthPLOA\nIzve+9uZxf6d6Y4LhMzmc53xY19EJvsye19Tn5Ntn0rPWrseWO/dNsZcCkwEOgD/Dzc36kLl6P6t\ntWeMW6slIlXZH8atYDgaN8fqSs+ufcaYfwLPWWvPpK9LRKQgUHAlIhIc9+ICq1E247LtHXDB1YXy\nfritksX+qpmUPYZ7rlSctfbfqXcY9xDkDCvqeT7E32aMCcele/0JNxfrVWPMUWvtxPO0cwEwEDdS\n9sx5jk3Ne3/VgHWZ7K+W7riseEdHMvwO9ATBhYK19hdjTH9gI27RD68s798j4K+BtXYH7mcCY0xj\n3CItD+H6Qxg56xciIvmG5lyJiARHfc/3TzLZd0UeXcObltY1/Q5jTDncQgfp07bqe8py3C5r7Vlr\n7XJr7UvA7Z7iG/1o58e4UbsOxpge2R2Ybv6Udx5Z10yOK4+7v+NkHnildsDzvVYm+1qf59yCxjt/\nKfVS/977j05/sGc5e3/neuUJa+1aa+0buJRG8K8PiYjkSwquRESCw7toROoRBIwxLYEReXSNz3Ef\nnPsZY1ql2zcKyOw5UJtxH7zTt+tKPCML6cpjPYFaet5RsfMuBe5ZsGCIZ/MjY0ymC3l4RvR+SFX0\nIXAaGGyMqZfu8DG45eE/9CzGkZ0luNGbfsYY3/wyz/OoXjpf+/MTzzOrhmT2jC/j8vGe8mwmesut\ntX/g0gc7GWMapTo+HLeqZMkAt7mxMSaz0VW/+5CISH6ltEARkeD4N24xiwnGmG64VK0GwLW4UaPb\nLvQC1tqjxpj7cavXLTDGfISbZ9UJaIL7gJ1+QYt/4lL0ZnhWOdyJezDtlcB/gVvTHT8AuN8YsxDY\nhAvm6uGW1z4BTPCzrdM8gc0bwNeexTYWe+qriJsn1AzYm+qcrcaYR3HLri83xvwX95ynK4D2uBGr\n4ZlcLs0Dmq21u4wxU4H+wEpjzP/hAs+rcYuBtPDnHvKJ8rjX/CVjzCLcM6b+ACrjUu3q4Obg/S3d\neS/jlsRf5HnfT+AC7HBgFZmv7pdXegEvG2O+A5JwzyqriRuxOutpm4hIgaTgSkQkCKy1O40xnXFL\nVXfCBS/rgL8A35J5cGXJ/kGvmV3nE2PMVbjVC/viPjQn4oKPEbjV9FIf/5Mn2HsOF+gVA1biFj84\nRMbgahru2U4dcavSlcKtXDgN99wiv1cNtNa+b4yZDTyMSwnrB0TiAqw1wKO4BRlSn/OWMWYj8DjQ\nB7fi4jbciNNYa2365eazeg3vwwUdt+OeDbUV9zDn8Zncc3b1nG9fVs73AF9/61uLe6964d7jvrg5\ndEdxAfxU4FVr7e9pLmDtJM/I1mO4gHk/buTzKVywn9P7yYmvcSmJXXALWpTFrSo4G3jFWvt9AK8t\nIhJQJuOqqQG+oPulPwH317H3rLUvZnFcG9xfMW+11n7iKduCe07LWeC0tbZtUBotIiIiIiJyHkEd\nufLkc7+BW1lqB7DEGDPLWrsuk+NexP11KzULdLXW7g9Ge0VERERERPwV7AUt2gIbrbVbPBOOp5P5\nqkCDcatJ7c1kn8mkTEREREREJKSCHVzVIOXJ8+Dy9GukPsAYUwMXcL3lKUqdt2iBucaYpcaY+wLZ\nUBERERERkZwI9oIW/kzwmgA8Ya21nsm2qUeqLvdMCq8EfGOMWW+tXRCQloqIiIiIiORAsIOrHaR9\naGE0bvQqtVbAdBdXcTFwtTHmtLV2lrV2J4C1dq8x5lNcmmGa4MoYE9wVOkREREREpMCx1ub5dKNg\nB1dLgQbGmBjcsqu34pbB9bHW1vX+2xgzCfiftXaWMaY0EG6t/cMYE4lbdnZ0ZhcJ9gqIUvjFxcUx\nefLkUDdDihj1OwkF9TsJNvU5CQXPQE6eC2pwZa09Y4x5GPcsi3DgfWvtOmPMIM/+t7M5vSow0/NC\nFAOmWmvnBLrNIgAxMTGhboIUQep3EgrqdxJs6nNSmAT9IcLW2q+Ar9KVZRpUWWsHpvr3JqBFYFsn\nIiIiIiKSO8FeLVCkQCpfvnyomyBFkPqdhIL6nQSb+pwUJgquRPzQooUGTSX41O8kFNTvJNjU56Qw\nMYVt8QdjjC1s9yQiIiIiInnHGFMoVgsMqUCtCiIiIpIV/cFPRKToKFLBFeiXnIiIBE9B/KNeQkIC\nXbt2DXUzpAhRn5PCRHOuRERERERE8kCRmnPlya0McotERKSo0u8dEZH8KVBzrjRyJSIiIiIikgcU\nXImIiIhPQkJCqJsgRYz6nBQmCq5ERERERETygIKrAuq6665j4MCBvu1jx45x8803U758ecLCwti2\nbVua4xMSEggLC2P//v15cn1vfWFhYVxzzTV5Umd+MmrUKN/9/eMf/wh1czJ15swZGjZsyPz58/Os\nzi1bthAWFsby5cvzrM6cWLVqFdHR0Zw4cSIk1xcRtGqbBJ36nBQmCq4KKGNMmiV+J06cyIIFC1i0\naBG7du2iZs2aQWnH2rVr+c9//pMndY0aNYoaNWpQunRpunXrxtq1a/Ok3vR27dpFv379aNSoEcWK\nFUsTpHoNHTqUnTt3UrNmzXy7lPLkyZO5+OKLueKKK/Kszlq1arFr1y6aN2+eZ3WmduDAAfr370/5\n8uUpX748AwYM4NChQ779zZs3p2XLlrz++usBub6IiIjImTOBq1vBVSGxceNGGjVqRJMmTahcuTJh\nYcF5aytXrky5cuUuuJ4XX3yRV155hTfeeIMlS5ZQuXJlevbsyZEjR/KglWmdPHmSSpUqMWLECNq1\na5dp8BQZGUmVKlUIDw/P8+vnlTfeeCPTwPBChIWFUbly5YDdd79+/Vi5ciWzZ8/m66+/Zvny5fTv\n3z/NMQMGDOCtt94KyPVF5Pw0/0WCTX1OguXgQZg1C0aMCNw1FFwVAMeOHSMuLo6oqCiqVq3KuHHj\n0uzv2rUrr732GomJiYSFhdG9e3e/6p05cyZNmzalZMmS1KpVi7Fjx6bZf+rUKZ588kliYmIoWbIk\n9erVC8iIgrWWCRMmMGLECHr37k2TJk2YMmUKf/zxB9OmTcvyPG9qYnx8PO3atSMyMpI2bdqwYsWK\nbK9Xu3ZtXn31VQYMGMBFF110QW3/6aef6NGjB+XKlSMqKooWLVr4fklkloqZPu3Oe8zXX39NbGws\npUuXpkuXLuzYsYP4+HiaNWtGVFQUN9xwAwcOHPDVs3btWlavXs0NN9yQpj1PPPEEDRs2pHTp0tSp\nU4fhw4dz8uRJ3/6ePXvSs2dP3/aRI0do0KABgwcPzrR9p0+fZsiQIdSoUcPXT0bk8n+kdevWMXv2\nbN555x3atWtH+/btefvtt/niiy/YsGGD77hrrrmG3377jcWLF+fqOiIiIiJe1sKvv8K778KTT8KX\nX8Lhw4G7XrHAVV0wDRoUmHrffjv35z7++OPMnTuXmTNnUr16dUaPHk1iYiJ9+vQB4NNPP+Xxxx/n\nl19+YebMmRQvXvy8dS5btoy+ffvy9NNPc8cdd/Djjz8yaNAgypYty8MPPwzAXXfdxcKFC3nttddo\n2bIlv/32G1u3bs223oSEBLp3705CQgJdunTx6/42b97M7t276dWrl6+sZMmSdOnShe+++477778f\ngLi4OObPn8/mzZvTnP/kk0/y0ksvUbVqVR555BHuuOOOgKUUptevXz9atmzJW2+9RbFixfjpp58o\nWbJkjusZNWoUr7/+OmXLlqVfv3707duXEiVK8P777xMWFsYtt9zC6NGjmTBhAgCJiYlER0dTqVKl\nNPWUKVOGSZMmUaNGDX7++WceeOABSpQowbPPPgvAv//9b5o1a8b48eN5/PHHGTJkCCVLlmT8+PGZ\ntuu1117js88+46OPPiImJobt27enCYQeeOABpk6dmu29rVu3jpo1a7J48WLKlClDhw4dfPs6duxI\nZGQkixcv5pJLLgGgdOnSNGnShPnz56c5VkSCQ/NfJNjU5yQQTp+GpUshPh68SxGEhUGrVtCtG7zz\nTmCuq+Aqnzty5AgTJ05k0qRJvhGHSZMmpZlTVaFCBUqVKkVERASVK1f2q95XXnmFrl27MnLkSADq\n169PUlISL774Ig8//DBJSUl89NFHfP31176gJyYmhk6dOmVbb2RkpG/kxF+7du0CoEqVKmnKK1eu\nTHJysm+7evXq1K9fP8P5Y8aM8c07euaZZ+jUqRPJyclUr17d7zbk1rZt2xg6dKgvMKhbt26u6hkz\nZgyXX3454AKWwYMHs3z5clq0aAG4QPfjjz/2HZ+UlETt2rUz1PP3v//d92/vKNM//vEPX3BVrVo1\n3nvvPW699VYOHTrEtGnTWLJkCSVKlMjy/i655BLf+16zZs00Ac+YMWMYNmxYtvdWrVo1wL3P6YNB\nYwyVK1f29YHUbU8dxImIiIj448ABmD8fFiwA7+ySMmWgc2e44gqoUCGw11dwlc6FjDAFwq+//sqp\nU6fSfKCNjIykadOmF1Tv+vXrue6669KUXX755YwePZojR46wYsUKwsLC6NatW47qbdOmTZ6OGqWe\nD5U+bdGrWbNmvn97P8jv2bOH6tWrU6ZMGV8d/fv355///GeetQ3gscce495772XKlCn06NGDPn36\ncOmll+a4ntT34A2QU7/HlStXZs+ePb7tw4cPExkZmaGejz/+mAkTJvDrr79y5MgRzp49y7lz59Ic\nc+ONN3L77bfz/PPP8/LLL2fbl+Li4ujZsyeXXHIJvXr14pprruHqq6/2vaaVKlXKEDDlhaioqDQL\nXYhI8CQkJGgkQYJKfU4ulLWwcSPMmwcrVoD3o0+tWtC9O7RuDRERwWmL5lwVUNbagNUR7NXxqlat\nCsDu3bvTlO/evdu3LzsRqX5avG33BhSrV69m1apVrFq1yjd6k5dGjhzJ2rVruemmm/juu+9o1qwZ\nkyZNAvAtKpL6dT59+rTf95B6UQljTJogqVy5chkW+/j++++5/fbbufrqq/niiy9YuXIlzz33HKdO\nnUpz3IkTJ1iyZAnFihUjKSkp2/tr2bIlW7ZsYdy4cZw7d4677rqLnj17+u7pgQceICoqKtuv3377\nDXDv8969e9PUb61lz549Gd7nw4cPUyHQf1oSERGRAu30aVi0CJ5/HsaPh2XLXHnr1jBsmJtj1aFD\n8AIr0MhVvlevXj0iIiJYvHgxMTExABw9epQ1a9bQoEGDXNfbqFEjFi1alKZs4cKFREdHExkZSYsW\nLTh37hzx8fFceeWVF3IL51WnTh2qVq3KnDlzaNWqFeACgIULF2Y5F8hfuU3Ty4n69eszePBgBg8e\nzIMPPsh7773HwIEDfSM6ycnJVKxYEYCVK1fm2TVnzJiRpmzRokXUqFGDp556yle2ZcuWDOcOHTqU\n06dPM2fOHK688kquvfZarr/++iyvVaZMGfr06UOfPn2Ii4ujffv2/Prrr9SvXz9HaYEdOnTgyJEj\nLF682DcSu3jxYo4ePUrHjh3TnLN161ZfmqSIBJdGECTY1Ockp/bvd6l/CxempP5FRUGXLu6rfPnQ\ntU3BVT5XpkwZ7rnnHoYPH06lSpWoVq0azz77bIZUr/RGjBjBkiVLmDt3bqb7//a3v9GmTRtGjx7N\n7bffzpIlS3jllVd8KxFecskl9O3bl3vvvZdXX301zYIWd955Z5bX/fHHHxkwYAAffPABbdq08ese\njTE8+uijjB07loYNG9KgQQOee+45oqKi6Nevn9/3lBPeIOfQoUOEhYWxcuVKihcvTuPGjbM9r0eP\nHrRr146xY8dy/PhxHn/8cfr27Uvt2rXZvXs3CxcupH379oALgKKjoxk1ahQvvPACmzdv5rnnnrvg\ntgN07tyZBx98kL179/qCuEsvvZQdO3Ywbdo02rdvz+zZs5k+fXqa87766iveeecdFi5cSJs2bRg1\nahT33nsvq1evzjDnDdzcvOrVq9O8eXMiIiKYOnUq5cqV8835y0laYKNGjbjqqqsYNGgQ77zzDtZa\nBg0axPXXX5/mDwXHjh1j7dq1fi+IIiIiIoWftZCU5FL/Vq5MSf2rXdul/rVqFdwRqqwouCoAxo8f\nz9GjR+nduzeRkZEMHjyYY8eOpTkm/UOFd+3axaZNmzIc49WyZUtmzJjByJEjGTt2LFWrVmXEiBE8\n9NBDvmP+/e9/8/TTTzNkyBD27dtHzZo1eeyxx7Jt67Fjx0hKSuL48eO+slGjRp03IBw2bBjHjx/n\noYce4sCBA7Rv3545c+akmVd0vnvKriy92NhY37HWWv73v/8RExOTof70Nm3a5FtIolixYhw8eJC4\nuDh27txJxYoVuf76632jbREREUyfPp0HH3zQ93DccePGZRgl8uce0r+/TZo0oWnTpnz++efce++9\nAFx33XUMHTqURx99lOPHj3PllVfy7LPP+t7TvXv3cvfdd/P000/7At8nnniC2bNnc/fdd/Pll19m\nuHbZsmV5+eWXSUpKwhhDbGwsX331Va5WRASYNm0agwcP9o2G3njjjbzxxhtpjvnyyy+Jjo7WSoEi\nIaL5LxJs6nOSnVOn4McfXVDlmWlAeDi0aeOCqjp1IMgzWrJl8mLuTn5ijLHZzSUqbPcbKt4l1/fu\n3etLecvKXXfdxZ49e/jqq6+C1Lq8ExMTw5AhQ84bVIbCe++9x6RJkzKkdxZ0119/PV26dGHo0KGh\nborIBSuIv3f0QVeCTX1OMvP77ympf0ePurKyZd2qf3mR+uf5/znPwzKNXEmueEc3YmJi6NWrF598\n8kmmx1lrmTdvHvHx8cFs3gUbO3Ys48aNSzMCl98MHDiQ8ePHM3/+fN9S9AXd6tWrWblyZYb5ZCIS\nPPqQK8GmPide3tS/+HhYtSol9S8mxj2bqnVrKJbPoxeNXEmunDhxwvcMqsjIyEzn6xRkBw4c4MCB\nAwBUrFiRcuXKhbhFIlIQ6feOiMj5nToFP/zgUv927HBl4eFuHpU39S+vBWrkSsGViIhIgBTE3ztK\n0ZJgU58run7/HRIS3HLqqVP/vKv+BfJv20oLFBERERGRAs1a+OUXN0q1enVK6l+dOm6UKjY2/6f+\nZUcjVyIiIgGi3zsiIs7Jkympf56ZJYSHu3lU3bu7eVXBpJErEREREREpUPbtS0n98z5JqFw5uOIK\nt/Jf2bIhbV6eU3AlIiIiPpr/IsGmPlf4WAvr16ek/nkH8OvVc6v+tWxZsFP/slNIb0tERERERILp\n5En4/nsXVO3c6cqKFXMP/O3WDWrXDm37giEs1A2Q8+vatSthYWGEhYXx448/+n3e5MmTiYqKCmDL\n8taZM2do2LAh8+fPz3T/li1bCAsLY/ny5UFu2fldd911DBw40Ld97Ngxbr75ZsqXL094eDhbt24l\nJiaGsLAwwsPD2bNnT55dOywsjJkzZ6bZDgsLC/h7H4r3Y9WqVURHR3PixInzHvv555/ToEEDIiIi\nuPvuu4PQOv/587NZp04dXnnllSC1KLQ2bdpE5cqVOXz4cKibkqlZs2bRqlWrDOXen+mwsDD2798f\ngpYFhkYQJNjU5wq+PXvgv/+F4cNh2jQXWJUvDzfeCC+8AHFxRSOwghAEV8aYq4wx640xScaY4dkc\n18YYc8YY0yen5xY2xhjuvvtudu3aRWxsrN/n3XbbbWzevDmALctbkydP5uKLL07zQNywsDC2bdsG\nQK1atdi1axfNmzfPs2uOGjUqTVCUW8YY34OVASZOnMiCBQtYtGgRO3fuJDo6GmMMI0eOZOfOnVSq\nVOmCr5mVXbt2MWHChIDVH0rNmzenZcuWvP766+c99p577uGWW25h27ZtvPrqq0FoXd5aunQpf/nL\nX0LdjKB45plnuP/++ymbKvH+p59+4oorrqB06dLUrFmTMWPGBOz6jzzyCG3atKFkyZLUyeRhKjfc\ncANnzpzJ8HDrZcuWZfkAdRGRws5aWLsW3ngDnnkGvv0Wjh+H+vXhvvtg7Fi45hooQH/nzxNBTQs0\nxoQDbwB/AnYAS4wxs6y16zI57kXg65yeW1iVLl2aypUr5+ickiVLUrJkyQC1KO+98cYbDB48OMv9\nYWFh530NTp48yeHDh/0OXlIHRHlp48aNNGrUiCZNmqQpj4qKyvH7mFOVK1dO8yG1sBkwYADDhg1j\n6NChWR5z4MAB9u/fT69evahWrVqur3Xq1CmKFy+e6/MvRMWKFfO8zlDeT1b27NnDjBkzWLt2ra/s\n8OHD9OzZk65du7J06VLWrVvHwIEDiYyM5LHHHsvzNlhriYuLY/Xq1XzzzTeZHtO/f3/efPNNbrnl\nFl9ZxYoVqVChQp63J9Q0/0WCTX2uYDlxAhYvdotU7NrlyiIiUlL/atUKafNCLtgjV22BjdbaLdba\n08B04MZMjhsMfAzszcW5RcaOHTu47bbbuOiii7jooou47rrr2Lhxo29/+tSjUaNG0bRpU6ZPn069\nevUoW7YsvXv35vfff/cd89NPP9GjRw/KlStHVFQULVq0ICEhAXD/+aVPf0mfGuY95uuvvyY2NpbS\npUvTpUs7UocbAAAgAElEQVQXduzYQXx8PM2aNSMqKoobbriBAwcO+OpZu3Ytq1ev5oYbbsjyfv1J\nQ9u1axc1a9bkpptuYubMmZw6dSrb1zA3SyQfO3aMuLg4oqKiqFq1KuPGjUuzv2vXrrz22mskJiYS\nFhZG9+7ds61v/fr13HDDDZQvX56oqCg6duzImjVrfO0bM2YM0dHRlCxZkmbNmjFr1qwctzm9jh07\n8vjjj6cpO3z4MKVKleKzzz4D4MMPP6RNmzaULVuWKlWq0LdvX5K9a6dmwp/+Ae69vvbaa3319uvX\nj927d/v2Z9cHAa655hp+++03Fi9enGU7vIFJ9+7dCQsLIzExEYCZM2fStGlTSpYsSa1atRg7dmya\nc2NiYhg9ejR33303FSpUoH///lne75QpU3x1Va1albi4ON++bdu20bt3b8qWLUvZsmXp06cPO7yP\nnPdTTEwM//jHP3zbYWFhvPvuu9xyyy2UKVOGevXqMXXq1GzriIuL4/rrr+fFF1+kZs2a1PL8xjvf\ne+t9L+Pj42nXrh2RkZG0adOGFStWpKl/4sSJ1KpVi8jISHr37s1bb71FWFjaXyv/+9//aNWqFaVK\nlaJu3br8/e9/5/Tp0779H3/8MfXr16devXq+sqlTp3LixAmmTJlC48aN6dOnD8OHDz9vmmRuXiOA\n1157jYceeogGDRpk+X/CDTfcQGJiIju9kwhERIqYPXvgo49c6t/06S6wqlABbroJxo2Du+5SYAXB\nD65qANtTbf/mKfMxxtTABU1veYq8v+nOe25RcuzYMbp160bp0qVJTEzk+++/p1q1avzpT3/i+PHj\nWZ63ZcsWZsyYweeff86cOXNYsWIFTz31lG9/v379qFGjBkuWLGHVqlWMHj06V6Nfo0aN4vXXX+eH\nH37gwIED9O3bl+eee47333+fhIQE1qxZw+jRo33HJyYmEh0dnWHEKacjS7Vr12bx4sXUqVOHBx98\nkOrVq/Pwww9nOVctfTqfPx5//HHmzp3LzJkz+fbbb1mxYoXvwzvAp59+ysCBA+nYsSO7du1KMx8q\nveTkZDp16kR4eDhz585l1apVPPLII5w9exaACRMmMH78eF5++WXWrFlD7969+fOf/8yqVaty1Ob0\n+vfvz/Tp09N8kPzkk08oXbo01157LQCnT59mzJgxrF69mi+++IJ9+/Zx++23X9B1d+7cSZcuXWjW\nrBlLlizh22+/5ciRI9x4Y8rfSc7XB0uXLk2TJk2ynJt3+eWX8/PPPwMumNq1axcdOnRg2bJl9O3b\nl5tvvpk1a9bwwgsvMG7cON54440057/yyis0btyYZcuWZQi+vN5++20eeOAB7rnnHtasWcPXX3/t\nS1c9d+4cN954I3v37iUhIYF58+aRnJzMTTfdlKPXKrO++eyzz9K7d29Wr17Nrbfeyt1338327duz\nqMGZP38+a9asYc6cOXz77beA/+/tk08+yUsvvcTy5cupWLEid9xxh2/f4sWLue+++xg8eDCrVq3i\n2muvZeTIkWnaPHv2bO68806GDBnC2rVrmThxIh9//DFPPvmk75jExETatGmT5rqLFy+mc+fOlChR\nwlfWq1cvkpOT2bp1a7b3m5vXyB8NGjSgfPnyWfa7wkQjCBJs6nP5l7WwZg28/jo8/TTEx7uRqwYN\nYNAgl/p39dVFL/UvO8FeLdCfYYIJwBPWWmvcb2nvb+qgPIVx0P8GBaTet69/O0/rmz59OuD+cuz1\nr3/9iypVqvDFF1+kSV1J7cyZM2lGtO6//34mTZrk279t2zaGDh3KJZdcAkDdunVz1b4xY8Zw+eWX\nA/DAAw8wePBgli9fTosWLQC46667+Pjjj33HJyUlUTuTmY7eICMnYmNjiY2NZfz48cyePZsPPviA\nbt26UatWLQYMGMCAAQOoUcPF5SNHjsxR3UeOHGHixIlMmjSJnj17AjBp0iRq1qzpO6ZChQqUKlWK\niIiI86YAvvnmm0RFRTFjxgyKedYkTf2ajx8/nqFDh3LbbbcBMHr0aBITExk/fjwffPBBjtqeWt++\nfXn00UeZN2+eb2Rt6tSp3HLLLURERACkmYsWExPDP//5Txo3bkxycjLVq1fP1XXfeustWrRokWa0\nb8qUKVSsWJGlS5fSunVrv/pgrVq12LBhQ6bXiIiI8AXpF110ke89eOWVV+jatavvPa9fvz5JSUm8\n+OKLPPzww77zu3btmmFUL70xY8bw17/+lUcffdRX5u3b3377LT/99BObNm3yjRRNmzaN+vXrEx8f\nf96RzOwMGDCAfv36+drw6quvsmDBAl9ZZkqVKsXEiRN97yv4/96OGTPGNwfymWeeoVOnTr5jXnvt\nNa688kpfemb9+vVZsmQJ7777ru/8559/nmHDhnHXXXcBbpGOF154gf79+/Pyyy8DLoX2mmuuSdPm\nXbt2+V47rypVqvj2ZfZ/xYW8Rv4wxhAdHU1SUtIF1SMiUhCcOAHffedS/7zJJRER0LatS/2Ljg5p\n8/K1YAdXO4DUb0c0bgQqtVbAdM9fPy8GrjbGnPbzXMClwsR4HvNcvnx5WrRoUej+KrJs2TI2b96c\nYcWx48ePs2nTpizPq127dppzqlWrlmbluscee4x7772XKVOm0KNHD/r06cOll16a4/Y1a9bM92/v\nh9umTZumKUt93cOHDxMZGZmjazRp0sS32EWXLl348ssv0+wPDw/nmmuu4ZprrmHfvn0MHDiQp556\niqSkpDRBaU78+uuvnDp1ig4dOvjKIiMj09xbTqxYsYJOnTr5AqvUDh8+zM6dO31BqlenTp34v//7\nv1xdz6tixYpcddVVTJ06le7du5OcnExCQgKjRo3yHbN8+XJGjx7NqlWr2L9/v2+Ua9u2bbkOrpYt\nW0ZiYmKGfmuM4ddff6V169Z+9cGoqCgOHTqUo2uvX7+e6667Lk3Z5ZdfzujRozly5AhlypTBGEPr\n1q2zrWfPnj0kJyfTo0ePTPevW7eO6tWrpwkO6tSpQ/Xq1Vm7du0FBVepf67Cw8OpVKnSeVeevOyy\ny9IEVuD/e5v6et65a3v27KF69er88ssvGdJ427Ztmya4WrZsGUuWLOGFF17wlZ07d44TJ06we/du\nqlSpwuHDhylTpkyaei5kLmR2r9HVV1/NwoULARdU/vTTTzmqu2zZsjnud6l501u9v4/y67a3LL+0\nR9uFfzt93wt1e4rydqNGXZk3D2bMSODUKahevSsXXQQVKiTQtClcfXX+am9OtleuXMnBgwcBl8kV\nKMEOrpYCDYwxMUAycCuQJhfFWuv7M7UxZhLwP2vtLGNMsfOd6zV58uRcNzCvR5gC5dy5c7Ro0YKP\nPvoow77sJlin/5BljOHcuXO+7ZEjR3LHHXfw1VdfMXv2bEaPHs2//vUvBg4c6JtLkTqVLPXciayu\n4/2gFB4enuV1y5Urx/r167Nsd2a+/vpr3/VLlSqVYb+1lkWLFvHhhx8yY8YMoqKiGDFiBPfcc0+O\nruOP3MzdAvc65PRca22eLMRx5513ct999/HPf/6T6dOnU6tWLTp16gTA0aNHufLKK+nVqxcffvgh\nlStXZu/evXTu3DnLeWz+9A9rLddddx3jx4/PcL43CM+uD3odPnw4VwuDZPVap349cxrk58SFvm/n\n+/nNTOnSpdNs5+S9zezn+HzXS81ay6hRozIdSb/44osB97N/5MiRNPuqVq3KLu8saQ/vvLyqVatm\ne83sXqP333/ft4x/+uP8cfjwYcqXL5/j87y8v+Tz+3b6DyWhbo+2ta3twG5bCxUruqDqP/9xZRdf\n3JVLLoHu3aF5cwgLyz/tze12+rIpU6YQCEENrqy1Z4wxDwOzgXDgfWvtOmPMIM/+LCObrM4NRrvz\no1atWjF9+nQqVqxIuXLl8rTu+vXrM3jwYAYPHsyDDz7Ie++9x8CBA32pVsnJyb4FA1auXJln10y/\nzPH5RGcxJr1hwwY+/PBDPvzwQ/bu3UufPn2YMWPGBY0YeNWrV4+IiAgWL17sGx09evQoa9asoUGD\nBjmur2XLlnz44YecPn06w4e9smXLUr16dRYuXEi3bt185QsXLsywCmFuXH/99QB88cUXTJ06NU3a\n1Pr16/n9998ZO3asLwXLu8hGVvzpH7Gxsfz3v/+lVq1amY7WeWXVB722bt2aYUTvfBo1asSiRYvS\nlC1cuJDo6OgcBVSVK1emRo0azJ07N9PRq0aNGvnmBnlfu02bNpGcnEzjxo1z1OZAyM17m5mGDRtm\nmMuYfjs2NpZ169Zlm15cv379DPOoOnTowPDhwzl58qRv3tU333xDjRo1sk0JPJ/cjriCCxS3b9+e\nq5/zgib9BxCRQFOfC43jx1NS/7xJEMWLp6T+pZrxIDkQFuwLWmu/stZeaq2tb60d5yl7O7PAylo7\n0Fo7M7tzi6o77riDKlWqcOONN5KYmMjmzZtJTEzk8ccfT7NiYE4cP36chx56iPnz57NlyxZ++OGH\nNB/k69evT3R0NKNGjSIpKYk5c+bw3HPP5cn9dO7cme3bt7N3797zH5yNbdu20bhxY7777jtGjRrF\n7t27mTx5cp4EVgBlypThnnvuYfjw4cydO5eff/6Zu+++O0d/zU/twQcf5MiRI/Tt25elS5eyceNG\n/vOf//gWrBg6dCjjx49n+vTpbNiwgWeeeYaFCxeed05Qep9++ikNGzZMsyJcyZIl6dOnD2PGjGHF\nihXceeedvn21atWiRIkSvP7662zatIkvv/ySp59+Ottr+NM/HnroIQ4dOsStt97Kjz/+yKZNm5g7\ndy6DBg3iyJEjnDhxIts+CG4xl7Vr19KlS5ccvQZ/+9vfmD9/PqNHj2bDhg1MnTqVV155hWHDhuWo\nHoCnnnqKCRMmMGHCBDZs2MDKlSt9K9n17NmTZs2acccdd7Bs2TKWLl3KHXfcQatWrdIEyaGSm/c2\nM0OGDGHOnDmMHz+epKQk3n//fT777LM0o3PPPPMM06ZNY+TIkaxZs4b169fz8ccfM3x4ymMKO3fu\nzJIlS9LU3a9fP0qXLk1cXBw///wzM2fO5MUXXwzIMuzg5n2tXLmS5ORkTp06xapVq1i5cmWakdcN\nGzZw8OBBOnfuHJA2iIgEy86dboRq+HD34N89e6BiRejTxz3wt39/BVYXIujBleSNUqVKkZiYSN26\ndbnlllto1KgRcXFxHDx4kIsuush3XOoPOlmtjOctK1asGAcPHiQuLo6GDRvy5z//mY4dO/o+NEZE\nRDB9+nQ2bdpE8+bNGT16NOPGjctQZ3bXyKotTZo0oWnTpnz++efZ3vf50qoqVarEli1bmDt3LgMG\nDMiQEnU+kydPTvPg4syMHz+ebt260bt3b3r06EGzZs0yfND3dxXC6tWrk5iYyKlTp+jWrRuxsbG8\n+eabvlGsIUOGMHToUIYNG+Z7fbzLiefEoUOHSEpK4syZM2nK77zzTlavXk1sbCwNGzb0lVeqVIkp\nU6bw2Wef0aRJE8aMGcP/+3//L9v32p/+Ua1aNRYtWkRYWBhXXXUVl112GQ8//DAlS5akRIkShIeH\nZ9sHAb788kuio6PTzHvLTPq2tmzZkhkzZvDJJ5/QtGlTnnzySUaMGMFDDz3k/wvp8cADD/Dmm2/y\n7rvv0rRpU66++uo0z2n6/PPPqVSpEt26daN79+5Ur17dt8R9Vu0LhMz6YW7e28zK2rdvz7vvvstr\nr71G8+bN+fzzzxk2bFiGFf6+/PJL5s2bR7t27WjXrh0vvfRSmtGnPn368Ouvv6b5o1DZsmX55ptv\nSE5OpnXr1gwePJjHH3+cv/71r75jvMv8//vf/879C+Rx3333ERsby4QJE9i1axctW7akVatWaZZd\nnzVrFl26dLmg0a+CIvX8F5FgUJ8LvHPnYPVqePVVGDXKjVadPAmXXgp/+Qs89xz06gUBzIwvMkxu\n54rkV8YYm928ioJ4v127dqVp06a8/vrroW5KQL333ntMmjQpQ+pWMI0cOZKZM2eyatWqDM/ruVB1\n6tTh4Ycf5m9/+1ue1puZyZMnM3jwYP7444+AXyvYrr/+erp06ZLtQ4QlNP76178SHx+f40cF3Hnn\nndSuXZvnn3/e73PmzZvHtddey9q1a30puoFiraV58+Y8/fTTGeaPJSQk0L17d/bt25fmD1teBfH3\nToIe6CpBpj4XOMeOpaT+eZODiheHdu1c6l+NIvtQI9//z3n+l04FVwVAt27d+O677yhevDgJCQm0\natUq1E0KiLNnz9KkSRPefvtt3/LPwda2bVvGjx+f45Qzf9SpU4edO3cSERHB5s2bfRP681qZMmU4\ne/YsERERHD58OCDXCJXVq1dz7bXXkpSUlKvnr0neevnll+nZsydlypRh7ty5PPbYY4wbN45HHnkk\nR/Vs2rSJ9u3bs3HjRsqWLevXOcOGDaNMmTI888wzuWl6jsyaNYvRo0ezbNmyNOVNmjRh8+bNnDx5\nkr179xaa4EpECr6dO2HePFi8GLxrFV18MXTtCh07aoQKFFz5rTAGV8nJyb4VrmrWrEnx4sVD3CLJ\njW3btvnS8mJiYvJ8ZMzLuxR/WFhYwP+iL0XbbbfdRkJCAocOHaJu3boMGjSIIUOGhLpZQbN9+3bf\nvKw6depkmUpZEH/viEjBc+4c/PSTC6rWpVryrVEjN0rVtCkE6KNHgaTgyk+FMbgSEZGCqSD+3lGK\nlgSb+tyFOXYMFi1yqX/79rmy4sWhQwc3UlUEpormSqCCq2A/50pERERERC5QcjLEx8MPP6Sk/lWq\nlJL6l8M1vSSPaORKREQkQPR7R0Ty0rlzsGqVS/375ZeU8saNXerfZZcp9c9fGrkSERERESmCjh6F\nhQth/nz4/XdXVqJESupftWohbZ6kouBKREREfDT/RYJNfS5rv/3mRql+/DFt6l/37i6wKlUqtO2T\njIpccBWMB3eKiIiIiOSGN/UvPh42bEgpb9LEBVVNmoA+zuZfRWrOlYiIiIhIfnTkSErq3/79rqxk\nSTdC1a0bVKkS2vYVNppzJSIiIiJSyGzfnpL653l0HlWqpKz6V7JkSJsnOaTgSsQPygeXUFC/k1BQ\nv5NgK4p97tw5WLHCBVVJSSnll13mUv8aN1bqX0Gl4EpEREREJAj++CMl9e/AAVdWsqQboeraVal/\nhYHmXImIiIiIBNC2bW6UasmSlNS/qlXdXKr27ZX6FwqacyUiIiIiUkCcPZuS+rdxoyszBpo2dal/\njRop9a8wUnAl4oeimA8uoad+J6GgfifBVtj63B9/wIIFLvXv4EFXVqpUSupf5cohbZ4EmIIrERER\nEZELtHVrSurfmTOurFq1lNS/EiVC2z4JDs25EhERERHJhTNnUlL/fv3VlRkDzZq5oKphQ6X+5Vea\ncyUiIiIikg8cPpyS+nfokCsrVQo6dXKpfxdfHNLmSQiFhboBIgVBQkJCqJsgRZD6nYSC+p0EW0Hq\nc1u2wMSJMGIEzJrlAqvq1eGOO+DFF+HmmxVYFXUauRIRERERycKZM7B8OcTHw+bNrswYaNHCpf5d\neqlS/ySF5lyJiIiIiKRz6BAkJrr0P2/qX+nSLvXviis0QlXQac6ViIiIiEiAbd7sRqmWLXPPqgKo\nUcONUrVtq1X/JHsKrkT8UNiewSEFg/qdhIL6nQRbfuhzZ87A0qVu1b8tW1xZWBi0bOke+NuggVL/\nxD8KrkRERESkSDp4MCX17/BhVxYZmZL6V7FiaNsnBY/mXImIiIhIkWEtbNrkRqmWL09J/atZ041S\ntWkDxYuHto0SeJpzJSIiIiKSS6dPp6T+bd3qysLCIDbWBVX16yv1Ty6cgisRP+SHfHApetTvJBTU\n7yTYAt3nDh50D/tdsAD++MOVlSkDnTu71L8KFQJ2aSmCFFyJiIiISKHiTf2Lj4cVK1JS/6KjU1L/\nIiJC20YpnII+58oYcxUwAQgH3rPWvphu/43As8A5z9dQa228Z98W4DBwFjhtrW2bSf2acyUiIiJS\nBJ0+DUuWuNS/bdtcWepV/+rVU+qfOIGacxXU4MoYEw78AvwJ2AEsAW631q5LdUyktfao599NgU+t\ntfU925uBVtba/dlcQ8GViIiISBFy4EBK6t+RI65MqX+SnUAFV2F5XeF5tAU2Wmu3WGtPA9OBG1Mf\n4A2sPMoA+9LVob83SNAlJCSEuglSBKnfSSio30mw5bbPWQtJSfDOO/Dkk/DVVy6wqlUL4uLghRfg\nppsUWElwBXvOVQ1ge6rt34B26Q8yxtwEjAOqAb1S7bLAXGPMWeBta+27AWyriIiIiOQzp0/Djz+6\n1L/tnk+V4eHQurVL/atbV6l/EjrBTgvsA1xlrb3Ps30n0M5aOziL4zvj5mVd6tmuZq3daYypBHwD\nDLbWLkh3jtICRURERAqZ/ftTUv+OevKcoqKgSxf3Vb58aNsnBUthec7VDiA61XY0bvQqU9baBcaY\nYsaYitba3621Oz3le40xn+LSDBekPy8uLo6YmBgAypcvT4sWLXxLfHqHnrWtbW1rW9va1ra2tZ2/\nt6+4oitJSfCvfyWwcSNUq+b2nzuXQMuWcP/9XSlWLP+0V9v5d3vlypUcPHgQgC1bthAowR65KoZb\n0KIHkAz8SMYFLeoBm6y11hgTC8yw1tYzxpQGwq21fxhjIoE5wGhr7Zx019DIleS5hIQE3w+oSLCo\n30koqN9JsGXW506dcql/8fGwY4crCw+HVq2gWzeoU0epf3JhCsXIlbX2jDHmYWA2bin2962164wx\ngzz73wb6AAOMMaeBI8BtntOrAjON+0kqBkxNH1iJiIiISMH1+++QkACLFqWk/pUtm5L6V65cSJsn\ncl5Bf85VoGnkSkRERKTgsBY2bHCjVKtXw7lzrrxOHbdARWwsFAv2RBYp9ArFyJWIiIiICMDJk/DD\nD26kKnXqX7t2LqjyTJ8XKVAUXIn4QXMQJBTU7yQU1O8k0PbtS0n9O3YMkpMTaNSoK1dc4R76W7Zs\nqFsoknsKrkREREQkoKyFX35JSf3zzuCoWxdatID77lPqnxQOmnMlIiIiIgFx8iR8/70bqUpOdmXF\nirkH/nbrptQ/CR3NuRIRERGRAmHv3pTUv+PHXVm5cij1Two9BVciftAcBAkF9TsJBfU7yS1rYd06\nmDcPfvopJfWvXj23QEXLlm7BivTU56QwUXAlIiIiIrl24oRL/Zs3D3btcmXFikGbNi71r3bt0LZP\nJJg050pEREREcmzPHpf69913Kal/FSq41L9OnSAqKqTNE8mW5lyJiIiISEhZC2vXpqT+edWv71L/\nWrTIPPVPpKhQcCXiB+WDSyio30koqN9JZk6cgMWLXVC1e7cri4iAtm1d6l90dO7rVp+TwkTBlYiI\niIhkavfulNS/EydcWYUK0LWrS/0rUyaUrRPJfzTnSkRERER8rIWff3ajVGvWpJRfcokbpWrRAsLC\nQtc+kbygOVciIiIiEjDHj7vUv4SEtKl/7dq5oKpmzZA2T6RA0N8dRPyQkJAQ6iZIEaR+J6Ggflf0\n7NoF//kPPPEEfPSRC6wuugj+/Gd48UXo3z+wgZX6nBQmGrkSERERKWKsdav9zZvnVv/zuvRSN0rV\nvLlS/0RyQ3OuRERERIqIY8fc4hQJCbB3rysrXjwl9a9GjZA2TyRoNOdKRERERHJl5043SvX993Dy\npCurWNEFVB07QmRkaNsnUlgouBLxg57BIaGgfiehoH5XeJw7l5L6t25dSnnDhu6Bv02b5o/UP/U5\nKUwUXImIiIgUIseOwaJFLvVv3z5XVrw4tG/vRqqqVw9p80QKNc25EhERESkEkpNTUv9OnXJlF1+c\nkvpXunRo2yeSn2jOlYiIiIik4U39i4+H9etTyhs1cql/l12WP1L/RIoKBVciflA+uISC+p2Egvpd\nwXD0qEv9mz8/JfWvRImU1L9q1ULbvpxQn5PCRMGViIiISAGxY4dL/fvhh5TUv0qVoGtXpf6J5Aea\ncyUiIiKSj507B6tWuaDql19Syhs3Tkn9M3k+c0SkcNOcKxEREZEi5OhRWLjQrfq3f78rK1kyJfWv\natWQNk9EMqEpjiJ+SEhICHUTpAhSv5NQUL8Lvd9+gw8+gOHDYeZMF1hVrgy33govvAC33164Aiv1\nOSlMNHIlIiIiEmLnzsHKlS71b8OGlPLLLnOjVE2aKPVPpCDQnCsRERGREDlyxKX+zZ+fNvWvY0e3\nSEWVKiFtnkihpTlXIiIiIoXE9u3u2VRLlsDp066sShU3StWhgwuwRKTgUXAl4gc9g0NCQf1OQkH9\nLnDOnnWpf/HxsHFjSnnTpi6oaty4aKb+qc9JYaLgSkRERCSA/vgDFiyAxEQ4cMCVlSqVkvpXuXJI\nmycieSjoc66MMVcBE4Bw4D1r7Yvp9t8IPAuc83wNtdbG+3Ou5xjNuRIREZGQ27rVLVCxdGlK6l/V\nqu7ZVO3aKfVPJJQCNecqqMGVMSYc+AX4E7ADWALcbq1dl+qYSGvtUc+/mwKfWmvr+3Ou5xwFVyIi\nIhISZ8/C8uUuqPr1V1dmjEv9694dGjYsmql/IvlNoIKrYD/nqi2w0Vq7xVp7GpgO3Jj6AG9g5VEG\n2OfvuSKBomdwSCio30koqN/lzuHD8OWX8OST8N57LrAqVQr+9CcYMwYeeggaNVJglRn1OSlM/Jpz\nZYy5HKhgrf3Cs10ReBNoAswBhllrz/pRVQ1ge6rt34B2mVzvJmAcUA3olZNzRURERIJly5aU1L8z\nZ1xZtWpugYr27aFEiZA2T0SCzN8FLV4A5gJfeLZfBq4GvgUeAA7h5kmdj1/5etbaz4DPjDGdgQ+M\nMQ39bKdIQGgVIwkF9TsJBfW78ztzJiX1b9MmV2YMNG/uUv8uvVQjVDmhPieFib/BVUPgRQBjTHHg\nZuCv1tr3jTGPAoPwL7jaAUSn2o7GjUBlylq7wBhTDLjIc5xf58bFxRETEwNA+fLladGihe8H1zv0\nrO5VtWUAACAASURBVG1ta1vb2ta2trWdk+2jR8HariQmwrp1bn/9+l25/HKIiEigXDlo2DD/tFfb\n2tZ2yvbKlSs5ePAgAFu2bCFQ/FrQwhhzHOjlCXY6AYlAVWvtHmPMFcBX1trSftRTDLcoRQ8gGfiR\njAta1AM2WWutMSYWmGGtrefPuZ7ztaCF5LmEhATfD6hIsKjfSSio32W0ZYt7NtXSpW7BCoDq1d0o\nVdu2Sv27UOpzEgqBWtDC35GrZKAFsAC4Clhjrd3j2VcBOOZPJdbaM8aYh4HZuOXU37fWrjPGDPLs\nfxvoAwwwxpwGjgC3ZXeun+0XERER8Zs39S8+HjZvdmVhYdCihQuqLrlEqX8ikpG/I1djgEdxgc21\nwEhr7UuefaNxo1odAtlQf2nkSkRERHLr0CH3sN/ERLcCIEBkJHTqBFdcARUrhrZ9IpI3Qj1yNRo4\nAXTAreL3Sqp9LYAZedwuERERkaCw1o1OzZsHy5alpP7VqJGS+le8eGjbKCIFQ1AfIhwMGrmSQFA+\nuISC+p2EQlHqd2fOuHlU8+a5eVWQkvrXrRs0aKDUv2AoSn1O8o9Qj1yJiIiIFAoHD7q0vwUL0qb+\nde7sUv8uuii07RORgivLkStjzGbcc6m8EV1Ww0EGsNbaunnfvJzTyJWIiIikZ617JlV8PKxYkZL6\nFx3tRqnatoWIiNC2UUSCJxQjV/PTbXcHqgCLgD2ef18O7MI9TFhEREQkXzl92qX+xcfDtm2uLCwM\nWrVyQVX9+kr9E5G8k2VwZa2N8/7bGHM/0BboaK39LVV5NG4Fwe8C2EaRkFM+uISC+p2EQmHpdwcO\nwPz5LvXvyBFXVqZMSupfhQqhbZ+kKCx9TgT8n3M1DHgydWAFYK3dbowZBYwF3s3jtomIiIj4zVrY\nuNEtULFiBZw758pr1XKr/rVurdQ/EQksf59zdRy41Vo7K5N9NwIfWWtLBqB9OaY5VyIiIkXL6dOw\nZIlL/du+3ZWFhUFsrAuq6tZV6p+IpBWoOVf+BlfLgaO4hwUfT1VeGpgDlLbWxuZ143JDwZWIiEjR\ncOAAJCTAwoUpqX9RUdCli/sqXz6kzRORfCzUS7EPBf4P2GqM+T9gN1AVuAYo6/kuUmgpH1xCQf1O\nQiG/9ztv6l98PKxcmZL6V7u2G6Vq1UqpfwVNfu9zIjnhV3Blrf3WGNMC+DvQBRdY7cQtZvGctXZ9\n4JooIiIiRd2pU/Djj24+1W+eGeDh4W4J9W7doE4dpf6JSOj5lRZYkCgtUEREpPD4/Xe36t/ChXD0\nqCsrW9al/XXurNQ/EcmdUKcFioiIiASFtZCU5FL/Vq1KSf2LiUlJ/SumTzAikg/5/V+TMaYrcDsQ\nDaReGdAA1lrbPW+bJpJ/KB9cQkH9TkIhlP3u1Cn44QeX+rdjhyvzpv517+5S/6Tw0f91Upj4FVwZ\nYwYBbwH7gQ3AqUA2SkRERIqO3393q/4tWpQx9a9LFyhXLqTNExHxm79LsW8AlgADrbX5OrDSnCsR\nEZH8z1r45Rc3SrV6dUrqX506bpQqNlapfyISOKGec1UD+Et+D6xEREQkfzt5MiX1LznZlYWHQ7t2\nLqiKiQlp80RELkiYn8ctB+oGsiEi+VlCQkKomyBFkPqdhEKg+t2+ffDxx/DEEzB1qgusypWDG26A\nF16Au+9WYFVU6f86KUz8HbkaDEwzxmyw1s4PZINERESkcLAW1q9PSf3zZu3Xq+eeTdWypVL/RKRw\n8XfO1XagLBAFHAUO4FklkJTVAmsFsJ1+05wrERGR0Dp5Er7/3gVVO3e6smLFoE0bF1TVrh3a9omI\nhHrO1bfn2a9oRkREpIjbs8et+vfdd3D8uCsrXx6uuMI98DcqKqTNExEJOL9GrgoSjVxJIOgZHBIK\n6ncSCjntd9bC/2fvzuPkvso7339OVe97t9RSq7tLkiXZwrtsjCQvwsJwiYHcwJ3kZsINISYMMAlk\nkrnzmgxM7gRCMrkh92YguUyIA4QkhIRJcglhDYZIbcu2bNnY8iovki2pN7WW3vfqqmf+ONVdXfpp\nKUlV9auq/r5fL73cv1Onuo/sY6mffp7znEOH/IW/zz+fLv3bssU3qNi2zTesEDkf/VknYQg7cyUi\nIiKyZHYW9u/3maoTJ/xYZWW69G99URwWEBEprKwzV865m4BPAncDrfgLhXuAT5vZc/la4KVS5kpE\nRCR/Tp70Z6kefdQHWACtrb707667VPonIqUhX5mrbBtavAl4EJgBvgUMAR3A/wrUAHeb2ZO5Xtzl\nUHAlIiKSW2bwwgs+qHr++fT41VenS/8i2V7uIiJSBMIOrn6E7xb4VjObWDbeCPwIGDez/yXXi7sc\nCq4kH1QPLmHQvpMwLN93s7M+Q9XTA0ND/vXKSti+3Zf+xWKhLVPKiP6skzCEfeZqJ/D+5YEVgJlN\nOOc+A/xVrhcmIiIi4Rga8lmq/fvTpX9tbbB7ty/9q68PdXkiIkUr28zVBPCLZvaNc7z2r4C/NLOi\nqLJW5kpEROTSLZb+7dnj/7nommt86d/NN6v0T0TKRzGUBTbjywLHl4034O/AUlmgiIhICZqZ8Rmq\nvXt9swqAqqp06V93d7jrExHJh7CDq+2kG1p8BxgE1gHvBOqA3WZ2INeLuxwKriQfVA8uYdC+k3wa\nHPRnqfbvh7k5P7ZqFbS29vArv7JbpX9SMPqzTsIQ6pkrMzvgnNsB/BZwL+lW7HuA3ymmVuwiIiJy\nbsmk7/a3dy+8+GJ6fOtWX/p3003w0EM6UyUicrmyvucqZ1/QuXuBzwFR4Etm9pmzXv954DcAB0wA\nv2xmz6ZeOwqMAwkgbmbbz/H5lbkSERFZZno63fXv1Ck/VlUFO3f60r/OzlCXJyJScKFmrpxza4BW\nM3v5HK9tBYbN7FQWnycKfB54G9APPOGc+5aZHVo27TXgzWY2lgrE/gzfrRDA8CWIw9msW0REZCUb\nHEx3/Zuf92OrV/uuf3feCXV1oS5PRKTsZNuK/U+AM8BHzvHarwOrgJ/N4vNsBw6b2VEA59zXgXcD\nS8GVme1fNv9x4OyjtDmPMEUuRvXgEgbtO7kcySQ895wPqg4t+9Hltdf6LNWNN16465/2nRSa9pyU\nk2yDqzuBj53ntQeA/57l5+kCepc99wE7LjD/g8D3lj0b8CPnXAK438y+mOXXFRERKWvT0/DII770\n7/RpP1ZVBbff7jNVKv0TEcm/bIOrVmD0PK9N4DNX2cj6MJRz7i3AL+EDu0V3mtmgc64d+KFz7iUz\n25ft5xS5XPqJmoRB+06yMTDg76Z6/PF06V97uw+o7rjj0kv/tO+k0LTnpJxkG1z14889/cs5XtuO\nb82e7eeJLXuO4bNXGZxzNwFfBO41s5HFcTMbTP3zlHPuH1NfOxBc3XfffWzcuBGAlpYWtm3btvQ/\nbk9PD4Ce9axnPetZzyX7nEzCn/95D089BYmEf31goIcNG+DDH97NDTfAQw/1cOBAcaxXz3rWs57D\nfj548CCjoz5XdPToUfIl23uufh9fFvhzZvadZeM/Cfwt8AUz+40sPk8F8DLwVmAAOAC8d3lDC+fc\nenyL9/eZ2WPLxuuAqJlNOOfq8eWIv21mD5z1NdQtUHKup6dn6X9QkULRvpOzTU2lS//OnPFj1dXp\n0r916678a2jfSaFpz0kYQu0WCPwO8GbgW865QXwGqhvoAPYDv53NJzGzBefcx4Af4Fuxf9nMDjnn\nPpJ6/X78XVqtwBecc5Buud4BfCM1VgF87ezASkREpBz19fkGFQcOZJb+3XOPD6xqa8Ndn4iIeFnf\nc+WcqwLeB7wdf8bqND5I+mszW8jbCi+RMlciIlIOkkl45hl/nuqVV9Lj11/vg6rrrwen/rkiIpcl\nX5mrgl8inG8KrkREpJRNTsLDD8ODD8Jw6lbHmhrfnGL3bli7NtTliYiUhbDLAhcXcTOwC5+5ut/M\nTjjnrgaGzGw814sTKRaqB5cwaN+tLL296dK/eNyPrV3r76a6/XYfYBWC9p0UmvaclJOsgivnXDXw\nNeBfpYYM+DZwAvgM8Arw8XwsUEREpFwlk/D00z6oevXV9PgNN/jSv+uuU+mfiEgpybZb4P+Lv9D3\no8APgSHgNjN7yjn3IeCjZrYtryvNksoCRUSk2E1MpEv/RlIXjqj0T0SkcMIuC3wv8F/M7G9S7dSX\nOwpszOWiREREytHx4z5L9cQT6dK/jg5f+rdzZ+FK/0REJD+yDa5WAS+e57UIUJ2b5YgUJ9WDSxi0\n78pDIgEHD/quf4cP+zHn4MYbfenftdcWV+mf9p0UmvaclJNsg6ujwB34y33P9ib8xcAiIiKSMjEB\n+/bBQw+lS/9qa9Olf2vWhLo8ERHJg2zPXH0C+E3gI8A3gCngNqAF+AfgU2b2x3lcZ9Z05kpERMJ0\n7Fi69G8hdQvkunXp0r9q1XqIiIQu1HuuUues/hr4WWAeqAJmgRrgb4H3FUtEo+BKREQKLZGAp57y\nQdWRI37MObjpJh9UveENxVX6JyKy0hXFJcLOuV3AvcAa4Azwz2bWk+tFXQkFV5IPqgeXMGjfFb/x\ncV/69+CDMDbmx2pr4a67fOnf6tWhLu+yaN9JoWnPSRjC7hYIgJntA/blehEiIiKl5OhR36Dixz9O\nl/51dvos1Y4dKv0TEVmpsi0L3Aq0mNnjqeda4JPA9cADZvb/5XWVl0CZKxERyYeFBV/6t2cPvP66\nH4tE0qV/W7eq9E9EpFSEnbn6PPA08Hjq+b8CHwOeBz6bCmg+n+vFiYiIhG1szHf827cvXfpXV5cu\n/Vu1KtTliYhIEYlkOe8m4FEA51wUeD/wcTO7Ffgd4EP5WZ5Icejp6Ql7CbICad+F6/XX4ctfhk98\nAr7zHR9YdXXB+94Hv//78NM/XZ6BlfadFJr2nJSTbDNXzcDp1Me3AG3A36eeHwT+Y47XJSIiUnAL\nC/Dkk77r39GjfiwSgVtu8Rf+Xn21Sv9EROT8sj1zdQx/l9VXUnde/ZKZXZ167SeBvzazlvwuNTs6\ncyUiIpdqdDRd+jc+7sfq633p3913l2eGSkRkJQv7zNW3gP/bOXc98AHg/mWv3QC8luuFiYiI5JOZ\nL/3bs8c3qkgk/Hh3t89SvelNUFUV7hpFRKS0ZBtcfQJ/YfBPAP+Eb2ix6N3AAzlel0hR0R0cEgbt\nu/xYLP3bsweOHfNjkQjceqsPqrZsWdmlf9p3Umjac1JOsgquzGyS8zStMLPbc7oiERGRPBgd9Zf9\n7tsHExN+rKEBdu3ypX+treGuT0RESl9WZ65Kic5ciYjIIjN47TWfpXr66XTpXyyWLv2rrAx3jSIi\nUnhhn7kSEREpGfE4PPGE7/p3/Lgfi0Tgttv8hb+bN6/s0j8REcmPbO+5ElnRdAeHhEH77tKNjMA3\nvwkf/zj85V/6wKqhAd75Tvi934MPfUhnqi5G+04KTXtOyokyVyIiUtLM4PBhn6V6+mlIJv34+vW+\n9O+221T6JyIihaEzVyIiUpLicThwwAdVvb1+LBpNX/i7aZMyVCIicm46cyUiIgIMD6e7/k1N+bHG\nRnjzm/2vlqK40l5ERFairIMr59xu4L1ADH/n1dJLgJnZPbldmkjx0B0cEgbtuzQzePVVn6U6eDBd\n+rdxo29QcdttUKEfF+aE9p0UmvaclJOs/ipyzn0E+AIwDLwCzOdzUSIiIgDz8770b88e6O/3Y9Eo\nbN/ug6qrrlLpn4iIFI+szlw5514BngA+YGZFHVjpzJWISOk7cwZ6euCRR9Klf01N6dK/5uZQlyci\nIiUu7DNXXcAvF3tgJSIipcsMXnnFZ6mefTZd+nfVVb5Bxa23qvRPRESKW7b3XD0FbMrnQkSKme7g\nkDCslH03NwcPPQS/8zvw3/6bP1PlHOzYAZ/4hL+zavt2BVaFslL2nRQP7TkpJ9n+VfWrwN84514x\nswev5As65+4FPgdEgS+Z2WfOev3ngd/AN8qYwGfMns3mvSIiUjpOn06X/k1P+7HmZrj7bti1y5cB\nioiIlJJsz1z1Ak1AIzAFjJDqEki6W+D6LD5PFHgZeBvQjz/H9V4zO7Rszu3Ai2Y2lgqmPmVmO7N5\nb+r9OnMlIlKkzODll9Olf4t/XG/a5Ev/brlFGSoREcm/sM9c/ctFXs82mtkOHDazowDOua8D7waW\nAiQz279s/uNAd7bvFRGR4jQ3B4895jNVAwN+rKLCt1B/y1t8S3UREZFSl1VwZWb35ejrdQG9y577\ngB0XmP9B4HuX+V6RnNEdHBKGcth3p06lS/9mZvyYSv+KWznsOykt2nNSTgpdfJF1vZ5z7i3ALwF3\nXup7RUQkPGbw0ku+9O+559Klf5s3p0v/otFw1ygiIpIP5w2unHPvB75rZmecc7/IRYIbM/urLL5e\nPxBb9hzDZ6DO/to3AV8E7jWzkUt5L8B9993HxlSNSUtLC9u2bVv6ichiRxo961nPei7258WxYlnP\nxZ4feKCHF1+EkZHdnDgBAwM9RKPwnvfs5i1vgddf72FyEqLR4livnvWs5+J43r17d1GtR8/l+Xzw\n4EFGR0cBeOXIK+TLeRtaOOeSwE4zO5D6+ILMLHLRL+ZcBb4pxVuBAeAAwYYW64E9wPvM7LFLeW9q\nnhpaiIgU0MmT0NMDjz6aLv1rbfWlf3fdBY2NoS5PRERWKDNjdHaU42PHM36Nzo7yZz/1ZwVvaLEJ\nH8QsfnzFzGzBOfcx4Af4dupfNrNDzrmPpF6/H/gtoBX4gnMOIG5m28/33lysS+RiepZlD0QKpZj3\nnRm8+CLs3QvPP58u/duyxZf+bdum0r9SVcz7TsqT9pzkgplxZuZMIJCamJsIzK2pqMnbOs4bXC12\n5Tv74ytlZt8Hvn/W2P3LPv43wL/J9r0iIlI4s7Owf78PqoaG/Fhlpb/k9y1vgVjswu8XERG5UmbG\nyamTgUBqOj4dmFtfVc/65vUZv9rr2vlj/jgva8vqnqtSorJAEZHcGxpKl/7Nzvqx1lbYvduX/jU0\nhLk6EREpV0lLcmLyREYQ1TvWy+zCbGBuU3VTIJBqq20jVQ2XIex7rkREZIUxgxdeSJf+LbrmGp+l\n2rYNIhc9bSsiIpKdheQCgxODGYFU33gf84n5wNzW2tZAINVc3XzOQKqQFFyJZEH14BKGsPbdzIwv\n/evpySz927HDB1Xd3Rd8u5Q4/XknhaY9tzLFE3H6J/ozAqn+8X4WkguBuavrVmcEUbHmGE3VxXlR\nooIrEREB4MQJn6V67LF06V9bW7r0r74+1OWJiEiJmluYo2+8LyOQGpgYIGnBhuRrG9ZmBlJNMeqr\nSucvIJ25EhFZwcz8Rb979/ruf4u2bvVZqptvVumfiIhkbyY+Q+94b0YgdWLyBGd/fx5xEToaOgIZ\nqXx28luuKM5cOefagZ1AG/Cd1AXDtcC8mSVyvTgREcmPmRnfnGLvXjh1yo9VVaVL/7q6wl2fiIgU\nv6n5qUDHvpNTJwPzopEonU2dxJpibGjZwPrm9XQ1dlFdUR3CqvMrq+DK+ZNh/w/wq0AlYMCbgDPA\nN4FHgE/naY0ioVM9uIQhH/tucDBd+jc358dWrfIB1R13qPRP9OedFJ72XGkYnxsPBFJnps8E5lVE\nKuhu6s7ISHU2dlIZrQxh1YWXbebqE8BHgd8Gfgg8vuy1bwO/gIIrEZGilEz6bn979sChZVevv+EN\n/sLfG29U6Z+IiHhmxujsaCCQGp0dDcytilYRa45lZKTWNawjGlm5t8hndebKOfca8CUz+z3nXAUw\nD9xmZk85594B/LWZrcrzWrOiM1ciIt70dLr07/RpP1ZVBTt3+kxVZ2e46xMRkXCZGWdmzgQCqYm5\nicDcmoqaQOvztQ1ribjS/Olc2GeuuoD953ltHlAhiYhIkRgYSJf+zaeuBlm9Ol36V1cX7vpERKTw\nzIyTUycDgdR0fDowt76qfqlT32JGqr2uPfQ7pEpBtsHVAHAjsPccr90EvJ6zFYkUIdWDSxguZd8l\nk77r35498NJL6fFrr/WlfzfcoNI/yY7+vJNC057LvaQlOTF5IiOI6h3rZXZhNjC3sbqRDc0bMjJS\nbbVtCqQuU7bB1d8Bv+Wce4plGSzn3FbgPwBfzMPaRETkIqam4JFH4MEH06V/1dVw++3+fqp160Jd\nnoiI5NlCcoHBicGMQKpvvI/5xHxgbmttayAj1VzdrEAqh7I9c1UH/AC4EzgGbMBnq2LAo8BPmNlc\nHteZNZ25EpGVoL/fl/49/ni69K+93Zf+3X67Sv9ERMpRPBGnf6I/I5DqH+9nIbkQmLu6bnXgDqmm\n6qYQVl2c8nXmKutLhFONLN4L3AusAU4D/wx8zcyC/0VDouBKRMpVMgnPPOODqpdfTo9fd1269E8/\nfBQRKQ9zC3P0jfdlBFIDEwMkLRmYu7ZhLbGmGOub17OhZQOxphj1VWqJcCGhB1elQsGV5IPqwSUM\ni/tuagoefhh6emB42L9WU5Pu+tfREeoypczozzspNO05mInP0DvemxFInZg8wdnf00ZchI6GDmLN\nqUCqeQOx5hg1FTUhrbx0hd0t8OzFBI5Fm50jjBYRkct26hR89au+9C8e92Nr1qRL/2prw12fiIhc\nuqn5qUDHvpNTJwPzopEonU2dGRmprsYuqiuqQ1i1ZOtSzlx9EvjfgW6CQZmZWVHcFqbMlYiUsmQS\nDh70pX+vvJIev+EGH1Rdf71K/0RESsX43HggkDozfSYwryJSQXdTd0ZGqrOxk8poZQirXhnCzlz9\nd+DngW8DX8ffbbWcohkRkSswOelL/x58MLP07447fNe/tWtDXZ6IiFyAmTE6OxoIpEZnRwNzq6JV\nxJpjGRmpdQ3riEaKIk8hVyjbzNUZ4NNm9kf5X9KVUeZK8kH14JIvvb3+bqonnkiX/q1d67NU8XgP\nb3/77lDXJyuP/ryTQiu1PWdmnJk5EwikJuYmAnNrKmqWOvUtZqTWNqwlEjxhIwUWduZqHngx119c\nRGQlSiR86d+ePXD4cHr8xht9UHXddb70r6cntCWKiAg+kDo5dTIQSE3HpwNz66vql+6QWsxItde1\n6w6pFSbbzNUfAKvM7IP5X9KVUeZKRIrVxATs2wcPPQQjI36stjZd+rdmTajLExFZ0ZKW5MTkiYwg\nqnesl9mF2cDcxurGpU59ixmptto2BVIlJNRW7M65SuDLQAf+MuGRs+eY2Z/nenGXQ8GViBSbY8d8\ng4onn0yX/nV0+LupduzwZ6tERKRwFpILDE4MZgRSfeN9zCfObisArbWtgYxUc3WzAqkSF3ZwtQP4\nJ/zlwedkZkVRPKrgSvKh1OrBJXyJBDz1lA+qjhzxY87BTTf50r83vOHiXf+07yQM2ndSaPnec/FE\nnP6J/oxsVN94HwvJhcDc1XWrM85IrW9eT1N1U97WJuEJ+8zVnwBngA8BLxPsFigiIsD4eLr0bzTV\nJKq2Fu66C+6+G9rbw12fiEg5m1uYo2+8LyMjNTg5SCKZCMxd27B2KRu1+Ku+qj6EVUs5yTZzNQP8\njJl9N/9LujLKXIlIGI4d8w0qnnwSFlI/DF23zmepdu6Eat35KCKSUzPxGXrHezMyUicmT5C0ZMa8\niIvQ0dCRkY2KNcWordRN7CtZ2JmrVwCF8iIiyywswNNP+6Dqtdf8mHNw883+PNXWrbrwV0QkF6bm\npwId+05OnQzMi0aixJpiGRmp7qZuqiv0Ey4pjGwzV+8APgP8lJkdzfeiroQyV5IPOoMgyy2W/j34\nIIyN+bG6OrjzTt/1b/Xq3Hwd7TsJg/adFNrZe258bjwjG3V87Dinp08H3lcRqaC7qTsjI9XV2EVl\ntLKAq5dSFXbm6j8D7cDLzrlXyOwW6AAzszfnenEiIsXk6NF06V8iVb7f2emzVNu3q/RPRORSmBmj\ns6McHj7MxMsT9I73cmz0GKOzo4G5VdEqYs2ZGal1jeuoiGT7raxIYWSbueoBDB9InYuZ2VtyuK7L\npsyViOTSwoLv+rdnD7z+uh+LRHzXv3vugWuuUemfiMjFmBlnZs4EMlLjc+OBuTUVNYGOfR0NHURc\nUTSmljIRaiv2UqLgSkRyYWzMd/x76CFfBghQX5/u+rdqVbjrExEpVmbGyamT6UAq1XRian4qMLe+\nqj7jDqn1zetZU79Gd0hJ3oVdFiiyoukMwspg5rNTe/fCj3+cLv3r6kqX/lVVFW492ncSBu07uRRJ\nS3Ji8kQgIzW7MBuY21jdyIbmDRkZqVW1q3jwwQfZvXN34RcvkgfnDa6cc28GnjazidTHF2RmD2Xz\nBZ1z9wKfA6LAl8zsM2e9/gbgK8AtwG+a2R8ue+0oMA4kgLiZbc/ma4qIXMjCgj9HtXevP1cFvvTv\n1lt9K/Wrr1bpn4hIIplgYGIgIyPVO9bLfCJ4/WlLTQsbWjZkZKRaalqUkZKyd96yQOdcEthpZgdS\nH1+ImVn0ol/MuSj+EuK3Af3AE8B7zezQsjntwAbgPcDIWcHV68AbzWz4Al9DZYEikpXRUV/2t29f\nZunfrl2+9K+tLdz1iYiEJZ6I0z/Rn5GR6hvvYyG5EJi7qm5VICPVVN0UwqpFshdGWeA9wKFlH+fC\nduDwYjt359zXgXcv+zqY2SnglHPuXef5HPqRh4hcNjN/J9WePf6OqsXSv1jMZ6m2b4dKdfEVkRVk\nbmGOvvG+jIzUwMQAiWQiMHdN/ZqlAGrxV32VrkIVWXTe4MrMes718RXqAnqXPfcBOy7h/Qb8yDmX\nAO43sy/maF0iF6QzCKUvHvelf3v2wPHjfiwSgTe+0QdVW7YUX+mf9p2EQfuuvM0uzGZcxNs71suJ\nyRMkLbNIyTnHusZ1GUFUrClGbWVtztekPSflJKuGFs6514D/zcyeOcdrNwL/ZGabsvhUV1qvd6eZ\nDaZKB3/onHvJzPZd4ecUkTI2MpLu+jc56ccaGtKlf62t4a5PRCRfpuanMgOp8V6GJocC8yIupwFw\ncQAAIABJREFUQndTd0Yg1d3UTXWFLu8TuVTZdgvcCJzv/7Ca1OvZ6Adiy55j+OxVVsxsMPXPU865\nf8SXGQaCq/vuu4+NG/2SWlpa2LZt29JPRHp6egD0rGc9l/Hz3Xfv5sgR+MIXenj1VVi3zr++sNDD\nrbfChz+8m8rK4lnv+Z4Xx4plPXrWs56L9/l7D3yPoakh1t6wlt6xXvY9uI+xuTE6b+wEYOC5AQDW\n37yerqYupl6ZYk39Gt5977vpauzikX2PwCjs3lb49e/evTv0f396Lv/ngwcPMjrqL6g+uti9Kg+y\nvUR4qbnFOV77t8DvmdlFj3475yrwDS3eCgwABzirocWyuZ8CJhYbWjjn6oBoqnthPfAA8Ntm9sBZ\n71NDC5EVKh6HJ57wpX+9qQLkSMR3/bvnHti0qfhK/0RELoWZMTY3xrHRYxl3SI3MjATmVkWrAhmp\ndY3rqIjoJh6Rgje0cM79e+D/XDb0befc2b02a4E24OvZfDEzW3DOfQz4Ab4V+5fN7JBz7iOp1+93\nznXguwg2AUnn3K8B1wFrgG+kWnhWAF87O7ASyZeeZdkDKT4jI9DTAw8/nC79a2yEN7/Z/2ppCXV5\nl037TsKgfVc8zIzhmWGOjR3LuENqfG48MLemoiajW9/65vV0NHQQcZEQVn5ptOeknFzoRxevA/+S\n+vj9+IDn9Flz5oAXgC9l+wXN7PvA988au3/ZxyfILB1cNAlsy/briEh5M4PDh32W6uBBSKbOYm/Y\n4LNUb3yjuv6JSOkwM05NnwpkpKbmpwJz6yrrAh371tSv0R1SIkUg27LAvwA+bWav5X1FV0hlgSLl\nbX4eDhzwF/72pU5sRqPprn9XXaXSPxEpbklLMjQ5FMhIzS7MBuY2VDWwoWVDRiC1qnaVAimRK5Sv\nssCsgqtSouBKpDydOQMPPuhL/6ZSP8htavJlf7t2lW7pn4iUt0QyweDkYEZGqnesl/nE2SctoKWm\nJZCRaqlpUSAlkgdhXCIsIimqBw+HGbz6qi/9e+aZdOnfxo3p0r+KMv5TTPtOwqB9d/niiTgDEwMZ\nGam+8T4WkguBuavqVgUCqabqphBWHT7tOSknZfxtiYiUqsXSvz17oL/fj0WjsGNHuvRPRCRMcwtz\n9E/0Z2SkBiYGSCQTgblr6tcEAqn6qvoQVi0i+aayQBEpGmfO+K5/jzySWfp3992+/K9pZf5QV0RC\nNrswS+9Yb0ZG6sTkCZKWzJjnnKOjoSMjiIo1xaitrA1p5SJyPioLFJGyZAYvv+wbVDz7bLr076qr\nfOnfrbeWd+mfiBSXqfkpesd7MzJSQ5NDgXkRFwncIdXd1E11RXUIqxaRYqFvWUSyoHrw3Jubg8cf\n90HVwIAfWyz9u+cef65qpdO+kzCspH03MTfB8bHjHBs7ttSx7/T02bfOQEWkgq6mroxAqquxi8qo\n7nvIhZW056T8KbgSkYI6fTpd+jc97ceam33p365dKv0TkdwzM8bmxnwgNXps6Q6pkZmRwNyqaFUg\nI7WucR0VEX3LJCIXpzNXIpJ3ZvDSS+nSv8X/RTdv9g0qbrlFpX8ikhtmxvDMMMfHjmf8Gp8bD8yt\nqagh1hzLCKQ6GjqIuEgIKxeRQtKZKxEpOXNz8NhjPqgaHPRjFRXwpjf5oGrDhnDXJyKlzcw4NX0q\nEEhNzU8F5tZV1gU69q2pX6M7pEQkpxRciWRB9eCX5uRJX/r36KMwM+PHWlrSpX+NjaEur2Ro30kY\ninXfJS3J0ORQIJCaXZgNzG2oamBDy4aMQGpV7SoFUkWqWPecyOVQcCUiOWEGhw75u6mefz5d+rdl\ni29QsW2bb1ghInIxiWSCwcnBjCCqd6yX+cR8YG5LTUsgI9VS06JASkRCoTNXInJFZmdh/36fqTpx\nwo9VVvrSv3vugVgs1OWJSJGLJ+IMTAxkBFL9E/3EE/HA3FV1qwKBVFO1uuCIyKXTmSsRKSonT/qz\nVI8+6gMsgNZW2L0b7rxTpX8iEjSfmKdvvC8jkBqYGCCRTATmrqlfEwik6qvqQ1i1iEj2FFyJZEH1\n4J4ZvPhiuvRv0dVXp0v/ImqylTPadxKGXO272YXZpbujFn+dmDxB0pIZ85xzrGtclxFExZpi1FbW\nXvEapDTozzopJwquROSiFkv/9u6FoSE/VlkJ27f7rn8q/RNZ2abmp5bujlr8NTQ5FJgXcZHAHVLd\nTd1UV1SHsGoRkdzTmSsROa+hIR9Q7d+fLv1ra/Olf3fdBfWq0BFZcSbmJgId+05Pnw7Mq4hU0NXU\nlRFIdTV2URmtDGHVIiKZdOZKRArCDF54wZf+vfBCevyaa3zp3803q/RPZCUwM8bmxgKB1MjMSGBu\nVbQqkJFa17iOioi+zRCRlUV/6olkYSXUg8/MpEv/Tp70Y1VV6dK/7u5w17cSrYR9J8XBzBieGeb4\n2HG++8Pv0ry1meNjxxmfGw/MramoIdYcywikOho6iDj91EUuj/6sk3Ki4EpkhRsc9G3U9++HuTk/\ntmpVuuufSv9EyouZcWr6VCAjNTU/BcBA3wCdrZ0A1FXWBTr2ralfozukRETOQ2euRFagZNJ3+9u7\n13f/W7R1qy/9u+kmlf6JlIOkJRmaHMq8jHe8l5n4TGBuQ1UDG1o2ZARSq2pXKZASkbKkM1cicsWm\np/29VD09cOqUH6uqgp07felfZ2eoyxORK5BIJhicHMwMpMZ6mU/MB+Y21zSzoTkzkGqpaVEgJSJy\nhRRciWSh1OvBBwfTXf/mU99nrV6dLv2rqwt1eXIepb7vJH/iiTgDEwMZgVT/RD/xRDwwd1XdqsAd\nUs01zef93Np3Umjac1JOFFyJlKlkEp57zgdVhw6lx6+91mepbrxRpX8ipWA+MU/feF9GIDUwMUAi\nmQjMba9vz8hIxZpjNFQ1hLBqEZGVSWeuRMrM9DQ88ogv/Tudunqmqgpuv90HVevWhbo8EbmA2YVZ\nescyL+M9MXmCpCUz5jnn6GjoCFzGW1epNLSISDZ05kpELmhgwN9N9fjj6dK/9nZf+nfHHSr9Eyk2\n0/HpQMe+ocmhwLyIi9DV1JWRkepu6qa6ojqEVYuIyIUouBLJQrHWgyeT8OyzPqh6+eX0+HXX+SzV\nDTeo9K+UFeu+k0s3MTcRCKROT58OzKuIVNDV1JWRkepq7KIyWlmwtWrfSaFpz0k5UXAlUoKmptKl\nf2fO+LHqal/6t3u3Sv9EwmJmjM2NBQKpkZmRwNzKaCXdTd0ZGal1jeuoiOivZhGRUqUzVyIlpK/P\nN6g4cCCz9O+ee3xgVVsb7vpEVhIzY3hmOBBIjc+NB+bWVNQQa45lZKQ6GjqIOKWWRUTCoDNXIitU\nMgnPPONL/155JT1+/fU+qLr+etDVNCL5ZWacmj4VCKSm5qcCc2sra1nfvD4jI7Wmfo3ukBIRWQEU\nXIlkIYx68MlJePhhePBBGB72YzU1vjnF7t2wdm1BlyMh0DmEcCQtydDkUOZlvOO9zMRnAnMbqhp8\nINWSDqRW1a4q6UBK+04KTXtOyknBgyvn3L3A54Ao8CUz+8xZr78B+ApwC/CbZvaH2b5XpBz09qZL\n/+Kp+0DXrvUNKm6/3QdYIpIbiWSCwcnBzEBqrJf5xHxgbnNNcyAj1VLTUtKBlIiI5FZBz1w556LA\ny8DbgH7gCeC9ZnZo2Zx2YAPwHmBkMbjK5r2peTpzJSUnmYSDB33p36uvpsdvvNEHVdddp9I/kSu1\nkFygf7w/I5Dqn+gnnogH5rbVtmVkpGJNMZprmkNYtYiI5EO5nLnaDhw2s6MAzrmvA+8GlgIkMzsF\nnHLOvetS3ytSahZL/3p6YCTVTKymBu6805f+rVkT5upEStd8Yp6+8b6MQGpgYoBEMhGY217fnpGR\nijXHaKhqCGHVIiJS6godXHUBvcue+4AdBXivyBXJdT14b6/PUj3xRLr0r6PDZ6l27lTpn3g6h5Cd\n2YVZesd6MwKpE5MnSFoyY55zjo6GjoyMVHdTN3WVumF7Oe07KTTtOSknhQ6urqReT7V+UtISiXTp\n3+HDfsw5X/p3zz1w7bUq/RO5mOn4dKBj38mpk5xdDh5xkaXLeBczUt1N3VRXVIe0chERWQkKHVz1\nA7FlzzF8Biqn773vvvvYuHEjAC0tLWzbtm3pJyI9PT0AetZzwZ6npwF289BD8MIL/vXNm3dzxx1Q\nWdlDaytcd13xrFfPxfO8OFYs6yn08/ce+B5DU0N03NDB8bHj7HtwH2NzY3Te2AnAwHMDAMRujtHV\n1MXUK1OsbVjLu+99N12NXTyy7xEYhd3biuP3o2c96/ncz7t37y6q9ei5PJ8PHjzI6OgoAEePHiVf\nCt3QogLflOKtwABwgHM0pUjN/RQwsayhRVbvVUMLKRbHjvmuf088AQsLfmzdunTpX7V+gC4C+Duk\nxubGAhmpkZmRwNzKaCXdTd0ZGal1jeuoiOhmERERyV5ZNLQwswXn3MeAH+DbqX/ZzA455z6Sev1+\n51wHvhNgE5B0zv0acJ2ZTZ7rvYVcv6xcPcuyBxeSSMBTT/mg6sgRP+Yc3HyzD6re8AaV/kn2st13\npcTMGJ4ZDgRS43PjgbnVFdXEmmIZZ6Q6GjqIuEgIK185ynHfSXHTnpNyUvAf9ZnZ94HvnzV2/7KP\nT5BZ/nfB94oUg/Fx2LfPX/g7NubHamvhrrtg925YvTrU5YmEwsw4NX2K3rFejo0dWwqkpuanAnNr\nK2uX7o5azEi117crkBIRkZJS0LLAQlBZoBTS0aO+QcWPf5wu/evs9FmqHTtU+icrR9KSDE0O0Tve\ny7FRH0j1jvcyE58JzG2oakgHUqmM1KraVbqMV0RECqYsygJFysHCgi/927MHXn/dj0UisG2bD6q2\nblXpn5S3RDLB4ORgRkaqd6yX+cR8YG5zTXMgI9VS06JASkREypKCK5Es9PT0cOutvuPfQw+lS//q\n69MX/q5aFeoSpQwVwzmEheQC/eP9GRmp/ol+4ol4YG5bbVtGRirWFKO5pjmEVcuVKIZ9JyuL9pyU\nEwVXIhfx+uvwve/B3/2db1gB0NXl76bavh2qqsJdn0iuzCfm6Rvvy8hIDUwMkEgmAnPb69szMlKx\n5hgNVQ0hrFpERKR46MyVyDksLPhzVHv2+HNV4Ev/br7ZB1VXX63SPyltswuz9I71ZmSkTkyeIGnJ\njHnOOdbWr83ISHU3dVNXWRfSykVERK6czlyJFMDoqO/699BDvgMg+NK/u+6Cu+9W6Z+Upun49NK5\nqMWM1Mmpk5z9g6iIi9DV1JWRkepu6qa6Qp1ZREREsqHgSlY8M1/6t2ePb1SxWPrX3e2zVG96Ezz6\naA+rVu0OcZWyEl3OOYSJuYmlTn3Hx45zbPQYp6dPB+ZFI9HMQKplA12NXVRGK3O0eilVOv8ihaY9\nJ+VEwZWsWAsL8OSTPqg6dsyPRSJw660+qNqyRaV/UrzMjLG5saWM1PGx4xwbO8bIzEhgbmW0ku6m\n7oyM1LrGdVRE9FeAiIhILunMlaw4o6P+st99+2Biwo81NMCuXb70r7U13PWJnM3MGJ4ZDmSkxufG\nA3OrK6qJNcUyMlIdDR26jFdERGQZnbkSuQJm8NprPkv19NPp0r9YLF36V6lqKCkCZsap6VNL2ajF\nX5Pzk4G5tZW1S0HUYkaqvb5dgZSIiEhIFFxJWYvH4YknYO9eOH7cj0UicNtt/sLfzZuzK/1TPbjk\nQ9KSDE0OLWWjFn/NxGcAGHhugM4bOwFoqGrICKTWN69ndd1qXcYrOac/76TQtOeknCi4krI0MpIu\n/ZtM/cC/oQHe/Gb/S6V/UmiJZILBycGMjFTveC9zC3OBuc01zT6AGlnPu970LtY3r6e1plWBlIiI\nSJHTmSspG2Zw+LDPUj39NCRT1/WsX+9L/267TaV/UhgLyQX6x/szMlJ9433EE/HA3LbatkBGqrmm\nOYRVi4iIrBw6cyVyHvE4HDjgg6reXj8WjfpzVG95C2zapK5/kj/ziXn6xvsyMlL9E/0kkonA3Pb6\n9owgKtYUo7G6MYRVi4iISD4ouJKSNTzsS/8efjhd+tfYmC79a2nJ3ddSPbgAzC7M0jvWm5GRGpwY\nJGnJjHnOOToaOjIDqeYYdZV1l/T1tO8kDNp3Umjac1JOFFxJSTGDV1/1WaqDB9Olfxs3+izVbbdB\nhXa15MB0fDrjDqnjY8cZmhri7LLjiItkXMa7vnk93U3d1FTUhLRyERERCYvOXElJmJ/3pX979kB/\nvx+LRuGNb/RB1VVXqfRPLt/E3ETGHVLHx45zaupUYF40EqWrMRhIVUZ1mE9ERKSU6MyVrEhnzkBP\nDzzyCExN+bGmpnTpX7PO/cslGp0dDWSkhmeGA/Mqo5V0N3VnBFKdjZ1URPTHpoiIiJybvkuQomMG\nr7zis1TPPpsu/bvqKt/179ZbC1/6p3rw0mNmDM8MBzJSY7NjgbnVFdXEmmIZgdS6xnWhX8arfSdh\n0L6TQtOek3Ki4EqKxtwcPP64z1QtL/3bscMHVRs3hrk6KWZmxqnpUxnZqONjx5mcnwzMra2sDbQ+\nX1O/JvRASkREREqfzlxJ6E6fTpf+TU/7seZmuPtu2LXLlwGKLEpakqHJoYxs1PGx48zEZwJzG6oa\nAoHU6rrVuoxXRERkhdOZKykrZvDyy+nSv8V4eNMmn6W65RZ1/RMfSA1MDGRkpHrHe5lbmAvMba5p\nDgRSrTWtCqRERESkYPTtqxTUYunf3r0wMODHKirSF/5u2BDu+s5H9eD5t5BcoH+8PyMj1TfeRzwR\nD8xtq20LBFLNNeXX3UT7TsKgfSeFpj0n5UTBlRTEYunfww/DTKp6q6UlXfrX2Bjq8qTA4ok4veO9\nGRmp/ol+EslEYG57fXvmZbxNMRqrtWFERESk+OjMleSNGbz0ki/9e+65dOnf5s3p0r9oNNw1Sv7N\nLszSN96XcT5qcGKQpCUz5jnnWFu/NjOQao5RV1kX0spFRESkXOnMlZSMuTl47DEfVJ044cdKofRP\nrtx0fDrQsW9oaoizf+ARcRG6moKX8dZU1IS0chEREZErp+BKcubkSV/69+ij6dK/1lZf+nfXXaVd\n+qd68KCJuYlAx75TU6cC86KRaCCQ6mrqoipaFcKqS4v2nYRB+04KTXtOyomCK7kiZvDii75BxfPP\np0v/tmzxpX/btqn0rxyMzY5lBFHHx44zPDMcmFcZraS7qTsjkOps7KQioj9qREREpPzpzJVcltlZ\n2L/fB1VDQ36sshK2b/elf7FYuOuTy2NmjMyOBAKpsdmxwNzqimpiTbGMQKqjoYNoRNG0iIiIFDed\nuZKiMDSULv2bnfVjra2we7cv/WtoCHN1cinMjNPTpwOB1OT8ZGBubWVtoPX5mvo1RFwkhJWLiIiI\nFKeCB1fOuXuBzwFR4Etm9plzzPlj4B3ANHCfmT2dGj8KjAMJIG5m2wu17pXMDF54IV36t+iaa3yW\nats2iJT599ilXg+etCQnp04GAqmZ+ExgbkNVQyCQWl23WpfxhqDU952UJu07KTTtOSknBQ2unHNR\n4PPA24B+4Ann3LfM7NCyOe8EtpjZ1c65HcAXgJ2plw3YbWbBwx6Sc7OzPkPV05NZ+rdjhw+qurtD\nXZ6cR9KSDE4MZgRRveO9zC3MBeY2VTexoWVDRiDVWtOqQEpERETkMhT0zJVz7nbgk2Z2b+r54wBm\n9vvL5vwpsNfM/kfq+SXgbjMbcs69DtxmZmcu8DV05uoKDQ35LNX+/enSv7a2dOlffX2oy5NlFpIL\nDEwMZARSfeN9xBPxwNy22rZARqq5pjmEVYuIiIiEq1zOXHUBvcue+4AdWczpAobwmasfOecSwP1m\n9sU8rnVFMfMlf3v2+O5/i7Zu9Vmqm28u/9K/YhdPxAOX8fZP9JNIJgJz2+vbMy/jbYrRWF3CvfBF\nRERESkChg6tsU0rniyLvMrMB51w78EPn3Etmti9Ha1uRZmZ86d/evXAqdUVRVVW69K+rK9z1FYtC\n14PPLswGAqnBiUGSlsyY55yjo6EjM5BqjlFXWVewtUr+6ByChEH7TgpNe07KSaGDq35geZPuGD4z\ndaE53akxzGwg9c9Tzrl/BLYDgeDqvvvuY+PGjQC0tLSwbdu2pf9pe3p6AFb889atu9m7F/7hH3qI\nx6GzczerVkFbWw/XXw/veEdxrTfs50X5+PyzC7Ncte0qjo8d54F/eYCTUyepvboWM2PguQEAOm/s\nJOIizB+ZZ23DWt7+1rezvnk9rz39GlWuit23pj/fIIOh//vSc26eDx48WFTr0fPKeF5ULOvRs571\nrOdcPB88eJDR0VEAjh49Sr4U+sxVBfAy8FZgADgAvPccDS0+ZmbvdM7tBD5nZjudc3VA1MwmnHP1\nwAPAb5vZA2d9DZ25Oo9kMl36d+hQevwNb/AX/t54o0r/8m1yfjLQse/U1KnAvGgkSldjV0ZGqqup\ni6poVQirFhERESkvZXHmyswWnHMfA36Ab8X+ZTM75Jz7SOr1+83se865dzrnDgNTwAdSb+8AvpHq\nYlYBfO3swErObWLCN6d48EE4fdqPVVXBzp2+9K+zM9z1laux2bFAIDU8E2x0WRmtpLupOyOQ6mzs\npCKia+hERERESklBM1eFoMyVZwYvvwz79sHTT0Mi1fNg9WofUN1xB9TpWE7Wenp6llLLZzMzRmZH\nAoHU2OxYYG51RTWxplhGINXR0EE0Es3z70BK0YX2nUi+aN9JoWnPSRjKInMl+Tc+7htUPPxwukFF\nJOK7/d11F9xwg0r/roSZcXr6dCCQmpyfDMytrawNtD5fU7+GiNN/ABEREZFypMxVGTDz7dMffhie\neSadpWpr8wHVHXdAa2u4ayxFSUtycupkIJCaic8E5tZX1bOhOfMy3tV1q3UZr4iIiEgRUuZKAkZH\nfZbqkUfSZ6kiEdi2DXbtguuuU5YqW0lLMjgxmBFE9Y73MrcwF5jbVN3EhpYNS/dHbWjZQGtNqwIp\nERERkRVOwVWJSSZ9lmrfPnj2Wf8M/izVXXfB7bdDS0u4ayx2C8kFBiYGMgKpvvE+4ol4YG5bbRvr\nm9cz+tIo73r7u9jQvIHmmuYQVi0rkc4hSBi076TQtOeknCi4KhEjI+mzVMOphnPRKNx6q89SXXst\nKHESFE/EA5fx9k/0k0gmAnPb69vTF/Gmmk40VjcC0DPVw01rbyr08kVERESkhOjMVRFbvJdq3z7/\nz8UsVXu7D6huvx2amsJdYzGZW5ijd7w3I5AanBgkacmMec451tavTQdSzT6QqqtU+0QRERGRlUBn\nrlaQ4WF/juqRR3zGCnyW6rbbfFC1dauyVNPxaXrHMgOpoakhzg6sIy5CV1NXRkYq1hyjpqImpJWL\niIiISLlScFUkEgl47jlf9vf8874DIMDatT6g2rkTGhvDXWNYJucnAx37Tk2dCsyLRqKZgVRzjO6m\nbqqiVVe8BtWDSxi07yQM2ndSaNpzUk4UXIXs9Ol0lmosdedsRUX6LNXVV6+sLNXY7FggkBqeGQ7M\nq4xW0t3UnZGR6mrqoiKiLS0iIiIi4dCZqxAkEv4+qn374NChdJaqoyOdpWpoCHeN+WZmjMyOBAKp\nsdmxwNyqaFXG/VGx5hjrGtYRjURDWLmIiIiIlDqduSoDp075sr9HH4XxcT9WWZnOUm3ZUp5ZKjPj\n9PTpQCA1OT8ZmFtbWZsZSDXFWNuwlojThV0iIiIiUtwUXOXZwkJmlmpRZ6cPqHbsgPr68NaXa2bG\n0NRQIJCaic8E5tZX1bOheUNGRqq9rr0oL+NVPbiEQftOwqB9J4WmPSflRMFVngwN+SzV/v0wMeHH\nqqp8x7+77oJNm0o/S5W0JIMTg4HLeGcXZgNzm6qb2NCyIeMOqbbatqIMpERERERELofOXOVQPA4H\nD/os1csvp8e7u32Wavt2qCvRq5QWkgsMTAwEAql4Ih6Y21rbupSRWrxDqqWmJYRVi4iIiIgE6cxV\nERsc9Fmqxx6DydQxoqoqH0zt2gUbNpRWliqeiNM33pcRSPVP9JNIJgJz2+vbM85HrW9eT2P1Cu0Z\nLyIiIiIrmoKryxSPw1NP+SzVq6+mx9evT2epakrgntq5hTl6xzMv4x2cGCRpycDctQ1rAxmpusoS\nTcVdItWDSxi07yQM2ndSaNpzUk4UXF2igQEfUD32GExP+7GaGnjTm9JZqmI1HZ+mdywzkBqaGuLs\nMsqIi2RextsUI9Yco6aiBKJFEREREZGQ6MxVFubn4cc/9kHVkSPp8Y0bfUB1223Fl6Va7Np3ZPgI\nR0aOcGT4CCcmTwTmRSNROhs7MzJS3U3dVEWrQli1iIiIiEj+6cxVCPr6fED1+OMwk+okXlPj26fv\n2gWxWLjrWy6eiHN09OhSIHVk5AhT81MZcyqjlXQ1dmV07etq6qIiom0gIiIiInKl9F31Webm4Mkn\nfVD1+uvp8auuSmepqqvDW9+i8bnxpSDq8PBhjo8dDzScaK5pZkvbFja1bmJL2xa6m7oVSF0m1YNL\nGLTvJAzad1Jo2nNSTvSddsrx477j3+OPw2zqmqbaWti5099L1d0d3trMjIGJgYys1KmpUxlznHN0\nN3WzuW0zm1s3s7ltM6tqV+keKRERERGRAlnRZ65mZ+GJJ3yW6tix9PiWLT6geuMbfUv1QptbmOP1\n0dc5MnyE10Ze48jIEWbiMxlzqiuq2dS6ic2tm9nUuolNrZuorawt/GJFREREREqMzlzliJkPpB5+\nGA4c8GWAAPX16SxVZ2dh1zQyM5KRleod6w20Qm+rbVvKSm1p20JXUxcRFynsQkVERERE5LxWTHA1\nM+ODqX37oLc3PX7NNf4s1S23QGVl/teRtCT94/0cHj68FFANzwxnzIm4COub17OlbctSQNVa25r/\nxcl5qR5cwqB9J2HQvpNC056TclLWwZWZb0qxb59vUjE/78cbGuD2232WqqMjv2uYic8K8MDiAAAO\n4ElEQVQslfgdGTnC6yOvM7swmzGntrJ2qcRvc9tmrmq5iuqKIuiaISIiIiIiWSvLM1dTU8bjj/ug\nqr8//drWreksVUUewkoz48zMGV4bec1npoaP0D/RH7ikt72+famD3+bWzaxrXKcSPxERERGRAsnX\nmauyDK4++lEjHvfPjY3pLNXatbn9Wolkgt7x3oyW6GOzYxlzopHoUonfYnaquaY5twsREREREZGs\nqaHFJYjH4dprfZbq5ptzl6Wamp9a6t53ZPgIR0ePMp+Yz5hTX1W/VN63uXUzG1s2UhktwGEuySvV\ng0sYtO8kDNp3Umjac1JOyjK4+t3fhfb2K/scZsap6VMcGfYZqddGXmNgYiAwb23D2qUOfptaN9HR\n0KG7pUREREREVqCyLAu8nN/TQnKBY6PHMlqiT8xNZMypjFayoXnDUlZqU+smGqsbc7V0EREREREp\nAJUF5tjE3ES68cTIEY6NHmMhuZAxp7G6cSkrtbltM+ub11MRWbH/ykRERERE5AIKHik45+4FPgdE\ngS+Z2WfOMeePgXcA08B9ZvZ0tu89FzPjxOSJjKzU0ORQYF5nY+dSVmpz22ba69pV4ieA6sElHNp3\nEgbtOyk07TkpJwUNrpxzUeDzwNuAfuAJ59y3zOzQsjnvBLaY2dXOuR3AF4Cd2bx30XxinqOjR5cC\nqddGXmNqfipjTlW0iqtar1pqib6pdRN1lXX5+q1LiTt48KD+4JeC076TMGjfSaFpz0k5KXTmajtw\n2MyOAjjnvg68G1geIP0U8JcAZva4c67FOdcBXJXFewH49X/+dRLJRMZYS01LRlYq1hQjGonm+vcn\nZWp0dDTsJcgKpH0nYdC+k0LTnpNyUujgqgvoXfbcB+zIYk4X0JnFewFfBhhrjmW0RG+rbVOJn4iI\niIiI5E2hg6ts2/hdURT02Xs/S01FzZV8CpEMR48eDXsJsgJp30kYtO+k0LTnpJwUtBW7c24n8Ckz\nuzf1/AkgubwxhXPuT4EeM/t66vkl4G58WeAF35saL6/e8iIiIiIiknPl0Ir9SeBq59xGYAD418B7\nz5rzLeBjwNdTwdiomQ05585k8d68/EsSERERERG5mIIGV2a24Jz7GPADfDv1L5vZIefcR1Kv329m\n33POvdM5dxiYAj5wofcWcv0iIiIiIiLnU9CyQBERERERkXIVCXsBImFwzsWcc3udcy845553zv27\n1Hibc+6HzrlXnHMPOOdalr3nE865V51zLznn3r5s/I3OuedSr/1RGL8fKS3Ouahz7mnn3LdTz9p3\nklepa03+wTl3yDn3onNuh/ad5FNqD72Q2i9/45yr1p6TXHPO/blzbsg599yysZzts9S+/R+p8cec\ncxsutiYFV7JSxYF/b2bXAzuBjzrnrgU+DvzQzK4B/iX1jHPuOvw5v+uAe4E/cene/l8APmhmV+PP\nBd5b2N+KlKBfA14k3UFV+07y7Y+A75nZtcBNwEto30mepM7Hfwi41cxuxB/n+Dm05yT3voLfM8vl\ncp99EDiTGv8skNFI71wUXMmKZGYnzOxg6uNJ/GXUXSy7xDr1z/ekPn438LdmFk9dZH0Y2OGcWwc0\nmtmB1Ly/WvYekQDnXDfwTuBLpK+d0L6TvHHONQO7zOzPwZ9hNrMxtO8kf8bxP8Ssc85VAHX4ZmTa\nc5JTZrYPGDlrOJf7bPnn+v+Bt15sTQquZMVL/YTtFuBxYK2ZDaVeGgLWpj7uxF9cvWj55dbLx/tT\n4yLn81ngPwLJZWPad5JPVwGnnHNfcc495Zz7onOuHu07yRMzGwb+EDiOD6pGzeyHaM9JYeRyn3UB\nveB/MAWMOefaLvTFFVzJiuaca8D/JOLXzGxi+Wvmu72o44vkjHPuJ4GTZvY057ksXftO8qACuBX4\nEzO7Fd+J9+PLJ2jfSS455zYDvw5sxH/j2uCce9/yOdpzUghh7DMFV7JiOecq8YHVV83sm6nhIedc\nR+r1dcDJ1Hg/EFv29m78Tzn6Ux8vH+/P57qlpN0B/JRz7nXgb4F7nHNfRftO8qsP6DOzJ1LP/4AP\ntk5o30me3AY8amZnUj/t/wZwO9pzUhi5+Du1b9l71qc+VwXQnMrMnpeCK1mRUgcYvwy8aGafW/bS\nt4BfTH38i8A3l43/nHOuyjl3FXA1cMDMTgDjqc5bDviFZe8RyWBm/9nMYmZ2Ff5w9x4z+wW07ySP\nUvul1zl3TWrobcALwLfRvpP8eAnY6ZyrTe2Vt+Gb+GjPSSHk4u/UfzrH5/oZfIOMCyroJcIiReRO\n4H3As865p1NjnwB+H/g759wHgaPAzwKY2YvOub/D/+WwAPyKpS+J+xXgL4BafDeufy7Ub0JK3uIe\n0r6TfPtV4GvOuSrgCPABfAc37TvJOTN7xjn3V8CT+POlTwF/BjSiPSc55Jz7W+BuYLVzrhf4LXL7\nd+qXga86514FzuB/MHrhNekSYRERERERkSunskAREREREZEcUHAlIiIiIiKSAwquREREREREckDB\nlYiIiIiISA4ouBIREREREckBBVciIiIiIiI5oOBKRKSEOOfuc84lnXMjzrmWs16rSL32yRDW9anU\n1y7qv1eccxHn3Oecc4POuYRz7hsF+Jqfcs4l8/11REQkfEX9l6CIiJxXM/CfzvNaWBcYlsLFiT8D\n/DvgM8AdwG8U6OuWwr8bERG5QgquRERK0wPArzrn1oS9kGVcXj+5c9U5+DTXpv75R2b2uJkdzsHn\nzEZe/92IiEhxUHAlIlKafjf1z//rQpPOV5LmnPsL59zry543psr6/q1z7vedcyecc+POua865+qc\nc1udcz90zk045151zv3Ceb7kdc65vc65KefcgHPut51zGYGFc67dOfenzrk+59ysc+6Qc+5DZ81Z\nLH/c5Zz7e+fcCPDYRX6v9zrn9jvnpp1zo865f3TOXbPs9aPAYslkIvX533+Bz1fhnPtPzrkXnXMz\nzrmTzrnvO+e2LpuzNfV1RlJfd79z7icuss7Ff9e/eNb47tT4m5eN9Tjn9jnn3uGceya1jh8753Y4\n5yqdc3+QKnE845z7inOu7hxf58POuU+n/nuMOOe+5ZzrOutr/x/OuadT/33HnHPPOuc+fKHfh4iI\nBCm4EhEpTYPA54EPO+fWX2Tu+UrSzjX+CWAt8AvAbwH/GvgS8I/APwHvAZ4F/sI5d9053v9NfFbt\n3cDfAP8l9XkAcM41AQ8D9+IDnXcC3wa+4Jz72Dk+39eAI8BPc/4ySJxz9wLfBcaBnwV+GbgBeNg5\n15ma9h7gL1If70z9+t75PifwdXwQ+53U7+dDwAvAutTX7Ez9Xm4EPpr6uqPAd1PruZhsSgUN2IIv\nY/yv+LLGGvx/iy8Dq4D3A58Gfp508LjcJ4BNwAeAXwNuB/568UXn3F3AV4G9qd/nTwNfxJeeiojI\nJagIewEiInJZDP8N90fw31B/8AJzz1eSdq7xV83sA6mPf+ic2wX8HPA+M/sbAOfcj4Gfwn+j/+mz\n3v9nZvYHqY9/lAqm/oNz7rNmNo7/5n49cIOZHUnN25NqzvFJ59yfmNnyTNvfm9nHL/B7W/S7/M/2\n7i/EqiqK4/h31SSCPjgzVPOg1GM9BAZFJUNFkBFj9AcSiYggn4IKFHqTMUUKwoYgGsiHnsewCGya\nsSgtQpGsoAiaogwpHdEZzQozcPWw9onLnnP/zpnicn8fuJw55+x99j73zsNdrH3WhR+A+4v+ZnYY\nmAG2Alvd/Ssz+xXA3Y82upiZ3QM8Ajzr7q/VnHq35u8twCrgNnf/MfWbBL4lAqGpFubdjAEDwB3u\nfjyNcUWax5C7r0/tPkgZr0dZGIT+5O6P19zb1cDLZjbk7qeIIPOcu2+p6fNhBXMXEek5ylyJiHQp\nd58HdgNP1C5/W6T3s/3v0na6ZtxzwGlgdUn/vdn+BLCSyCJBZKyOAMfTsrs+M+sjsl2DQJ4Ne6fZ\nhM1sBXAzMFEbmKVg5DPgrmbXKLGeCGD3NGhzJ3C4CKzSmJeJjNdaM1vZwbhlZorAKlnwmdQcL/tM\n8uzcN2lbZDyPAv1pCegGy6pQiohI6xRciYh0tzFgjsggVVGRbj7bv9Tg+PKS/rN19otnfK4hgp2/\n0zWK115i/oNZ/5MtzLmfyPCUtZ0lMj/tGgTm3P2vBm0G6ox5Ks2nv4Nxy7TzmfTZwnL4c9l+cU/L\nAdz9EyLjtQZ4Gzidnq+7aVGzFhHpQQquRES6mLv/AbxIfDleW9LkIkRxhuz4IEtTHnwo2782bX9J\n2zNENumWktetwLGsfytznE/t8rGL+Zxt4Rq5M8CAmZUFkIWzpOevSsZ0FgY/hYtpuyw7ngeW/xl3\n3+fudxPLHB8m7msqL0YiIiKNKbgSEel+rxPBy66Scz+n7b9ZiLTsa90SzWVjtr8JuAB8nfaniHLo\nJ9z9i5LX7+0OmALMY8DG2qyNmV1H3OfBDu5jmsg+bW7Q5hBwexqnGPNKoghIo3uZJbJHeWZopIN5\nVsrd/3T394A3iACrk6yfiEjPUkELEZEu5+6XzGwH8YU4NwmcB/aY2SixFOx5IuBZTFaiXt/NKcD5\nHLiPKLQx6u4X0vkxIvj41MzGiIITK4AbgGF3f6jD+WwjqgXuN7Nx4jmvF4js0e52L+buB81sH/CK\nma0hKuldRTxntd/dD6V7eZIoJjFKvKdPE9X96gZK7u5mNgE8ZWYzxHswQv1nw5b698N2EMs1PyaW\nOa4mfmj5S3fvJOsnItKzlLkSEek+ZUvl3gS+z8+5+3lgA3CZeK5pF/Aq8UW61VLgZe3yY0W7B4F7\niWp2jwE73X1nzXx+I7JJk0RVuymipPgDwEdNxqg/SfdpIkBZRRTRGCfKpg+ninjN7qfMJmA7UcK9\nKH1+I1BUHDwJDKdxxoG30vgj7n6gyZjPEc83bScKYCwDnilp1858221bOAJcTwSLB4CXiP+P/z2T\nJiLSbcx9KZbci4iIiIiI9BZlrkRERERERCqg4EpERERERKQCCq5EREREREQqoOBKRERERESkAgqu\nREREREREKqDgSkREREREpAIKrkRERERERCqg4EpERERERKQCCq5EREREREQq8A/8v0nMEi/XJgAA\nAABJRU5ErkJggg==\n", + "text": [ + "" + ] + } + ], + "prompt_number": 37 + }, { "cell_type": "markdown", "metadata": {}, diff --git a/pandas_sum_tricks.ipynb b/pandas_sum_tricks.ipynb new file mode 100644 index 0000000..ccf454e --- /dev/null +++ b/pandas_sum_tricks.ipynb @@ -0,0 +1,450 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:8222de4af96dc6569eddec8d75df6855e8bac273e12e8739fffc42aafd712ba2" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%load_ext watermark \n", + "%watermark -d -v -a 'Sebastian Raschka' -p numpy,pandas" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Sebastian Raschka 23/12/2014 \n", + "\n", + "CPython 3.4.2\n", + "IPython 2.3.1\n", + "\n", + "numpy 1.9.1\n", + "pandas 0.15.2\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "4 Simple Tricks To Speed up the Sum Calculation in Pandas" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "I wanted to improve the performance of some passages in my code a little bit and found that some simple tweaks can speed up the `pandas` section significantly. I thought that it might be one useful thing to share -- and no Cython or just-in-time compilation is required! " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In my case, I had a large dataframe where I wanted to calculate the sum of specific columns for different combinations of rows (approx. 100,000,000 of them, that's why I was looking for ways to speed it up). Anyway, below is a simple toy DataFrame to explore the `.sum()` method a little bit." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "df = pd.DataFrame()\n", + "\n", + "for col in ('a', 'b', 'c', 'd'):\n", + " df[col] = pd.Series(range(1000), index=range(1000))" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 2 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "df.tail()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
abcd
995 995 995 995 995
996 996 996 996 996
997 997 997 997 997
998 998 998 998 998
999 999 999 999 999
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 3, + "text": [ + " a b c d\n", + "995 995 995 995 995\n", + "996 996 996 996 996\n", + "997 997 997 997 997\n", + "998 998 998 998 998\n", + "999 999 999 999 999" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's assume we are interested in calculating the sum of column `a`, `c`, and `d`, which would look like this:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "df.loc[:, ['a', 'c', 'd']].sum(axis=0)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 4, + "text": [ + "a 499500\n", + "c 499500\n", + "d 499500\n", + "dtype: int64" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, the `.loc` method is probably the most \"costliest\" one for this kind of operation. Since we are only intersted in the resulting numbers (i.e., the column sums), there is no need to make a copy of the array. Anyway, let's use the method above as a reference for comparison:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# 1\n", + "%timeit -n 1000 -r 5 df.loc[:, ['a', 'c', 'd']].sum(axis=0)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "1000 loops, best of 5: 1.28 ms per loop\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Although this is a rather small DataFrame (1000 x 4), let's see by how much we can speed it up using a different slicing method:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# 2\n", + "%timeit -n 1000 -r 5 df[['a', 'c', 'd']].sum(axis=0)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "1000 loops, best of 5: 1.03 ms per loop\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, let us use the Numpy representation of the `NDFrame` via the `.values` attribue:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# 3\n", + "%timeit -n 1000 -r 5 df[['a', 'c', 'd']].values.sum(axis=0)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "1000 loops, best of 5: 721 \u00b5s per loop\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "While the speed improvements in #2 and #3 were not really a surprise, the next \"trick\" surprised me a little bit. Here, we are calculating the sum of each column separately rather than slicing the array." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "[df[col].values.sum(axis=0) for col in ('a', 'c', 'd')]" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 8, + "text": [ + "[499500, 499500, 499500]" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# 4\n", + "%timeit -n 1000 -r 5 [df[col].values.sum(axis=0) for col in ('a', 'c', 'd')]" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "1000 loops, best of 5: 64.8 \u00b5s per loop\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this case, this is an almost 10x improvement!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "One more thing: Let's try the Einstein summation convention [`einsum`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.einsum.html)." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from numpy import einsum\n", + "[einsum('i->', df[col].values) for col in ('a', 'c', 'd')]" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 10, + "text": [ + "[499500, 499500, 499500]" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# 5\n", + "%timeit -n 1000 -r 5 [einsum('i->', df[col].values) for col in ('a', 'c', 'd')]" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "1000 loops, best of 5: 57.2 \u00b5s per loop\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Conclusion:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Using some simple tricks, the column sum calculation improved from 1280 to 57.2 \u00b5s per loop (approx. 22x faster!)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file From 044d334ef9f6f910f7fe46dd0b54209d41b661c0 Mon Sep 17 00:00:00 2001 From: rasbt Date: Mon, 29 Dec 2014 00:26:25 -0500 Subject: [PATCH 35/83] function to process first and last names --- useful_scripts/preprocess_first_last_names.py | 82 +++++++++++++++++++ 1 file changed, 82 insertions(+) create mode 100644 useful_scripts/preprocess_first_last_names.py diff --git a/useful_scripts/preprocess_first_last_names.py b/useful_scripts/preprocess_first_last_names.py new file mode 100644 index 0000000..07d36f3 --- /dev/null +++ b/useful_scripts/preprocess_first_last_names.py @@ -0,0 +1,82 @@ +# Sebastian Raschka 2014 +# +# A Python function to generalize first and last names. +# The typical use case of such a function to merge data that have been collected +# from different sources (e.g., names of soccer players as shown in the doctest.) +# + +import unicodedata +import string +import re + +def preprocess_names(name, output_sep=' ', firstname_output_letters=1): + """ + Function that outputs a person's name in the format + (all lowercase) + + >>> preprocess_names("Samuel Eto'o") + 'etoo s' + + >>> preprocess_names("Eto'o, Samuel") + 'etoo s' + + >>> preprocess_names("Eto'o,Samuel") + 'etoo s' + + >>> preprocess_names('Xavi') + 'xavi' + + >>> preprocess_names('Yaya Touré') + 'toure y' + + >>> preprocess_names('José Ángel Pozo') + 'pozo j' + + >>> preprocess_names('Pozo, José Ángel') + 'pozo j' + + >>> preprocess_names('Pozo, José Ángel', firstname_output_letters=2) + 'pozo jo' + + >>> preprocess_names("Eto'o, Samuel", firstname_output_letters=2) + 'etoo sa' + + >>> preprocess_names("Eto'o, Samuel", firstname_output_letters=0) + 'etoo' + + >>> preprocess_names("Eto'o, Samuel", output_sep=', ') + 'etoo, s' + + """ + + # set first and last name positions + last, first = 'last', 'first' + last_pos = -1 + + if ',' in name: + last, first = first, last + name = name.replace(',', ' ') + last_pos = 1 + + spl = name.split() + if len(spl) > 2: + name = '%s %s' % (spl[0], spl[last_pos]) + + spl1, *spl2 = name.split() + '%s %s' % (spl1, ''.join(spl2)) + + # remove accents + name = ''.join(x for x in unicodedata.normalize('NFKD', name) if x in string.ascii_letters+' ') + + # get first and last name if applicable + m = re.match('(?P\w+)\W+(?P\w+)', name) + if m: + output = '%s%s%s' % (m.group(last), output_sep, m.group(first)[:firstname_output_letters]) + else: + output = name + return output.lower().strip() + + +if __name__ == "__main__": + import doctest + doctest.testmod() \ No newline at end of file From 7d879b4e336fc6512fa81157101fb8bce8c2b4fd Mon Sep 17 00:00:00 2001 From: rasbt Date: Tue, 30 Dec 2014 16:57:12 -0500 Subject: [PATCH 36/83] removed redundant lines --- useful_scripts/preprocess_first_last_names.py | 5 +---- 1 file changed, 1 insertion(+), 4 deletions(-) diff --git a/useful_scripts/preprocess_first_last_names.py b/useful_scripts/preprocess_first_last_names.py index 07d36f3..b0957c2 100644 --- a/useful_scripts/preprocess_first_last_names.py +++ b/useful_scripts/preprocess_first_last_names.py @@ -62,9 +62,6 @@ def preprocess_names(name, output_sep=' ', firstname_output_letters=1): if len(spl) > 2: name = '%s %s' % (spl[0], spl[last_pos]) - spl1, *spl2 = name.split() - '%s %s' % (spl1, ''.join(spl2)) - # remove accents name = ''.join(x for x in unicodedata.normalize('NFKD', name) if x in string.ascii_letters+' ') @@ -79,4 +76,4 @@ def preprocess_names(name, output_sep=' ', firstname_output_letters=1): if __name__ == "__main__": import doctest - doctest.testmod() \ No newline at end of file + doctest.testmod() From 75c8f46f4aa40121d58d96ab5aaa7653c1af227a Mon Sep 17 00:00:00 2001 From: rasbt Date: Thu, 1 Jan 2015 20:14:07 -0500 Subject: [PATCH 37/83] find files --- useful_scripts/find_file.py | 18 ++++++++++++++++++ 1 file changed, 18 insertions(+) create mode 100644 useful_scripts/find_file.py diff --git a/useful_scripts/find_file.py b/useful_scripts/find_file.py new file mode 100644 index 0000000..8cbcc4d --- /dev/null +++ b/useful_scripts/find_file.py @@ -0,0 +1,18 @@ +# Sebastian Raschka 2014 +# +# A Python function to find files in a directory based on a substring search. + + +import os + +def find_files(substring, path): + results = [] + for f in os.listdir(path): + if substring in f: + results.append(os.path.join(path, f)) + return results + +# E.g. +# find_files('Untitled', '/Users/sebastian/Desktop/') +# returns +# ['/Users/sebastian/Desktop/Untitled0.ipynb'] \ No newline at end of file From 6b3a7e282b33edae6877d009bc1ab29600f25c79 Mon Sep 17 00:00:00 2001 From: rasbt Date: Fri, 23 Jan 2015 23:20:17 -0500 Subject: [PATCH 38/83] some soccer data --- Data/some_soccer_data.csv | 21 +++++++++++++++++++++ 1 file changed, 21 insertions(+) create mode 100644 Data/some_soccer_data.csv diff --git a/Data/some_soccer_data.csv b/Data/some_soccer_data.csv new file mode 100644 index 0000000..7966d52 --- /dev/null +++ b/Data/some_soccer_data.csv @@ -0,0 +1,21 @@ +PLAYER,SALARY,GP,G,A,SOT,PPG,P +"Sergio Agüero + Forward — Manchester City",$19.2m,16,14,3,34,13.12,209.98 +"Eden Hazard + Midfield — Chelsea",$18.9m,21,8,4,17,13.05,274.04 +"Alexis Sánchez + Forward — Arsenal",$17.6m,20,12,7,29,11.19,223.86 +"Yaya Touré + Midfield — Manchester City",$16.6m,18,7,1,19,10.99,197.91 +"Ángel Di María + Midfield — Manchester United",$15.0m,13,3,6,13,10.17,132.23 +"Santiago Cazorla + Midfield — Arsenal",$14.8m,20,4,3,20,9.97,199.49 +"David Silva + Midfield — Manchester City",$14.3m,15,6,2,11,10.35,155.26 +"Cesc Fàbregas + Midfield — Chelsea",$14.0m,20,2,14,10,10.47,209.49 +"Saido Berahino + Forward — West Brom",$13.8m,21,9,0,20,7.02,147.43 +"Steven Gerrard + Midfield — Liverpool",$13.8m,20,5,1,11,7.5,150.01 \ No newline at end of file From d9c2ca8b66727b2391b35a974b39fbe420ca8c19 Mon Sep 17 00:00:00 2001 From: rasbt Date: Fri, 23 Jan 2015 23:38:27 -0500 Subject: [PATCH 39/83] some soccer data for pandas tutorial --- Data/some_soccer_data.csv | 22 +++++++++++----------- 1 file changed, 11 insertions(+), 11 deletions(-) diff --git a/Data/some_soccer_data.csv b/Data/some_soccer_data.csv index 7966d52..c2cdab8 100644 --- a/Data/some_soccer_data.csv +++ b/Data/some_soccer_data.csv @@ -1,21 +1,21 @@ -PLAYER,SALARY,GP,G,A,SOT,PPG,P +PLAYER,SALARY,GP,G,A,SOT,PPG,P "Sergio Agüero - Forward — Manchester City",$19.2m,16,14,3,34,13.12,209.98 + Forward — Manchester City",$19.2m,16,14,3,34,13.12,209.98 "Eden Hazard - Midfield — Chelsea",$18.9m,21,8,4,17,13.05,274.04 + Midfield — Chelsea",$18.9m,21,8,4,17,13.05,274.04 "Alexis Sánchez - Forward — Arsenal",$17.6m,20,12,7,29,11.19,223.86 + Forward — Arsenal",$17.6m,,12,7,29,11.19,223.86 "Yaya Touré - Midfield — Manchester City",$16.6m,18,7,1,19,10.99,197.91 + Midfield — Manchester City",$16.6m,18,7,1,19,10.99,197.91 "Ángel Di María - Midfield — Manchester United",$15.0m,13,3,6,13,10.17,132.23 + Midfield — Manchester United",$15.0m,13,3,,13,10.17,132.23 "Santiago Cazorla - Midfield — Arsenal",$14.8m,20,4,3,20,9.97,199.49 + Midfield — Arsenal",$14.8m,20,4,,20,9.97, "David Silva - Midfield — Manchester City",$14.3m,15,6,2,11,10.35,155.26 + Midfield — Manchester City",$14.3m,15,6,2,11,10.35,155.26 "Cesc Fàbregas - Midfield — Chelsea",$14.0m,20,2,14,10,10.47,209.49 + Midfield — Chelsea",$14.0m,20,2,14,10,10.47,209.49 "Saido Berahino - Forward — West Brom",$13.8m,21,9,0,20,7.02,147.43 + Forward — West Brom",$13.8m,21,9,0,20,7.02,147.43 "Steven Gerrard - Midfield — Liverpool",$13.8m,20,5,1,11,7.5,150.01 \ No newline at end of file + Midfield — Liverpool",$13.8m,20,5,1,11,7.5,150.01 From 4edb98e53e3639c566c221cec9fa36aea82034f0 Mon Sep 17 00:00:00 2001 From: rasbt Date: Sat, 24 Jan 2015 00:03:50 -0500 Subject: [PATCH 40/83] pandas snippets --- README.md | 4 + tutorials/classifiers.pkl | Bin 2453 -> 0 bytes tutorials/cython_bubblesort_nomagic.c | 19147 ---------------------- tutorials/cython_bubblesort_nomagic.pyx | 21 - tutorials/example.csv | 3 - tutorials/hello_world.py | 3 - tutorials/setup.py | 14 - tutorials/standardized_data.pkl | Bin 20263 -> 0 bytes tutorials/test_set.csv | 54 - tutorials/things_in_pandas.ipynb | 1770 ++ tutorials/training_set.csv | 124 - tutorials/wine_data.csv | 178 - 12 files changed, 1774 insertions(+), 19544 deletions(-) delete mode 100644 tutorials/classifiers.pkl delete mode 100644 tutorials/cython_bubblesort_nomagic.c delete mode 100644 tutorials/cython_bubblesort_nomagic.pyx delete mode 100644 tutorials/example.csv delete mode 100644 tutorials/hello_world.py delete mode 100644 tutorials/setup.py delete mode 100644 tutorials/standardized_data.pkl delete mode 100644 tutorials/test_set.csv create mode 100644 tutorials/things_in_pandas.ipynb delete mode 100644 tutorials/training_set.csv delete mode 100644 tutorials/wine_data.csv diff --git a/README.md b/README.md index e880d27..2ec57f6 100644 --- a/README.md +++ b/README.md @@ -53,6 +53,10 @@ - A random collection of useful Python snippets [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/python_patterns/patterns.ipynb)] +- Things in pandas I wish I'd had known earlier [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/things_in_pandas.ipynb)] + + +
diff --git a/tutorials/classifiers.pkl b/tutorials/classifiers.pkl deleted file mode 100644 index 1272af5379477528ccd2e994c314d3b43328e07a..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 2453 zcmaJ@eN+_J6<@v-SCJ2iU*HGCDnvj81Qx+JxEKtpsH@Rc0+X5DS$1)m**h}}LJTnx z5e!wTL?ubJCpI4@610j2(aa!5Jlasj21LUVG#WvgqoM{{deWKM#h$h&eShrR_vXF( ze)rzr@4mOiBO6pM)&~ z&SM*lbuBdUMRrOJ;|%W7S>{CW(W!K9+hM#Oe8Y4e1~+Lo8T>LcGc$gXn)0Jl@!(HZ zXeTHA_#xM-=|EWnn~LgUn+CwEhd5lVXfV|pf$J89}MdX8$8jtPggoJ@zMFWv-LJqb1T;1+|;nmJVzndGeSJ<3= z=nqSi`-Sxxm4Ed0ypLcC4^v5lT8e^|<|)=l*?Am-M#2y*hhdr?rn?d{Lk_~^i%`CD z-P~X?!F(|F^qH~ZRX@*xWJ9C~GkFLh4WlGu`4mA*@eCa?^rCENmL7hi7}EKa!EDLY z;zTKRLTC>eUc&}UD{l!^Cn}4N?D!T@roBgP!CgYJzmKhVs7dGy zNGMtL*-0TPHmqlf>I>x6x&I@#i=PPRH)6%1uk;BYT+E!iZ`yU#ec`hD-APSo%Dt9? zgO`64;`5r#N!!~Hih5do?Ce9-S{P9nQq_iD8|@z3n|K%X?ag_sYS|HVp?q>d%g#qa zZk=}~yYiV(5EnNzYTbPlJVT?qQrssb?wQ$Zui4f%!&pbUuOX9KouWaVa zvXM0Sh#NU_fqZ1V9uk}>mL!uXvn9G@{nr=Xi5(*r zqWHD~{Act{=j2Juoa?A>?ZRnUKJH@pn!)--jR9DYXGV@=w+aId4@sn9oOA+>8<~7N zLsK-*!NN?1Ss3D@|jYkb7jZ*ldPoZq*M*gbXz7W1Gb9pt~OrInVdCZ5ljC|eZAGe!%+ z@m3?A%MvE5NOdCwjOd^=y4?= zIhl0Tlmx995zlYdH-?KHx3Y$3m97-wbsh-P@|?e5=VqWWEwjn(QJ85h?aQ4d(anbExQp)zt!WP~Ne*4_-=ZKqp zu9o3FA>yQ%!s?quI2KUbkTNtx7f4g=94!LhKqfS@1j^vgJlICFx8xh5n0pw)jQ9=D25&^AAjp{hzMpLa-Aj0 zHXmmR-pYU_9W}=)&EP39h2n{5u%F9k+9;u< zf&CQ`=bCV{Bx3ba$(Hma;nLAVC-!Z?>%pPCMYK@xd|GkRCYgpph5r_LA8b-+&r0fM m6n#jLik!5!Q#4`Yi=bGEge?Z%aM9f=-OjLC=j9-&sDA;7_lHja diff --git a/tutorials/cython_bubblesort_nomagic.c b/tutorials/cython_bubblesort_nomagic.c deleted file mode 100644 index 028e020..0000000 --- a/tutorials/cython_bubblesort_nomagic.c +++ /dev/null @@ -1,19147 +0,0 @@ -/* Generated by Cython 0.20.2 on Sun Jul 6 22:33:02 2014 */ - -#define PY_SSIZE_T_CLEAN -#ifndef CYTHON_USE_PYLONG_INTERNALS -#ifdef PYLONG_BITS_IN_DIGIT -#define CYTHON_USE_PYLONG_INTERNALS 0 -#else -#include "pyconfig.h" -#ifdef PYLONG_BITS_IN_DIGIT -#define CYTHON_USE_PYLONG_INTERNALS 1 -#else -#define CYTHON_USE_PYLONG_INTERNALS 0 -#endif -#endif -#endif -#include "Python.h" -#ifndef Py_PYTHON_H - #error Python headers needed to compile C extensions, please install development version of Python. -#elif PY_VERSION_HEX < 0x02040000 - #error Cython requires Python 2.4+. -#else -#define CYTHON_ABI "0_20_2" -#include /* For offsetof */ -#ifndef offsetof -#define offsetof(type, member) ( (size_t) & ((type*)0) -> member ) -#endif -#if !defined(WIN32) && !defined(MS_WINDOWS) - #ifndef __stdcall - #define __stdcall - #endif - #ifndef __cdecl - #define __cdecl - #endif - #ifndef __fastcall - #define __fastcall - #endif -#endif -#ifndef DL_IMPORT - #define DL_IMPORT(t) t -#endif -#ifndef DL_EXPORT - #define DL_EXPORT(t) t -#endif -#ifndef PY_LONG_LONG - #define PY_LONG_LONG LONG_LONG -#endif -#ifndef Py_HUGE_VAL - #define Py_HUGE_VAL HUGE_VAL -#endif -#ifdef PYPY_VERSION -#define CYTHON_COMPILING_IN_PYPY 1 -#define CYTHON_COMPILING_IN_CPYTHON 0 -#else -#define CYTHON_COMPILING_IN_PYPY 0 -#define CYTHON_COMPILING_IN_CPYTHON 1 -#endif -#if CYTHON_COMPILING_IN_PYPY && PY_VERSION_HEX < 0x02070600 -#define Py_OptimizeFlag 0 -#endif -#if PY_VERSION_HEX < 0x02050000 - typedef int Py_ssize_t; - #define PY_SSIZE_T_MAX INT_MAX - #define PY_SSIZE_T_MIN INT_MIN - #define PY_FORMAT_SIZE_T "" - #define CYTHON_FORMAT_SSIZE_T "" - #define PyInt_FromSsize_t(z) PyInt_FromLong(z) - #define PyInt_AsSsize_t(o) __Pyx_PyInt_As_int(o) - #define PyNumber_Index(o) ((PyNumber_Check(o) && !PyFloat_Check(o)) ? PyNumber_Int(o) : \ - (PyErr_Format(PyExc_TypeError, \ - "expected index value, got %.200s", Py_TYPE(o)->tp_name), \ - (PyObject*)0)) - #define __Pyx_PyIndex_Check(o) (PyNumber_Check(o) && !PyFloat_Check(o) && \ - !PyComplex_Check(o)) - #define PyIndex_Check __Pyx_PyIndex_Check - #define PyErr_WarnEx(category, message, stacklevel) PyErr_Warn(category, message) - #define __PYX_BUILD_PY_SSIZE_T "i" -#else - #define __PYX_BUILD_PY_SSIZE_T "n" - #define CYTHON_FORMAT_SSIZE_T "z" - #define __Pyx_PyIndex_Check PyIndex_Check -#endif -#if PY_VERSION_HEX < 0x02060000 - #define Py_REFCNT(ob) (((PyObject*)(ob))->ob_refcnt) - #define Py_TYPE(ob) (((PyObject*)(ob))->ob_type) - #define Py_SIZE(ob) (((PyVarObject*)(ob))->ob_size) - #define PyVarObject_HEAD_INIT(type, size) \ - PyObject_HEAD_INIT(type) size, - #define PyType_Modified(t) - typedef struct { - void *buf; - PyObject *obj; - Py_ssize_t len; - Py_ssize_t itemsize; - int readonly; - int ndim; - char *format; - Py_ssize_t *shape; - Py_ssize_t *strides; - Py_ssize_t *suboffsets; - void *internal; - } Py_buffer; - #define PyBUF_SIMPLE 0 - #define PyBUF_WRITABLE 0x0001 - #define PyBUF_FORMAT 0x0004 - #define PyBUF_ND 0x0008 - #define PyBUF_STRIDES (0x0010 | PyBUF_ND) - #define PyBUF_C_CONTIGUOUS (0x0020 | PyBUF_STRIDES) - #define PyBUF_F_CONTIGUOUS (0x0040 | PyBUF_STRIDES) - #define PyBUF_ANY_CONTIGUOUS (0x0080 | PyBUF_STRIDES) - #define PyBUF_INDIRECT (0x0100 | PyBUF_STRIDES) - #define PyBUF_RECORDS (PyBUF_STRIDES | PyBUF_FORMAT | PyBUF_WRITABLE) - #define PyBUF_FULL (PyBUF_INDIRECT | PyBUF_FORMAT | PyBUF_WRITABLE) - typedef int (*getbufferproc)(PyObject *, Py_buffer *, int); - typedef void (*releasebufferproc)(PyObject *, Py_buffer *); -#endif -#if PY_MAJOR_VERSION < 3 - #define __Pyx_BUILTIN_MODULE_NAME "__builtin__" - #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) \ - PyCode_New(a+k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) - #define __Pyx_DefaultClassType PyClass_Type -#else - #define __Pyx_BUILTIN_MODULE_NAME "builtins" - #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) \ - PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) - #define __Pyx_DefaultClassType PyType_Type -#endif -#if PY_VERSION_HEX < 0x02060000 - #define PyUnicode_FromString(s) PyUnicode_Decode(s, strlen(s), "UTF-8", "strict") -#endif -#if PY_MAJOR_VERSION >= 3 - #define Py_TPFLAGS_CHECKTYPES 0 - #define Py_TPFLAGS_HAVE_INDEX 0 -#endif -#if (PY_VERSION_HEX < 0x02060000) || (PY_MAJOR_VERSION >= 3) - #define Py_TPFLAGS_HAVE_NEWBUFFER 0 -#endif -#if PY_VERSION_HEX < 0x02060000 - #define Py_TPFLAGS_HAVE_VERSION_TAG 0 -#endif -#if PY_VERSION_HEX < 0x02060000 && !defined(Py_TPFLAGS_IS_ABSTRACT) - #define Py_TPFLAGS_IS_ABSTRACT 0 -#endif -#if PY_VERSION_HEX < 0x030400a1 && !defined(Py_TPFLAGS_HAVE_FINALIZE) - #define Py_TPFLAGS_HAVE_FINALIZE 0 -#endif -#if PY_VERSION_HEX > 0x03030000 && defined(PyUnicode_KIND) - #define CYTHON_PEP393_ENABLED 1 - #define __Pyx_PyUnicode_READY(op) (likely(PyUnicode_IS_READY(op)) ? \ - 0 : _PyUnicode_Ready((PyObject *)(op))) - #define __Pyx_PyUnicode_GET_LENGTH(u) PyUnicode_GET_LENGTH(u) - #define __Pyx_PyUnicode_READ_CHAR(u, i) PyUnicode_READ_CHAR(u, i) - #define __Pyx_PyUnicode_KIND(u) PyUnicode_KIND(u) - #define __Pyx_PyUnicode_DATA(u) PyUnicode_DATA(u) - #define __Pyx_PyUnicode_READ(k, d, i) PyUnicode_READ(k, d, i) -#else - #define CYTHON_PEP393_ENABLED 0 - #define __Pyx_PyUnicode_READY(op) (0) - #define __Pyx_PyUnicode_GET_LENGTH(u) PyUnicode_GET_SIZE(u) - #define __Pyx_PyUnicode_READ_CHAR(u, i) ((Py_UCS4)(PyUnicode_AS_UNICODE(u)[i])) - #define __Pyx_PyUnicode_KIND(u) (sizeof(Py_UNICODE)) - #define __Pyx_PyUnicode_DATA(u) ((void*)PyUnicode_AS_UNICODE(u)) - #define __Pyx_PyUnicode_READ(k, d, i) ((void)(k), (Py_UCS4)(((Py_UNICODE*)d)[i])) -#endif -#if CYTHON_COMPILING_IN_PYPY - #define __Pyx_PyUnicode_Concat(a, b) PyNumber_Add(a, b) - #define __Pyx_PyUnicode_ConcatSafe(a, b) PyNumber_Add(a, b) -#else - #define __Pyx_PyUnicode_Concat(a, b) PyUnicode_Concat(a, b) - #define __Pyx_PyUnicode_ConcatSafe(a, b) ((unlikely((a) == Py_None) || unlikely((b) == Py_None)) ? \ - PyNumber_Add(a, b) : __Pyx_PyUnicode_Concat(a, b)) -#endif -#define __Pyx_PyString_FormatSafe(a, b) ((unlikely((a) == Py_None)) ? PyNumber_Remainder(a, b) : __Pyx_PyString_Format(a, b)) -#define __Pyx_PyUnicode_FormatSafe(a, b) ((unlikely((a) == Py_None)) ? PyNumber_Remainder(a, b) : PyUnicode_Format(a, b)) -#if PY_MAJOR_VERSION >= 3 - #define __Pyx_PyString_Format(a, b) PyUnicode_Format(a, b) -#else - #define __Pyx_PyString_Format(a, b) PyString_Format(a, b) -#endif -#if PY_MAJOR_VERSION >= 3 - #define PyBaseString_Type PyUnicode_Type - #define PyStringObject PyUnicodeObject - #define PyString_Type PyUnicode_Type - #define PyString_Check PyUnicode_Check - #define PyString_CheckExact PyUnicode_CheckExact -#endif -#if PY_VERSION_HEX < 0x02060000 - #define PyBytesObject PyStringObject - #define PyBytes_Type PyString_Type - #define PyBytes_Check PyString_Check - #define PyBytes_CheckExact PyString_CheckExact - #define PyBytes_FromString PyString_FromString - #define PyBytes_FromStringAndSize PyString_FromStringAndSize - #define PyBytes_FromFormat PyString_FromFormat - #define PyBytes_DecodeEscape PyString_DecodeEscape - #define PyBytes_AsString PyString_AsString - #define PyBytes_AsStringAndSize PyString_AsStringAndSize - #define PyBytes_Size PyString_Size - #define PyBytes_AS_STRING PyString_AS_STRING - #define PyBytes_GET_SIZE PyString_GET_SIZE - #define PyBytes_Repr PyString_Repr - #define PyBytes_Concat PyString_Concat - #define PyBytes_ConcatAndDel PyString_ConcatAndDel -#endif -#if PY_MAJOR_VERSION >= 3 - #define __Pyx_PyBaseString_Check(obj) PyUnicode_Check(obj) - #define __Pyx_PyBaseString_CheckExact(obj) PyUnicode_CheckExact(obj) -#else - #define __Pyx_PyBaseString_Check(obj) (PyString_CheckExact(obj) || PyUnicode_CheckExact(obj) || \ - PyString_Check(obj) || PyUnicode_Check(obj)) - #define __Pyx_PyBaseString_CheckExact(obj) (PyString_CheckExact(obj) || PyUnicode_CheckExact(obj)) -#endif -#if PY_VERSION_HEX < 0x02060000 - #define PySet_Check(obj) PyObject_TypeCheck(obj, &PySet_Type) - #define PyFrozenSet_Check(obj) PyObject_TypeCheck(obj, &PyFrozenSet_Type) -#endif -#ifndef PySet_CheckExact - #define PySet_CheckExact(obj) (Py_TYPE(obj) == &PySet_Type) -#endif -#define __Pyx_TypeCheck(obj, type) PyObject_TypeCheck(obj, (PyTypeObject *)type) -#if PY_MAJOR_VERSION >= 3 - #define PyIntObject PyLongObject - #define PyInt_Type PyLong_Type - #define PyInt_Check(op) PyLong_Check(op) - #define PyInt_CheckExact(op) PyLong_CheckExact(op) - #define PyInt_FromString PyLong_FromString - #define PyInt_FromUnicode PyLong_FromUnicode - #define PyInt_FromLong PyLong_FromLong - #define PyInt_FromSize_t PyLong_FromSize_t - #define PyInt_FromSsize_t PyLong_FromSsize_t - #define PyInt_AsLong PyLong_AsLong - #define PyInt_AS_LONG PyLong_AS_LONG - #define PyInt_AsSsize_t PyLong_AsSsize_t - #define PyInt_AsUnsignedLongMask PyLong_AsUnsignedLongMask - #define PyInt_AsUnsignedLongLongMask PyLong_AsUnsignedLongLongMask - #define PyNumber_Int PyNumber_Long -#endif -#if PY_MAJOR_VERSION >= 3 - #define PyBoolObject PyLongObject -#endif -#if PY_VERSION_HEX < 0x030200A4 - typedef long Py_hash_t; - #define __Pyx_PyInt_FromHash_t PyInt_FromLong - #define __Pyx_PyInt_AsHash_t PyInt_AsLong -#else - #define __Pyx_PyInt_FromHash_t PyInt_FromSsize_t - #define __Pyx_PyInt_AsHash_t PyInt_AsSsize_t -#endif -#if (PY_MAJOR_VERSION < 3) || (PY_VERSION_HEX >= 0x03010300) - #define __Pyx_PySequence_GetSlice(obj, a, b) PySequence_GetSlice(obj, a, b) - #define __Pyx_PySequence_SetSlice(obj, a, b, value) PySequence_SetSlice(obj, a, b, value) - #define __Pyx_PySequence_DelSlice(obj, a, b) PySequence_DelSlice(obj, a, b) -#else - #define __Pyx_PySequence_GetSlice(obj, a, b) (unlikely(!(obj)) ? \ - (PyErr_SetString(PyExc_SystemError, "null argument to internal routine"), (PyObject*)0) : \ - (likely((obj)->ob_type->tp_as_mapping) ? (PySequence_GetSlice(obj, a, b)) : \ - (PyErr_Format(PyExc_TypeError, "'%.200s' object is unsliceable", (obj)->ob_type->tp_name), (PyObject*)0))) - #define __Pyx_PySequence_SetSlice(obj, a, b, value) (unlikely(!(obj)) ? \ - (PyErr_SetString(PyExc_SystemError, "null argument to internal routine"), -1) : \ - (likely((obj)->ob_type->tp_as_mapping) ? (PySequence_SetSlice(obj, a, b, value)) : \ - (PyErr_Format(PyExc_TypeError, "'%.200s' object doesn't support slice assignment", (obj)->ob_type->tp_name), -1))) - #define __Pyx_PySequence_DelSlice(obj, a, b) (unlikely(!(obj)) ? \ - (PyErr_SetString(PyExc_SystemError, "null argument to internal routine"), -1) : \ - (likely((obj)->ob_type->tp_as_mapping) ? (PySequence_DelSlice(obj, a, b)) : \ - (PyErr_Format(PyExc_TypeError, "'%.200s' object doesn't support slice deletion", (obj)->ob_type->tp_name), -1))) -#endif -#if PY_MAJOR_VERSION >= 3 - #define PyMethod_New(func, self, klass) ((self) ? PyMethod_New(func, self) : PyInstanceMethod_New(func)) -#endif -#if PY_VERSION_HEX < 0x02050000 - #define __Pyx_GetAttrString(o,n) PyObject_GetAttrString((o),((char *)(n))) - #define __Pyx_SetAttrString(o,n,a) PyObject_SetAttrString((o),((char *)(n)),(a)) - #define __Pyx_DelAttrString(o,n) PyObject_DelAttrString((o),((char *)(n))) -#else - #define __Pyx_GetAttrString(o,n) PyObject_GetAttrString((o),(n)) - #define __Pyx_SetAttrString(o,n,a) PyObject_SetAttrString((o),(n),(a)) - #define __Pyx_DelAttrString(o,n) PyObject_DelAttrString((o),(n)) -#endif -#if PY_VERSION_HEX < 0x02050000 - #define __Pyx_NAMESTR(n) ((char *)(n)) - #define __Pyx_DOCSTR(n) ((char *)(n)) -#else - #define __Pyx_NAMESTR(n) (n) - #define __Pyx_DOCSTR(n) (n) -#endif -#ifndef CYTHON_INLINE - #if defined(__GNUC__) - #define CYTHON_INLINE __inline__ - #elif defined(_MSC_VER) - #define CYTHON_INLINE __inline - #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L - #define CYTHON_INLINE inline - #else - #define CYTHON_INLINE - #endif -#endif -#ifndef CYTHON_RESTRICT - #if defined(__GNUC__) - #define CYTHON_RESTRICT __restrict__ - #elif defined(_MSC_VER) && _MSC_VER >= 1400 - #define CYTHON_RESTRICT __restrict - #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L - #define CYTHON_RESTRICT restrict - #else - #define CYTHON_RESTRICT - #endif -#endif -#ifdef NAN -#define __PYX_NAN() ((float) NAN) -#else -static CYTHON_INLINE float __PYX_NAN() { - /* Initialize NaN. The sign is irrelevant, an exponent with all bits 1 and - a nonzero mantissa means NaN. If the first bit in the mantissa is 1, it is - a quiet NaN. */ - float value; - memset(&value, 0xFF, sizeof(value)); - return value; -} -#endif -#ifdef __cplusplus -template -void __Pyx_call_destructor(T* x) { - x->~T(); -} -#endif - - -#if PY_MAJOR_VERSION >= 3 - #define __Pyx_PyNumber_Divide(x,y) PyNumber_TrueDivide(x,y) - #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceTrueDivide(x,y) -#else - #define __Pyx_PyNumber_Divide(x,y) PyNumber_Divide(x,y) - #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceDivide(x,y) -#endif - -#ifndef __PYX_EXTERN_C - #ifdef __cplusplus - #define __PYX_EXTERN_C extern "C" - #else - #define __PYX_EXTERN_C extern - #endif -#endif - -#if defined(WIN32) || defined(MS_WINDOWS) -#define _USE_MATH_DEFINES -#endif -#include -#define __PYX_HAVE__cython_bubblesort_nomagic -#define __PYX_HAVE_API__cython_bubblesort_nomagic -#include "string.h" -#include "stdio.h" -#include "stdlib.h" -#include "numpy/arrayobject.h" -#include "numpy/ufuncobject.h" -#include "pythread.h" -#include "pystate.h" -#ifdef _OPENMP -#include -#endif /* _OPENMP */ - -#ifdef PYREX_WITHOUT_ASSERTIONS -#define CYTHON_WITHOUT_ASSERTIONS -#endif - -#ifndef CYTHON_UNUSED -# if defined(__GNUC__) -# if !(defined(__cplusplus)) || (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)) -# define CYTHON_UNUSED __attribute__ ((__unused__)) -# else -# define CYTHON_UNUSED -# endif -# elif defined(__ICC) || (defined(__INTEL_COMPILER) && !defined(_MSC_VER)) -# define CYTHON_UNUSED __attribute__ ((__unused__)) -# else -# define CYTHON_UNUSED -# endif -#endif -typedef struct {PyObject **p; char *s; const Py_ssize_t n; const char* encoding; - const char is_unicode; const char is_str; const char intern; } __Pyx_StringTabEntry; /*proto*/ - -#define __PYX_DEFAULT_STRING_ENCODING_IS_ASCII 0 -#define __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT 0 -#define __PYX_DEFAULT_STRING_ENCODING "" -#define __Pyx_PyObject_FromString __Pyx_PyBytes_FromString -#define __Pyx_PyObject_FromStringAndSize __Pyx_PyBytes_FromStringAndSize -#define __Pyx_fits_Py_ssize_t(v, type, is_signed) ( \ - (sizeof(type) < sizeof(Py_ssize_t)) || \ - (sizeof(type) > sizeof(Py_ssize_t) && \ - likely(v < (type)PY_SSIZE_T_MAX || \ - v == (type)PY_SSIZE_T_MAX) && \ - (!is_signed || likely(v > (type)PY_SSIZE_T_MIN || \ - v == (type)PY_SSIZE_T_MIN))) || \ - (sizeof(type) == sizeof(Py_ssize_t) && \ - (is_signed || likely(v < (type)PY_SSIZE_T_MAX || \ - v == (type)PY_SSIZE_T_MAX))) ) -static CYTHON_INLINE char* __Pyx_PyObject_AsString(PyObject*); -static CYTHON_INLINE char* __Pyx_PyObject_AsStringAndSize(PyObject*, Py_ssize_t* length); -#define __Pyx_PyByteArray_FromString(s) PyByteArray_FromStringAndSize((const char*)s, strlen((const char*)s)) -#define __Pyx_PyByteArray_FromStringAndSize(s, l) PyByteArray_FromStringAndSize((const char*)s, l) -#define __Pyx_PyBytes_FromString PyBytes_FromString -#define __Pyx_PyBytes_FromStringAndSize PyBytes_FromStringAndSize -static CYTHON_INLINE PyObject* __Pyx_PyUnicode_FromString(const char*); -#if PY_MAJOR_VERSION < 3 - #define __Pyx_PyStr_FromString __Pyx_PyBytes_FromString - #define __Pyx_PyStr_FromStringAndSize __Pyx_PyBytes_FromStringAndSize -#else - #define __Pyx_PyStr_FromString __Pyx_PyUnicode_FromString - #define __Pyx_PyStr_FromStringAndSize __Pyx_PyUnicode_FromStringAndSize -#endif -#define __Pyx_PyObject_AsSString(s) ((signed char*) __Pyx_PyObject_AsString(s)) -#define __Pyx_PyObject_AsUString(s) ((unsigned char*) __Pyx_PyObject_AsString(s)) -#define __Pyx_PyObject_FromUString(s) __Pyx_PyObject_FromString((const char*)s) -#define __Pyx_PyBytes_FromUString(s) __Pyx_PyBytes_FromString((const char*)s) -#define __Pyx_PyByteArray_FromUString(s) __Pyx_PyByteArray_FromString((const char*)s) -#define __Pyx_PyStr_FromUString(s) __Pyx_PyStr_FromString((const char*)s) -#define __Pyx_PyUnicode_FromUString(s) __Pyx_PyUnicode_FromString((const char*)s) -#if PY_MAJOR_VERSION < 3 -static CYTHON_INLINE size_t __Pyx_Py_UNICODE_strlen(const Py_UNICODE *u) -{ - const Py_UNICODE *u_end = u; - while (*u_end++) ; - return (size_t)(u_end - u - 1); -} -#else -#define __Pyx_Py_UNICODE_strlen Py_UNICODE_strlen -#endif -#define __Pyx_PyUnicode_FromUnicode(u) PyUnicode_FromUnicode(u, __Pyx_Py_UNICODE_strlen(u)) -#define __Pyx_PyUnicode_FromUnicodeAndLength PyUnicode_FromUnicode -#define __Pyx_PyUnicode_AsUnicode PyUnicode_AsUnicode -#define __Pyx_Owned_Py_None(b) (Py_INCREF(Py_None), Py_None) -#define __Pyx_PyBool_FromLong(b) ((b) ? (Py_INCREF(Py_True), Py_True) : (Py_INCREF(Py_False), Py_False)) -static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject*); -static CYTHON_INLINE PyObject* __Pyx_PyNumber_Int(PyObject* x); -static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject*); -static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t); -#if CYTHON_COMPILING_IN_CPYTHON -#define __pyx_PyFloat_AsDouble(x) (PyFloat_CheckExact(x) ? PyFloat_AS_DOUBLE(x) : PyFloat_AsDouble(x)) -#else -#define __pyx_PyFloat_AsDouble(x) PyFloat_AsDouble(x) -#endif -#define __pyx_PyFloat_AsFloat(x) ((float) __pyx_PyFloat_AsDouble(x)) -#if PY_MAJOR_VERSION < 3 && __PYX_DEFAULT_STRING_ENCODING_IS_ASCII -static int __Pyx_sys_getdefaultencoding_not_ascii; -static int __Pyx_init_sys_getdefaultencoding_params(void) { - PyObject* sys; - PyObject* default_encoding = NULL; - PyObject* ascii_chars_u = NULL; - PyObject* ascii_chars_b = NULL; - const char* default_encoding_c; - sys = PyImport_ImportModule("sys"); - if (!sys) goto bad; - default_encoding = PyObject_CallMethod(sys, (char*) (const char*) "getdefaultencoding", NULL); - Py_DECREF(sys); - if (!default_encoding) goto bad; - default_encoding_c = PyBytes_AsString(default_encoding); - if (!default_encoding_c) goto bad; - if (strcmp(default_encoding_c, "ascii") == 0) { - __Pyx_sys_getdefaultencoding_not_ascii = 0; - } else { - char ascii_chars[128]; - int c; - for (c = 0; c < 128; c++) { - ascii_chars[c] = c; - } - __Pyx_sys_getdefaultencoding_not_ascii = 1; - ascii_chars_u = PyUnicode_DecodeASCII(ascii_chars, 128, NULL); - if (!ascii_chars_u) goto bad; - ascii_chars_b = PyUnicode_AsEncodedString(ascii_chars_u, default_encoding_c, NULL); - if (!ascii_chars_b || !PyBytes_Check(ascii_chars_b) || memcmp(ascii_chars, PyBytes_AS_STRING(ascii_chars_b), 128) != 0) { - PyErr_Format( - PyExc_ValueError, - "This module compiled with c_string_encoding=ascii, but default encoding '%.200s' is not a superset of ascii.", - default_encoding_c); - goto bad; - } - Py_DECREF(ascii_chars_u); - Py_DECREF(ascii_chars_b); - } - Py_DECREF(default_encoding); - return 0; -bad: - Py_XDECREF(default_encoding); - Py_XDECREF(ascii_chars_u); - Py_XDECREF(ascii_chars_b); - return -1; -} -#endif -#if __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT && PY_MAJOR_VERSION >= 3 -#define __Pyx_PyUnicode_FromStringAndSize(c_str, size) PyUnicode_DecodeUTF8(c_str, size, NULL) -#else -#define __Pyx_PyUnicode_FromStringAndSize(c_str, size) PyUnicode_Decode(c_str, size, __PYX_DEFAULT_STRING_ENCODING, NULL) -#if __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT -static char* __PYX_DEFAULT_STRING_ENCODING; -static int __Pyx_init_sys_getdefaultencoding_params(void) { - PyObject* sys; - PyObject* default_encoding = NULL; - char* default_encoding_c; - sys = PyImport_ImportModule("sys"); - if (!sys) goto bad; - default_encoding = PyObject_CallMethod(sys, (char*) (const char*) "getdefaultencoding", NULL); - Py_DECREF(sys); - if (!default_encoding) goto bad; - default_encoding_c = PyBytes_AsString(default_encoding); - if (!default_encoding_c) goto bad; - __PYX_DEFAULT_STRING_ENCODING = (char*) malloc(strlen(default_encoding_c)); - if (!__PYX_DEFAULT_STRING_ENCODING) goto bad; - strcpy(__PYX_DEFAULT_STRING_ENCODING, default_encoding_c); - Py_DECREF(default_encoding); - return 0; -bad: - Py_XDECREF(default_encoding); - return -1; -} -#endif -#endif - - -/* Test for GCC > 2.95 */ -#if defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))) - #define likely(x) __builtin_expect(!!(x), 1) - #define unlikely(x) __builtin_expect(!!(x), 0) -#else /* !__GNUC__ or GCC < 2.95 */ - #define likely(x) (x) - #define unlikely(x) (x) -#endif /* __GNUC__ */ - -static PyObject *__pyx_m; -static PyObject *__pyx_d; -static PyObject *__pyx_b; -static PyObject *__pyx_empty_tuple; -static PyObject *__pyx_empty_bytes; -static int __pyx_lineno; -static int __pyx_clineno = 0; -static const char * __pyx_cfilenm= __FILE__; -static const char *__pyx_filename; - -#if !defined(CYTHON_CCOMPLEX) - #if defined(__cplusplus) - #define CYTHON_CCOMPLEX 1 - #elif defined(_Complex_I) - #define CYTHON_CCOMPLEX 1 - #else - #define CYTHON_CCOMPLEX 0 - #endif -#endif -#if CYTHON_CCOMPLEX - #ifdef __cplusplus - #include - #else - #include - #endif -#endif -#if CYTHON_CCOMPLEX && !defined(__cplusplus) && defined(__sun__) && defined(__GNUC__) - #undef _Complex_I - #define _Complex_I 1.0fj -#endif - - -static const char *__pyx_f[] = { - "cython_bubblesort_nomagic.pyx", - "__init__.pxd", - "stringsource", - "type.pxd", -}; -#define IS_UNSIGNED(type) (((type) -1) > 0) -struct __Pyx_StructField_; -#define __PYX_BUF_FLAGS_PACKED_STRUCT (1 << 0) -typedef struct { - const char* name; /* for error messages only */ - struct __Pyx_StructField_* fields; - size_t size; /* sizeof(type) */ - size_t arraysize[8]; /* length of array in each dimension */ - int ndim; - char typegroup; /* _R_eal, _C_omplex, Signed _I_nt, _U_nsigned int, _S_truct, _P_ointer, _O_bject, c_H_ar */ - char is_unsigned; - int flags; -} __Pyx_TypeInfo; -typedef struct __Pyx_StructField_ { - __Pyx_TypeInfo* type; - const char* name; - size_t offset; -} __Pyx_StructField; -typedef struct { - __Pyx_StructField* field; - size_t parent_offset; -} __Pyx_BufFmt_StackElem; -typedef struct { - __Pyx_StructField root; - __Pyx_BufFmt_StackElem* head; - size_t fmt_offset; - size_t new_count, enc_count; - size_t struct_alignment; - int is_complex; - char enc_type; - char new_packmode; - char enc_packmode; - char is_valid_array; -} __Pyx_BufFmt_Context; - -struct __pyx_memoryview_obj; -typedef struct { - struct __pyx_memoryview_obj *memview; - char *data; - Py_ssize_t shape[8]; - Py_ssize_t strides[8]; - Py_ssize_t suboffsets[8]; -} __Pyx_memviewslice; - -#include -#ifndef CYTHON_ATOMICS - #define CYTHON_ATOMICS 1 -#endif -#define __pyx_atomic_int_type int -#if CYTHON_ATOMICS && __GNUC__ >= 4 && (__GNUC_MINOR__ > 1 || \ - (__GNUC_MINOR__ == 1 && __GNUC_PATCHLEVEL >= 2)) && \ - !defined(__i386__) - #define __pyx_atomic_incr_aligned(value, lock) __sync_fetch_and_add(value, 1) - #define __pyx_atomic_decr_aligned(value, lock) __sync_fetch_and_sub(value, 1) - #ifdef __PYX_DEBUG_ATOMICS - #warning "Using GNU atomics" - #endif -#elif CYTHON_ATOMICS && MSC_VER - #include - #define __pyx_atomic_int_type LONG - #define __pyx_atomic_incr_aligned(value, lock) InterlockedIncrement(value) - #define __pyx_atomic_decr_aligned(value, lock) InterlockedDecrement(value) - #ifdef __PYX_DEBUG_ATOMICS - #warning "Using MSVC atomics" - #endif -#elif CYTHON_ATOMICS && (defined(__ICC) || defined(__INTEL_COMPILER)) && 0 - #define __pyx_atomic_incr_aligned(value, lock) _InterlockedIncrement(value) - #define __pyx_atomic_decr_aligned(value, lock) _InterlockedDecrement(value) - #ifdef __PYX_DEBUG_ATOMICS - #warning "Using Intel atomics" - #endif -#else - #undef CYTHON_ATOMICS - #define CYTHON_ATOMICS 0 - #ifdef __PYX_DEBUG_ATOMICS - #warning "Not using atomics" - #endif -#endif -typedef volatile __pyx_atomic_int_type __pyx_atomic_int; -#if CYTHON_ATOMICS - #define __pyx_add_acquisition_count(memview) \ - __pyx_atomic_incr_aligned(__pyx_get_slice_count_pointer(memview), memview->lock) - #define __pyx_sub_acquisition_count(memview) \ - __pyx_atomic_decr_aligned(__pyx_get_slice_count_pointer(memview), memview->lock) -#else - #define __pyx_add_acquisition_count(memview) \ - __pyx_add_acquisition_count_locked(__pyx_get_slice_count_pointer(memview), memview->lock) - #define __pyx_sub_acquisition_count(memview) \ - __pyx_sub_acquisition_count_locked(__pyx_get_slice_count_pointer(memview), memview->lock) -#endif - - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":723 - * # in Cython to enable them only on the right systems. - * - * ctypedef npy_int8 int8_t # <<<<<<<<<<<<<< - * ctypedef npy_int16 int16_t - * ctypedef npy_int32 int32_t - */ -typedef npy_int8 __pyx_t_5numpy_int8_t; - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":724 - * - * ctypedef npy_int8 int8_t - * ctypedef npy_int16 int16_t # <<<<<<<<<<<<<< - * ctypedef npy_int32 int32_t - * ctypedef npy_int64 int64_t - */ -typedef npy_int16 __pyx_t_5numpy_int16_t; - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":725 - * ctypedef npy_int8 int8_t - * ctypedef npy_int16 int16_t - * ctypedef npy_int32 int32_t # <<<<<<<<<<<<<< - * ctypedef npy_int64 int64_t - * #ctypedef npy_int96 int96_t - */ -typedef npy_int32 __pyx_t_5numpy_int32_t; - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":726 - * ctypedef npy_int16 int16_t - * ctypedef npy_int32 int32_t - * ctypedef npy_int64 int64_t # <<<<<<<<<<<<<< - * #ctypedef npy_int96 int96_t - * #ctypedef npy_int128 int128_t - */ -typedef npy_int64 __pyx_t_5numpy_int64_t; - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":730 - * #ctypedef npy_int128 int128_t - * - * ctypedef npy_uint8 uint8_t # <<<<<<<<<<<<<< - * ctypedef npy_uint16 uint16_t - * ctypedef npy_uint32 uint32_t - */ -typedef npy_uint8 __pyx_t_5numpy_uint8_t; - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":731 - * - * ctypedef npy_uint8 uint8_t - * ctypedef npy_uint16 uint16_t # <<<<<<<<<<<<<< - * ctypedef npy_uint32 uint32_t - * ctypedef npy_uint64 uint64_t - */ -typedef npy_uint16 __pyx_t_5numpy_uint16_t; - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":732 - * ctypedef npy_uint8 uint8_t - * ctypedef npy_uint16 uint16_t - * ctypedef npy_uint32 uint32_t # <<<<<<<<<<<<<< - * ctypedef npy_uint64 uint64_t - * #ctypedef npy_uint96 uint96_t - */ -typedef npy_uint32 __pyx_t_5numpy_uint32_t; - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":733 - * ctypedef npy_uint16 uint16_t - * ctypedef npy_uint32 uint32_t - * ctypedef npy_uint64 uint64_t # <<<<<<<<<<<<<< - * #ctypedef npy_uint96 uint96_t - * #ctypedef npy_uint128 uint128_t - */ -typedef npy_uint64 __pyx_t_5numpy_uint64_t; - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":737 - * #ctypedef npy_uint128 uint128_t - * - * ctypedef npy_float32 float32_t # <<<<<<<<<<<<<< - * ctypedef npy_float64 float64_t - * #ctypedef npy_float80 float80_t - */ -typedef npy_float32 __pyx_t_5numpy_float32_t; - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":738 - * - * ctypedef npy_float32 float32_t - * ctypedef npy_float64 float64_t # <<<<<<<<<<<<<< - * #ctypedef npy_float80 float80_t - * #ctypedef npy_float128 float128_t - */ -typedef npy_float64 __pyx_t_5numpy_float64_t; - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":747 - * # The int types are mapped a bit surprising -- - * # numpy.int corresponds to 'l' and numpy.long to 'q' - * ctypedef npy_long int_t # <<<<<<<<<<<<<< - * ctypedef npy_longlong long_t - * ctypedef npy_longlong longlong_t - */ -typedef npy_long __pyx_t_5numpy_int_t; - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":748 - * # numpy.int corresponds to 'l' and numpy.long to 'q' - * ctypedef npy_long int_t - * ctypedef npy_longlong long_t # <<<<<<<<<<<<<< - * ctypedef npy_longlong longlong_t - * - */ -typedef npy_longlong __pyx_t_5numpy_long_t; - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":749 - * ctypedef npy_long int_t - * ctypedef npy_longlong long_t - * ctypedef npy_longlong longlong_t # <<<<<<<<<<<<<< - * - * ctypedef npy_ulong uint_t - */ -typedef npy_longlong __pyx_t_5numpy_longlong_t; - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":751 - * ctypedef npy_longlong longlong_t - * - * ctypedef npy_ulong uint_t # <<<<<<<<<<<<<< - * ctypedef npy_ulonglong ulong_t - * ctypedef npy_ulonglong ulonglong_t - */ -typedef npy_ulong __pyx_t_5numpy_uint_t; - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":752 - * - * ctypedef npy_ulong uint_t - * ctypedef npy_ulonglong ulong_t # <<<<<<<<<<<<<< - * ctypedef npy_ulonglong ulonglong_t - * - */ -typedef npy_ulonglong __pyx_t_5numpy_ulong_t; - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":753 - * ctypedef npy_ulong uint_t - * ctypedef npy_ulonglong ulong_t - * ctypedef npy_ulonglong ulonglong_t # <<<<<<<<<<<<<< - * - * ctypedef npy_intp intp_t - */ -typedef npy_ulonglong __pyx_t_5numpy_ulonglong_t; - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":755 - * ctypedef npy_ulonglong ulonglong_t - * - * ctypedef npy_intp intp_t # <<<<<<<<<<<<<< - * ctypedef npy_uintp uintp_t - * - */ -typedef npy_intp __pyx_t_5numpy_intp_t; - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":756 - * - * ctypedef npy_intp intp_t - * ctypedef npy_uintp uintp_t # <<<<<<<<<<<<<< - * - * ctypedef npy_double float_t - */ -typedef npy_uintp __pyx_t_5numpy_uintp_t; - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":758 - * ctypedef npy_uintp uintp_t - * - * ctypedef npy_double float_t # <<<<<<<<<<<<<< - * ctypedef npy_double double_t - * ctypedef npy_longdouble longdouble_t - */ -typedef npy_double __pyx_t_5numpy_float_t; - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":759 - * - * ctypedef npy_double float_t - * ctypedef npy_double double_t # <<<<<<<<<<<<<< - * ctypedef npy_longdouble longdouble_t - * - */ -typedef npy_double __pyx_t_5numpy_double_t; - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":760 - * ctypedef npy_double float_t - * ctypedef npy_double double_t - * ctypedef npy_longdouble longdouble_t # <<<<<<<<<<<<<< - * - * ctypedef npy_cfloat cfloat_t - */ -typedef npy_longdouble __pyx_t_5numpy_longdouble_t; -#if CYTHON_CCOMPLEX - #ifdef __cplusplus - typedef ::std::complex< float > __pyx_t_float_complex; - #else - typedef float _Complex __pyx_t_float_complex; - #endif -#else - typedef struct { float real, imag; } __pyx_t_float_complex; -#endif - -#if CYTHON_CCOMPLEX - #ifdef __cplusplus - typedef ::std::complex< double > __pyx_t_double_complex; - #else - typedef double _Complex __pyx_t_double_complex; - #endif -#else - typedef struct { double real, imag; } __pyx_t_double_complex; -#endif - - -/*--- Type declarations ---*/ -struct __pyx_array_obj; -struct __pyx_MemviewEnum_obj; -struct __pyx_memoryview_obj; -struct __pyx_memoryviewslice_obj; - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":762 - * ctypedef npy_longdouble longdouble_t - * - * ctypedef npy_cfloat cfloat_t # <<<<<<<<<<<<<< - * ctypedef npy_cdouble cdouble_t - * ctypedef npy_clongdouble clongdouble_t - */ -typedef npy_cfloat __pyx_t_5numpy_cfloat_t; - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":763 - * - * ctypedef npy_cfloat cfloat_t - * ctypedef npy_cdouble cdouble_t # <<<<<<<<<<<<<< - * ctypedef npy_clongdouble clongdouble_t - * - */ -typedef npy_cdouble __pyx_t_5numpy_cdouble_t; - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":764 - * ctypedef npy_cfloat cfloat_t - * ctypedef npy_cdouble cdouble_t - * ctypedef npy_clongdouble clongdouble_t # <<<<<<<<<<<<<< - * - * ctypedef npy_cdouble complex_t - */ -typedef npy_clongdouble __pyx_t_5numpy_clongdouble_t; - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":766 - * ctypedef npy_clongdouble clongdouble_t - * - * ctypedef npy_cdouble complex_t # <<<<<<<<<<<<<< - * - * cdef inline object PyArray_MultiIterNew1(a): - */ -typedef npy_cdouble __pyx_t_5numpy_complex_t; - -/* "View.MemoryView":99 - * - * @cname("__pyx_array") - * cdef class array: # <<<<<<<<<<<<<< - * - * cdef: - */ -struct __pyx_array_obj { - PyObject_HEAD - char *data; - Py_ssize_t len; - char *format; - int ndim; - Py_ssize_t *_shape; - Py_ssize_t *_strides; - Py_ssize_t itemsize; - PyObject *mode; - PyObject *_format; - void (*callback_free_data)(void *); - int free_data; - int dtype_is_object; -}; - - -/* "View.MemoryView":269 - * - * @cname('__pyx_MemviewEnum') - * cdef class Enum(object): # <<<<<<<<<<<<<< - * cdef object name - * def __init__(self, name): - */ -struct __pyx_MemviewEnum_obj { - PyObject_HEAD - PyObject *name; -}; - - -/* "View.MemoryView":302 - * - * @cname('__pyx_memoryview') - * cdef class memoryview(object): # <<<<<<<<<<<<<< - * - * cdef object obj - */ -struct __pyx_memoryview_obj { - PyObject_HEAD - struct __pyx_vtabstruct_memoryview *__pyx_vtab; - PyObject *obj; - PyObject *_size; - PyObject *_array_interface; - PyThread_type_lock lock; - __pyx_atomic_int acquisition_count[2]; - __pyx_atomic_int *acquisition_count_aligned_p; - Py_buffer view; - int flags; - int dtype_is_object; - __Pyx_TypeInfo *typeinfo; -}; - - -/* "View.MemoryView":922 - * - * @cname('__pyx_memoryviewslice') - * cdef class _memoryviewslice(memoryview): # <<<<<<<<<<<<<< - * "Internal class for passing memoryview slices to Python" - * - */ -struct __pyx_memoryviewslice_obj { - struct __pyx_memoryview_obj __pyx_base; - __Pyx_memviewslice from_slice; - PyObject *from_object; - PyObject *(*to_object_func)(char *); - int (*to_dtype_func)(char *, PyObject *); -}; - - - -/* "View.MemoryView":302 - * - * @cname('__pyx_memoryview') - * cdef class memoryview(object): # <<<<<<<<<<<<<< - * - * cdef object obj - */ - -struct __pyx_vtabstruct_memoryview { - char *(*get_item_pointer)(struct __pyx_memoryview_obj *, PyObject *); - PyObject *(*is_slice)(struct __pyx_memoryview_obj *, PyObject *); - PyObject *(*setitem_slice_assignment)(struct __pyx_memoryview_obj *, PyObject *, PyObject *); - PyObject *(*setitem_slice_assign_scalar)(struct __pyx_memoryview_obj *, struct __pyx_memoryview_obj *, PyObject *); - PyObject *(*setitem_indexed)(struct __pyx_memoryview_obj *, PyObject *, PyObject *); - PyObject *(*convert_item_to_object)(struct __pyx_memoryview_obj *, char *); - PyObject *(*assign_item_from_object)(struct __pyx_memoryview_obj *, char *, PyObject *); -}; -static struct __pyx_vtabstruct_memoryview *__pyx_vtabptr_memoryview; - - -/* "View.MemoryView":922 - * - * @cname('__pyx_memoryviewslice') - * cdef class _memoryviewslice(memoryview): # <<<<<<<<<<<<<< - * "Internal class for passing memoryview slices to Python" - * - */ - -struct __pyx_vtabstruct__memoryviewslice { - struct __pyx_vtabstruct_memoryview __pyx_base; -}; -static struct __pyx_vtabstruct__memoryviewslice *__pyx_vtabptr__memoryviewslice; -#ifndef CYTHON_REFNANNY - #define CYTHON_REFNANNY 0 -#endif -#if CYTHON_REFNANNY - typedef struct { - void (*INCREF)(void*, PyObject*, int); - void (*DECREF)(void*, PyObject*, int); - void (*GOTREF)(void*, PyObject*, int); - void (*GIVEREF)(void*, PyObject*, int); - void* (*SetupContext)(const char*, int, const char*); - void (*FinishContext)(void**); - } __Pyx_RefNannyAPIStruct; - static __Pyx_RefNannyAPIStruct *__Pyx_RefNanny = NULL; - static __Pyx_RefNannyAPIStruct *__Pyx_RefNannyImportAPI(const char *modname); /*proto*/ - #define __Pyx_RefNannyDeclarations void *__pyx_refnanny = NULL; -#ifdef WITH_THREAD - #define __Pyx_RefNannySetupContext(name, acquire_gil) \ - if (acquire_gil) { \ - PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); \ - __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__); \ - PyGILState_Release(__pyx_gilstate_save); \ - } else { \ - __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__); \ - } -#else - #define __Pyx_RefNannySetupContext(name, acquire_gil) \ - __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__) -#endif - #define __Pyx_RefNannyFinishContext() \ - __Pyx_RefNanny->FinishContext(&__pyx_refnanny) - #define __Pyx_INCREF(r) __Pyx_RefNanny->INCREF(__pyx_refnanny, (PyObject *)(r), __LINE__) - #define __Pyx_DECREF(r) __Pyx_RefNanny->DECREF(__pyx_refnanny, (PyObject *)(r), __LINE__) - #define __Pyx_GOTREF(r) __Pyx_RefNanny->GOTREF(__pyx_refnanny, (PyObject *)(r), __LINE__) - #define __Pyx_GIVEREF(r) __Pyx_RefNanny->GIVEREF(__pyx_refnanny, (PyObject *)(r), __LINE__) - #define __Pyx_XINCREF(r) do { if((r) != NULL) {__Pyx_INCREF(r); }} while(0) - #define __Pyx_XDECREF(r) do { if((r) != NULL) {__Pyx_DECREF(r); }} while(0) - #define __Pyx_XGOTREF(r) do { if((r) != NULL) {__Pyx_GOTREF(r); }} while(0) - #define __Pyx_XGIVEREF(r) do { if((r) != NULL) {__Pyx_GIVEREF(r);}} while(0) -#else - #define __Pyx_RefNannyDeclarations - #define __Pyx_RefNannySetupContext(name, acquire_gil) - #define __Pyx_RefNannyFinishContext() - #define __Pyx_INCREF(r) Py_INCREF(r) - #define __Pyx_DECREF(r) Py_DECREF(r) - #define __Pyx_GOTREF(r) - #define __Pyx_GIVEREF(r) - #define __Pyx_XINCREF(r) Py_XINCREF(r) - #define __Pyx_XDECREF(r) Py_XDECREF(r) - #define __Pyx_XGOTREF(r) - #define __Pyx_XGIVEREF(r) -#endif /* CYTHON_REFNANNY */ -#define __Pyx_XDECREF_SET(r, v) do { \ - PyObject *tmp = (PyObject *) r; \ - r = v; __Pyx_XDECREF(tmp); \ - } while (0) -#define __Pyx_DECREF_SET(r, v) do { \ - PyObject *tmp = (PyObject *) r; \ - r = v; __Pyx_DECREF(tmp); \ - } while (0) -#define __Pyx_CLEAR(r) do { PyObject* tmp = ((PyObject*)(r)); r = NULL; __Pyx_DECREF(tmp);} while(0) -#define __Pyx_XCLEAR(r) do { if((r) != NULL) {PyObject* tmp = ((PyObject*)(r)); r = NULL; __Pyx_DECREF(tmp);}} while(0) - -#if CYTHON_COMPILING_IN_CPYTHON -static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStr(PyObject* obj, PyObject* attr_name) { - PyTypeObject* tp = Py_TYPE(obj); - if (likely(tp->tp_getattro)) - return tp->tp_getattro(obj, attr_name); -#if PY_MAJOR_VERSION < 3 - if (likely(tp->tp_getattr)) - return tp->tp_getattr(obj, PyString_AS_STRING(attr_name)); -#endif - return PyObject_GetAttr(obj, attr_name); -} -#else -#define __Pyx_PyObject_GetAttrStr(o,n) PyObject_GetAttr(o,n) -#endif - -static PyObject *__Pyx_GetBuiltinName(PyObject *name); /*proto*/ - -static CYTHON_INLINE int __Pyx_GetBufferAndValidate(Py_buffer* buf, PyObject* obj, - __Pyx_TypeInfo* dtype, int flags, int nd, int cast, __Pyx_BufFmt_StackElem* stack); -static CYTHON_INLINE void __Pyx_SafeReleaseBuffer(Py_buffer* info); - -#define __Pyx_BUF_MAX_NDIMS %(BUF_MAX_NDIMS)d -#define __Pyx_MEMVIEW_DIRECT 1 -#define __Pyx_MEMVIEW_PTR 2 -#define __Pyx_MEMVIEW_FULL 4 -#define __Pyx_MEMVIEW_CONTIG 8 -#define __Pyx_MEMVIEW_STRIDED 16 -#define __Pyx_MEMVIEW_FOLLOW 32 -#define __Pyx_IS_C_CONTIG 1 -#define __Pyx_IS_F_CONTIG 2 -static int __Pyx_init_memviewslice( - struct __pyx_memoryview_obj *memview, - int ndim, - __Pyx_memviewslice *memviewslice, - int memview_is_new_reference); -static CYTHON_INLINE int __pyx_add_acquisition_count_locked( - __pyx_atomic_int *acquisition_count, PyThread_type_lock lock); -static CYTHON_INLINE int __pyx_sub_acquisition_count_locked( - __pyx_atomic_int *acquisition_count, PyThread_type_lock lock); -#define __pyx_get_slice_count_pointer(memview) (memview->acquisition_count_aligned_p) -#define __pyx_get_slice_count(memview) (*__pyx_get_slice_count_pointer(memview)) -#define __PYX_INC_MEMVIEW(slice, have_gil) __Pyx_INC_MEMVIEW(slice, have_gil, __LINE__) -#define __PYX_XDEC_MEMVIEW(slice, have_gil) __Pyx_XDEC_MEMVIEW(slice, have_gil, __LINE__) -static CYTHON_INLINE void __Pyx_INC_MEMVIEW(__Pyx_memviewslice *, int, int); -static CYTHON_INLINE void __Pyx_XDEC_MEMVIEW(__Pyx_memviewslice *, int, int); - -static CYTHON_INLINE void __Pyx_ErrRestore(PyObject *type, PyObject *value, PyObject *tb); /*proto*/ -static CYTHON_INLINE void __Pyx_ErrFetch(PyObject **type, PyObject **value, PyObject **tb); /*proto*/ - -static CYTHON_INLINE int __Pyx_ArgTypeTest(PyObject *obj, PyTypeObject *type, int none_allowed, - const char *name, int exact); /*proto*/ - -#if CYTHON_COMPILING_IN_CPYTHON -static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw); /*proto*/ -#else -#define __Pyx_PyObject_Call(func, arg, kw) PyObject_Call(func, arg, kw) -#endif - -static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause); /*proto*/ - -static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected); - -static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index); - -static CYTHON_INLINE void __Pyx_RaiseNoneNotIterableError(void); - -static CYTHON_INLINE int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type); /*proto*/ - -static void __Pyx_RaiseArgtupleInvalid(const char* func_name, int exact, - Py_ssize_t num_min, Py_ssize_t num_max, Py_ssize_t num_found); /*proto*/ - -static void __Pyx_RaiseDoubleKeywordsError(const char* func_name, PyObject* kw_name); /*proto*/ - -static int __Pyx_ParseOptionalKeywords(PyObject *kwds, PyObject **argnames[], \ - PyObject *kwds2, PyObject *values[], Py_ssize_t num_pos_args, \ - const char* function_name); /*proto*/ - -#include - -static CYTHON_INLINE int __Pyx_PyBytes_Equals(PyObject* s1, PyObject* s2, int equals); /*proto*/ - -static CYTHON_INLINE int __Pyx_PyUnicode_Equals(PyObject* s1, PyObject* s2, int equals); /*proto*/ - -#if PY_MAJOR_VERSION >= 3 -#define __Pyx_PyString_Equals __Pyx_PyUnicode_Equals -#else -#define __Pyx_PyString_Equals __Pyx_PyBytes_Equals -#endif - -static CYTHON_INLINE Py_ssize_t __Pyx_div_Py_ssize_t(Py_ssize_t, Py_ssize_t); /* proto */ - -#ifndef __PYX_FORCE_INIT_THREADS - #define __PYX_FORCE_INIT_THREADS 0 -#endif - -#define UNARY_NEG_WOULD_OVERFLOW(x) (((x) < 0) & ((unsigned long)(x) == 0-(unsigned long)(x))) - -static CYTHON_UNUSED int __pyx_array_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ -static PyObject *get_memview(PyObject *__pyx_v_self); /*proto*/ -static CYTHON_INLINE PyObject *__Pyx_GetAttr(PyObject *, PyObject *); /*proto*/ - -static CYTHON_INLINE PyObject* __Pyx_decode_c_string( - const char* cstring, Py_ssize_t start, Py_ssize_t stop, - const char* encoding, const char* errors, - PyObject* (*decode_func)(const char *s, Py_ssize_t size, const char *errors)); - -static CYTHON_INLINE void __Pyx_ExceptionSave(PyObject **type, PyObject **value, PyObject **tb); /*proto*/ -static void __Pyx_ExceptionReset(PyObject *type, PyObject *value, PyObject *tb); /*proto*/ - -static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb); /*proto*/ - -static CYTHON_INLINE void __Pyx_ExceptionSwap(PyObject **type, PyObject **value, PyObject **tb); /*proto*/ - -#define __Pyx_GetItemInt(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck) \ - (__Pyx_fits_Py_ssize_t(i, type, is_signed) ? \ - __Pyx_GetItemInt_Fast(o, (Py_ssize_t)i, is_list, wraparound, boundscheck) : \ - (is_list ? (PyErr_SetString(PyExc_IndexError, "list index out of range"), (PyObject*)NULL) : \ - __Pyx_GetItemInt_Generic(o, to_py_func(i)))) -#define __Pyx_GetItemInt_List(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck) \ - (__Pyx_fits_Py_ssize_t(i, type, is_signed) ? \ - __Pyx_GetItemInt_List_Fast(o, (Py_ssize_t)i, wraparound, boundscheck) : \ - (PyErr_SetString(PyExc_IndexError, "list index out of range"), (PyObject*)NULL)) -static CYTHON_INLINE PyObject *__Pyx_GetItemInt_List_Fast(PyObject *o, Py_ssize_t i, - int wraparound, int boundscheck); -#define __Pyx_GetItemInt_Tuple(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck) \ - (__Pyx_fits_Py_ssize_t(i, type, is_signed) ? \ - __Pyx_GetItemInt_Tuple_Fast(o, (Py_ssize_t)i, wraparound, boundscheck) : \ - (PyErr_SetString(PyExc_IndexError, "tuple index out of range"), (PyObject*)NULL)) -static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Tuple_Fast(PyObject *o, Py_ssize_t i, - int wraparound, int boundscheck); -static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j); -static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Fast(PyObject *o, Py_ssize_t i, - int is_list, int wraparound, int boundscheck); - -static CYTHON_UNUSED int __pyx_memoryview_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ -static PyObject *__pyx_memoryview_transpose(PyObject *__pyx_v_self); /*proto*/ -static PyObject *__pyx_memoryview__get__base(PyObject *__pyx_v_self); /*proto*/ -static PyObject *__pyx_memoryview_get_shape(PyObject *__pyx_v_self); /*proto*/ -#if CYTHON_COMPILING_IN_CPYTHON -static CYTHON_INLINE int __Pyx_ListComp_Append(PyObject* list, PyObject* x) { - PyListObject* L = (PyListObject*) list; - Py_ssize_t len = Py_SIZE(list); - if (likely(L->allocated > len)) { - Py_INCREF(x); - PyList_SET_ITEM(list, len, x); - Py_SIZE(list) = len+1; - return 0; - } - return PyList_Append(list, x); -} -#else -#define __Pyx_ListComp_Append(L,x) PyList_Append(L,x) -#endif - -static PyObject *__pyx_memoryview_get_strides(PyObject *__pyx_v_self); /*proto*/ -static PyObject *__pyx_memoryview_get_suboffsets(PyObject *__pyx_v_self); /*proto*/ -static PyObject *__pyx_memoryview_get_ndim(PyObject *__pyx_v_self); /*proto*/ -static PyObject *__pyx_memoryview_get_itemsize(PyObject *__pyx_v_self); /*proto*/ -static PyObject *__pyx_memoryview_get_nbytes(PyObject *__pyx_v_self); /*proto*/ -static PyObject *__pyx_memoryview_get_size(PyObject *__pyx_v_self); /*proto*/ -static CYTHON_INLINE int __Pyx_PyList_Extend(PyObject* L, PyObject* v) { -#if CYTHON_COMPILING_IN_CPYTHON - PyObject* none = _PyList_Extend((PyListObject*)L, v); - if (unlikely(!none)) - return -1; - Py_DECREF(none); - return 0; -#else - return PyList_SetSlice(L, PY_SSIZE_T_MAX, PY_SSIZE_T_MAX, v); -#endif -} - -#if CYTHON_COMPILING_IN_CPYTHON -static CYTHON_INLINE int __Pyx_PyList_Append(PyObject* list, PyObject* x) { - PyListObject* L = (PyListObject*) list; - Py_ssize_t len = Py_SIZE(list); - if (likely(L->allocated > len) & likely(len > (L->allocated >> 1))) { - Py_INCREF(x); - PyList_SET_ITEM(list, len, x); - Py_SIZE(list) = len+1; - return 0; - } - return PyList_Append(list, x); -} -#else -#define __Pyx_PyList_Append(L,x) PyList_Append(L,x) -#endif - -static CYTHON_INLINE void __Pyx_RaiseUnboundLocalError(const char *varname); - -static CYTHON_INLINE long __Pyx_div_long(long, long); /* proto */ - -static PyObject *__pyx_memoryviewslice__get__base(PyObject *__pyx_v_self); /*proto*/ -static void __Pyx_WriteUnraisable(const char *name, int clineno, - int lineno, const char *filename, - int full_traceback); /*proto*/ - -static int __Pyx_SetVtable(PyObject *dict, void *vtable); /*proto*/ - -typedef struct { - Py_ssize_t shape, strides, suboffsets; -} __Pyx_Buf_DimInfo; -typedef struct { - size_t refcount; - Py_buffer pybuffer; -} __Pyx_Buffer; -typedef struct { - __Pyx_Buffer *rcbuffer; - char *data; - __Pyx_Buf_DimInfo diminfo[8]; -} __Pyx_LocalBuf_ND; - -#if PY_MAJOR_VERSION < 3 - static int __Pyx_GetBuffer(PyObject *obj, Py_buffer *view, int flags); - static void __Pyx_ReleaseBuffer(Py_buffer *view); -#else - #define __Pyx_GetBuffer PyObject_GetBuffer - #define __Pyx_ReleaseBuffer PyBuffer_Release -#endif - - -static Py_ssize_t __Pyx_zeros[] = {0, 0, 0, 0, 0, 0, 0, 0}; -static Py_ssize_t __Pyx_minusones[] = {-1, -1, -1, -1, -1, -1, -1, -1}; - -static CYTHON_INLINE PyObject* __Pyx_PyInt_From_unsigned_long(unsigned long value); - -static CYTHON_INLINE unsigned long __Pyx_PyInt_As_unsigned_long(PyObject *); - -#if CYTHON_CCOMPLEX - #ifdef __cplusplus - #define __Pyx_CREAL(z) ((z).real()) - #define __Pyx_CIMAG(z) ((z).imag()) - #else - #define __Pyx_CREAL(z) (__real__(z)) - #define __Pyx_CIMAG(z) (__imag__(z)) - #endif -#else - #define __Pyx_CREAL(z) ((z).real) - #define __Pyx_CIMAG(z) ((z).imag) -#endif -#if (defined(_WIN32) || defined(__clang__)) && defined(__cplusplus) && CYTHON_CCOMPLEX - #define __Pyx_SET_CREAL(z,x) ((z).real(x)) - #define __Pyx_SET_CIMAG(z,y) ((z).imag(y)) -#else - #define __Pyx_SET_CREAL(z,x) __Pyx_CREAL(z) = (x) - #define __Pyx_SET_CIMAG(z,y) __Pyx_CIMAG(z) = (y) -#endif - -static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float, float); - -#if CYTHON_CCOMPLEX - #define __Pyx_c_eqf(a, b) ((a)==(b)) - #define __Pyx_c_sumf(a, b) ((a)+(b)) - #define __Pyx_c_difff(a, b) ((a)-(b)) - #define __Pyx_c_prodf(a, b) ((a)*(b)) - #define __Pyx_c_quotf(a, b) ((a)/(b)) - #define __Pyx_c_negf(a) (-(a)) - #ifdef __cplusplus - #define __Pyx_c_is_zerof(z) ((z)==(float)0) - #define __Pyx_c_conjf(z) (::std::conj(z)) - #if 1 - #define __Pyx_c_absf(z) (::std::abs(z)) - #define __Pyx_c_powf(a, b) (::std::pow(a, b)) - #endif - #else - #define __Pyx_c_is_zerof(z) ((z)==0) - #define __Pyx_c_conjf(z) (conjf(z)) - #if 1 - #define __Pyx_c_absf(z) (cabsf(z)) - #define __Pyx_c_powf(a, b) (cpowf(a, b)) - #endif - #endif -#else - static CYTHON_INLINE int __Pyx_c_eqf(__pyx_t_float_complex, __pyx_t_float_complex); - static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_sumf(__pyx_t_float_complex, __pyx_t_float_complex); - static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_difff(__pyx_t_float_complex, __pyx_t_float_complex); - static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_prodf(__pyx_t_float_complex, __pyx_t_float_complex); - static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_quotf(__pyx_t_float_complex, __pyx_t_float_complex); - static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_negf(__pyx_t_float_complex); - static CYTHON_INLINE int __Pyx_c_is_zerof(__pyx_t_float_complex); - static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_conjf(__pyx_t_float_complex); - #if 1 - static CYTHON_INLINE float __Pyx_c_absf(__pyx_t_float_complex); - static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_powf(__pyx_t_float_complex, __pyx_t_float_complex); - #endif -#endif - -static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double, double); - -#if CYTHON_CCOMPLEX - #define __Pyx_c_eq(a, b) ((a)==(b)) - #define __Pyx_c_sum(a, b) ((a)+(b)) - #define __Pyx_c_diff(a, b) ((a)-(b)) - #define __Pyx_c_prod(a, b) ((a)*(b)) - #define __Pyx_c_quot(a, b) ((a)/(b)) - #define __Pyx_c_neg(a) (-(a)) - #ifdef __cplusplus - #define __Pyx_c_is_zero(z) ((z)==(double)0) - #define __Pyx_c_conj(z) (::std::conj(z)) - #if 1 - #define __Pyx_c_abs(z) (::std::abs(z)) - #define __Pyx_c_pow(a, b) (::std::pow(a, b)) - #endif - #else - #define __Pyx_c_is_zero(z) ((z)==0) - #define __Pyx_c_conj(z) (conj(z)) - #if 1 - #define __Pyx_c_abs(z) (cabs(z)) - #define __Pyx_c_pow(a, b) (cpow(a, b)) - #endif - #endif -#else - static CYTHON_INLINE int __Pyx_c_eq(__pyx_t_double_complex, __pyx_t_double_complex); - static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_sum(__pyx_t_double_complex, __pyx_t_double_complex); - static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_diff(__pyx_t_double_complex, __pyx_t_double_complex); - static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_prod(__pyx_t_double_complex, __pyx_t_double_complex); - static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_quot(__pyx_t_double_complex, __pyx_t_double_complex); - static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_neg(__pyx_t_double_complex); - static CYTHON_INLINE int __Pyx_c_is_zero(__pyx_t_double_complex); - static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_conj(__pyx_t_double_complex); - #if 1 - static CYTHON_INLINE double __Pyx_c_abs(__pyx_t_double_complex); - static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_pow(__pyx_t_double_complex, __pyx_t_double_complex); - #endif -#endif - -static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int(int value); - -static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *); - -static int __pyx_memviewslice_is_contig(const __Pyx_memviewslice *mvs, - char order, int ndim); - -static int __pyx_slices_overlap(__Pyx_memviewslice *slice1, - __Pyx_memviewslice *slice2, - int ndim, size_t itemsize); - -static __Pyx_memviewslice -__pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, - const char *mode, int ndim, - size_t sizeof_dtype, int contig_flag, - int dtype_is_object); - -static CYTHON_INLINE PyObject *__pyx_capsule_create(void *p, const char *sig); - -static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level); /*proto*/ - -static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value); - -static CYTHON_INLINE char __Pyx_PyInt_As_char(PyObject *); - -static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *); - -static int __pyx_typeinfo_cmp(__Pyx_TypeInfo *a, __Pyx_TypeInfo *b); - -static int __Pyx_ValidateAndInit_memviewslice( - int *axes_specs, - int c_or_f_flag, - int buf_flags, - int ndim, - __Pyx_TypeInfo *dtype, - __Pyx_BufFmt_StackElem stack[], - __Pyx_memviewslice *memviewslice, - PyObject *original_obj); - -static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_ds_long(PyObject *); - -static int __Pyx_check_binary_version(void); - -#if !defined(__Pyx_PyIdentifier_FromString) -#if PY_MAJOR_VERSION < 3 - #define __Pyx_PyIdentifier_FromString(s) PyString_FromString(s) -#else - #define __Pyx_PyIdentifier_FromString(s) PyUnicode_FromString(s) -#endif -#endif - -static PyObject *__Pyx_ImportModule(const char *name); /*proto*/ - -static PyTypeObject *__Pyx_ImportType(const char *module_name, const char *class_name, size_t size, int strict); /*proto*/ - -typedef struct { - int code_line; - PyCodeObject* code_object; -} __Pyx_CodeObjectCacheEntry; -struct __Pyx_CodeObjectCache { - int count; - int max_count; - __Pyx_CodeObjectCacheEntry* entries; -}; -static struct __Pyx_CodeObjectCache __pyx_code_cache = {0,0,NULL}; -static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line); -static PyCodeObject *__pyx_find_code_object(int code_line); -static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object); - -static void __Pyx_AddTraceback(const char *funcname, int c_line, - int py_line, const char *filename); /*proto*/ - -static int __Pyx_InitStrings(__Pyx_StringTabEntry *t); /*proto*/ - - -/* Module declarations from 'cpython.buffer' */ - -/* Module declarations from 'cpython.ref' */ - -/* Module declarations from 'libc.string' */ - -/* Module declarations from 'libc.stdio' */ - -/* Module declarations from 'cpython.object' */ - -/* Module declarations from '__builtin__' */ - -/* Module declarations from 'cpython.type' */ -static PyTypeObject *__pyx_ptype_7cpython_4type_type = 0; - -/* Module declarations from 'libc.stdlib' */ - -/* Module declarations from 'numpy' */ - -/* Module declarations from 'numpy' */ -static PyTypeObject *__pyx_ptype_5numpy_dtype = 0; -static PyTypeObject *__pyx_ptype_5numpy_flatiter = 0; -static PyTypeObject *__pyx_ptype_5numpy_broadcast = 0; -static PyTypeObject *__pyx_ptype_5numpy_ndarray = 0; -static PyTypeObject *__pyx_ptype_5numpy_ufunc = 0; -static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *, char *, char *, int *); /*proto*/ - -/* Module declarations from 'cython.view' */ - -/* Module declarations from 'cython' */ - -/* Module declarations from 'cython_bubblesort_nomagic' */ -static PyTypeObject *__pyx_array_type = 0; -static PyTypeObject *__pyx_MemviewEnum_type = 0; -static PyTypeObject *__pyx_memoryview_type = 0; -static PyTypeObject *__pyx_memoryviewslice_type = 0; -static PyObject *generic = 0; -static PyObject *strided = 0; -static PyObject *indirect = 0; -static PyObject *contiguous = 0; -static PyObject *indirect_contiguous = 0; -static PyObject *__pyx_f_25cython_bubblesort_nomagic_cython_bubblesort_nomagic(PyArrayObject *, int __pyx_skip_dispatch); /*proto*/ -static struct __pyx_array_obj *__pyx_array_new(PyObject *, Py_ssize_t, char *, char *, char *); /*proto*/ -static void *__pyx_align_pointer(void *, size_t); /*proto*/ -static PyObject *__pyx_memoryview_new(PyObject *, int, int, __Pyx_TypeInfo *); /*proto*/ -static CYTHON_INLINE int __pyx_memoryview_check(PyObject *); /*proto*/ -static PyObject *_unellipsify(PyObject *, int); /*proto*/ -static PyObject *assert_direct_dimensions(Py_ssize_t *, int); /*proto*/ -static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_obj *, PyObject *); /*proto*/ -static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *, Py_ssize_t, Py_ssize_t, Py_ssize_t, int, int, int *, Py_ssize_t, Py_ssize_t, Py_ssize_t, int, int, int, int); /*proto*/ -static char *__pyx_pybuffer_index(Py_buffer *, char *, Py_ssize_t, Py_ssize_t); /*proto*/ -static int __pyx_memslice_transpose(__Pyx_memviewslice *); /*proto*/ -static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice, int, PyObject *(*)(char *), int (*)(char *, PyObject *), int); /*proto*/ -static __Pyx_memviewslice *__pyx_memoryview_get_slice_from_memoryview(struct __pyx_memoryview_obj *, __Pyx_memviewslice *); /*proto*/ -static void __pyx_memoryview_slice_copy(struct __pyx_memoryview_obj *, __Pyx_memviewslice *); /*proto*/ -static PyObject *__pyx_memoryview_copy_object(struct __pyx_memoryview_obj *); /*proto*/ -static PyObject *__pyx_memoryview_copy_object_from_slice(struct __pyx_memoryview_obj *, __Pyx_memviewslice *); /*proto*/ -static Py_ssize_t abs_py_ssize_t(Py_ssize_t); /*proto*/ -static char __pyx_get_best_slice_order(__Pyx_memviewslice *, int); /*proto*/ -static void _copy_strided_to_strided(char *, Py_ssize_t *, char *, Py_ssize_t *, Py_ssize_t *, Py_ssize_t *, int, size_t); /*proto*/ -static void copy_strided_to_strided(__Pyx_memviewslice *, __Pyx_memviewslice *, int, size_t); /*proto*/ -static Py_ssize_t __pyx_memoryview_slice_get_size(__Pyx_memviewslice *, int); /*proto*/ -static Py_ssize_t __pyx_fill_contig_strides_array(Py_ssize_t *, Py_ssize_t *, Py_ssize_t, int, char); /*proto*/ -static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *, __Pyx_memviewslice *, char, int); /*proto*/ -static int __pyx_memoryview_err_extents(int, Py_ssize_t, Py_ssize_t); /*proto*/ -static int __pyx_memoryview_err_dim(PyObject *, char *, int); /*proto*/ -static int __pyx_memoryview_err(PyObject *, char *); /*proto*/ -static int __pyx_memoryview_copy_contents(__Pyx_memviewslice, __Pyx_memviewslice, int, int, int); /*proto*/ -static void __pyx_memoryview_broadcast_leading(__Pyx_memviewslice *, int, int); /*proto*/ -static void __pyx_memoryview_refcount_copying(__Pyx_memviewslice *, int, int, int); /*proto*/ -static void __pyx_memoryview_refcount_objects_in_slice_with_gil(char *, Py_ssize_t *, Py_ssize_t *, int, int); /*proto*/ -static void __pyx_memoryview_refcount_objects_in_slice(char *, Py_ssize_t *, Py_ssize_t *, int, int); /*proto*/ -static void __pyx_memoryview_slice_assign_scalar(__Pyx_memviewslice *, int, size_t, void *, int); /*proto*/ -static void __pyx_memoryview__slice_assign_scalar(char *, Py_ssize_t *, Py_ssize_t *, int, size_t, void *); /*proto*/ -static __Pyx_TypeInfo __Pyx_TypeInfo_long = { "long", NULL, sizeof(long), { 0 }, 0, IS_UNSIGNED(long) ? 'U' : 'I', IS_UNSIGNED(long), 0 }; -#define __Pyx_MODULE_NAME "cython_bubblesort_nomagic" -int __pyx_module_is_main_cython_bubblesort_nomagic = 0; - -/* Implementation of 'cython_bubblesort_nomagic' */ -static PyObject *__pyx_builtin_xrange; -static PyObject *__pyx_builtin_ValueError; -static PyObject *__pyx_builtin_range; -static PyObject *__pyx_builtin_RuntimeError; -static PyObject *__pyx_builtin_MemoryError; -static PyObject *__pyx_builtin_enumerate; -static PyObject *__pyx_builtin_Ellipsis; -static PyObject *__pyx_builtin_TypeError; -static PyObject *__pyx_builtin_id; -static PyObject *__pyx_builtin_IndexError; -static PyObject *__pyx_pf_25cython_bubblesort_nomagic_cython_bubblesort_nomagic(CYTHON_UNUSED PyObject *__pyx_self, PyArrayObject *__pyx_v_inp_ary); /* proto */ -static int __pyx_pf_5numpy_7ndarray___getbuffer__(PyArrayObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /* proto */ -static void __pyx_pf_5numpy_7ndarray_2__releasebuffer__(PyArrayObject *__pyx_v_self, Py_buffer *__pyx_v_info); /* proto */ -static int __pyx_array_MemoryView_5array___cinit__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_shape, Py_ssize_t __pyx_v_itemsize, PyObject *__pyx_v_format, PyObject *__pyx_v_mode, int __pyx_v_allocate_buffer); /* proto */ -static int __pyx_array_getbuffer_MemoryView_5array_2__getbuffer__(struct __pyx_array_obj *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /* proto */ -static void __pyx_array_MemoryView_5array_4__dealloc__(struct __pyx_array_obj *__pyx_v_self); /* proto */ -static PyObject *get_memview_MemoryView_5array_7memview___get__(struct __pyx_array_obj *__pyx_v_self); /* proto */ -static PyObject *__pyx_array_MemoryView_5array_6__getattr__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_attr); /* proto */ -static PyObject *__pyx_array_MemoryView_5array_8__getitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item); /* proto */ -static int __pyx_array_MemoryView_5array_10__setitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item, PyObject *__pyx_v_value); /* proto */ -static int __pyx_MemviewEnum_MemoryView_4Enum___init__(struct __pyx_MemviewEnum_obj *__pyx_v_self, PyObject *__pyx_v_name); /* proto */ -static PyObject *__pyx_MemviewEnum_MemoryView_4Enum_2__repr__(struct __pyx_MemviewEnum_obj *__pyx_v_self); /* proto */ -static int __pyx_memoryview_MemoryView_10memoryview___cinit__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_obj, int __pyx_v_flags, int __pyx_v_dtype_is_object); /* proto */ -static void __pyx_memoryview_MemoryView_10memoryview_2__dealloc__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ -static PyObject *__pyx_memoryview_MemoryView_10memoryview_4__getitem__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index); /* proto */ -static int __pyx_memoryview_MemoryView_10memoryview_6__setitem__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value); /* proto */ -static int __pyx_memoryview_getbuffer_MemoryView_10memoryview_8__getbuffer__(struct __pyx_memoryview_obj *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /* proto */ -static PyObject *__pyx_memoryview_transpose_MemoryView_10memoryview_1T___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ -static PyObject *__pyx_memoryview__get__base_MemoryView_10memoryview_4base___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ -static PyObject *__pyx_memoryview_get_shape_MemoryView_10memoryview_5shape___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ -static PyObject *__pyx_memoryview_get_strides_MemoryView_10memoryview_7strides___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ -static PyObject *__pyx_memoryview_get_suboffsets_MemoryView_10memoryview_10suboffsets___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ -static PyObject *__pyx_memoryview_get_ndim_MemoryView_10memoryview_4ndim___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ -static PyObject *__pyx_memoryview_get_itemsize_MemoryView_10memoryview_8itemsize___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ -static PyObject *__pyx_memoryview_get_nbytes_MemoryView_10memoryview_6nbytes___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ -static PyObject *__pyx_memoryview_get_size_MemoryView_10memoryview_4size___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ -static Py_ssize_t __pyx_memoryview_MemoryView_10memoryview_10__len__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ -static PyObject *__pyx_memoryview_MemoryView_10memoryview_12__repr__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ -static PyObject *__pyx_memoryview_MemoryView_10memoryview_14__str__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ -static PyObject *__pyx_memoryview_MemoryView_10memoryview_16is_c_contig(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ -static PyObject *__pyx_memoryview_MemoryView_10memoryview_18is_f_contig(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ -static PyObject *__pyx_memoryview_MemoryView_10memoryview_20copy(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ -static PyObject *__pyx_memoryview_MemoryView_10memoryview_22copy_fortran(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ -static void __pyx_memoryviewslice_MemoryView_16_memoryviewslice___dealloc__(struct __pyx_memoryviewslice_obj *__pyx_v_self); /* proto */ -static PyObject *__pyx_memoryviewslice__get__base_MemoryView_16_memoryviewslice_4base___get__(struct __pyx_memoryviewslice_obj *__pyx_v_self); /* proto */ -static PyObject *__pyx_tp_new_array(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ -static PyObject *__pyx_tp_new_Enum(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ -static PyObject *__pyx_tp_new_memoryview(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ -static PyObject *__pyx_tp_new__memoryviewslice(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ -static char __pyx_k_B[] = "B"; -static char __pyx_k_H[] = "H"; -static char __pyx_k_I[] = "I"; -static char __pyx_k_L[] = "L"; -static char __pyx_k_O[] = "O"; -static char __pyx_k_Q[] = "Q"; -static char __pyx_k_b[] = "b"; -static char __pyx_k_c[] = "c"; -static char __pyx_k_d[] = "d"; -static char __pyx_k_f[] = "f"; -static char __pyx_k_g[] = "g"; -static char __pyx_k_h[] = "h"; -static char __pyx_k_i[] = "i"; -static char __pyx_k_l[] = "l"; -static char __pyx_k_q[] = "q"; -static char __pyx_k_Zd[] = "Zd"; -static char __pyx_k_Zf[] = "Zf"; -static char __pyx_k_Zg[] = "Zg"; -static char __pyx_k_id[] = "id"; -static char __pyx_k_obj[] = "obj"; -static char __pyx_k_base[] = "base"; -static char __pyx_k_main[] = "__main__"; -static char __pyx_k_mode[] = "mode"; -static char __pyx_k_name[] = "name"; -static char __pyx_k_ndim[] = "ndim"; -static char __pyx_k_pack[] = "pack"; -static char __pyx_k_size[] = "size"; -static char __pyx_k_step[] = "step"; -static char __pyx_k_stop[] = "stop"; -static char __pyx_k_test[] = "__test__"; -static char __pyx_k_class[] = "__class__"; -static char __pyx_k_error[] = "error"; -static char __pyx_k_flags[] = "flags"; -static char __pyx_k_range[] = "range"; -static char __pyx_k_shape[] = "shape"; -static char __pyx_k_start[] = "start"; -static char __pyx_k_format[] = "format"; -static char __pyx_k_import[] = "__import__"; -static char __pyx_k_name_2[] = "__name__"; -static char __pyx_k_struct[] = "struct"; -static char __pyx_k_unpack[] = "unpack"; -static char __pyx_k_xrange[] = "xrange"; -static char __pyx_k_fortran[] = "fortran"; -static char __pyx_k_memview[] = "memview"; -static char __pyx_k_Ellipsis[] = "Ellipsis"; -static char __pyx_k_itemsize[] = "itemsize"; -static char __pyx_k_TypeError[] = "TypeError"; -static char __pyx_k_enumerate[] = "enumerate"; -static char __pyx_k_IndexError[] = "IndexError"; -static char __pyx_k_ValueError[] = "ValueError"; -static char __pyx_k_pyx_vtable[] = "__pyx_vtable__"; -static char __pyx_k_MemoryError[] = "MemoryError"; -static char __pyx_k_RuntimeError[] = "RuntimeError"; -static char __pyx_k_pyx_getbuffer[] = "__pyx_getbuffer"; -static char __pyx_k_allocate_buffer[] = "allocate_buffer"; -static char __pyx_k_dtype_is_object[] = "dtype_is_object"; -static char __pyx_k_pyx_releasebuffer[] = "__pyx_releasebuffer"; -static char __pyx_k_strided_and_direct[] = ""; -static char __pyx_k_strided_and_indirect[] = ""; -static char __pyx_k_contiguous_and_direct[] = ""; -static char __pyx_k_MemoryView_of_r_object[] = ""; -static char __pyx_k_MemoryView_of_r_at_0x_x[] = ""; -static char __pyx_k_contiguous_and_indirect[] = ""; -static char __pyx_k_Cannot_index_with_type_s[] = "Cannot index with type '%s'"; -static char __pyx_k_getbuffer_obj_view_flags[] = "getbuffer(obj, view, flags)"; -static char __pyx_k_Dimension_d_is_not_direct[] = "Dimension %d is not direct"; -static char __pyx_k_Invalid_shape_in_axis_d_d[] = "Invalid shape in axis %d: %d."; -static char __pyx_k_Index_out_of_bounds_axis_d[] = "Index out of bounds (axis %d)"; -static char __pyx_k_Step_may_not_be_zero_axis_d[] = "Step may not be zero (axis %d)"; -static char __pyx_k_itemsize_0_for_cython_array[] = "itemsize <= 0 for cython.array"; -static char __pyx_k_ndarray_is_not_C_contiguous[] = "ndarray is not C contiguous"; -static char __pyx_k_unable_to_allocate_array_data[] = "unable to allocate array data."; -static char __pyx_k_strided_and_direct_or_indirect[] = ""; -static char __pyx_k_unknown_dtype_code_in_numpy_pxd[] = "unknown dtype code in numpy.pxd (%d)"; -static char __pyx_k_All_dimensions_preceding_dimensi[] = "All dimensions preceding dimension %d must be indexed and not sliced"; -static char __pyx_k_Buffer_view_does_not_expose_stri[] = "Buffer view does not expose strides"; -static char __pyx_k_Can_only_create_a_buffer_that_is[] = "Can only create a buffer that is contiguous in memory."; -static char __pyx_k_Cannot_transpose_memoryview_with[] = "Cannot transpose memoryview with indirect dimensions"; -static char __pyx_k_Empty_shape_tuple_for_cython_arr[] = "Empty shape tuple for cython.array"; -static char __pyx_k_Format_string_allocated_too_shor[] = "Format string allocated too short, see comment in numpy.pxd"; -static char __pyx_k_Indirect_dimensions_not_supporte[] = "Indirect dimensions not supported"; -static char __pyx_k_Invalid_mode_expected_c_or_fortr[] = "Invalid mode, expected 'c' or 'fortran', got %s"; -static char __pyx_k_Non_native_byte_order_not_suppor[] = "Non-native byte order not supported"; -static char __pyx_k_Out_of_bounds_on_buffer_access_a[] = "Out of bounds on buffer access (axis %d)"; -static char __pyx_k_Unable_to_convert_item_to_object[] = "Unable to convert item to object"; -static char __pyx_k_got_differing_extents_in_dimensi[] = "got differing extents in dimension %d (got %d and %d)"; -static char __pyx_k_ndarray_is_not_Fortran_contiguou[] = "ndarray is not Fortran contiguous"; -static char __pyx_k_unable_to_allocate_shape_and_str[] = "unable to allocate shape and strides."; -static char __pyx_k_Format_string_allocated_too_shor_2[] = "Format string allocated too short."; -static PyObject *__pyx_kp_s_Buffer_view_does_not_expose_stri; -static PyObject *__pyx_kp_s_Can_only_create_a_buffer_that_is; -static PyObject *__pyx_kp_s_Cannot_index_with_type_s; -static PyObject *__pyx_n_s_Ellipsis; -static PyObject *__pyx_kp_s_Empty_shape_tuple_for_cython_arr; -static PyObject *__pyx_kp_u_Format_string_allocated_too_shor; -static PyObject *__pyx_kp_u_Format_string_allocated_too_shor_2; -static PyObject *__pyx_n_s_IndexError; -static PyObject *__pyx_kp_s_Indirect_dimensions_not_supporte; -static PyObject *__pyx_kp_s_Invalid_mode_expected_c_or_fortr; -static PyObject *__pyx_kp_s_Invalid_shape_in_axis_d_d; -static PyObject *__pyx_n_s_MemoryError; -static PyObject *__pyx_kp_s_MemoryView_of_r_at_0x_x; -static PyObject *__pyx_kp_s_MemoryView_of_r_object; -static PyObject *__pyx_kp_u_Non_native_byte_order_not_suppor; -static PyObject *__pyx_n_b_O; -static PyObject *__pyx_kp_s_Out_of_bounds_on_buffer_access_a; -static PyObject *__pyx_n_s_RuntimeError; -static PyObject *__pyx_n_s_TypeError; -static PyObject *__pyx_kp_s_Unable_to_convert_item_to_object; -static PyObject *__pyx_n_s_ValueError; -static PyObject *__pyx_n_s_allocate_buffer; -static PyObject *__pyx_n_s_base; -static PyObject *__pyx_n_s_c; -static PyObject *__pyx_n_u_c; -static PyObject *__pyx_n_s_class; -static PyObject *__pyx_kp_s_contiguous_and_direct; -static PyObject *__pyx_kp_s_contiguous_and_indirect; -static PyObject *__pyx_n_s_dtype_is_object; -static PyObject *__pyx_n_s_enumerate; -static PyObject *__pyx_n_s_error; -static PyObject *__pyx_n_s_flags; -static PyObject *__pyx_n_s_format; -static PyObject *__pyx_n_s_fortran; -static PyObject *__pyx_n_u_fortran; -static PyObject *__pyx_kp_s_got_differing_extents_in_dimensi; -static PyObject *__pyx_n_s_id; -static PyObject *__pyx_n_s_import; -static PyObject *__pyx_n_s_itemsize; -static PyObject *__pyx_kp_s_itemsize_0_for_cython_array; -static PyObject *__pyx_n_s_main; -static PyObject *__pyx_n_s_memview; -static PyObject *__pyx_n_s_mode; -static PyObject *__pyx_n_s_name; -static PyObject *__pyx_n_s_name_2; -static PyObject *__pyx_kp_u_ndarray_is_not_C_contiguous; -static PyObject *__pyx_kp_u_ndarray_is_not_Fortran_contiguou; -static PyObject *__pyx_n_s_ndim; -static PyObject *__pyx_n_s_obj; -static PyObject *__pyx_n_s_pack; -static PyObject *__pyx_n_s_pyx_getbuffer; -static PyObject *__pyx_n_s_pyx_releasebuffer; -static PyObject *__pyx_n_s_pyx_vtable; -static PyObject *__pyx_n_s_range; -static PyObject *__pyx_n_s_shape; -static PyObject *__pyx_n_s_size; -static PyObject *__pyx_n_s_start; -static PyObject *__pyx_n_s_step; -static PyObject *__pyx_n_s_stop; -static PyObject *__pyx_kp_s_strided_and_direct; -static PyObject *__pyx_kp_s_strided_and_direct_or_indirect; -static PyObject *__pyx_kp_s_strided_and_indirect; -static PyObject *__pyx_n_s_struct; -static PyObject *__pyx_n_s_test; -static PyObject *__pyx_kp_s_unable_to_allocate_array_data; -static PyObject *__pyx_kp_s_unable_to_allocate_shape_and_str; -static PyObject *__pyx_kp_u_unknown_dtype_code_in_numpy_pxd; -static PyObject *__pyx_n_s_unpack; -static PyObject *__pyx_n_s_xrange; -static PyObject *__pyx_int_0; -static PyObject *__pyx_int_1; -static PyObject *__pyx_int_neg_1; -static PyObject *__pyx_tuple_; -static PyObject *__pyx_tuple__2; -static PyObject *__pyx_tuple__3; -static PyObject *__pyx_tuple__4; -static PyObject *__pyx_tuple__5; -static PyObject *__pyx_tuple__6; -static PyObject *__pyx_tuple__7; -static PyObject *__pyx_tuple__8; -static PyObject *__pyx_tuple__9; -static PyObject *__pyx_tuple__10; -static PyObject *__pyx_tuple__11; -static PyObject *__pyx_tuple__12; -static PyObject *__pyx_tuple__13; -static PyObject *__pyx_tuple__14; -static PyObject *__pyx_tuple__15; -static PyObject *__pyx_tuple__16; -static PyObject *__pyx_tuple__17; -static PyObject *__pyx_tuple__18; -static PyObject *__pyx_tuple__19; -static PyObject *__pyx_tuple__20; -static PyObject *__pyx_tuple__21; -static PyObject *__pyx_tuple__22; - -/* "cython_bubblesort_nomagic.pyx":6 - * @cython.boundscheck(False) - * @cython.wraparound(False) - * cpdef cython_bubblesort_nomagic(np.ndarray[long, ndim=1] inp_ary): # <<<<<<<<<<<<<< - * """ The Cython implementation of Bubblesort with NumPy memoryview.""" - * cdef unsigned long length, i, swapped, ele, temp - */ - -static PyObject *__pyx_pw_25cython_bubblesort_nomagic_1cython_bubblesort_nomagic(PyObject *__pyx_self, PyObject *__pyx_v_inp_ary); /*proto*/ -static PyObject *__pyx_f_25cython_bubblesort_nomagic_cython_bubblesort_nomagic(PyArrayObject *__pyx_v_inp_ary, CYTHON_UNUSED int __pyx_skip_dispatch) { - unsigned long __pyx_v_length; - unsigned long __pyx_v_i; - unsigned long __pyx_v_swapped; - unsigned long __pyx_v_ele; - unsigned long __pyx_v_temp; - __Pyx_memviewslice __pyx_v_np_ary = { 0, 0, { 0 }, { 0 }, { 0 } }; - __Pyx_LocalBuf_ND __pyx_pybuffernd_inp_ary; - __Pyx_Buffer __pyx_pybuffer_inp_ary; - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - __Pyx_memviewslice __pyx_t_1 = { 0, 0, { 0 }, { 0 }, { 0 } }; - unsigned long __pyx_t_2; - unsigned long __pyx_t_3; - int __pyx_t_4; - unsigned long __pyx_t_5; - unsigned long __pyx_t_6; - unsigned long __pyx_t_7; - unsigned long __pyx_t_8; - unsigned long __pyx_t_9; - unsigned long __pyx_t_10; - unsigned long __pyx_t_11; - unsigned long __pyx_t_12; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("cython_bubblesort_nomagic", 0); - __pyx_pybuffer_inp_ary.pybuffer.buf = NULL; - __pyx_pybuffer_inp_ary.refcount = 0; - __pyx_pybuffernd_inp_ary.data = NULL; - __pyx_pybuffernd_inp_ary.rcbuffer = &__pyx_pybuffer_inp_ary; - { - __Pyx_BufFmt_StackElem __pyx_stack[1]; - if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_inp_ary.rcbuffer->pybuffer, (PyObject*)__pyx_v_inp_ary, &__Pyx_TypeInfo_long, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack) == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 6; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - __pyx_pybuffernd_inp_ary.diminfo[0].strides = __pyx_pybuffernd_inp_ary.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_inp_ary.diminfo[0].shape = __pyx_pybuffernd_inp_ary.rcbuffer->pybuffer.shape[0]; - - /* "cython_bubblesort_nomagic.pyx":9 - * """ The Cython implementation of Bubblesort with NumPy memoryview.""" - * cdef unsigned long length, i, swapped, ele, temp - * cdef long[:] np_ary = inp_ary # <<<<<<<<<<<<<< - * length = np_ary.shape[0] - * swapped = 1 - */ - __pyx_t_1 = __Pyx_PyObject_to_MemoryviewSlice_ds_long(((PyObject *)__pyx_v_inp_ary)); - if (unlikely(!__pyx_t_1.memview)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 9; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_v_np_ary = __pyx_t_1; - __pyx_t_1.memview = NULL; - __pyx_t_1.data = NULL; - - /* "cython_bubblesort_nomagic.pyx":10 - * cdef unsigned long length, i, swapped, ele, temp - * cdef long[:] np_ary = inp_ary - * length = np_ary.shape[0] # <<<<<<<<<<<<<< - * swapped = 1 - * for i in xrange(0, length): - */ - __pyx_v_length = (__pyx_v_np_ary.shape[0]); - - /* "cython_bubblesort_nomagic.pyx":11 - * cdef long[:] np_ary = inp_ary - * length = np_ary.shape[0] - * swapped = 1 # <<<<<<<<<<<<<< - * for i in xrange(0, length): - * if swapped: - */ - __pyx_v_swapped = 1; - - /* "cython_bubblesort_nomagic.pyx":12 - * length = np_ary.shape[0] - * swapped = 1 - * for i in xrange(0, length): # <<<<<<<<<<<<<< - * if swapped: - * swapped = 0 - */ - __pyx_t_2 = __pyx_v_length; - for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { - __pyx_v_i = __pyx_t_3; - - /* "cython_bubblesort_nomagic.pyx":13 - * swapped = 1 - * for i in xrange(0, length): - * if swapped: # <<<<<<<<<<<<<< - * swapped = 0 - * for ele in xrange(0, length-i-1): - */ - __pyx_t_4 = (__pyx_v_swapped != 0); - if (__pyx_t_4) { - - /* "cython_bubblesort_nomagic.pyx":14 - * for i in xrange(0, length): - * if swapped: - * swapped = 0 # <<<<<<<<<<<<<< - * for ele in xrange(0, length-i-1): - * if np_ary[ele] > np_ary[ele + 1]: - */ - __pyx_v_swapped = 0; - - /* "cython_bubblesort_nomagic.pyx":15 - * if swapped: - * swapped = 0 - * for ele in xrange(0, length-i-1): # <<<<<<<<<<<<<< - * if np_ary[ele] > np_ary[ele + 1]: - * temp = np_ary[ele + 1] - */ - __pyx_t_5 = ((__pyx_v_length - __pyx_v_i) - 1); - for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) { - __pyx_v_ele = __pyx_t_6; - - /* "cython_bubblesort_nomagic.pyx":16 - * swapped = 0 - * for ele in xrange(0, length-i-1): - * if np_ary[ele] > np_ary[ele + 1]: # <<<<<<<<<<<<<< - * temp = np_ary[ele + 1] - * np_ary[ele + 1] = np_ary[ele] - */ - __pyx_t_7 = __pyx_v_ele; - __pyx_t_8 = (__pyx_v_ele + 1); - __pyx_t_4 = (((*((long *) ( /* dim=0 */ (__pyx_v_np_ary.data + __pyx_t_7 * __pyx_v_np_ary.strides[0]) ))) > (*((long *) ( /* dim=0 */ (__pyx_v_np_ary.data + __pyx_t_8 * __pyx_v_np_ary.strides[0]) )))) != 0); - if (__pyx_t_4) { - - /* "cython_bubblesort_nomagic.pyx":17 - * for ele in xrange(0, length-i-1): - * if np_ary[ele] > np_ary[ele + 1]: - * temp = np_ary[ele + 1] # <<<<<<<<<<<<<< - * np_ary[ele + 1] = np_ary[ele] - * np_ary[ele] = temp - */ - __pyx_t_9 = (__pyx_v_ele + 1); - __pyx_v_temp = (*((long *) ( /* dim=0 */ (__pyx_v_np_ary.data + __pyx_t_9 * __pyx_v_np_ary.strides[0]) ))); - - /* "cython_bubblesort_nomagic.pyx":18 - * if np_ary[ele] > np_ary[ele + 1]: - * temp = np_ary[ele + 1] - * np_ary[ele + 1] = np_ary[ele] # <<<<<<<<<<<<<< - * np_ary[ele] = temp - * swapped = 1 - */ - __pyx_t_10 = __pyx_v_ele; - __pyx_t_11 = (__pyx_v_ele + 1); - *((long *) ( /* dim=0 */ (__pyx_v_np_ary.data + __pyx_t_11 * __pyx_v_np_ary.strides[0]) )) = (*((long *) ( /* dim=0 */ (__pyx_v_np_ary.data + __pyx_t_10 * __pyx_v_np_ary.strides[0]) ))); - - /* "cython_bubblesort_nomagic.pyx":19 - * temp = np_ary[ele + 1] - * np_ary[ele + 1] = np_ary[ele] - * np_ary[ele] = temp # <<<<<<<<<<<<<< - * swapped = 1 - * return inp_ary - */ - __pyx_t_12 = __pyx_v_ele; - *((long *) ( /* dim=0 */ (__pyx_v_np_ary.data + __pyx_t_12 * __pyx_v_np_ary.strides[0]) )) = __pyx_v_temp; - - /* "cython_bubblesort_nomagic.pyx":20 - * np_ary[ele + 1] = np_ary[ele] - * np_ary[ele] = temp - * swapped = 1 # <<<<<<<<<<<<<< - * return inp_ary - */ - __pyx_v_swapped = 1; - goto __pyx_L8; - } - __pyx_L8:; - } - goto __pyx_L5; - } - __pyx_L5:; - } - - /* "cython_bubblesort_nomagic.pyx":21 - * np_ary[ele] = temp - * swapped = 1 - * return inp_ary # <<<<<<<<<<<<<< - */ - __Pyx_XDECREF(__pyx_r); - __Pyx_INCREF(((PyObject *)__pyx_v_inp_ary)); - __pyx_r = ((PyObject *)__pyx_v_inp_ary); - goto __pyx_L0; - - /* "cython_bubblesort_nomagic.pyx":6 - * @cython.boundscheck(False) - * @cython.wraparound(False) - * cpdef cython_bubblesort_nomagic(np.ndarray[long, ndim=1] inp_ary): # <<<<<<<<<<<<<< - * """ The Cython implementation of Bubblesort with NumPy memoryview.""" - * cdef unsigned long length, i, swapped, ele, temp - */ - - /* function exit code */ - __pyx_L1_error:; - __PYX_XDEC_MEMVIEW(&__pyx_t_1, 1); - { PyObject *__pyx_type, *__pyx_value, *__pyx_tb; - __Pyx_ErrFetch(&__pyx_type, &__pyx_value, &__pyx_tb); - __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_inp_ary.rcbuffer->pybuffer); - __Pyx_ErrRestore(__pyx_type, __pyx_value, __pyx_tb);} - __Pyx_AddTraceback("cython_bubblesort_nomagic.cython_bubblesort_nomagic", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = 0; - goto __pyx_L2; - __pyx_L0:; - __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_inp_ary.rcbuffer->pybuffer); - __pyx_L2:; - __PYX_XDEC_MEMVIEW(&__pyx_v_np_ary, 1); - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* Python wrapper */ -static PyObject *__pyx_pw_25cython_bubblesort_nomagic_1cython_bubblesort_nomagic(PyObject *__pyx_self, PyObject *__pyx_v_inp_ary); /*proto*/ -static char __pyx_doc_25cython_bubblesort_nomagic_cython_bubblesort_nomagic[] = " The Cython implementation of Bubblesort with NumPy memoryview."; -static PyObject *__pyx_pw_25cython_bubblesort_nomagic_1cython_bubblesort_nomagic(PyObject *__pyx_self, PyObject *__pyx_v_inp_ary) { - CYTHON_UNUSED int __pyx_lineno = 0; - CYTHON_UNUSED const char *__pyx_filename = NULL; - CYTHON_UNUSED int __pyx_clineno = 0; - PyObject *__pyx_r = 0; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("cython_bubblesort_nomagic (wrapper)", 0); - if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_inp_ary), __pyx_ptype_5numpy_ndarray, 1, "inp_ary", 0))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 6; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_r = __pyx_pf_25cython_bubblesort_nomagic_cython_bubblesort_nomagic(__pyx_self, ((PyArrayObject *)__pyx_v_inp_ary)); - - /* function exit code */ - goto __pyx_L0; - __pyx_L1_error:; - __pyx_r = NULL; - __pyx_L0:; - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static PyObject *__pyx_pf_25cython_bubblesort_nomagic_cython_bubblesort_nomagic(CYTHON_UNUSED PyObject *__pyx_self, PyArrayObject *__pyx_v_inp_ary) { - __Pyx_LocalBuf_ND __pyx_pybuffernd_inp_ary; - __Pyx_Buffer __pyx_pybuffer_inp_ary; - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - PyObject *__pyx_t_1 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("cython_bubblesort_nomagic", 0); - __pyx_pybuffer_inp_ary.pybuffer.buf = NULL; - __pyx_pybuffer_inp_ary.refcount = 0; - __pyx_pybuffernd_inp_ary.data = NULL; - __pyx_pybuffernd_inp_ary.rcbuffer = &__pyx_pybuffer_inp_ary; - { - __Pyx_BufFmt_StackElem __pyx_stack[1]; - if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_inp_ary.rcbuffer->pybuffer, (PyObject*)__pyx_v_inp_ary, &__Pyx_TypeInfo_long, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack) == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 6; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - __pyx_pybuffernd_inp_ary.diminfo[0].strides = __pyx_pybuffernd_inp_ary.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_inp_ary.diminfo[0].shape = __pyx_pybuffernd_inp_ary.rcbuffer->pybuffer.shape[0]; - __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = __pyx_f_25cython_bubblesort_nomagic_cython_bubblesort_nomagic(__pyx_v_inp_ary, 0); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 6; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __pyx_r = __pyx_t_1; - __pyx_t_1 = 0; - goto __pyx_L0; - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_1); - { PyObject *__pyx_type, *__pyx_value, *__pyx_tb; - __Pyx_ErrFetch(&__pyx_type, &__pyx_value, &__pyx_tb); - __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_inp_ary.rcbuffer->pybuffer); - __Pyx_ErrRestore(__pyx_type, __pyx_value, __pyx_tb);} - __Pyx_AddTraceback("cython_bubblesort_nomagic.cython_bubblesort_nomagic", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = NULL; - goto __pyx_L2; - __pyx_L0:; - __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_inp_ary.rcbuffer->pybuffer); - __pyx_L2:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":194 - * # experimental exception made for __getbuffer__ and __releasebuffer__ - * # -- the details of this may change. - * def __getbuffer__(ndarray self, Py_buffer* info, int flags): # <<<<<<<<<<<<<< - * # This implementation of getbuffer is geared towards Cython - * # requirements, and does not yet fullfill the PEP. - */ - -/* Python wrapper */ -static CYTHON_UNUSED int __pyx_pw_5numpy_7ndarray_1__getbuffer__(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ -static CYTHON_UNUSED int __pyx_pw_5numpy_7ndarray_1__getbuffer__(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { - int __pyx_r; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__getbuffer__ (wrapper)", 0); - __pyx_r = __pyx_pf_5numpy_7ndarray___getbuffer__(((PyArrayObject *)__pyx_v_self), ((Py_buffer *)__pyx_v_info), ((int)__pyx_v_flags)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static int __pyx_pf_5numpy_7ndarray___getbuffer__(PyArrayObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { - int __pyx_v_copy_shape; - int __pyx_v_i; - int __pyx_v_ndim; - int __pyx_v_endian_detector; - int __pyx_v_little_endian; - int __pyx_v_t; - char *__pyx_v_f; - PyArray_Descr *__pyx_v_descr = 0; - int __pyx_v_offset; - int __pyx_v_hasfields; - int __pyx_r; - __Pyx_RefNannyDeclarations - int __pyx_t_1; - int __pyx_t_2; - int __pyx_t_3; - PyObject *__pyx_t_4 = NULL; - int __pyx_t_5; - int __pyx_t_6; - int __pyx_t_7; - PyObject *__pyx_t_8 = NULL; - char *__pyx_t_9; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("__getbuffer__", 0); - if (__pyx_v_info != NULL) { - __pyx_v_info->obj = Py_None; __Pyx_INCREF(Py_None); - __Pyx_GIVEREF(__pyx_v_info->obj); - } - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":200 - * # of flags - * - * if info == NULL: return # <<<<<<<<<<<<<< - * - * cdef int copy_shape, i, ndim - */ - __pyx_t_1 = ((__pyx_v_info == NULL) != 0); - if (__pyx_t_1) { - __pyx_r = 0; - goto __pyx_L0; - } - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":203 - * - * cdef int copy_shape, i, ndim - * cdef int endian_detector = 1 # <<<<<<<<<<<<<< - * cdef bint little_endian = ((&endian_detector)[0] != 0) - * - */ - __pyx_v_endian_detector = 1; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":204 - * cdef int copy_shape, i, ndim - * cdef int endian_detector = 1 - * cdef bint little_endian = ((&endian_detector)[0] != 0) # <<<<<<<<<<<<<< - * - * ndim = PyArray_NDIM(self) - */ - __pyx_v_little_endian = ((((char *)(&__pyx_v_endian_detector))[0]) != 0); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":206 - * cdef bint little_endian = ((&endian_detector)[0] != 0) - * - * ndim = PyArray_NDIM(self) # <<<<<<<<<<<<<< - * - * if sizeof(npy_intp) != sizeof(Py_ssize_t): - */ - __pyx_v_ndim = PyArray_NDIM(__pyx_v_self); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":208 - * ndim = PyArray_NDIM(self) - * - * if sizeof(npy_intp) != sizeof(Py_ssize_t): # <<<<<<<<<<<<<< - * copy_shape = 1 - * else: - */ - __pyx_t_1 = (((sizeof(npy_intp)) != (sizeof(Py_ssize_t))) != 0); - if (__pyx_t_1) { - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":209 - * - * if sizeof(npy_intp) != sizeof(Py_ssize_t): - * copy_shape = 1 # <<<<<<<<<<<<<< - * else: - * copy_shape = 0 - */ - __pyx_v_copy_shape = 1; - goto __pyx_L4; - } - /*else*/ { - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":211 - * copy_shape = 1 - * else: - * copy_shape = 0 # <<<<<<<<<<<<<< - * - * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) - */ - __pyx_v_copy_shape = 0; - } - __pyx_L4:; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":213 - * copy_shape = 0 - * - * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) # <<<<<<<<<<<<<< - * and not PyArray_CHKFLAGS(self, NPY_C_CONTIGUOUS)): - * raise ValueError(u"ndarray is not C contiguous") - */ - __pyx_t_1 = (((__pyx_v_flags & PyBUF_C_CONTIGUOUS) == PyBUF_C_CONTIGUOUS) != 0); - if (__pyx_t_1) { - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":214 - * - * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) - * and not PyArray_CHKFLAGS(self, NPY_C_CONTIGUOUS)): # <<<<<<<<<<<<<< - * raise ValueError(u"ndarray is not C contiguous") - * - */ - __pyx_t_2 = ((!(PyArray_CHKFLAGS(__pyx_v_self, NPY_C_CONTIGUOUS) != 0)) != 0); - __pyx_t_3 = __pyx_t_2; - } else { - __pyx_t_3 = __pyx_t_1; - } - if (__pyx_t_3) { - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":215 - * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) - * and not PyArray_CHKFLAGS(self, NPY_C_CONTIGUOUS)): - * raise ValueError(u"ndarray is not C contiguous") # <<<<<<<<<<<<<< - * - * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) - */ - __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple_, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 215; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __Pyx_Raise(__pyx_t_4, 0, 0, 0); - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - {__pyx_filename = __pyx_f[1]; __pyx_lineno = 215; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":217 - * raise ValueError(u"ndarray is not C contiguous") - * - * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) # <<<<<<<<<<<<<< - * and not PyArray_CHKFLAGS(self, NPY_F_CONTIGUOUS)): - * raise ValueError(u"ndarray is not Fortran contiguous") - */ - __pyx_t_3 = (((__pyx_v_flags & PyBUF_F_CONTIGUOUS) == PyBUF_F_CONTIGUOUS) != 0); - if (__pyx_t_3) { - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":218 - * - * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) - * and not PyArray_CHKFLAGS(self, NPY_F_CONTIGUOUS)): # <<<<<<<<<<<<<< - * raise ValueError(u"ndarray is not Fortran contiguous") - * - */ - __pyx_t_1 = ((!(PyArray_CHKFLAGS(__pyx_v_self, NPY_F_CONTIGUOUS) != 0)) != 0); - __pyx_t_2 = __pyx_t_1; - } else { - __pyx_t_2 = __pyx_t_3; - } - if (__pyx_t_2) { - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":219 - * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) - * and not PyArray_CHKFLAGS(self, NPY_F_CONTIGUOUS)): - * raise ValueError(u"ndarray is not Fortran contiguous") # <<<<<<<<<<<<<< - * - * info.buf = PyArray_DATA(self) - */ - __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__2, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 219; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __Pyx_Raise(__pyx_t_4, 0, 0, 0); - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - {__pyx_filename = __pyx_f[1]; __pyx_lineno = 219; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":221 - * raise ValueError(u"ndarray is not Fortran contiguous") - * - * info.buf = PyArray_DATA(self) # <<<<<<<<<<<<<< - * info.ndim = ndim - * if copy_shape: - */ - __pyx_v_info->buf = PyArray_DATA(__pyx_v_self); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":222 - * - * info.buf = PyArray_DATA(self) - * info.ndim = ndim # <<<<<<<<<<<<<< - * if copy_shape: - * # Allocate new buffer for strides and shape info. - */ - __pyx_v_info->ndim = __pyx_v_ndim; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":223 - * info.buf = PyArray_DATA(self) - * info.ndim = ndim - * if copy_shape: # <<<<<<<<<<<<<< - * # Allocate new buffer for strides and shape info. - * # This is allocated as one block, strides first. - */ - __pyx_t_2 = (__pyx_v_copy_shape != 0); - if (__pyx_t_2) { - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":226 - * # Allocate new buffer for strides and shape info. - * # This is allocated as one block, strides first. - * info.strides = stdlib.malloc(sizeof(Py_ssize_t) * ndim * 2) # <<<<<<<<<<<<<< - * info.shape = info.strides + ndim - * for i in range(ndim): - */ - __pyx_v_info->strides = ((Py_ssize_t *)malloc((((sizeof(Py_ssize_t)) * ((size_t)__pyx_v_ndim)) * 2))); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":227 - * # This is allocated as one block, strides first. - * info.strides = stdlib.malloc(sizeof(Py_ssize_t) * ndim * 2) - * info.shape = info.strides + ndim # <<<<<<<<<<<<<< - * for i in range(ndim): - * info.strides[i] = PyArray_STRIDES(self)[i] - */ - __pyx_v_info->shape = (__pyx_v_info->strides + __pyx_v_ndim); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":228 - * info.strides = stdlib.malloc(sizeof(Py_ssize_t) * ndim * 2) - * info.shape = info.strides + ndim - * for i in range(ndim): # <<<<<<<<<<<<<< - * info.strides[i] = PyArray_STRIDES(self)[i] - * info.shape[i] = PyArray_DIMS(self)[i] - */ - __pyx_t_5 = __pyx_v_ndim; - for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) { - __pyx_v_i = __pyx_t_6; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":229 - * info.shape = info.strides + ndim - * for i in range(ndim): - * info.strides[i] = PyArray_STRIDES(self)[i] # <<<<<<<<<<<<<< - * info.shape[i] = PyArray_DIMS(self)[i] - * else: - */ - (__pyx_v_info->strides[__pyx_v_i]) = (PyArray_STRIDES(__pyx_v_self)[__pyx_v_i]); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":230 - * for i in range(ndim): - * info.strides[i] = PyArray_STRIDES(self)[i] - * info.shape[i] = PyArray_DIMS(self)[i] # <<<<<<<<<<<<<< - * else: - * info.strides = PyArray_STRIDES(self) - */ - (__pyx_v_info->shape[__pyx_v_i]) = (PyArray_DIMS(__pyx_v_self)[__pyx_v_i]); - } - goto __pyx_L7; - } - /*else*/ { - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":232 - * info.shape[i] = PyArray_DIMS(self)[i] - * else: - * info.strides = PyArray_STRIDES(self) # <<<<<<<<<<<<<< - * info.shape = PyArray_DIMS(self) - * info.suboffsets = NULL - */ - __pyx_v_info->strides = ((Py_ssize_t *)PyArray_STRIDES(__pyx_v_self)); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":233 - * else: - * info.strides = PyArray_STRIDES(self) - * info.shape = PyArray_DIMS(self) # <<<<<<<<<<<<<< - * info.suboffsets = NULL - * info.itemsize = PyArray_ITEMSIZE(self) - */ - __pyx_v_info->shape = ((Py_ssize_t *)PyArray_DIMS(__pyx_v_self)); - } - __pyx_L7:; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":234 - * info.strides = PyArray_STRIDES(self) - * info.shape = PyArray_DIMS(self) - * info.suboffsets = NULL # <<<<<<<<<<<<<< - * info.itemsize = PyArray_ITEMSIZE(self) - * info.readonly = not PyArray_ISWRITEABLE(self) - */ - __pyx_v_info->suboffsets = NULL; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":235 - * info.shape = PyArray_DIMS(self) - * info.suboffsets = NULL - * info.itemsize = PyArray_ITEMSIZE(self) # <<<<<<<<<<<<<< - * info.readonly = not PyArray_ISWRITEABLE(self) - * - */ - __pyx_v_info->itemsize = PyArray_ITEMSIZE(__pyx_v_self); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":236 - * info.suboffsets = NULL - * info.itemsize = PyArray_ITEMSIZE(self) - * info.readonly = not PyArray_ISWRITEABLE(self) # <<<<<<<<<<<<<< - * - * cdef int t - */ - __pyx_v_info->readonly = (!(PyArray_ISWRITEABLE(__pyx_v_self) != 0)); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":239 - * - * cdef int t - * cdef char* f = NULL # <<<<<<<<<<<<<< - * cdef dtype descr = self.descr - * cdef list stack - */ - __pyx_v_f = NULL; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":240 - * cdef int t - * cdef char* f = NULL - * cdef dtype descr = self.descr # <<<<<<<<<<<<<< - * cdef list stack - * cdef int offset - */ - __pyx_t_4 = ((PyObject *)__pyx_v_self->descr); - __Pyx_INCREF(__pyx_t_4); - __pyx_v_descr = ((PyArray_Descr *)__pyx_t_4); - __pyx_t_4 = 0; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":244 - * cdef int offset - * - * cdef bint hasfields = PyDataType_HASFIELDS(descr) # <<<<<<<<<<<<<< - * - * if not hasfields and not copy_shape: - */ - __pyx_v_hasfields = PyDataType_HASFIELDS(__pyx_v_descr); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":246 - * cdef bint hasfields = PyDataType_HASFIELDS(descr) - * - * if not hasfields and not copy_shape: # <<<<<<<<<<<<<< - * # do not call releasebuffer - * info.obj = None - */ - __pyx_t_2 = ((!(__pyx_v_hasfields != 0)) != 0); - if (__pyx_t_2) { - __pyx_t_3 = ((!(__pyx_v_copy_shape != 0)) != 0); - __pyx_t_1 = __pyx_t_3; - } else { - __pyx_t_1 = __pyx_t_2; - } - if (__pyx_t_1) { - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":248 - * if not hasfields and not copy_shape: - * # do not call releasebuffer - * info.obj = None # <<<<<<<<<<<<<< - * else: - * # need to call releasebuffer - */ - __Pyx_INCREF(Py_None); - __Pyx_GIVEREF(Py_None); - __Pyx_GOTREF(__pyx_v_info->obj); - __Pyx_DECREF(__pyx_v_info->obj); - __pyx_v_info->obj = Py_None; - goto __pyx_L10; - } - /*else*/ { - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":251 - * else: - * # need to call releasebuffer - * info.obj = self # <<<<<<<<<<<<<< - * - * if not hasfields: - */ - __Pyx_INCREF(((PyObject *)__pyx_v_self)); - __Pyx_GIVEREF(((PyObject *)__pyx_v_self)); - __Pyx_GOTREF(__pyx_v_info->obj); - __Pyx_DECREF(__pyx_v_info->obj); - __pyx_v_info->obj = ((PyObject *)__pyx_v_self); - } - __pyx_L10:; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":253 - * info.obj = self - * - * if not hasfields: # <<<<<<<<<<<<<< - * t = descr.type_num - * if ((descr.byteorder == c'>' and little_endian) or - */ - __pyx_t_1 = ((!(__pyx_v_hasfields != 0)) != 0); - if (__pyx_t_1) { - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":254 - * - * if not hasfields: - * t = descr.type_num # <<<<<<<<<<<<<< - * if ((descr.byteorder == c'>' and little_endian) or - * (descr.byteorder == c'<' and not little_endian)): - */ - __pyx_t_5 = __pyx_v_descr->type_num; - __pyx_v_t = __pyx_t_5; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":255 - * if not hasfields: - * t = descr.type_num - * if ((descr.byteorder == c'>' and little_endian) or # <<<<<<<<<<<<<< - * (descr.byteorder == c'<' and not little_endian)): - * raise ValueError(u"Non-native byte order not supported") - */ - __pyx_t_1 = ((__pyx_v_descr->byteorder == '>') != 0); - if (__pyx_t_1) { - __pyx_t_2 = (__pyx_v_little_endian != 0); - } else { - __pyx_t_2 = __pyx_t_1; - } - if (!__pyx_t_2) { - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":256 - * t = descr.type_num - * if ((descr.byteorder == c'>' and little_endian) or - * (descr.byteorder == c'<' and not little_endian)): # <<<<<<<<<<<<<< - * raise ValueError(u"Non-native byte order not supported") - * if t == NPY_BYTE: f = "b" - */ - __pyx_t_1 = ((__pyx_v_descr->byteorder == '<') != 0); - if (__pyx_t_1) { - __pyx_t_3 = ((!(__pyx_v_little_endian != 0)) != 0); - __pyx_t_7 = __pyx_t_3; - } else { - __pyx_t_7 = __pyx_t_1; - } - __pyx_t_1 = __pyx_t_7; - } else { - __pyx_t_1 = __pyx_t_2; - } - if (__pyx_t_1) { - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":257 - * if ((descr.byteorder == c'>' and little_endian) or - * (descr.byteorder == c'<' and not little_endian)): - * raise ValueError(u"Non-native byte order not supported") # <<<<<<<<<<<<<< - * if t == NPY_BYTE: f = "b" - * elif t == NPY_UBYTE: f = "B" - */ - __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__3, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 257; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __Pyx_Raise(__pyx_t_4, 0, 0, 0); - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - {__pyx_filename = __pyx_f[1]; __pyx_lineno = 257; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":274 - * elif t == NPY_CDOUBLE: f = "Zd" - * elif t == NPY_CLONGDOUBLE: f = "Zg" - * elif t == NPY_OBJECT: f = "O" # <<<<<<<<<<<<<< - * else: - * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) - */ - switch (__pyx_v_t) { - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":258 - * (descr.byteorder == c'<' and not little_endian)): - * raise ValueError(u"Non-native byte order not supported") - * if t == NPY_BYTE: f = "b" # <<<<<<<<<<<<<< - * elif t == NPY_UBYTE: f = "B" - * elif t == NPY_SHORT: f = "h" - */ - case NPY_BYTE: - __pyx_v_f = __pyx_k_b; - break; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":259 - * raise ValueError(u"Non-native byte order not supported") - * if t == NPY_BYTE: f = "b" - * elif t == NPY_UBYTE: f = "B" # <<<<<<<<<<<<<< - * elif t == NPY_SHORT: f = "h" - * elif t == NPY_USHORT: f = "H" - */ - case NPY_UBYTE: - __pyx_v_f = __pyx_k_B; - break; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":260 - * if t == NPY_BYTE: f = "b" - * elif t == NPY_UBYTE: f = "B" - * elif t == NPY_SHORT: f = "h" # <<<<<<<<<<<<<< - * elif t == NPY_USHORT: f = "H" - * elif t == NPY_INT: f = "i" - */ - case NPY_SHORT: - __pyx_v_f = __pyx_k_h; - break; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":261 - * elif t == NPY_UBYTE: f = "B" - * elif t == NPY_SHORT: f = "h" - * elif t == NPY_USHORT: f = "H" # <<<<<<<<<<<<<< - * elif t == NPY_INT: f = "i" - * elif t == NPY_UINT: f = "I" - */ - case NPY_USHORT: - __pyx_v_f = __pyx_k_H; - break; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":262 - * elif t == NPY_SHORT: f = "h" - * elif t == NPY_USHORT: f = "H" - * elif t == NPY_INT: f = "i" # <<<<<<<<<<<<<< - * elif t == NPY_UINT: f = "I" - * elif t == NPY_LONG: f = "l" - */ - case NPY_INT: - __pyx_v_f = __pyx_k_i; - break; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":263 - * elif t == NPY_USHORT: f = "H" - * elif t == NPY_INT: f = "i" - * elif t == NPY_UINT: f = "I" # <<<<<<<<<<<<<< - * elif t == NPY_LONG: f = "l" - * elif t == NPY_ULONG: f = "L" - */ - case NPY_UINT: - __pyx_v_f = __pyx_k_I; - break; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":264 - * elif t == NPY_INT: f = "i" - * elif t == NPY_UINT: f = "I" - * elif t == NPY_LONG: f = "l" # <<<<<<<<<<<<<< - * elif t == NPY_ULONG: f = "L" - * elif t == NPY_LONGLONG: f = "q" - */ - case NPY_LONG: - __pyx_v_f = __pyx_k_l; - break; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":265 - * elif t == NPY_UINT: f = "I" - * elif t == NPY_LONG: f = "l" - * elif t == NPY_ULONG: f = "L" # <<<<<<<<<<<<<< - * elif t == NPY_LONGLONG: f = "q" - * elif t == NPY_ULONGLONG: f = "Q" - */ - case NPY_ULONG: - __pyx_v_f = __pyx_k_L; - break; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":266 - * elif t == NPY_LONG: f = "l" - * elif t == NPY_ULONG: f = "L" - * elif t == NPY_LONGLONG: f = "q" # <<<<<<<<<<<<<< - * elif t == NPY_ULONGLONG: f = "Q" - * elif t == NPY_FLOAT: f = "f" - */ - case NPY_LONGLONG: - __pyx_v_f = __pyx_k_q; - break; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":267 - * elif t == NPY_ULONG: f = "L" - * elif t == NPY_LONGLONG: f = "q" - * elif t == NPY_ULONGLONG: f = "Q" # <<<<<<<<<<<<<< - * elif t == NPY_FLOAT: f = "f" - * elif t == NPY_DOUBLE: f = "d" - */ - case NPY_ULONGLONG: - __pyx_v_f = __pyx_k_Q; - break; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":268 - * elif t == NPY_LONGLONG: f = "q" - * elif t == NPY_ULONGLONG: f = "Q" - * elif t == NPY_FLOAT: f = "f" # <<<<<<<<<<<<<< - * elif t == NPY_DOUBLE: f = "d" - * elif t == NPY_LONGDOUBLE: f = "g" - */ - case NPY_FLOAT: - __pyx_v_f = __pyx_k_f; - break; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":269 - * elif t == NPY_ULONGLONG: f = "Q" - * elif t == NPY_FLOAT: f = "f" - * elif t == NPY_DOUBLE: f = "d" # <<<<<<<<<<<<<< - * elif t == NPY_LONGDOUBLE: f = "g" - * elif t == NPY_CFLOAT: f = "Zf" - */ - case NPY_DOUBLE: - __pyx_v_f = __pyx_k_d; - break; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":270 - * elif t == NPY_FLOAT: f = "f" - * elif t == NPY_DOUBLE: f = "d" - * elif t == NPY_LONGDOUBLE: f = "g" # <<<<<<<<<<<<<< - * elif t == NPY_CFLOAT: f = "Zf" - * elif t == NPY_CDOUBLE: f = "Zd" - */ - case NPY_LONGDOUBLE: - __pyx_v_f = __pyx_k_g; - break; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":271 - * elif t == NPY_DOUBLE: f = "d" - * elif t == NPY_LONGDOUBLE: f = "g" - * elif t == NPY_CFLOAT: f = "Zf" # <<<<<<<<<<<<<< - * elif t == NPY_CDOUBLE: f = "Zd" - * elif t == NPY_CLONGDOUBLE: f = "Zg" - */ - case NPY_CFLOAT: - __pyx_v_f = __pyx_k_Zf; - break; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":272 - * elif t == NPY_LONGDOUBLE: f = "g" - * elif t == NPY_CFLOAT: f = "Zf" - * elif t == NPY_CDOUBLE: f = "Zd" # <<<<<<<<<<<<<< - * elif t == NPY_CLONGDOUBLE: f = "Zg" - * elif t == NPY_OBJECT: f = "O" - */ - case NPY_CDOUBLE: - __pyx_v_f = __pyx_k_Zd; - break; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":273 - * elif t == NPY_CFLOAT: f = "Zf" - * elif t == NPY_CDOUBLE: f = "Zd" - * elif t == NPY_CLONGDOUBLE: f = "Zg" # <<<<<<<<<<<<<< - * elif t == NPY_OBJECT: f = "O" - * else: - */ - case NPY_CLONGDOUBLE: - __pyx_v_f = __pyx_k_Zg; - break; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":274 - * elif t == NPY_CDOUBLE: f = "Zd" - * elif t == NPY_CLONGDOUBLE: f = "Zg" - * elif t == NPY_OBJECT: f = "O" # <<<<<<<<<<<<<< - * else: - * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) - */ - case NPY_OBJECT: - __pyx_v_f = __pyx_k_O; - break; - default: - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":276 - * elif t == NPY_OBJECT: f = "O" - * else: - * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) # <<<<<<<<<<<<<< - * info.format = f - * return - */ - __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_t); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 276; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_8 = PyUnicode_Format(__pyx_kp_u_unknown_dtype_code_in_numpy_pxd, __pyx_t_4); if (unlikely(!__pyx_t_8)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 276; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_8); - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 276; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_8); - __Pyx_GIVEREF(__pyx_t_8); - __pyx_t_8 = 0; - __pyx_t_8 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_t_4, NULL); if (unlikely(!__pyx_t_8)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 276; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_8); - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __Pyx_Raise(__pyx_t_8, 0, 0, 0); - __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; - {__pyx_filename = __pyx_f[1]; __pyx_lineno = 276; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - break; - } - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":277 - * else: - * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) - * info.format = f # <<<<<<<<<<<<<< - * return - * else: - */ - __pyx_v_info->format = __pyx_v_f; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":278 - * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) - * info.format = f - * return # <<<<<<<<<<<<<< - * else: - * info.format = stdlib.malloc(_buffer_format_string_len) - */ - __pyx_r = 0; - goto __pyx_L0; - } - /*else*/ { - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":280 - * return - * else: - * info.format = stdlib.malloc(_buffer_format_string_len) # <<<<<<<<<<<<<< - * info.format[0] = c'^' # Native data types, manual alignment - * offset = 0 - */ - __pyx_v_info->format = ((char *)malloc(255)); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":281 - * else: - * info.format = stdlib.malloc(_buffer_format_string_len) - * info.format[0] = c'^' # Native data types, manual alignment # <<<<<<<<<<<<<< - * offset = 0 - * f = _util_dtypestring(descr, info.format + 1, - */ - (__pyx_v_info->format[0]) = '^'; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":282 - * info.format = stdlib.malloc(_buffer_format_string_len) - * info.format[0] = c'^' # Native data types, manual alignment - * offset = 0 # <<<<<<<<<<<<<< - * f = _util_dtypestring(descr, info.format + 1, - * info.format + _buffer_format_string_len, - */ - __pyx_v_offset = 0; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":283 - * info.format[0] = c'^' # Native data types, manual alignment - * offset = 0 - * f = _util_dtypestring(descr, info.format + 1, # <<<<<<<<<<<<<< - * info.format + _buffer_format_string_len, - * &offset) - */ - __pyx_t_9 = __pyx_f_5numpy__util_dtypestring(__pyx_v_descr, (__pyx_v_info->format + 1), (__pyx_v_info->format + 255), (&__pyx_v_offset)); if (unlikely(__pyx_t_9 == NULL)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 283; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_v_f = __pyx_t_9; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":286 - * info.format + _buffer_format_string_len, - * &offset) - * f[0] = c'\0' # Terminate format string # <<<<<<<<<<<<<< - * - * def __releasebuffer__(ndarray self, Py_buffer* info): - */ - (__pyx_v_f[0]) = '\x00'; - } - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":194 - * # experimental exception made for __getbuffer__ and __releasebuffer__ - * # -- the details of this may change. - * def __getbuffer__(ndarray self, Py_buffer* info, int flags): # <<<<<<<<<<<<<< - * # This implementation of getbuffer is geared towards Cython - * # requirements, and does not yet fullfill the PEP. - */ - - /* function exit code */ - __pyx_r = 0; - goto __pyx_L0; - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_4); - __Pyx_XDECREF(__pyx_t_8); - __Pyx_AddTraceback("numpy.ndarray.__getbuffer__", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = -1; - if (__pyx_v_info != NULL && __pyx_v_info->obj != NULL) { - __Pyx_GOTREF(__pyx_v_info->obj); - __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = NULL; - } - goto __pyx_L2; - __pyx_L0:; - if (__pyx_v_info != NULL && __pyx_v_info->obj == Py_None) { - __Pyx_GOTREF(Py_None); - __Pyx_DECREF(Py_None); __pyx_v_info->obj = NULL; - } - __pyx_L2:; - __Pyx_XDECREF((PyObject *)__pyx_v_descr); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":288 - * f[0] = c'\0' # Terminate format string - * - * def __releasebuffer__(ndarray self, Py_buffer* info): # <<<<<<<<<<<<<< - * if PyArray_HASFIELDS(self): - * stdlib.free(info.format) - */ - -/* Python wrapper */ -static CYTHON_UNUSED void __pyx_pw_5numpy_7ndarray_3__releasebuffer__(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info); /*proto*/ -static CYTHON_UNUSED void __pyx_pw_5numpy_7ndarray_3__releasebuffer__(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info) { - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__releasebuffer__ (wrapper)", 0); - __pyx_pf_5numpy_7ndarray_2__releasebuffer__(((PyArrayObject *)__pyx_v_self), ((Py_buffer *)__pyx_v_info)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); -} - -static void __pyx_pf_5numpy_7ndarray_2__releasebuffer__(PyArrayObject *__pyx_v_self, Py_buffer *__pyx_v_info) { - __Pyx_RefNannyDeclarations - int __pyx_t_1; - __Pyx_RefNannySetupContext("__releasebuffer__", 0); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":289 - * - * def __releasebuffer__(ndarray self, Py_buffer* info): - * if PyArray_HASFIELDS(self): # <<<<<<<<<<<<<< - * stdlib.free(info.format) - * if sizeof(npy_intp) != sizeof(Py_ssize_t): - */ - __pyx_t_1 = (PyArray_HASFIELDS(__pyx_v_self) != 0); - if (__pyx_t_1) { - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":290 - * def __releasebuffer__(ndarray self, Py_buffer* info): - * if PyArray_HASFIELDS(self): - * stdlib.free(info.format) # <<<<<<<<<<<<<< - * if sizeof(npy_intp) != sizeof(Py_ssize_t): - * stdlib.free(info.strides) - */ - free(__pyx_v_info->format); - goto __pyx_L3; - } - __pyx_L3:; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":291 - * if PyArray_HASFIELDS(self): - * stdlib.free(info.format) - * if sizeof(npy_intp) != sizeof(Py_ssize_t): # <<<<<<<<<<<<<< - * stdlib.free(info.strides) - * # info.shape was stored after info.strides in the same block - */ - __pyx_t_1 = (((sizeof(npy_intp)) != (sizeof(Py_ssize_t))) != 0); - if (__pyx_t_1) { - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":292 - * stdlib.free(info.format) - * if sizeof(npy_intp) != sizeof(Py_ssize_t): - * stdlib.free(info.strides) # <<<<<<<<<<<<<< - * # info.shape was stored after info.strides in the same block - * - */ - free(__pyx_v_info->strides); - goto __pyx_L4; - } - __pyx_L4:; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":288 - * f[0] = c'\0' # Terminate format string - * - * def __releasebuffer__(ndarray self, Py_buffer* info): # <<<<<<<<<<<<<< - * if PyArray_HASFIELDS(self): - * stdlib.free(info.format) - */ - - /* function exit code */ - __Pyx_RefNannyFinishContext(); -} - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":768 - * ctypedef npy_cdouble complex_t - * - * cdef inline object PyArray_MultiIterNew1(a): # <<<<<<<<<<<<<< - * return PyArray_MultiIterNew(1, a) - * - */ - -static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew1(PyObject *__pyx_v_a) { - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - PyObject *__pyx_t_1 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("PyArray_MultiIterNew1", 0); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":769 - * - * cdef inline object PyArray_MultiIterNew1(a): - * return PyArray_MultiIterNew(1, a) # <<<<<<<<<<<<<< - * - * cdef inline object PyArray_MultiIterNew2(a, b): - */ - __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = PyArray_MultiIterNew(1, ((void *)__pyx_v_a)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 769; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __pyx_r = __pyx_t_1; - __pyx_t_1 = 0; - goto __pyx_L0; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":768 - * ctypedef npy_cdouble complex_t - * - * cdef inline object PyArray_MultiIterNew1(a): # <<<<<<<<<<<<<< - * return PyArray_MultiIterNew(1, a) - * - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_1); - __Pyx_AddTraceback("numpy.PyArray_MultiIterNew1", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = 0; - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":771 - * return PyArray_MultiIterNew(1, a) - * - * cdef inline object PyArray_MultiIterNew2(a, b): # <<<<<<<<<<<<<< - * return PyArray_MultiIterNew(2, a, b) - * - */ - -static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew2(PyObject *__pyx_v_a, PyObject *__pyx_v_b) { - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - PyObject *__pyx_t_1 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("PyArray_MultiIterNew2", 0); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":772 - * - * cdef inline object PyArray_MultiIterNew2(a, b): - * return PyArray_MultiIterNew(2, a, b) # <<<<<<<<<<<<<< - * - * cdef inline object PyArray_MultiIterNew3(a, b, c): - */ - __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = PyArray_MultiIterNew(2, ((void *)__pyx_v_a), ((void *)__pyx_v_b)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 772; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __pyx_r = __pyx_t_1; - __pyx_t_1 = 0; - goto __pyx_L0; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":771 - * return PyArray_MultiIterNew(1, a) - * - * cdef inline object PyArray_MultiIterNew2(a, b): # <<<<<<<<<<<<<< - * return PyArray_MultiIterNew(2, a, b) - * - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_1); - __Pyx_AddTraceback("numpy.PyArray_MultiIterNew2", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = 0; - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":774 - * return PyArray_MultiIterNew(2, a, b) - * - * cdef inline object PyArray_MultiIterNew3(a, b, c): # <<<<<<<<<<<<<< - * return PyArray_MultiIterNew(3, a, b, c) - * - */ - -static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew3(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c) { - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - PyObject *__pyx_t_1 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("PyArray_MultiIterNew3", 0); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":775 - * - * cdef inline object PyArray_MultiIterNew3(a, b, c): - * return PyArray_MultiIterNew(3, a, b, c) # <<<<<<<<<<<<<< - * - * cdef inline object PyArray_MultiIterNew4(a, b, c, d): - */ - __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = PyArray_MultiIterNew(3, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 775; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __pyx_r = __pyx_t_1; - __pyx_t_1 = 0; - goto __pyx_L0; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":774 - * return PyArray_MultiIterNew(2, a, b) - * - * cdef inline object PyArray_MultiIterNew3(a, b, c): # <<<<<<<<<<<<<< - * return PyArray_MultiIterNew(3, a, b, c) - * - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_1); - __Pyx_AddTraceback("numpy.PyArray_MultiIterNew3", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = 0; - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":777 - * return PyArray_MultiIterNew(3, a, b, c) - * - * cdef inline object PyArray_MultiIterNew4(a, b, c, d): # <<<<<<<<<<<<<< - * return PyArray_MultiIterNew(4, a, b, c, d) - * - */ - -static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew4(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c, PyObject *__pyx_v_d) { - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - PyObject *__pyx_t_1 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("PyArray_MultiIterNew4", 0); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":778 - * - * cdef inline object PyArray_MultiIterNew4(a, b, c, d): - * return PyArray_MultiIterNew(4, a, b, c, d) # <<<<<<<<<<<<<< - * - * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): - */ - __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = PyArray_MultiIterNew(4, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c), ((void *)__pyx_v_d)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 778; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __pyx_r = __pyx_t_1; - __pyx_t_1 = 0; - goto __pyx_L0; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":777 - * return PyArray_MultiIterNew(3, a, b, c) - * - * cdef inline object PyArray_MultiIterNew4(a, b, c, d): # <<<<<<<<<<<<<< - * return PyArray_MultiIterNew(4, a, b, c, d) - * - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_1); - __Pyx_AddTraceback("numpy.PyArray_MultiIterNew4", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = 0; - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":780 - * return PyArray_MultiIterNew(4, a, b, c, d) - * - * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): # <<<<<<<<<<<<<< - * return PyArray_MultiIterNew(5, a, b, c, d, e) - * - */ - -static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew5(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c, PyObject *__pyx_v_d, PyObject *__pyx_v_e) { - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - PyObject *__pyx_t_1 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("PyArray_MultiIterNew5", 0); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":781 - * - * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): - * return PyArray_MultiIterNew(5, a, b, c, d, e) # <<<<<<<<<<<<<< - * - * cdef inline char* _util_dtypestring(dtype descr, char* f, char* end, int* offset) except NULL: - */ - __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = PyArray_MultiIterNew(5, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c), ((void *)__pyx_v_d), ((void *)__pyx_v_e)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 781; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __pyx_r = __pyx_t_1; - __pyx_t_1 = 0; - goto __pyx_L0; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":780 - * return PyArray_MultiIterNew(4, a, b, c, d) - * - * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): # <<<<<<<<<<<<<< - * return PyArray_MultiIterNew(5, a, b, c, d, e) - * - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_1); - __Pyx_AddTraceback("numpy.PyArray_MultiIterNew5", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = 0; - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":783 - * return PyArray_MultiIterNew(5, a, b, c, d, e) - * - * cdef inline char* _util_dtypestring(dtype descr, char* f, char* end, int* offset) except NULL: # <<<<<<<<<<<<<< - * # Recursive utility function used in __getbuffer__ to get format - * # string. The new location in the format string is returned. - */ - -static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx_v_descr, char *__pyx_v_f, char *__pyx_v_end, int *__pyx_v_offset) { - PyArray_Descr *__pyx_v_child = 0; - int __pyx_v_endian_detector; - int __pyx_v_little_endian; - PyObject *__pyx_v_fields = 0; - PyObject *__pyx_v_childname = NULL; - PyObject *__pyx_v_new_offset = NULL; - PyObject *__pyx_v_t = NULL; - char *__pyx_r; - __Pyx_RefNannyDeclarations - PyObject *__pyx_t_1 = NULL; - Py_ssize_t __pyx_t_2; - PyObject *__pyx_t_3 = NULL; - PyObject *__pyx_t_4 = NULL; - int __pyx_t_5; - int __pyx_t_6; - int __pyx_t_7; - int __pyx_t_8; - int __pyx_t_9; - long __pyx_t_10; - char *__pyx_t_11; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("_util_dtypestring", 0); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":790 - * cdef int delta_offset - * cdef tuple i - * cdef int endian_detector = 1 # <<<<<<<<<<<<<< - * cdef bint little_endian = ((&endian_detector)[0] != 0) - * cdef tuple fields - */ - __pyx_v_endian_detector = 1; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":791 - * cdef tuple i - * cdef int endian_detector = 1 - * cdef bint little_endian = ((&endian_detector)[0] != 0) # <<<<<<<<<<<<<< - * cdef tuple fields - * - */ - __pyx_v_little_endian = ((((char *)(&__pyx_v_endian_detector))[0]) != 0); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":794 - * cdef tuple fields - * - * for childname in descr.names: # <<<<<<<<<<<<<< - * fields = descr.fields[childname] - * child, new_offset = fields - */ - if (unlikely(__pyx_v_descr->names == Py_None)) { - PyErr_SetString(PyExc_TypeError, "'NoneType' object is not iterable"); - {__pyx_filename = __pyx_f[1]; __pyx_lineno = 794; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - __pyx_t_1 = __pyx_v_descr->names; __Pyx_INCREF(__pyx_t_1); __pyx_t_2 = 0; - for (;;) { - if (__pyx_t_2 >= PyTuple_GET_SIZE(__pyx_t_1)) break; - #if CYTHON_COMPILING_IN_CPYTHON - __pyx_t_3 = PyTuple_GET_ITEM(__pyx_t_1, __pyx_t_2); __Pyx_INCREF(__pyx_t_3); __pyx_t_2++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 794; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #else - __pyx_t_3 = PySequence_ITEM(__pyx_t_1, __pyx_t_2); __pyx_t_2++; if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 794; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #endif - __Pyx_XDECREF_SET(__pyx_v_childname, __pyx_t_3); - __pyx_t_3 = 0; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":795 - * - * for childname in descr.names: - * fields = descr.fields[childname] # <<<<<<<<<<<<<< - * child, new_offset = fields - * - */ - __pyx_t_3 = PyObject_GetItem(__pyx_v_descr->fields, __pyx_v_childname); if (unlikely(__pyx_t_3 == NULL)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 795; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; - __Pyx_GOTREF(__pyx_t_3); - if (!(likely(PyTuple_CheckExact(__pyx_t_3))||((__pyx_t_3) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "tuple", Py_TYPE(__pyx_t_3)->tp_name), 0))) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 795; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_XDECREF_SET(__pyx_v_fields, ((PyObject*)__pyx_t_3)); - __pyx_t_3 = 0; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":796 - * for childname in descr.names: - * fields = descr.fields[childname] - * child, new_offset = fields # <<<<<<<<<<<<<< - * - * if (end - f) - (new_offset - offset[0]) < 15: - */ - if (likely(__pyx_v_fields != Py_None)) { - PyObject* sequence = __pyx_v_fields; - #if CYTHON_COMPILING_IN_CPYTHON - Py_ssize_t size = Py_SIZE(sequence); - #else - Py_ssize_t size = PySequence_Size(sequence); - #endif - if (unlikely(size != 2)) { - if (size > 2) __Pyx_RaiseTooManyValuesError(2); - else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); - {__pyx_filename = __pyx_f[1]; __pyx_lineno = 796; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - #if CYTHON_COMPILING_IN_CPYTHON - __pyx_t_3 = PyTuple_GET_ITEM(sequence, 0); - __pyx_t_4 = PyTuple_GET_ITEM(sequence, 1); - __Pyx_INCREF(__pyx_t_3); - __Pyx_INCREF(__pyx_t_4); - #else - __pyx_t_3 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 796; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __pyx_t_4 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 796; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - #endif - } else { - __Pyx_RaiseNoneNotIterableError(); {__pyx_filename = __pyx_f[1]; __pyx_lineno = 796; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_ptype_5numpy_dtype))))) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 796; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_XDECREF_SET(__pyx_v_child, ((PyArray_Descr *)__pyx_t_3)); - __pyx_t_3 = 0; - __Pyx_XDECREF_SET(__pyx_v_new_offset, __pyx_t_4); - __pyx_t_4 = 0; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":798 - * child, new_offset = fields - * - * if (end - f) - (new_offset - offset[0]) < 15: # <<<<<<<<<<<<<< - * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") - * - */ - __pyx_t_4 = __Pyx_PyInt_From_int((__pyx_v_offset[0])); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 798; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_3 = PyNumber_Subtract(__pyx_v_new_offset, __pyx_t_4); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 798; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_5 = __Pyx_PyInt_As_int(__pyx_t_3); if (unlikely((__pyx_t_5 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 798; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_t_6 = ((((__pyx_v_end - __pyx_v_f) - ((int)__pyx_t_5)) < 15) != 0); - if (__pyx_t_6) { - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":799 - * - * if (end - f) - (new_offset - offset[0]) < 15: - * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") # <<<<<<<<<<<<<< - * - * if ((child.byteorder == c'>' and little_endian) or - */ - __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_RuntimeError, __pyx_tuple__4, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 799; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __Pyx_Raise(__pyx_t_3, 0, 0, 0); - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - {__pyx_filename = __pyx_f[1]; __pyx_lineno = 799; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":801 - * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") - * - * if ((child.byteorder == c'>' and little_endian) or # <<<<<<<<<<<<<< - * (child.byteorder == c'<' and not little_endian)): - * raise ValueError(u"Non-native byte order not supported") - */ - __pyx_t_6 = ((__pyx_v_child->byteorder == '>') != 0); - if (__pyx_t_6) { - __pyx_t_7 = (__pyx_v_little_endian != 0); - } else { - __pyx_t_7 = __pyx_t_6; - } - if (!__pyx_t_7) { - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":802 - * - * if ((child.byteorder == c'>' and little_endian) or - * (child.byteorder == c'<' and not little_endian)): # <<<<<<<<<<<<<< - * raise ValueError(u"Non-native byte order not supported") - * # One could encode it in the format string and have Cython - */ - __pyx_t_6 = ((__pyx_v_child->byteorder == '<') != 0); - if (__pyx_t_6) { - __pyx_t_8 = ((!(__pyx_v_little_endian != 0)) != 0); - __pyx_t_9 = __pyx_t_8; - } else { - __pyx_t_9 = __pyx_t_6; - } - __pyx_t_6 = __pyx_t_9; - } else { - __pyx_t_6 = __pyx_t_7; - } - if (__pyx_t_6) { - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":803 - * if ((child.byteorder == c'>' and little_endian) or - * (child.byteorder == c'<' and not little_endian)): - * raise ValueError(u"Non-native byte order not supported") # <<<<<<<<<<<<<< - * # One could encode it in the format string and have Cython - * # complain instead, BUT: < and > in format strings also imply - */ - __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__5, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 803; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __Pyx_Raise(__pyx_t_3, 0, 0, 0); - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - {__pyx_filename = __pyx_f[1]; __pyx_lineno = 803; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":813 - * - * # Output padding bytes - * while offset[0] < new_offset: # <<<<<<<<<<<<<< - * f[0] = 120 # "x"; pad byte - * f += 1 - */ - while (1) { - __pyx_t_3 = __Pyx_PyInt_From_int((__pyx_v_offset[0])); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 813; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __pyx_t_4 = PyObject_RichCompare(__pyx_t_3, __pyx_v_new_offset, Py_LT); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 813; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 813; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - if (!__pyx_t_6) break; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":814 - * # Output padding bytes - * while offset[0] < new_offset: - * f[0] = 120 # "x"; pad byte # <<<<<<<<<<<<<< - * f += 1 - * offset[0] += 1 - */ - (__pyx_v_f[0]) = 120; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":815 - * while offset[0] < new_offset: - * f[0] = 120 # "x"; pad byte - * f += 1 # <<<<<<<<<<<<<< - * offset[0] += 1 - * - */ - __pyx_v_f = (__pyx_v_f + 1); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":816 - * f[0] = 120 # "x"; pad byte - * f += 1 - * offset[0] += 1 # <<<<<<<<<<<<<< - * - * offset[0] += child.itemsize - */ - __pyx_t_10 = 0; - (__pyx_v_offset[__pyx_t_10]) = ((__pyx_v_offset[__pyx_t_10]) + 1); - } - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":818 - * offset[0] += 1 - * - * offset[0] += child.itemsize # <<<<<<<<<<<<<< - * - * if not PyDataType_HASFIELDS(child): - */ - __pyx_t_10 = 0; - (__pyx_v_offset[__pyx_t_10]) = ((__pyx_v_offset[__pyx_t_10]) + __pyx_v_child->elsize); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":820 - * offset[0] += child.itemsize - * - * if not PyDataType_HASFIELDS(child): # <<<<<<<<<<<<<< - * t = child.type_num - * if end - f < 5: - */ - __pyx_t_6 = ((!(PyDataType_HASFIELDS(__pyx_v_child) != 0)) != 0); - if (__pyx_t_6) { - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":821 - * - * if not PyDataType_HASFIELDS(child): - * t = child.type_num # <<<<<<<<<<<<<< - * if end - f < 5: - * raise RuntimeError(u"Format string allocated too short.") - */ - __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_child->type_num); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 821; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __Pyx_XDECREF_SET(__pyx_v_t, __pyx_t_4); - __pyx_t_4 = 0; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":822 - * if not PyDataType_HASFIELDS(child): - * t = child.type_num - * if end - f < 5: # <<<<<<<<<<<<<< - * raise RuntimeError(u"Format string allocated too short.") - * - */ - __pyx_t_6 = (((__pyx_v_end - __pyx_v_f) < 5) != 0); - if (__pyx_t_6) { - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":823 - * t = child.type_num - * if end - f < 5: - * raise RuntimeError(u"Format string allocated too short.") # <<<<<<<<<<<<<< - * - * # Until ticket #99 is fixed, use integers to avoid warnings - */ - __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_RuntimeError, __pyx_tuple__6, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 823; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __Pyx_Raise(__pyx_t_4, 0, 0, 0); - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - {__pyx_filename = __pyx_f[1]; __pyx_lineno = 823; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":826 - * - * # Until ticket #99 is fixed, use integers to avoid warnings - * if t == NPY_BYTE: f[0] = 98 #"b" # <<<<<<<<<<<<<< - * elif t == NPY_UBYTE: f[0] = 66 #"B" - * elif t == NPY_SHORT: f[0] = 104 #"h" - */ - __pyx_t_4 = PyInt_FromLong(NPY_BYTE); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 826; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 826; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 826; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - if (__pyx_t_6) { - (__pyx_v_f[0]) = 98; - goto __pyx_L11; - } - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":827 - * # Until ticket #99 is fixed, use integers to avoid warnings - * if t == NPY_BYTE: f[0] = 98 #"b" - * elif t == NPY_UBYTE: f[0] = 66 #"B" # <<<<<<<<<<<<<< - * elif t == NPY_SHORT: f[0] = 104 #"h" - * elif t == NPY_USHORT: f[0] = 72 #"H" - */ - __pyx_t_3 = PyInt_FromLong(NPY_UBYTE); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 827; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 827; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 827; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - if (__pyx_t_6) { - (__pyx_v_f[0]) = 66; - goto __pyx_L11; - } - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":828 - * if t == NPY_BYTE: f[0] = 98 #"b" - * elif t == NPY_UBYTE: f[0] = 66 #"B" - * elif t == NPY_SHORT: f[0] = 104 #"h" # <<<<<<<<<<<<<< - * elif t == NPY_USHORT: f[0] = 72 #"H" - * elif t == NPY_INT: f[0] = 105 #"i" - */ - __pyx_t_4 = PyInt_FromLong(NPY_SHORT); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 828; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 828; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 828; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - if (__pyx_t_6) { - (__pyx_v_f[0]) = 104; - goto __pyx_L11; - } - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":829 - * elif t == NPY_UBYTE: f[0] = 66 #"B" - * elif t == NPY_SHORT: f[0] = 104 #"h" - * elif t == NPY_USHORT: f[0] = 72 #"H" # <<<<<<<<<<<<<< - * elif t == NPY_INT: f[0] = 105 #"i" - * elif t == NPY_UINT: f[0] = 73 #"I" - */ - __pyx_t_3 = PyInt_FromLong(NPY_USHORT); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 829; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 829; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 829; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - if (__pyx_t_6) { - (__pyx_v_f[0]) = 72; - goto __pyx_L11; - } - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":830 - * elif t == NPY_SHORT: f[0] = 104 #"h" - * elif t == NPY_USHORT: f[0] = 72 #"H" - * elif t == NPY_INT: f[0] = 105 #"i" # <<<<<<<<<<<<<< - * elif t == NPY_UINT: f[0] = 73 #"I" - * elif t == NPY_LONG: f[0] = 108 #"l" - */ - __pyx_t_4 = PyInt_FromLong(NPY_INT); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 830; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 830; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 830; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - if (__pyx_t_6) { - (__pyx_v_f[0]) = 105; - goto __pyx_L11; - } - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":831 - * elif t == NPY_USHORT: f[0] = 72 #"H" - * elif t == NPY_INT: f[0] = 105 #"i" - * elif t == NPY_UINT: f[0] = 73 #"I" # <<<<<<<<<<<<<< - * elif t == NPY_LONG: f[0] = 108 #"l" - * elif t == NPY_ULONG: f[0] = 76 #"L" - */ - __pyx_t_3 = PyInt_FromLong(NPY_UINT); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 831; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 831; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 831; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - if (__pyx_t_6) { - (__pyx_v_f[0]) = 73; - goto __pyx_L11; - } - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":832 - * elif t == NPY_INT: f[0] = 105 #"i" - * elif t == NPY_UINT: f[0] = 73 #"I" - * elif t == NPY_LONG: f[0] = 108 #"l" # <<<<<<<<<<<<<< - * elif t == NPY_ULONG: f[0] = 76 #"L" - * elif t == NPY_LONGLONG: f[0] = 113 #"q" - */ - __pyx_t_4 = PyInt_FromLong(NPY_LONG); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 832; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 832; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 832; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - if (__pyx_t_6) { - (__pyx_v_f[0]) = 108; - goto __pyx_L11; - } - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":833 - * elif t == NPY_UINT: f[0] = 73 #"I" - * elif t == NPY_LONG: f[0] = 108 #"l" - * elif t == NPY_ULONG: f[0] = 76 #"L" # <<<<<<<<<<<<<< - * elif t == NPY_LONGLONG: f[0] = 113 #"q" - * elif t == NPY_ULONGLONG: f[0] = 81 #"Q" - */ - __pyx_t_3 = PyInt_FromLong(NPY_ULONG); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 833; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 833; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 833; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - if (__pyx_t_6) { - (__pyx_v_f[0]) = 76; - goto __pyx_L11; - } - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":834 - * elif t == NPY_LONG: f[0] = 108 #"l" - * elif t == NPY_ULONG: f[0] = 76 #"L" - * elif t == NPY_LONGLONG: f[0] = 113 #"q" # <<<<<<<<<<<<<< - * elif t == NPY_ULONGLONG: f[0] = 81 #"Q" - * elif t == NPY_FLOAT: f[0] = 102 #"f" - */ - __pyx_t_4 = PyInt_FromLong(NPY_LONGLONG); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 834; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 834; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 834; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - if (__pyx_t_6) { - (__pyx_v_f[0]) = 113; - goto __pyx_L11; - } - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":835 - * elif t == NPY_ULONG: f[0] = 76 #"L" - * elif t == NPY_LONGLONG: f[0] = 113 #"q" - * elif t == NPY_ULONGLONG: f[0] = 81 #"Q" # <<<<<<<<<<<<<< - * elif t == NPY_FLOAT: f[0] = 102 #"f" - * elif t == NPY_DOUBLE: f[0] = 100 #"d" - */ - __pyx_t_3 = PyInt_FromLong(NPY_ULONGLONG); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 835; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 835; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 835; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - if (__pyx_t_6) { - (__pyx_v_f[0]) = 81; - goto __pyx_L11; - } - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":836 - * elif t == NPY_LONGLONG: f[0] = 113 #"q" - * elif t == NPY_ULONGLONG: f[0] = 81 #"Q" - * elif t == NPY_FLOAT: f[0] = 102 #"f" # <<<<<<<<<<<<<< - * elif t == NPY_DOUBLE: f[0] = 100 #"d" - * elif t == NPY_LONGDOUBLE: f[0] = 103 #"g" - */ - __pyx_t_4 = PyInt_FromLong(NPY_FLOAT); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 836; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 836; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 836; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - if (__pyx_t_6) { - (__pyx_v_f[0]) = 102; - goto __pyx_L11; - } - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":837 - * elif t == NPY_ULONGLONG: f[0] = 81 #"Q" - * elif t == NPY_FLOAT: f[0] = 102 #"f" - * elif t == NPY_DOUBLE: f[0] = 100 #"d" # <<<<<<<<<<<<<< - * elif t == NPY_LONGDOUBLE: f[0] = 103 #"g" - * elif t == NPY_CFLOAT: f[0] = 90; f[1] = 102; f += 1 # Zf - */ - __pyx_t_3 = PyInt_FromLong(NPY_DOUBLE); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 837; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 837; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 837; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - if (__pyx_t_6) { - (__pyx_v_f[0]) = 100; - goto __pyx_L11; - } - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":838 - * elif t == NPY_FLOAT: f[0] = 102 #"f" - * elif t == NPY_DOUBLE: f[0] = 100 #"d" - * elif t == NPY_LONGDOUBLE: f[0] = 103 #"g" # <<<<<<<<<<<<<< - * elif t == NPY_CFLOAT: f[0] = 90; f[1] = 102; f += 1 # Zf - * elif t == NPY_CDOUBLE: f[0] = 90; f[1] = 100; f += 1 # Zd - */ - __pyx_t_4 = PyInt_FromLong(NPY_LONGDOUBLE); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 838; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 838; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 838; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - if (__pyx_t_6) { - (__pyx_v_f[0]) = 103; - goto __pyx_L11; - } - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":839 - * elif t == NPY_DOUBLE: f[0] = 100 #"d" - * elif t == NPY_LONGDOUBLE: f[0] = 103 #"g" - * elif t == NPY_CFLOAT: f[0] = 90; f[1] = 102; f += 1 # Zf # <<<<<<<<<<<<<< - * elif t == NPY_CDOUBLE: f[0] = 90; f[1] = 100; f += 1 # Zd - * elif t == NPY_CLONGDOUBLE: f[0] = 90; f[1] = 103; f += 1 # Zg - */ - __pyx_t_3 = PyInt_FromLong(NPY_CFLOAT); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 839; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 839; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 839; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - if (__pyx_t_6) { - (__pyx_v_f[0]) = 90; - (__pyx_v_f[1]) = 102; - __pyx_v_f = (__pyx_v_f + 1); - goto __pyx_L11; - } - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":840 - * elif t == NPY_LONGDOUBLE: f[0] = 103 #"g" - * elif t == NPY_CFLOAT: f[0] = 90; f[1] = 102; f += 1 # Zf - * elif t == NPY_CDOUBLE: f[0] = 90; f[1] = 100; f += 1 # Zd # <<<<<<<<<<<<<< - * elif t == NPY_CLONGDOUBLE: f[0] = 90; f[1] = 103; f += 1 # Zg - * elif t == NPY_OBJECT: f[0] = 79 #"O" - */ - __pyx_t_4 = PyInt_FromLong(NPY_CDOUBLE); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 840; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 840; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 840; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - if (__pyx_t_6) { - (__pyx_v_f[0]) = 90; - (__pyx_v_f[1]) = 100; - __pyx_v_f = (__pyx_v_f + 1); - goto __pyx_L11; - } - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":841 - * elif t == NPY_CFLOAT: f[0] = 90; f[1] = 102; f += 1 # Zf - * elif t == NPY_CDOUBLE: f[0] = 90; f[1] = 100; f += 1 # Zd - * elif t == NPY_CLONGDOUBLE: f[0] = 90; f[1] = 103; f += 1 # Zg # <<<<<<<<<<<<<< - * elif t == NPY_OBJECT: f[0] = 79 #"O" - * else: - */ - __pyx_t_3 = PyInt_FromLong(NPY_CLONGDOUBLE); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 841; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 841; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 841; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - if (__pyx_t_6) { - (__pyx_v_f[0]) = 90; - (__pyx_v_f[1]) = 103; - __pyx_v_f = (__pyx_v_f + 1); - goto __pyx_L11; - } - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":842 - * elif t == NPY_CDOUBLE: f[0] = 90; f[1] = 100; f += 1 # Zd - * elif t == NPY_CLONGDOUBLE: f[0] = 90; f[1] = 103; f += 1 # Zg - * elif t == NPY_OBJECT: f[0] = 79 #"O" # <<<<<<<<<<<<<< - * else: - * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) - */ - __pyx_t_4 = PyInt_FromLong(NPY_OBJECT); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 842; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 842; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 842; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - if (__pyx_t_6) { - (__pyx_v_f[0]) = 79; - goto __pyx_L11; - } - /*else*/ { - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":844 - * elif t == NPY_OBJECT: f[0] = 79 #"O" - * else: - * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) # <<<<<<<<<<<<<< - * f += 1 - * else: - */ - __pyx_t_3 = PyUnicode_Format(__pyx_kp_u_unknown_dtype_code_in_numpy_pxd, __pyx_v_t); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 844; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 844; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_3); - __Pyx_GIVEREF(__pyx_t_3); - __pyx_t_3 = 0; - __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_t_4, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 844; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __Pyx_Raise(__pyx_t_3, 0, 0, 0); - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - {__pyx_filename = __pyx_f[1]; __pyx_lineno = 844; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - __pyx_L11:; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":845 - * else: - * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) - * f += 1 # <<<<<<<<<<<<<< - * else: - * # Cython ignores struct boundary information ("T{...}"), - */ - __pyx_v_f = (__pyx_v_f + 1); - goto __pyx_L9; - } - /*else*/ { - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":849 - * # Cython ignores struct boundary information ("T{...}"), - * # so don't output it - * f = _util_dtypestring(child, f, end, offset) # <<<<<<<<<<<<<< - * return f - * - */ - __pyx_t_11 = __pyx_f_5numpy__util_dtypestring(__pyx_v_child, __pyx_v_f, __pyx_v_end, __pyx_v_offset); if (unlikely(__pyx_t_11 == NULL)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 849; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_v_f = __pyx_t_11; - } - __pyx_L9:; - } - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":850 - * # so don't output it - * f = _util_dtypestring(child, f, end, offset) - * return f # <<<<<<<<<<<<<< - * - * - */ - __pyx_r = __pyx_v_f; - goto __pyx_L0; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":783 - * return PyArray_MultiIterNew(5, a, b, c, d, e) - * - * cdef inline char* _util_dtypestring(dtype descr, char* f, char* end, int* offset) except NULL: # <<<<<<<<<<<<<< - * # Recursive utility function used in __getbuffer__ to get format - * # string. The new location in the format string is returned. - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_1); - __Pyx_XDECREF(__pyx_t_3); - __Pyx_XDECREF(__pyx_t_4); - __Pyx_AddTraceback("numpy._util_dtypestring", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = NULL; - __pyx_L0:; - __Pyx_XDECREF((PyObject *)__pyx_v_child); - __Pyx_XDECREF(__pyx_v_fields); - __Pyx_XDECREF(__pyx_v_childname); - __Pyx_XDECREF(__pyx_v_new_offset); - __Pyx_XDECREF(__pyx_v_t); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":966 - * - * - * cdef inline void set_array_base(ndarray arr, object base): # <<<<<<<<<<<<<< - * cdef PyObject* baseptr - * if base is None: - */ - -static CYTHON_INLINE void __pyx_f_5numpy_set_array_base(PyArrayObject *__pyx_v_arr, PyObject *__pyx_v_base) { - PyObject *__pyx_v_baseptr; - __Pyx_RefNannyDeclarations - int __pyx_t_1; - int __pyx_t_2; - __Pyx_RefNannySetupContext("set_array_base", 0); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":968 - * cdef inline void set_array_base(ndarray arr, object base): - * cdef PyObject* baseptr - * if base is None: # <<<<<<<<<<<<<< - * baseptr = NULL - * else: - */ - __pyx_t_1 = (__pyx_v_base == Py_None); - __pyx_t_2 = (__pyx_t_1 != 0); - if (__pyx_t_2) { - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":969 - * cdef PyObject* baseptr - * if base is None: - * baseptr = NULL # <<<<<<<<<<<<<< - * else: - * Py_INCREF(base) # important to do this before decref below! - */ - __pyx_v_baseptr = NULL; - goto __pyx_L3; - } - /*else*/ { - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":971 - * baseptr = NULL - * else: - * Py_INCREF(base) # important to do this before decref below! # <<<<<<<<<<<<<< - * baseptr = base - * Py_XDECREF(arr.base) - */ - Py_INCREF(__pyx_v_base); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":972 - * else: - * Py_INCREF(base) # important to do this before decref below! - * baseptr = base # <<<<<<<<<<<<<< - * Py_XDECREF(arr.base) - * arr.base = baseptr - */ - __pyx_v_baseptr = ((PyObject *)__pyx_v_base); - } - __pyx_L3:; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":973 - * Py_INCREF(base) # important to do this before decref below! - * baseptr = base - * Py_XDECREF(arr.base) # <<<<<<<<<<<<<< - * arr.base = baseptr - * - */ - Py_XDECREF(__pyx_v_arr->base); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":974 - * baseptr = base - * Py_XDECREF(arr.base) - * arr.base = baseptr # <<<<<<<<<<<<<< - * - * cdef inline object get_array_base(ndarray arr): - */ - __pyx_v_arr->base = __pyx_v_baseptr; - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":966 - * - * - * cdef inline void set_array_base(ndarray arr, object base): # <<<<<<<<<<<<<< - * cdef PyObject* baseptr - * if base is None: - */ - - /* function exit code */ - __Pyx_RefNannyFinishContext(); -} - -/* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":976 - * arr.base = baseptr - * - * cdef inline object get_array_base(ndarray arr): # <<<<<<<<<<<<<< - * if arr.base is NULL: - * return None - */ - -static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__pyx_v_arr) { - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - int __pyx_t_1; - __Pyx_RefNannySetupContext("get_array_base", 0); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":977 - * - * cdef inline object get_array_base(ndarray arr): - * if arr.base is NULL: # <<<<<<<<<<<<<< - * return None - * else: - */ - __pyx_t_1 = ((__pyx_v_arr->base == NULL) != 0); - if (__pyx_t_1) { - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":978 - * cdef inline object get_array_base(ndarray arr): - * if arr.base is NULL: - * return None # <<<<<<<<<<<<<< - * else: - * return arr.base - */ - __Pyx_XDECREF(__pyx_r); - __Pyx_INCREF(Py_None); - __pyx_r = Py_None; - goto __pyx_L0; - } - /*else*/ { - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":980 - * return None - * else: - * return arr.base # <<<<<<<<<<<<<< - */ - __Pyx_XDECREF(__pyx_r); - __Pyx_INCREF(((PyObject *)__pyx_v_arr->base)); - __pyx_r = ((PyObject *)__pyx_v_arr->base); - goto __pyx_L0; - } - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":976 - * arr.base = baseptr - * - * cdef inline object get_array_base(ndarray arr): # <<<<<<<<<<<<<< - * if arr.base is NULL: - * return None - */ - - /* function exit code */ - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":116 - * cdef bint dtype_is_object - * - * def __cinit__(array self, tuple shape, Py_ssize_t itemsize, format not None, # <<<<<<<<<<<<<< - * mode="c", bint allocate_buffer=True): - * - */ - -/* Python wrapper */ -static int __pyx_array___cinit__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ -static int __pyx_array___cinit__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { - PyObject *__pyx_v_shape = 0; - Py_ssize_t __pyx_v_itemsize; - PyObject *__pyx_v_format = 0; - PyObject *__pyx_v_mode = 0; - int __pyx_v_allocate_buffer; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - int __pyx_r; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__cinit__ (wrapper)", 0); - { - static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_shape,&__pyx_n_s_itemsize,&__pyx_n_s_format,&__pyx_n_s_mode,&__pyx_n_s_allocate_buffer,0}; - PyObject* values[5] = {0,0,0,0,0}; - values[3] = ((PyObject *)__pyx_n_s_c); - if (unlikely(__pyx_kwds)) { - Py_ssize_t kw_args; - const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); - switch (pos_args) { - case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); - case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); - case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); - case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); - case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); - case 0: break; - default: goto __pyx_L5_argtuple_error; - } - kw_args = PyDict_Size(__pyx_kwds); - switch (pos_args) { - case 0: - if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_shape)) != 0)) kw_args--; - else goto __pyx_L5_argtuple_error; - case 1: - if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_itemsize)) != 0)) kw_args--; - else { - __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 3, 5, 1); {__pyx_filename = __pyx_f[2]; __pyx_lineno = 116; __pyx_clineno = __LINE__; goto __pyx_L3_error;} - } - case 2: - if (likely((values[2] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_format)) != 0)) kw_args--; - else { - __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 3, 5, 2); {__pyx_filename = __pyx_f[2]; __pyx_lineno = 116; __pyx_clineno = __LINE__; goto __pyx_L3_error;} - } - case 3: - if (kw_args > 0) { - PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_mode); - if (value) { values[3] = value; kw_args--; } - } - case 4: - if (kw_args > 0) { - PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_allocate_buffer); - if (value) { values[4] = value; kw_args--; } - } - } - if (unlikely(kw_args > 0)) { - if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__cinit__") < 0)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 116; __pyx_clineno = __LINE__; goto __pyx_L3_error;} - } - } else { - switch (PyTuple_GET_SIZE(__pyx_args)) { - case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); - case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); - case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); - values[1] = PyTuple_GET_ITEM(__pyx_args, 1); - values[0] = PyTuple_GET_ITEM(__pyx_args, 0); - break; - default: goto __pyx_L5_argtuple_error; - } - } - __pyx_v_shape = ((PyObject*)values[0]); - __pyx_v_itemsize = __Pyx_PyIndex_AsSsize_t(values[1]); if (unlikely((__pyx_v_itemsize == (Py_ssize_t)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 116; __pyx_clineno = __LINE__; goto __pyx_L3_error;} - __pyx_v_format = values[2]; - __pyx_v_mode = values[3]; - if (values[4]) { - __pyx_v_allocate_buffer = __Pyx_PyObject_IsTrue(values[4]); if (unlikely((__pyx_v_allocate_buffer == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 117; __pyx_clineno = __LINE__; goto __pyx_L3_error;} - } else { - - /* "View.MemoryView":117 - * - * def __cinit__(array self, tuple shape, Py_ssize_t itemsize, format not None, - * mode="c", bint allocate_buffer=True): # <<<<<<<<<<<<<< - * - * cdef int idx - */ - __pyx_v_allocate_buffer = ((int)1); - } - } - goto __pyx_L4_argument_unpacking_done; - __pyx_L5_argtuple_error:; - __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 3, 5, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[2]; __pyx_lineno = 116; __pyx_clineno = __LINE__; goto __pyx_L3_error;} - __pyx_L3_error:; - __Pyx_AddTraceback("View.MemoryView.array.__cinit__", __pyx_clineno, __pyx_lineno, __pyx_filename); - __Pyx_RefNannyFinishContext(); - return -1; - __pyx_L4_argument_unpacking_done:; - if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_shape), (&PyTuple_Type), 1, "shape", 1))) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 116; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - if (unlikely(((PyObject *)__pyx_v_format) == Py_None)) { - PyErr_Format(PyExc_TypeError, "Argument '%.200s' must not be None", "format"); {__pyx_filename = __pyx_f[2]; __pyx_lineno = 116; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - __pyx_r = __pyx_array_MemoryView_5array___cinit__(((struct __pyx_array_obj *)__pyx_v_self), __pyx_v_shape, __pyx_v_itemsize, __pyx_v_format, __pyx_v_mode, __pyx_v_allocate_buffer); - - /* "View.MemoryView":116 - * cdef bint dtype_is_object - * - * def __cinit__(array self, tuple shape, Py_ssize_t itemsize, format not None, # <<<<<<<<<<<<<< - * mode="c", bint allocate_buffer=True): - * - */ - - /* function exit code */ - goto __pyx_L0; - __pyx_L1_error:; - __pyx_r = -1; - __pyx_L0:; - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static int __pyx_array_MemoryView_5array___cinit__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_shape, Py_ssize_t __pyx_v_itemsize, PyObject *__pyx_v_format, PyObject *__pyx_v_mode, int __pyx_v_allocate_buffer) { - int __pyx_v_idx; - Py_ssize_t __pyx_v_i; - Py_ssize_t __pyx_v_dim; - PyObject **__pyx_v_p; - char __pyx_v_order; - int __pyx_r; - __Pyx_RefNannyDeclarations - Py_ssize_t __pyx_t_1; - int __pyx_t_2; - PyObject *__pyx_t_3 = NULL; - int __pyx_t_4; - char *__pyx_t_5; - int __pyx_t_6; - PyObject *__pyx_t_7 = NULL; - Py_ssize_t __pyx_t_8; - PyObject *__pyx_t_9 = NULL; - PyObject *__pyx_t_10 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("__cinit__", 0); - __Pyx_INCREF(__pyx_v_format); - - /* "View.MemoryView":123 - * cdef PyObject **p - * - * self.ndim = len(shape) # <<<<<<<<<<<<<< - * self.itemsize = itemsize - * - */ - if (unlikely(__pyx_v_shape == Py_None)) { - PyErr_SetString(PyExc_TypeError, "object of type 'NoneType' has no len()"); - {__pyx_filename = __pyx_f[2]; __pyx_lineno = 123; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - __pyx_t_1 = PyTuple_GET_SIZE(__pyx_v_shape); if (unlikely(__pyx_t_1 == -1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 123; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_v_self->ndim = ((int)__pyx_t_1); - - /* "View.MemoryView":124 - * - * self.ndim = len(shape) - * self.itemsize = itemsize # <<<<<<<<<<<<<< - * - * if not self.ndim: - */ - __pyx_v_self->itemsize = __pyx_v_itemsize; - - /* "View.MemoryView":126 - * self.itemsize = itemsize - * - * if not self.ndim: # <<<<<<<<<<<<<< - * raise ValueError("Empty shape tuple for cython.array") - * - */ - __pyx_t_2 = ((!(__pyx_v_self->ndim != 0)) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":127 - * - * if not self.ndim: - * raise ValueError("Empty shape tuple for cython.array") # <<<<<<<<<<<<<< - * - * if itemsize <= 0: - */ - __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__7, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 127; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __Pyx_Raise(__pyx_t_3, 0, 0, 0); - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - {__pyx_filename = __pyx_f[2]; __pyx_lineno = 127; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - - /* "View.MemoryView":129 - * raise ValueError("Empty shape tuple for cython.array") - * - * if itemsize <= 0: # <<<<<<<<<<<<<< - * raise ValueError("itemsize <= 0 for cython.array") - * - */ - __pyx_t_2 = ((__pyx_v_itemsize <= 0) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":130 - * - * if itemsize <= 0: - * raise ValueError("itemsize <= 0 for cython.array") # <<<<<<<<<<<<<< - * - * if isinstance(format, unicode): - */ - __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__8, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 130; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __Pyx_Raise(__pyx_t_3, 0, 0, 0); - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - {__pyx_filename = __pyx_f[2]; __pyx_lineno = 130; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - - /* "View.MemoryView":132 - * raise ValueError("itemsize <= 0 for cython.array") - * - * if isinstance(format, unicode): # <<<<<<<<<<<<<< - * format = (format).encode('ASCII') - * self._format = format # keep a reference to the byte string - */ - __pyx_t_2 = PyUnicode_Check(__pyx_v_format); - __pyx_t_4 = (__pyx_t_2 != 0); - if (__pyx_t_4) { - - /* "View.MemoryView":133 - * - * if isinstance(format, unicode): - * format = (format).encode('ASCII') # <<<<<<<<<<<<<< - * self._format = format # keep a reference to the byte string - * self.format = self._format - */ - if (unlikely(__pyx_v_format == Py_None)) { - PyErr_Format(PyExc_AttributeError, "'NoneType' object has no attribute '%s'", "encode"); - {__pyx_filename = __pyx_f[2]; __pyx_lineno = 133; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - __pyx_t_3 = PyUnicode_AsASCIIString(((PyObject*)__pyx_v_format)); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 133; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __Pyx_DECREF_SET(__pyx_v_format, __pyx_t_3); - __pyx_t_3 = 0; - goto __pyx_L5; - } - __pyx_L5:; - - /* "View.MemoryView":134 - * if isinstance(format, unicode): - * format = (format).encode('ASCII') - * self._format = format # keep a reference to the byte string # <<<<<<<<<<<<<< - * self.format = self._format - * - */ - if (!(likely(PyBytes_CheckExact(__pyx_v_format))||((__pyx_v_format) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "bytes", Py_TYPE(__pyx_v_format)->tp_name), 0))) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 134; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_t_3 = __pyx_v_format; - __Pyx_INCREF(__pyx_t_3); - __Pyx_GIVEREF(__pyx_t_3); - __Pyx_GOTREF(__pyx_v_self->_format); - __Pyx_DECREF(__pyx_v_self->_format); - __pyx_v_self->_format = ((PyObject*)__pyx_t_3); - __pyx_t_3 = 0; - - /* "View.MemoryView":135 - * format = (format).encode('ASCII') - * self._format = format # keep a reference to the byte string - * self.format = self._format # <<<<<<<<<<<<<< - * - * - */ - __pyx_t_5 = __Pyx_PyObject_AsString(__pyx_v_self->_format); if (unlikely((!__pyx_t_5) && PyErr_Occurred())) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 135; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_v_self->format = __pyx_t_5; - - /* "View.MemoryView":138 - * - * - * self._shape = PyMem_Malloc(sizeof(Py_ssize_t)*self.ndim*2) # <<<<<<<<<<<<<< - * self._strides = self._shape + self.ndim - * - */ - __pyx_v_self->_shape = ((Py_ssize_t *)PyMem_Malloc((((sizeof(Py_ssize_t)) * __pyx_v_self->ndim) * 2))); - - /* "View.MemoryView":139 - * - * self._shape = PyMem_Malloc(sizeof(Py_ssize_t)*self.ndim*2) - * self._strides = self._shape + self.ndim # <<<<<<<<<<<<<< - * - * if not self._shape: - */ - __pyx_v_self->_strides = (__pyx_v_self->_shape + __pyx_v_self->ndim); - - /* "View.MemoryView":141 - * self._strides = self._shape + self.ndim - * - * if not self._shape: # <<<<<<<<<<<<<< - * raise MemoryError("unable to allocate shape and strides.") - * - */ - __pyx_t_4 = ((!(__pyx_v_self->_shape != 0)) != 0); - if (__pyx_t_4) { - - /* "View.MemoryView":142 - * - * if not self._shape: - * raise MemoryError("unable to allocate shape and strides.") # <<<<<<<<<<<<<< - * - * - */ - __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_MemoryError, __pyx_tuple__9, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 142; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __Pyx_Raise(__pyx_t_3, 0, 0, 0); - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - {__pyx_filename = __pyx_f[2]; __pyx_lineno = 142; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - - /* "View.MemoryView":145 - * - * - * for idx, dim in enumerate(shape): # <<<<<<<<<<<<<< - * if dim <= 0: - * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) - */ - __pyx_t_6 = 0; - __pyx_t_3 = __pyx_v_shape; __Pyx_INCREF(__pyx_t_3); __pyx_t_1 = 0; - for (;;) { - if (__pyx_t_1 >= PyTuple_GET_SIZE(__pyx_t_3)) break; - #if CYTHON_COMPILING_IN_CPYTHON - __pyx_t_7 = PyTuple_GET_ITEM(__pyx_t_3, __pyx_t_1); __Pyx_INCREF(__pyx_t_7); __pyx_t_1++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 145; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #else - __pyx_t_7 = PySequence_ITEM(__pyx_t_3, __pyx_t_1); __pyx_t_1++; if (unlikely(!__pyx_t_7)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 145; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #endif - __pyx_t_8 = __Pyx_PyIndex_AsSsize_t(__pyx_t_7); if (unlikely((__pyx_t_8 == (Py_ssize_t)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 145; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; - __pyx_v_dim = __pyx_t_8; - __pyx_v_idx = __pyx_t_6; - __pyx_t_6 = (__pyx_t_6 + 1); - - /* "View.MemoryView":146 - * - * for idx, dim in enumerate(shape): - * if dim <= 0: # <<<<<<<<<<<<<< - * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) - * self._shape[idx] = dim - */ - __pyx_t_4 = ((__pyx_v_dim <= 0) != 0); - if (__pyx_t_4) { - - /* "View.MemoryView":147 - * for idx, dim in enumerate(shape): - * if dim <= 0: - * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) # <<<<<<<<<<<<<< - * self._shape[idx] = dim - * - */ - __pyx_t_7 = __Pyx_PyInt_From_int(__pyx_v_idx); if (unlikely(!__pyx_t_7)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 147; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_7); - __pyx_t_9 = PyInt_FromSsize_t(__pyx_v_dim); if (unlikely(!__pyx_t_9)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 147; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_9); - __pyx_t_10 = PyTuple_New(2); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 147; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_10); - PyTuple_SET_ITEM(__pyx_t_10, 0, __pyx_t_7); - __Pyx_GIVEREF(__pyx_t_7); - PyTuple_SET_ITEM(__pyx_t_10, 1, __pyx_t_9); - __Pyx_GIVEREF(__pyx_t_9); - __pyx_t_7 = 0; - __pyx_t_9 = 0; - __pyx_t_9 = __Pyx_PyString_Format(__pyx_kp_s_Invalid_shape_in_axis_d_d, __pyx_t_10); if (unlikely(!__pyx_t_9)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 147; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_9); - __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; - __pyx_t_10 = PyTuple_New(1); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 147; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_10); - PyTuple_SET_ITEM(__pyx_t_10, 0, __pyx_t_9); - __Pyx_GIVEREF(__pyx_t_9); - __pyx_t_9 = 0; - __pyx_t_9 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_t_10, NULL); if (unlikely(!__pyx_t_9)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 147; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_9); - __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; - __Pyx_Raise(__pyx_t_9, 0, 0, 0); - __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; - {__pyx_filename = __pyx_f[2]; __pyx_lineno = 147; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - - /* "View.MemoryView":148 - * if dim <= 0: - * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) - * self._shape[idx] = dim # <<<<<<<<<<<<<< - * - * cdef char order - */ - (__pyx_v_self->_shape[__pyx_v_idx]) = __pyx_v_dim; - } - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - - /* "View.MemoryView":151 - * - * cdef char order - * if mode == 'fortran': # <<<<<<<<<<<<<< - * order = b'F' - * self.mode = u'fortran' - */ - __pyx_t_4 = (__Pyx_PyString_Equals(__pyx_v_mode, __pyx_n_s_fortran, Py_EQ)); if (unlikely(__pyx_t_4 < 0)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 151; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - if (__pyx_t_4) { - - /* "View.MemoryView":152 - * cdef char order - * if mode == 'fortran': - * order = b'F' # <<<<<<<<<<<<<< - * self.mode = u'fortran' - * elif mode == 'c': - */ - __pyx_v_order = 'F'; - - /* "View.MemoryView":153 - * if mode == 'fortran': - * order = b'F' - * self.mode = u'fortran' # <<<<<<<<<<<<<< - * elif mode == 'c': - * order = b'C' - */ - __Pyx_INCREF(__pyx_n_u_fortran); - __Pyx_GIVEREF(__pyx_n_u_fortran); - __Pyx_GOTREF(__pyx_v_self->mode); - __Pyx_DECREF(__pyx_v_self->mode); - __pyx_v_self->mode = __pyx_n_u_fortran; - goto __pyx_L10; - } - - /* "View.MemoryView":154 - * order = b'F' - * self.mode = u'fortran' - * elif mode == 'c': # <<<<<<<<<<<<<< - * order = b'C' - * self.mode = u'c' - */ - __pyx_t_4 = (__Pyx_PyString_Equals(__pyx_v_mode, __pyx_n_s_c, Py_EQ)); if (unlikely(__pyx_t_4 < 0)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 154; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - if (__pyx_t_4) { - - /* "View.MemoryView":155 - * self.mode = u'fortran' - * elif mode == 'c': - * order = b'C' # <<<<<<<<<<<<<< - * self.mode = u'c' - * else: - */ - __pyx_v_order = 'C'; - - /* "View.MemoryView":156 - * elif mode == 'c': - * order = b'C' - * self.mode = u'c' # <<<<<<<<<<<<<< - * else: - * raise ValueError("Invalid mode, expected 'c' or 'fortran', got %s" % mode) - */ - __Pyx_INCREF(__pyx_n_u_c); - __Pyx_GIVEREF(__pyx_n_u_c); - __Pyx_GOTREF(__pyx_v_self->mode); - __Pyx_DECREF(__pyx_v_self->mode); - __pyx_v_self->mode = __pyx_n_u_c; - goto __pyx_L10; - } - /*else*/ { - - /* "View.MemoryView":158 - * self.mode = u'c' - * else: - * raise ValueError("Invalid mode, expected 'c' or 'fortran', got %s" % mode) # <<<<<<<<<<<<<< - * - * self.len = fill_contig_strides_array(self._shape, self._strides, - */ - __pyx_t_3 = __Pyx_PyString_Format(__pyx_kp_s_Invalid_mode_expected_c_or_fortr, __pyx_v_mode); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 158; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __pyx_t_9 = PyTuple_New(1); if (unlikely(!__pyx_t_9)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 158; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_9); - PyTuple_SET_ITEM(__pyx_t_9, 0, __pyx_t_3); - __Pyx_GIVEREF(__pyx_t_3); - __pyx_t_3 = 0; - __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_t_9, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 158; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; - __Pyx_Raise(__pyx_t_3, 0, 0, 0); - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - {__pyx_filename = __pyx_f[2]; __pyx_lineno = 158; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - __pyx_L10:; - - /* "View.MemoryView":160 - * raise ValueError("Invalid mode, expected 'c' or 'fortran', got %s" % mode) - * - * self.len = fill_contig_strides_array(self._shape, self._strides, # <<<<<<<<<<<<<< - * itemsize, self.ndim, order) - * - */ - __pyx_v_self->len = __pyx_fill_contig_strides_array(__pyx_v_self->_shape, __pyx_v_self->_strides, __pyx_v_itemsize, __pyx_v_self->ndim, __pyx_v_order); - - /* "View.MemoryView":163 - * itemsize, self.ndim, order) - * - * self.free_data = allocate_buffer # <<<<<<<<<<<<<< - * self.dtype_is_object = format == b'O' - * if allocate_buffer: - */ - __pyx_v_self->free_data = __pyx_v_allocate_buffer; - - /* "View.MemoryView":164 - * - * self.free_data = allocate_buffer - * self.dtype_is_object = format == b'O' # <<<<<<<<<<<<<< - * if allocate_buffer: - * - */ - __pyx_t_3 = PyObject_RichCompare(__pyx_v_format, __pyx_n_b_O, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 164; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely((__pyx_t_4 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 164; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_v_self->dtype_is_object = __pyx_t_4; - - /* "View.MemoryView":165 - * self.free_data = allocate_buffer - * self.dtype_is_object = format == b'O' - * if allocate_buffer: # <<<<<<<<<<<<<< - * - * - */ - __pyx_t_4 = (__pyx_v_allocate_buffer != 0); - if (__pyx_t_4) { - - /* "View.MemoryView":168 - * - * - * self.data = malloc(self.len) # <<<<<<<<<<<<<< - * if not self.data: - * raise MemoryError("unable to allocate array data.") - */ - __pyx_v_self->data = ((char *)malloc(__pyx_v_self->len)); - - /* "View.MemoryView":169 - * - * self.data = malloc(self.len) - * if not self.data: # <<<<<<<<<<<<<< - * raise MemoryError("unable to allocate array data.") - * - */ - __pyx_t_4 = ((!(__pyx_v_self->data != 0)) != 0); - if (__pyx_t_4) { - - /* "View.MemoryView":170 - * self.data = malloc(self.len) - * if not self.data: - * raise MemoryError("unable to allocate array data.") # <<<<<<<<<<<<<< - * - * if self.dtype_is_object: - */ - __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_MemoryError, __pyx_tuple__10, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 170; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __Pyx_Raise(__pyx_t_3, 0, 0, 0); - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - {__pyx_filename = __pyx_f[2]; __pyx_lineno = 170; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - - /* "View.MemoryView":172 - * raise MemoryError("unable to allocate array data.") - * - * if self.dtype_is_object: # <<<<<<<<<<<<<< - * p = self.data - * for i in range(self.len / itemsize): - */ - __pyx_t_4 = (__pyx_v_self->dtype_is_object != 0); - if (__pyx_t_4) { - - /* "View.MemoryView":173 - * - * if self.dtype_is_object: - * p = self.data # <<<<<<<<<<<<<< - * for i in range(self.len / itemsize): - * p[i] = Py_None - */ - __pyx_v_p = ((PyObject **)__pyx_v_self->data); - - /* "View.MemoryView":174 - * if self.dtype_is_object: - * p = self.data - * for i in range(self.len / itemsize): # <<<<<<<<<<<<<< - * p[i] = Py_None - * Py_INCREF(Py_None) - */ - if (unlikely(__pyx_v_itemsize == 0)) { - #ifdef WITH_THREAD - PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); - #endif - PyErr_SetString(PyExc_ZeroDivisionError, "integer division or modulo by zero"); - #ifdef WITH_THREAD - PyGILState_Release(__pyx_gilstate_save); - #endif - {__pyx_filename = __pyx_f[2]; __pyx_lineno = 174; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - else if (sizeof(Py_ssize_t) == sizeof(long) && unlikely(__pyx_v_itemsize == -1) && unlikely(UNARY_NEG_WOULD_OVERFLOW(__pyx_v_self->len))) { - #ifdef WITH_THREAD - PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); - #endif - PyErr_SetString(PyExc_OverflowError, "value too large to perform division"); - #ifdef WITH_THREAD - PyGILState_Release(__pyx_gilstate_save); - #endif - {__pyx_filename = __pyx_f[2]; __pyx_lineno = 174; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - __pyx_t_1 = __Pyx_div_Py_ssize_t(__pyx_v_self->len, __pyx_v_itemsize); - for (__pyx_t_8 = 0; __pyx_t_8 < __pyx_t_1; __pyx_t_8+=1) { - __pyx_v_i = __pyx_t_8; - - /* "View.MemoryView":175 - * p = self.data - * for i in range(self.len / itemsize): - * p[i] = Py_None # <<<<<<<<<<<<<< - * Py_INCREF(Py_None) - * - */ - (__pyx_v_p[__pyx_v_i]) = Py_None; - - /* "View.MemoryView":176 - * for i in range(self.len / itemsize): - * p[i] = Py_None - * Py_INCREF(Py_None) # <<<<<<<<<<<<<< - * - * @cname('getbuffer') - */ - Py_INCREF(Py_None); - } - goto __pyx_L13; - } - __pyx_L13:; - goto __pyx_L11; - } - __pyx_L11:; - - /* "View.MemoryView":116 - * cdef bint dtype_is_object - * - * def __cinit__(array self, tuple shape, Py_ssize_t itemsize, format not None, # <<<<<<<<<<<<<< - * mode="c", bint allocate_buffer=True): - * - */ - - /* function exit code */ - __pyx_r = 0; - goto __pyx_L0; - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_3); - __Pyx_XDECREF(__pyx_t_7); - __Pyx_XDECREF(__pyx_t_9); - __Pyx_XDECREF(__pyx_t_10); - __Pyx_AddTraceback("View.MemoryView.array.__cinit__", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = -1; - __pyx_L0:; - __Pyx_XDECREF(__pyx_v_format); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":179 - * - * @cname('getbuffer') - * def __getbuffer__(self, Py_buffer *info, int flags): # <<<<<<<<<<<<<< - * cdef int bufmode = -1 - * if self.mode == u"c": - */ - -/* Python wrapper */ -static CYTHON_UNUSED int __pyx_array_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ -static CYTHON_UNUSED int __pyx_array_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { - int __pyx_r; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__getbuffer__ (wrapper)", 0); - __pyx_r = __pyx_array_getbuffer_MemoryView_5array_2__getbuffer__(((struct __pyx_array_obj *)__pyx_v_self), ((Py_buffer *)__pyx_v_info), ((int)__pyx_v_flags)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static int __pyx_array_getbuffer_MemoryView_5array_2__getbuffer__(struct __pyx_array_obj *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { - int __pyx_v_bufmode; - int __pyx_r; - __Pyx_RefNannyDeclarations - int __pyx_t_1; - int __pyx_t_2; - PyObject *__pyx_t_3 = NULL; - char *__pyx_t_4; - Py_ssize_t __pyx_t_5; - int __pyx_t_6; - Py_ssize_t *__pyx_t_7; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("__getbuffer__", 0); - if (__pyx_v_info != NULL) { - __pyx_v_info->obj = Py_None; __Pyx_INCREF(Py_None); - __Pyx_GIVEREF(__pyx_v_info->obj); - } - - /* "View.MemoryView":180 - * @cname('getbuffer') - * def __getbuffer__(self, Py_buffer *info, int flags): - * cdef int bufmode = -1 # <<<<<<<<<<<<<< - * if self.mode == u"c": - * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS - */ - __pyx_v_bufmode = -1; - - /* "View.MemoryView":181 - * def __getbuffer__(self, Py_buffer *info, int flags): - * cdef int bufmode = -1 - * if self.mode == u"c": # <<<<<<<<<<<<<< - * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS - * elif self.mode == u"fortran": - */ - __pyx_t_1 = (__Pyx_PyUnicode_Equals(__pyx_v_self->mode, __pyx_n_u_c, Py_EQ)); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 181; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_t_2 = (__pyx_t_1 != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":182 - * cdef int bufmode = -1 - * if self.mode == u"c": - * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS # <<<<<<<<<<<<<< - * elif self.mode == u"fortran": - * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS - */ - __pyx_v_bufmode = (PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS); - goto __pyx_L3; - } - - /* "View.MemoryView":183 - * if self.mode == u"c": - * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS - * elif self.mode == u"fortran": # <<<<<<<<<<<<<< - * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS - * if not (flags & bufmode): - */ - __pyx_t_2 = (__Pyx_PyUnicode_Equals(__pyx_v_self->mode, __pyx_n_u_fortran, Py_EQ)); if (unlikely(__pyx_t_2 < 0)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 183; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_t_1 = (__pyx_t_2 != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":184 - * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS - * elif self.mode == u"fortran": - * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS # <<<<<<<<<<<<<< - * if not (flags & bufmode): - * raise ValueError("Can only create a buffer that is contiguous in memory.") - */ - __pyx_v_bufmode = (PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS); - goto __pyx_L3; - } - __pyx_L3:; - - /* "View.MemoryView":185 - * elif self.mode == u"fortran": - * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS - * if not (flags & bufmode): # <<<<<<<<<<<<<< - * raise ValueError("Can only create a buffer that is contiguous in memory.") - * info.buf = self.data - */ - __pyx_t_1 = ((!((__pyx_v_flags & __pyx_v_bufmode) != 0)) != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":186 - * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS - * if not (flags & bufmode): - * raise ValueError("Can only create a buffer that is contiguous in memory.") # <<<<<<<<<<<<<< - * info.buf = self.data - * info.len = self.len - */ - __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__11, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 186; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __Pyx_Raise(__pyx_t_3, 0, 0, 0); - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - {__pyx_filename = __pyx_f[2]; __pyx_lineno = 186; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - - /* "View.MemoryView":187 - * if not (flags & bufmode): - * raise ValueError("Can only create a buffer that is contiguous in memory.") - * info.buf = self.data # <<<<<<<<<<<<<< - * info.len = self.len - * info.ndim = self.ndim - */ - __pyx_t_4 = __pyx_v_self->data; - __pyx_v_info->buf = __pyx_t_4; - - /* "View.MemoryView":188 - * raise ValueError("Can only create a buffer that is contiguous in memory.") - * info.buf = self.data - * info.len = self.len # <<<<<<<<<<<<<< - * info.ndim = self.ndim - * info.shape = self._shape - */ - __pyx_t_5 = __pyx_v_self->len; - __pyx_v_info->len = __pyx_t_5; - - /* "View.MemoryView":189 - * info.buf = self.data - * info.len = self.len - * info.ndim = self.ndim # <<<<<<<<<<<<<< - * info.shape = self._shape - * info.strides = self._strides - */ - __pyx_t_6 = __pyx_v_self->ndim; - __pyx_v_info->ndim = __pyx_t_6; - - /* "View.MemoryView":190 - * info.len = self.len - * info.ndim = self.ndim - * info.shape = self._shape # <<<<<<<<<<<<<< - * info.strides = self._strides - * info.suboffsets = NULL - */ - __pyx_t_7 = __pyx_v_self->_shape; - __pyx_v_info->shape = __pyx_t_7; - - /* "View.MemoryView":191 - * info.ndim = self.ndim - * info.shape = self._shape - * info.strides = self._strides # <<<<<<<<<<<<<< - * info.suboffsets = NULL - * info.itemsize = self.itemsize - */ - __pyx_t_7 = __pyx_v_self->_strides; - __pyx_v_info->strides = __pyx_t_7; - - /* "View.MemoryView":192 - * info.shape = self._shape - * info.strides = self._strides - * info.suboffsets = NULL # <<<<<<<<<<<<<< - * info.itemsize = self.itemsize - * info.readonly = 0 - */ - __pyx_v_info->suboffsets = NULL; - - /* "View.MemoryView":193 - * info.strides = self._strides - * info.suboffsets = NULL - * info.itemsize = self.itemsize # <<<<<<<<<<<<<< - * info.readonly = 0 - * - */ - __pyx_t_5 = __pyx_v_self->itemsize; - __pyx_v_info->itemsize = __pyx_t_5; - - /* "View.MemoryView":194 - * info.suboffsets = NULL - * info.itemsize = self.itemsize - * info.readonly = 0 # <<<<<<<<<<<<<< - * - * if flags & PyBUF_FORMAT: - */ - __pyx_v_info->readonly = 0; - - /* "View.MemoryView":196 - * info.readonly = 0 - * - * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< - * info.format = self.format - * else: - */ - __pyx_t_1 = ((__pyx_v_flags & PyBUF_FORMAT) != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":197 - * - * if flags & PyBUF_FORMAT: - * info.format = self.format # <<<<<<<<<<<<<< - * else: - * info.format = NULL - */ - __pyx_t_4 = __pyx_v_self->format; - __pyx_v_info->format = __pyx_t_4; - goto __pyx_L5; - } - /*else*/ { - - /* "View.MemoryView":199 - * info.format = self.format - * else: - * info.format = NULL # <<<<<<<<<<<<<< - * - * info.obj = self - */ - __pyx_v_info->format = NULL; - } - __pyx_L5:; - - /* "View.MemoryView":201 - * info.format = NULL - * - * info.obj = self # <<<<<<<<<<<<<< - * - * __pyx_getbuffer = capsule( &__pyx_array_getbuffer, "getbuffer(obj, view, flags)") - */ - __Pyx_INCREF(((PyObject *)__pyx_v_self)); - __Pyx_GIVEREF(((PyObject *)__pyx_v_self)); - __Pyx_GOTREF(__pyx_v_info->obj); - __Pyx_DECREF(__pyx_v_info->obj); - __pyx_v_info->obj = ((PyObject *)__pyx_v_self); - - /* "View.MemoryView":179 - * - * @cname('getbuffer') - * def __getbuffer__(self, Py_buffer *info, int flags): # <<<<<<<<<<<<<< - * cdef int bufmode = -1 - * if self.mode == u"c": - */ - - /* function exit code */ - __pyx_r = 0; - goto __pyx_L0; - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_3); - __Pyx_AddTraceback("View.MemoryView.array.__getbuffer__", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = -1; - if (__pyx_v_info != NULL && __pyx_v_info->obj != NULL) { - __Pyx_GOTREF(__pyx_v_info->obj); - __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = NULL; - } - goto __pyx_L2; - __pyx_L0:; - if (__pyx_v_info != NULL && __pyx_v_info->obj == Py_None) { - __Pyx_GOTREF(Py_None); - __Pyx_DECREF(Py_None); __pyx_v_info->obj = NULL; - } - __pyx_L2:; - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":205 - * __pyx_getbuffer = capsule( &__pyx_array_getbuffer, "getbuffer(obj, view, flags)") - * - * def __dealloc__(array self): # <<<<<<<<<<<<<< - * if self.callback_free_data != NULL: - * self.callback_free_data(self.data) - */ - -/* Python wrapper */ -static void __pyx_array___dealloc__(PyObject *__pyx_v_self); /*proto*/ -static void __pyx_array___dealloc__(PyObject *__pyx_v_self) { - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__dealloc__ (wrapper)", 0); - __pyx_array_MemoryView_5array_4__dealloc__(((struct __pyx_array_obj *)__pyx_v_self)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); -} - -static void __pyx_array_MemoryView_5array_4__dealloc__(struct __pyx_array_obj *__pyx_v_self) { - __Pyx_RefNannyDeclarations - int __pyx_t_1; - __Pyx_RefNannySetupContext("__dealloc__", 0); - - /* "View.MemoryView":206 - * - * def __dealloc__(array self): - * if self.callback_free_data != NULL: # <<<<<<<<<<<<<< - * self.callback_free_data(self.data) - * elif self.free_data: - */ - __pyx_t_1 = ((__pyx_v_self->callback_free_data != NULL) != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":207 - * def __dealloc__(array self): - * if self.callback_free_data != NULL: - * self.callback_free_data(self.data) # <<<<<<<<<<<<<< - * elif self.free_data: - * if self.dtype_is_object: - */ - __pyx_v_self->callback_free_data(__pyx_v_self->data); - goto __pyx_L3; - } - - /* "View.MemoryView":208 - * if self.callback_free_data != NULL: - * self.callback_free_data(self.data) - * elif self.free_data: # <<<<<<<<<<<<<< - * if self.dtype_is_object: - * refcount_objects_in_slice(self.data, self._shape, - */ - __pyx_t_1 = (__pyx_v_self->free_data != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":209 - * self.callback_free_data(self.data) - * elif self.free_data: - * if self.dtype_is_object: # <<<<<<<<<<<<<< - * refcount_objects_in_slice(self.data, self._shape, - * self._strides, self.ndim, False) - */ - __pyx_t_1 = (__pyx_v_self->dtype_is_object != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":210 - * elif self.free_data: - * if self.dtype_is_object: - * refcount_objects_in_slice(self.data, self._shape, # <<<<<<<<<<<<<< - * self._strides, self.ndim, False) - * free(self.data) - */ - __pyx_memoryview_refcount_objects_in_slice(__pyx_v_self->data, __pyx_v_self->_shape, __pyx_v_self->_strides, __pyx_v_self->ndim, 0); - goto __pyx_L4; - } - __pyx_L4:; - - /* "View.MemoryView":212 - * refcount_objects_in_slice(self.data, self._shape, - * self._strides, self.ndim, False) - * free(self.data) # <<<<<<<<<<<<<< - * PyMem_Free(self._shape) - * - */ - free(__pyx_v_self->data); - goto __pyx_L3; - } - __pyx_L3:; - - /* "View.MemoryView":213 - * self._strides, self.ndim, False) - * free(self.data) - * PyMem_Free(self._shape) # <<<<<<<<<<<<<< - * - * property memview: - */ - PyMem_Free(__pyx_v_self->_shape); - - /* "View.MemoryView":205 - * __pyx_getbuffer = capsule( &__pyx_array_getbuffer, "getbuffer(obj, view, flags)") - * - * def __dealloc__(array self): # <<<<<<<<<<<<<< - * if self.callback_free_data != NULL: - * self.callback_free_data(self.data) - */ - - /* function exit code */ - __Pyx_RefNannyFinishContext(); -} - -/* "View.MemoryView":217 - * property memview: - * @cname('get_memview') - * def __get__(self): # <<<<<<<<<<<<<< - * - * flags = PyBUF_ANY_CONTIGUOUS|PyBUF_FORMAT|PyBUF_WRITABLE - */ - -/* Python wrapper */ -static PyObject *get_memview(PyObject *__pyx_v_self); /*proto*/ -static PyObject *get_memview(PyObject *__pyx_v_self) { - PyObject *__pyx_r = 0; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); - __pyx_r = get_memview_MemoryView_5array_7memview___get__(((struct __pyx_array_obj *)__pyx_v_self)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static PyObject *get_memview_MemoryView_5array_7memview___get__(struct __pyx_array_obj *__pyx_v_self) { - int __pyx_v_flags; - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - PyObject *__pyx_t_1 = NULL; - PyObject *__pyx_t_2 = NULL; - PyObject *__pyx_t_3 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("__get__", 0); - - /* "View.MemoryView":219 - * def __get__(self): - * - * flags = PyBUF_ANY_CONTIGUOUS|PyBUF_FORMAT|PyBUF_WRITABLE # <<<<<<<<<<<<<< - * return memoryview(self, flags, self.dtype_is_object) - * - */ - __pyx_v_flags = ((PyBUF_ANY_CONTIGUOUS | PyBUF_FORMAT) | PyBUF_WRITABLE); - - /* "View.MemoryView":220 - * - * flags = PyBUF_ANY_CONTIGUOUS|PyBUF_FORMAT|PyBUF_WRITABLE - * return memoryview(self, flags, self.dtype_is_object) # <<<<<<<<<<<<<< - * - * - */ - __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_flags); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 220; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_v_self->dtype_is_object); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 220; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 220; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __Pyx_INCREF(((PyObject *)__pyx_v_self)); - PyTuple_SET_ITEM(__pyx_t_3, 0, ((PyObject *)__pyx_v_self)); - __Pyx_GIVEREF(((PyObject *)__pyx_v_self)); - PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_1); - __Pyx_GIVEREF(__pyx_t_1); - PyTuple_SET_ITEM(__pyx_t_3, 2, __pyx_t_2); - __Pyx_GIVEREF(__pyx_t_2); - __pyx_t_1 = 0; - __pyx_t_2 = 0; - __pyx_t_2 = __Pyx_PyObject_Call(((PyObject *)((PyObject *)__pyx_memoryview_type)), __pyx_t_3, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 220; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_r = __pyx_t_2; - __pyx_t_2 = 0; - goto __pyx_L0; - - /* "View.MemoryView":217 - * property memview: - * @cname('get_memview') - * def __get__(self): # <<<<<<<<<<<<<< - * - * flags = PyBUF_ANY_CONTIGUOUS|PyBUF_FORMAT|PyBUF_WRITABLE - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_1); - __Pyx_XDECREF(__pyx_t_2); - __Pyx_XDECREF(__pyx_t_3); - __Pyx_AddTraceback("View.MemoryView.array.memview.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = NULL; - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":223 - * - * - * def __getattr__(self, attr): # <<<<<<<<<<<<<< - * return getattr(self.memview, attr) - * - */ - -/* Python wrapper */ -static PyObject *__pyx_array___getattr__(PyObject *__pyx_v_self, PyObject *__pyx_v_attr); /*proto*/ -static PyObject *__pyx_array___getattr__(PyObject *__pyx_v_self, PyObject *__pyx_v_attr) { - PyObject *__pyx_r = 0; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__getattr__ (wrapper)", 0); - __pyx_r = __pyx_array_MemoryView_5array_6__getattr__(((struct __pyx_array_obj *)__pyx_v_self), ((PyObject *)__pyx_v_attr)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static PyObject *__pyx_array_MemoryView_5array_6__getattr__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_attr) { - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - PyObject *__pyx_t_1 = NULL; - PyObject *__pyx_t_2 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("__getattr__", 0); - - /* "View.MemoryView":224 - * - * def __getattr__(self, attr): - * return getattr(self.memview, attr) # <<<<<<<<<<<<<< - * - * def __getitem__(self, item): - */ - __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_memview); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 224; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __pyx_t_2 = __Pyx_GetAttr(__pyx_t_1, __pyx_v_attr); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 224; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __pyx_r = __pyx_t_2; - __pyx_t_2 = 0; - goto __pyx_L0; - - /* "View.MemoryView":223 - * - * - * def __getattr__(self, attr): # <<<<<<<<<<<<<< - * return getattr(self.memview, attr) - * - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_1); - __Pyx_XDECREF(__pyx_t_2); - __Pyx_AddTraceback("View.MemoryView.array.__getattr__", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = NULL; - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":226 - * return getattr(self.memview, attr) - * - * def __getitem__(self, item): # <<<<<<<<<<<<<< - * return self.memview[item] - * - */ - -/* Python wrapper */ -static PyObject *__pyx_array___getitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_item); /*proto*/ -static PyObject *__pyx_array___getitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_item) { - PyObject *__pyx_r = 0; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__getitem__ (wrapper)", 0); - __pyx_r = __pyx_array_MemoryView_5array_8__getitem__(((struct __pyx_array_obj *)__pyx_v_self), ((PyObject *)__pyx_v_item)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static PyObject *__pyx_array_MemoryView_5array_8__getitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item) { - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - PyObject *__pyx_t_1 = NULL; - PyObject *__pyx_t_2 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("__getitem__", 0); - - /* "View.MemoryView":227 - * - * def __getitem__(self, item): - * return self.memview[item] # <<<<<<<<<<<<<< - * - * def __setitem__(self, item, value): - */ - __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_memview); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 227; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __pyx_t_2 = PyObject_GetItem(__pyx_t_1, __pyx_v_item); if (unlikely(__pyx_t_2 == NULL)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 227; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; - __Pyx_GOTREF(__pyx_t_2); - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __pyx_r = __pyx_t_2; - __pyx_t_2 = 0; - goto __pyx_L0; - - /* "View.MemoryView":226 - * return getattr(self.memview, attr) - * - * def __getitem__(self, item): # <<<<<<<<<<<<<< - * return self.memview[item] - * - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_1); - __Pyx_XDECREF(__pyx_t_2); - __Pyx_AddTraceback("View.MemoryView.array.__getitem__", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = NULL; - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":229 - * return self.memview[item] - * - * def __setitem__(self, item, value): # <<<<<<<<<<<<<< - * self.memview[item] = value - * - */ - -/* Python wrapper */ -static int __pyx_array___setitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_item, PyObject *__pyx_v_value); /*proto*/ -static int __pyx_array___setitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_item, PyObject *__pyx_v_value) { - int __pyx_r; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__setitem__ (wrapper)", 0); - __pyx_r = __pyx_array_MemoryView_5array_10__setitem__(((struct __pyx_array_obj *)__pyx_v_self), ((PyObject *)__pyx_v_item), ((PyObject *)__pyx_v_value)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static int __pyx_array_MemoryView_5array_10__setitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item, PyObject *__pyx_v_value) { - int __pyx_r; - __Pyx_RefNannyDeclarations - PyObject *__pyx_t_1 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("__setitem__", 0); - - /* "View.MemoryView":230 - * - * def __setitem__(self, item, value): - * self.memview[item] = value # <<<<<<<<<<<<<< - * - * - */ - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_memview); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 230; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - if (unlikely(PyObject_SetItem(__pyx_t_1, __pyx_v_item, __pyx_v_value) < 0)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 230; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - - /* "View.MemoryView":229 - * return self.memview[item] - * - * def __setitem__(self, item, value): # <<<<<<<<<<<<<< - * self.memview[item] = value - * - */ - - /* function exit code */ - __pyx_r = 0; - goto __pyx_L0; - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_1); - __Pyx_AddTraceback("View.MemoryView.array.__setitem__", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = -1; - __pyx_L0:; - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":234 - * - * @cname("__pyx_array_new") - * cdef array array_cwrapper(tuple shape, Py_ssize_t itemsize, char *format, # <<<<<<<<<<<<<< - * char *mode, char *buf): - * cdef array result - */ - -static struct __pyx_array_obj *__pyx_array_new(PyObject *__pyx_v_shape, Py_ssize_t __pyx_v_itemsize, char *__pyx_v_format, char *__pyx_v_mode, char *__pyx_v_buf) { - struct __pyx_array_obj *__pyx_v_result = 0; - struct __pyx_array_obj *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - int __pyx_t_1; - PyObject *__pyx_t_2 = NULL; - PyObject *__pyx_t_3 = NULL; - PyObject *__pyx_t_4 = NULL; - PyObject *__pyx_t_5 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("array_cwrapper", 0); - - /* "View.MemoryView":238 - * cdef array result - * - * if buf == NULL: # <<<<<<<<<<<<<< - * result = array(shape, itemsize, format, mode.decode('ASCII')) - * else: - */ - __pyx_t_1 = ((__pyx_v_buf == NULL) != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":239 - * - * if buf == NULL: - * result = array(shape, itemsize, format, mode.decode('ASCII')) # <<<<<<<<<<<<<< - * else: - * result = array(shape, itemsize, format, mode.decode('ASCII'), - */ - __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_itemsize); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 239; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - __pyx_t_3 = __Pyx_PyBytes_FromString(__pyx_v_format); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 239; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __pyx_t_4 = __Pyx_decode_c_string(__pyx_v_mode, 0, strlen(__pyx_v_mode), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 239; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_5 = PyTuple_New(4); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 239; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_5); - __Pyx_INCREF(__pyx_v_shape); - PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_v_shape); - __Pyx_GIVEREF(__pyx_v_shape); - PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_t_2); - __Pyx_GIVEREF(__pyx_t_2); - PyTuple_SET_ITEM(__pyx_t_5, 2, __pyx_t_3); - __Pyx_GIVEREF(__pyx_t_3); - PyTuple_SET_ITEM(__pyx_t_5, 3, __pyx_t_4); - __Pyx_GIVEREF(__pyx_t_4); - __pyx_t_2 = 0; - __pyx_t_3 = 0; - __pyx_t_4 = 0; - __pyx_t_4 = __Pyx_PyObject_Call(((PyObject *)((PyObject *)__pyx_array_type)), __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 239; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_v_result = ((struct __pyx_array_obj *)__pyx_t_4); - __pyx_t_4 = 0; - goto __pyx_L3; - } - /*else*/ { - - /* "View.MemoryView":241 - * result = array(shape, itemsize, format, mode.decode('ASCII')) - * else: - * result = array(shape, itemsize, format, mode.decode('ASCII'), # <<<<<<<<<<<<<< - * allocate_buffer=False) - * result.data = buf - */ - __pyx_t_4 = PyInt_FromSsize_t(__pyx_v_itemsize); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 241; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_5 = __Pyx_PyBytes_FromString(__pyx_v_format); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 241; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_5); - __pyx_t_3 = __Pyx_decode_c_string(__pyx_v_mode, 0, strlen(__pyx_v_mode), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 241; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __pyx_t_2 = PyTuple_New(4); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 241; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - __Pyx_INCREF(__pyx_v_shape); - PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_v_shape); - __Pyx_GIVEREF(__pyx_v_shape); - PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_t_4); - __Pyx_GIVEREF(__pyx_t_4); - PyTuple_SET_ITEM(__pyx_t_2, 2, __pyx_t_5); - __Pyx_GIVEREF(__pyx_t_5); - PyTuple_SET_ITEM(__pyx_t_2, 3, __pyx_t_3); - __Pyx_GIVEREF(__pyx_t_3); - __pyx_t_4 = 0; - __pyx_t_5 = 0; - __pyx_t_3 = 0; - __pyx_t_3 = PyDict_New(); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 241; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - - /* "View.MemoryView":242 - * else: - * result = array(shape, itemsize, format, mode.decode('ASCII'), - * allocate_buffer=False) # <<<<<<<<<<<<<< - * result.data = buf - * - */ - if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_allocate_buffer, Py_False) < 0) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 241; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - - /* "View.MemoryView":241 - * result = array(shape, itemsize, format, mode.decode('ASCII')) - * else: - * result = array(shape, itemsize, format, mode.decode('ASCII'), # <<<<<<<<<<<<<< - * allocate_buffer=False) - * result.data = buf - */ - __pyx_t_5 = __Pyx_PyObject_Call(((PyObject *)((PyObject *)__pyx_array_type)), __pyx_t_2, __pyx_t_3); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 241; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_5); - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_v_result = ((struct __pyx_array_obj *)__pyx_t_5); - __pyx_t_5 = 0; - - /* "View.MemoryView":243 - * result = array(shape, itemsize, format, mode.decode('ASCII'), - * allocate_buffer=False) - * result.data = buf # <<<<<<<<<<<<<< - * - * return result - */ - __pyx_v_result->data = __pyx_v_buf; - } - __pyx_L3:; - - /* "View.MemoryView":245 - * result.data = buf - * - * return result # <<<<<<<<<<<<<< - * - * - */ - __Pyx_XDECREF(((PyObject *)__pyx_r)); - __Pyx_INCREF(((PyObject *)__pyx_v_result)); - __pyx_r = __pyx_v_result; - goto __pyx_L0; - - /* "View.MemoryView":234 - * - * @cname("__pyx_array_new") - * cdef array array_cwrapper(tuple shape, Py_ssize_t itemsize, char *format, # <<<<<<<<<<<<<< - * char *mode, char *buf): - * cdef array result - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_2); - __Pyx_XDECREF(__pyx_t_3); - __Pyx_XDECREF(__pyx_t_4); - __Pyx_XDECREF(__pyx_t_5); - __Pyx_AddTraceback("View.MemoryView.array_cwrapper", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = 0; - __pyx_L0:; - __Pyx_XDECREF((PyObject *)__pyx_v_result); - __Pyx_XGIVEREF((PyObject *)__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":271 - * cdef class Enum(object): - * cdef object name - * def __init__(self, name): # <<<<<<<<<<<<<< - * self.name = name - * def __repr__(self): - */ - -/* Python wrapper */ -static int __pyx_MemviewEnum___init__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ -static int __pyx_MemviewEnum___init__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { - PyObject *__pyx_v_name = 0; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - int __pyx_r; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__init__ (wrapper)", 0); - { - static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_name,0}; - PyObject* values[1] = {0}; - if (unlikely(__pyx_kwds)) { - Py_ssize_t kw_args; - const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); - switch (pos_args) { - case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); - case 0: break; - default: goto __pyx_L5_argtuple_error; - } - kw_args = PyDict_Size(__pyx_kwds); - switch (pos_args) { - case 0: - if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_name)) != 0)) kw_args--; - else goto __pyx_L5_argtuple_error; - } - if (unlikely(kw_args > 0)) { - if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__init__") < 0)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 271; __pyx_clineno = __LINE__; goto __pyx_L3_error;} - } - } else if (PyTuple_GET_SIZE(__pyx_args) != 1) { - goto __pyx_L5_argtuple_error; - } else { - values[0] = PyTuple_GET_ITEM(__pyx_args, 0); - } - __pyx_v_name = values[0]; - } - goto __pyx_L4_argument_unpacking_done; - __pyx_L5_argtuple_error:; - __Pyx_RaiseArgtupleInvalid("__init__", 1, 1, 1, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[2]; __pyx_lineno = 271; __pyx_clineno = __LINE__; goto __pyx_L3_error;} - __pyx_L3_error:; - __Pyx_AddTraceback("View.MemoryView.Enum.__init__", __pyx_clineno, __pyx_lineno, __pyx_filename); - __Pyx_RefNannyFinishContext(); - return -1; - __pyx_L4_argument_unpacking_done:; - __pyx_r = __pyx_MemviewEnum_MemoryView_4Enum___init__(((struct __pyx_MemviewEnum_obj *)__pyx_v_self), __pyx_v_name); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static int __pyx_MemviewEnum_MemoryView_4Enum___init__(struct __pyx_MemviewEnum_obj *__pyx_v_self, PyObject *__pyx_v_name) { - int __pyx_r; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__init__", 0); - - /* "View.MemoryView":272 - * cdef object name - * def __init__(self, name): - * self.name = name # <<<<<<<<<<<<<< - * def __repr__(self): - * return self.name - */ - __Pyx_INCREF(__pyx_v_name); - __Pyx_GIVEREF(__pyx_v_name); - __Pyx_GOTREF(__pyx_v_self->name); - __Pyx_DECREF(__pyx_v_self->name); - __pyx_v_self->name = __pyx_v_name; - - /* "View.MemoryView":271 - * cdef class Enum(object): - * cdef object name - * def __init__(self, name): # <<<<<<<<<<<<<< - * self.name = name - * def __repr__(self): - */ - - /* function exit code */ - __pyx_r = 0; - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":273 - * def __init__(self, name): - * self.name = name - * def __repr__(self): # <<<<<<<<<<<<<< - * return self.name - * - */ - -/* Python wrapper */ -static PyObject *__pyx_MemviewEnum___repr__(PyObject *__pyx_v_self); /*proto*/ -static PyObject *__pyx_MemviewEnum___repr__(PyObject *__pyx_v_self) { - PyObject *__pyx_r = 0; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__repr__ (wrapper)", 0); - __pyx_r = __pyx_MemviewEnum_MemoryView_4Enum_2__repr__(((struct __pyx_MemviewEnum_obj *)__pyx_v_self)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static PyObject *__pyx_MemviewEnum_MemoryView_4Enum_2__repr__(struct __pyx_MemviewEnum_obj *__pyx_v_self) { - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__repr__", 0); - - /* "View.MemoryView":274 - * self.name = name - * def __repr__(self): - * return self.name # <<<<<<<<<<<<<< - * - * cdef generic = Enum("") - */ - __Pyx_XDECREF(__pyx_r); - __Pyx_INCREF(__pyx_v_self->name); - __pyx_r = __pyx_v_self->name; - goto __pyx_L0; - - /* "View.MemoryView":273 - * def __init__(self, name): - * self.name = name - * def __repr__(self): # <<<<<<<<<<<<<< - * return self.name - * - */ - - /* function exit code */ - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":288 - * - * @cname('__pyx_align_pointer') - * cdef void *align_pointer(void *memory, size_t alignment) nogil: # <<<<<<<<<<<<<< - * "Align pointer memory on a given boundary" - * cdef Py_intptr_t aligned_p = memory - */ - -static void *__pyx_align_pointer(void *__pyx_v_memory, size_t __pyx_v_alignment) { - Py_intptr_t __pyx_v_aligned_p; - size_t __pyx_v_offset; - void *__pyx_r; - int __pyx_t_1; - - /* "View.MemoryView":290 - * cdef void *align_pointer(void *memory, size_t alignment) nogil: - * "Align pointer memory on a given boundary" - * cdef Py_intptr_t aligned_p = memory # <<<<<<<<<<<<<< - * cdef size_t offset - * - */ - __pyx_v_aligned_p = ((Py_intptr_t)__pyx_v_memory); - - /* "View.MemoryView":294 - * - * with cython.cdivision(True): - * offset = aligned_p % alignment # <<<<<<<<<<<<<< - * - * if offset > 0: - */ - __pyx_v_offset = (__pyx_v_aligned_p % __pyx_v_alignment); - - /* "View.MemoryView":296 - * offset = aligned_p % alignment - * - * if offset > 0: # <<<<<<<<<<<<<< - * aligned_p += alignment - offset - * - */ - __pyx_t_1 = ((__pyx_v_offset > 0) != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":297 - * - * if offset > 0: - * aligned_p += alignment - offset # <<<<<<<<<<<<<< - * - * return aligned_p - */ - __pyx_v_aligned_p = (__pyx_v_aligned_p + (__pyx_v_alignment - __pyx_v_offset)); - goto __pyx_L3; - } - __pyx_L3:; - - /* "View.MemoryView":299 - * aligned_p += alignment - offset - * - * return aligned_p # <<<<<<<<<<<<<< - * - * @cname('__pyx_memoryview') - */ - __pyx_r = ((void *)__pyx_v_aligned_p); - goto __pyx_L0; - - /* "View.MemoryView":288 - * - * @cname('__pyx_align_pointer') - * cdef void *align_pointer(void *memory, size_t alignment) nogil: # <<<<<<<<<<<<<< - * "Align pointer memory on a given boundary" - * cdef Py_intptr_t aligned_p = memory - */ - - /* function exit code */ - __pyx_L0:; - return __pyx_r; -} - -/* "View.MemoryView":317 - * cdef __Pyx_TypeInfo *typeinfo - * - * def __cinit__(memoryview self, object obj, int flags, bint dtype_is_object=False): # <<<<<<<<<<<<<< - * self.obj = obj - * self.flags = flags - */ - -/* Python wrapper */ -static int __pyx_memoryview___cinit__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ -static int __pyx_memoryview___cinit__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { - PyObject *__pyx_v_obj = 0; - int __pyx_v_flags; - int __pyx_v_dtype_is_object; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - int __pyx_r; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__cinit__ (wrapper)", 0); - { - static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_obj,&__pyx_n_s_flags,&__pyx_n_s_dtype_is_object,0}; - PyObject* values[3] = {0,0,0}; - if (unlikely(__pyx_kwds)) { - Py_ssize_t kw_args; - const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); - switch (pos_args) { - case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); - case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); - case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); - case 0: break; - default: goto __pyx_L5_argtuple_error; - } - kw_args = PyDict_Size(__pyx_kwds); - switch (pos_args) { - case 0: - if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_obj)) != 0)) kw_args--; - else goto __pyx_L5_argtuple_error; - case 1: - if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_flags)) != 0)) kw_args--; - else { - __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 2, 3, 1); {__pyx_filename = __pyx_f[2]; __pyx_lineno = 317; __pyx_clineno = __LINE__; goto __pyx_L3_error;} - } - case 2: - if (kw_args > 0) { - PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_dtype_is_object); - if (value) { values[2] = value; kw_args--; } - } - } - if (unlikely(kw_args > 0)) { - if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__cinit__") < 0)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 317; __pyx_clineno = __LINE__; goto __pyx_L3_error;} - } - } else { - switch (PyTuple_GET_SIZE(__pyx_args)) { - case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); - case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); - values[0] = PyTuple_GET_ITEM(__pyx_args, 0); - break; - default: goto __pyx_L5_argtuple_error; - } - } - __pyx_v_obj = values[0]; - __pyx_v_flags = __Pyx_PyInt_As_int(values[1]); if (unlikely((__pyx_v_flags == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 317; __pyx_clineno = __LINE__; goto __pyx_L3_error;} - if (values[2]) { - __pyx_v_dtype_is_object = __Pyx_PyObject_IsTrue(values[2]); if (unlikely((__pyx_v_dtype_is_object == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 317; __pyx_clineno = __LINE__; goto __pyx_L3_error;} - } else { - __pyx_v_dtype_is_object = ((int)0); - } - } - goto __pyx_L4_argument_unpacking_done; - __pyx_L5_argtuple_error:; - __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 2, 3, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[2]; __pyx_lineno = 317; __pyx_clineno = __LINE__; goto __pyx_L3_error;} - __pyx_L3_error:; - __Pyx_AddTraceback("View.MemoryView.memoryview.__cinit__", __pyx_clineno, __pyx_lineno, __pyx_filename); - __Pyx_RefNannyFinishContext(); - return -1; - __pyx_L4_argument_unpacking_done:; - __pyx_r = __pyx_memoryview_MemoryView_10memoryview___cinit__(((struct __pyx_memoryview_obj *)__pyx_v_self), __pyx_v_obj, __pyx_v_flags, __pyx_v_dtype_is_object); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static int __pyx_memoryview_MemoryView_10memoryview___cinit__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_obj, int __pyx_v_flags, int __pyx_v_dtype_is_object) { - int __pyx_r; - __Pyx_RefNannyDeclarations - int __pyx_t_1; - int __pyx_t_2; - int __pyx_t_3; - int __pyx_t_4; - PyObject *__pyx_t_5 = NULL; - PyObject *__pyx_t_6 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("__cinit__", 0); - - /* "View.MemoryView":318 - * - * def __cinit__(memoryview self, object obj, int flags, bint dtype_is_object=False): - * self.obj = obj # <<<<<<<<<<<<<< - * self.flags = flags - * if type(self) is memoryview or obj is not None: - */ - __Pyx_INCREF(__pyx_v_obj); - __Pyx_GIVEREF(__pyx_v_obj); - __Pyx_GOTREF(__pyx_v_self->obj); - __Pyx_DECREF(__pyx_v_self->obj); - __pyx_v_self->obj = __pyx_v_obj; - - /* "View.MemoryView":319 - * def __cinit__(memoryview self, object obj, int flags, bint dtype_is_object=False): - * self.obj = obj - * self.flags = flags # <<<<<<<<<<<<<< - * if type(self) is memoryview or obj is not None: - * __Pyx_GetBuffer(obj, &self.view, flags) - */ - __pyx_v_self->flags = __pyx_v_flags; - - /* "View.MemoryView":320 - * self.obj = obj - * self.flags = flags - * if type(self) is memoryview or obj is not None: # <<<<<<<<<<<<<< - * __Pyx_GetBuffer(obj, &self.view, flags) - * if self.view.obj == NULL: - */ - __pyx_t_1 = (((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self))) == ((PyObject *)((PyObject *)__pyx_memoryview_type))); - if (!(__pyx_t_1 != 0)) { - __pyx_t_2 = (__pyx_v_obj != Py_None); - __pyx_t_3 = (__pyx_t_2 != 0); - } else { - __pyx_t_3 = (__pyx_t_1 != 0); - } - if (__pyx_t_3) { - - /* "View.MemoryView":321 - * self.flags = flags - * if type(self) is memoryview or obj is not None: - * __Pyx_GetBuffer(obj, &self.view, flags) # <<<<<<<<<<<<<< - * if self.view.obj == NULL: - * (<__pyx_buffer *> &self.view).obj = Py_None - */ - __pyx_t_4 = __Pyx_GetBuffer(__pyx_v_obj, (&__pyx_v_self->view), __pyx_v_flags); if (unlikely(__pyx_t_4 == -1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 321; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - - /* "View.MemoryView":322 - * if type(self) is memoryview or obj is not None: - * __Pyx_GetBuffer(obj, &self.view, flags) - * if self.view.obj == NULL: # <<<<<<<<<<<<<< - * (<__pyx_buffer *> &self.view).obj = Py_None - * Py_INCREF(Py_None) - */ - __pyx_t_3 = ((((PyObject *)__pyx_v_self->view.obj) == NULL) != 0); - if (__pyx_t_3) { - - /* "View.MemoryView":323 - * __Pyx_GetBuffer(obj, &self.view, flags) - * if self.view.obj == NULL: - * (<__pyx_buffer *> &self.view).obj = Py_None # <<<<<<<<<<<<<< - * Py_INCREF(Py_None) - * - */ - ((Py_buffer *)(&__pyx_v_self->view))->obj = Py_None; - - /* "View.MemoryView":324 - * if self.view.obj == NULL: - * (<__pyx_buffer *> &self.view).obj = Py_None - * Py_INCREF(Py_None) # <<<<<<<<<<<<<< - * - * self.lock = PyThread_allocate_lock() - */ - Py_INCREF(Py_None); - goto __pyx_L4; - } - __pyx_L4:; - goto __pyx_L3; - } - __pyx_L3:; - - /* "View.MemoryView":326 - * Py_INCREF(Py_None) - * - * self.lock = PyThread_allocate_lock() # <<<<<<<<<<<<<< - * if self.lock == NULL: - * raise MemoryError - */ - __pyx_v_self->lock = PyThread_allocate_lock(); - - /* "View.MemoryView":327 - * - * self.lock = PyThread_allocate_lock() - * if self.lock == NULL: # <<<<<<<<<<<<<< - * raise MemoryError - * - */ - __pyx_t_3 = ((__pyx_v_self->lock == NULL) != 0); - if (__pyx_t_3) { - - /* "View.MemoryView":328 - * self.lock = PyThread_allocate_lock() - * if self.lock == NULL: - * raise MemoryError # <<<<<<<<<<<<<< - * - * if flags & PyBUF_FORMAT: - */ - PyErr_NoMemory(); {__pyx_filename = __pyx_f[2]; __pyx_lineno = 328; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - - /* "View.MemoryView":330 - * raise MemoryError - * - * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< - * self.dtype_is_object = self.view.format == b'O' - * else: - */ - __pyx_t_3 = ((__pyx_v_flags & PyBUF_FORMAT) != 0); - if (__pyx_t_3) { - - /* "View.MemoryView":331 - * - * if flags & PyBUF_FORMAT: - * self.dtype_is_object = self.view.format == b'O' # <<<<<<<<<<<<<< - * else: - * self.dtype_is_object = dtype_is_object - */ - __pyx_t_5 = __Pyx_PyBytes_FromString(__pyx_v_self->view.format); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 331; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_5); - __pyx_t_6 = PyObject_RichCompare(__pyx_t_5, __pyx_n_b_O, Py_EQ); __Pyx_XGOTREF(__pyx_t_6); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 331; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_t_3 = __Pyx_PyObject_IsTrue(__pyx_t_6); if (unlikely((__pyx_t_3 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 331; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; - __pyx_v_self->dtype_is_object = __pyx_t_3; - goto __pyx_L6; - } - /*else*/ { - - /* "View.MemoryView":333 - * self.dtype_is_object = self.view.format == b'O' - * else: - * self.dtype_is_object = dtype_is_object # <<<<<<<<<<<<<< - * - * self.acquisition_count_aligned_p = <__pyx_atomic_int *> align_pointer( - */ - __pyx_v_self->dtype_is_object = __pyx_v_dtype_is_object; - } - __pyx_L6:; - - /* "View.MemoryView":335 - * self.dtype_is_object = dtype_is_object - * - * self.acquisition_count_aligned_p = <__pyx_atomic_int *> align_pointer( # <<<<<<<<<<<<<< - * &self.acquisition_count[0], sizeof(__pyx_atomic_int)) - * self.typeinfo = NULL - */ - __pyx_v_self->acquisition_count_aligned_p = ((__pyx_atomic_int *)__pyx_align_pointer(((void *)(&(__pyx_v_self->acquisition_count[0]))), (sizeof(__pyx_atomic_int)))); - - /* "View.MemoryView":337 - * self.acquisition_count_aligned_p = <__pyx_atomic_int *> align_pointer( - * &self.acquisition_count[0], sizeof(__pyx_atomic_int)) - * self.typeinfo = NULL # <<<<<<<<<<<<<< - * - * def __dealloc__(memoryview self): - */ - __pyx_v_self->typeinfo = NULL; - - /* "View.MemoryView":317 - * cdef __Pyx_TypeInfo *typeinfo - * - * def __cinit__(memoryview self, object obj, int flags, bint dtype_is_object=False): # <<<<<<<<<<<<<< - * self.obj = obj - * self.flags = flags - */ - - /* function exit code */ - __pyx_r = 0; - goto __pyx_L0; - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_5); - __Pyx_XDECREF(__pyx_t_6); - __Pyx_AddTraceback("View.MemoryView.memoryview.__cinit__", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = -1; - __pyx_L0:; - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":339 - * self.typeinfo = NULL - * - * def __dealloc__(memoryview self): # <<<<<<<<<<<<<< - * if self.obj is not None: - * __Pyx_ReleaseBuffer(&self.view) - */ - -/* Python wrapper */ -static void __pyx_memoryview___dealloc__(PyObject *__pyx_v_self); /*proto*/ -static void __pyx_memoryview___dealloc__(PyObject *__pyx_v_self) { - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__dealloc__ (wrapper)", 0); - __pyx_memoryview_MemoryView_10memoryview_2__dealloc__(((struct __pyx_memoryview_obj *)__pyx_v_self)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); -} - -static void __pyx_memoryview_MemoryView_10memoryview_2__dealloc__(struct __pyx_memoryview_obj *__pyx_v_self) { - __Pyx_RefNannyDeclarations - int __pyx_t_1; - int __pyx_t_2; - __Pyx_RefNannySetupContext("__dealloc__", 0); - - /* "View.MemoryView":340 - * - * def __dealloc__(memoryview self): - * if self.obj is not None: # <<<<<<<<<<<<<< - * __Pyx_ReleaseBuffer(&self.view) - * - */ - __pyx_t_1 = (__pyx_v_self->obj != Py_None); - __pyx_t_2 = (__pyx_t_1 != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":341 - * def __dealloc__(memoryview self): - * if self.obj is not None: - * __Pyx_ReleaseBuffer(&self.view) # <<<<<<<<<<<<<< - * - * if self.lock != NULL: - */ - __Pyx_ReleaseBuffer((&__pyx_v_self->view)); - goto __pyx_L3; - } - __pyx_L3:; - - /* "View.MemoryView":343 - * __Pyx_ReleaseBuffer(&self.view) - * - * if self.lock != NULL: # <<<<<<<<<<<<<< - * PyThread_free_lock(self.lock) - * - */ - __pyx_t_2 = ((__pyx_v_self->lock != NULL) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":344 - * - * if self.lock != NULL: - * PyThread_free_lock(self.lock) # <<<<<<<<<<<<<< - * - * cdef char *get_item_pointer(memoryview self, object index) except NULL: - */ - PyThread_free_lock(__pyx_v_self->lock); - goto __pyx_L4; - } - __pyx_L4:; - - /* "View.MemoryView":339 - * self.typeinfo = NULL - * - * def __dealloc__(memoryview self): # <<<<<<<<<<<<<< - * if self.obj is not None: - * __Pyx_ReleaseBuffer(&self.view) - */ - - /* function exit code */ - __Pyx_RefNannyFinishContext(); -} - -/* "View.MemoryView":346 - * PyThread_free_lock(self.lock) - * - * cdef char *get_item_pointer(memoryview self, object index) except NULL: # <<<<<<<<<<<<<< - * cdef Py_ssize_t dim - * cdef char *itemp = self.view.buf - */ - -static char *__pyx_memoryview_get_item_pointer(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index) { - Py_ssize_t __pyx_v_dim; - char *__pyx_v_itemp; - PyObject *__pyx_v_idx = NULL; - char *__pyx_r; - __Pyx_RefNannyDeclarations - Py_ssize_t __pyx_t_1; - PyObject *__pyx_t_2 = NULL; - Py_ssize_t __pyx_t_3; - PyObject *(*__pyx_t_4)(PyObject *); - PyObject *__pyx_t_5 = NULL; - Py_ssize_t __pyx_t_6; - char *__pyx_t_7; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("get_item_pointer", 0); - - /* "View.MemoryView":348 - * cdef char *get_item_pointer(memoryview self, object index) except NULL: - * cdef Py_ssize_t dim - * cdef char *itemp = self.view.buf # <<<<<<<<<<<<<< - * - * for dim, idx in enumerate(index): - */ - __pyx_v_itemp = ((char *)__pyx_v_self->view.buf); - - /* "View.MemoryView":350 - * cdef char *itemp = self.view.buf - * - * for dim, idx in enumerate(index): # <<<<<<<<<<<<<< - * itemp = pybuffer_index(&self.view, itemp, idx, dim) - * - */ - __pyx_t_1 = 0; - if (PyList_CheckExact(__pyx_v_index) || PyTuple_CheckExact(__pyx_v_index)) { - __pyx_t_2 = __pyx_v_index; __Pyx_INCREF(__pyx_t_2); __pyx_t_3 = 0; - __pyx_t_4 = NULL; - } else { - __pyx_t_3 = -1; __pyx_t_2 = PyObject_GetIter(__pyx_v_index); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 350; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - __pyx_t_4 = Py_TYPE(__pyx_t_2)->tp_iternext; - } - for (;;) { - if (!__pyx_t_4 && PyList_CheckExact(__pyx_t_2)) { - if (__pyx_t_3 >= PyList_GET_SIZE(__pyx_t_2)) break; - #if CYTHON_COMPILING_IN_CPYTHON - __pyx_t_5 = PyList_GET_ITEM(__pyx_t_2, __pyx_t_3); __Pyx_INCREF(__pyx_t_5); __pyx_t_3++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 350; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #else - __pyx_t_5 = PySequence_ITEM(__pyx_t_2, __pyx_t_3); __pyx_t_3++; if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 350; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #endif - } else if (!__pyx_t_4 && PyTuple_CheckExact(__pyx_t_2)) { - if (__pyx_t_3 >= PyTuple_GET_SIZE(__pyx_t_2)) break; - #if CYTHON_COMPILING_IN_CPYTHON - __pyx_t_5 = PyTuple_GET_ITEM(__pyx_t_2, __pyx_t_3); __Pyx_INCREF(__pyx_t_5); __pyx_t_3++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 350; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #else - __pyx_t_5 = PySequence_ITEM(__pyx_t_2, __pyx_t_3); __pyx_t_3++; if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 350; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #endif - } else { - __pyx_t_5 = __pyx_t_4(__pyx_t_2); - if (unlikely(!__pyx_t_5)) { - PyObject* exc_type = PyErr_Occurred(); - if (exc_type) { - if (likely(exc_type == PyExc_StopIteration || PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); - else {__pyx_filename = __pyx_f[2]; __pyx_lineno = 350; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - break; - } - __Pyx_GOTREF(__pyx_t_5); - } - __Pyx_XDECREF_SET(__pyx_v_idx, __pyx_t_5); - __pyx_t_5 = 0; - __pyx_v_dim = __pyx_t_1; - __pyx_t_1 = (__pyx_t_1 + 1); - - /* "View.MemoryView":351 - * - * for dim, idx in enumerate(index): - * itemp = pybuffer_index(&self.view, itemp, idx, dim) # <<<<<<<<<<<<<< - * - * return itemp - */ - __pyx_t_6 = __Pyx_PyIndex_AsSsize_t(__pyx_v_idx); if (unlikely((__pyx_t_6 == (Py_ssize_t)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 351; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_t_7 = __pyx_pybuffer_index((&__pyx_v_self->view), __pyx_v_itemp, __pyx_t_6, __pyx_v_dim); if (unlikely(__pyx_t_7 == NULL)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 351; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_v_itemp = __pyx_t_7; - } - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - - /* "View.MemoryView":353 - * itemp = pybuffer_index(&self.view, itemp, idx, dim) - * - * return itemp # <<<<<<<<<<<<<< - * - * - */ - __pyx_r = __pyx_v_itemp; - goto __pyx_L0; - - /* "View.MemoryView":346 - * PyThread_free_lock(self.lock) - * - * cdef char *get_item_pointer(memoryview self, object index) except NULL: # <<<<<<<<<<<<<< - * cdef Py_ssize_t dim - * cdef char *itemp = self.view.buf - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_2); - __Pyx_XDECREF(__pyx_t_5); - __Pyx_AddTraceback("View.MemoryView.memoryview.get_item_pointer", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = NULL; - __pyx_L0:; - __Pyx_XDECREF(__pyx_v_idx); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":356 - * - * - * def __getitem__(memoryview self, object index): # <<<<<<<<<<<<<< - * if index is Ellipsis: - * return self - */ - -/* Python wrapper */ -static PyObject *__pyx_memoryview___getitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_index); /*proto*/ -static PyObject *__pyx_memoryview___getitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_index) { - PyObject *__pyx_r = 0; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__getitem__ (wrapper)", 0); - __pyx_r = __pyx_memoryview_MemoryView_10memoryview_4__getitem__(((struct __pyx_memoryview_obj *)__pyx_v_self), ((PyObject *)__pyx_v_index)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static PyObject *__pyx_memoryview_MemoryView_10memoryview_4__getitem__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index) { - PyObject *__pyx_v_have_slices = NULL; - PyObject *__pyx_v_indices = NULL; - char *__pyx_v_itemp; - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - int __pyx_t_1; - int __pyx_t_2; - PyObject *__pyx_t_3 = NULL; - PyObject *__pyx_t_4 = NULL; - PyObject *__pyx_t_5 = NULL; - char *__pyx_t_6; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("__getitem__", 0); - - /* "View.MemoryView":357 - * - * def __getitem__(memoryview self, object index): - * if index is Ellipsis: # <<<<<<<<<<<<<< - * return self - * - */ - __pyx_t_1 = (__pyx_v_index == __pyx_builtin_Ellipsis); - __pyx_t_2 = (__pyx_t_1 != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":358 - * def __getitem__(memoryview self, object index): - * if index is Ellipsis: - * return self # <<<<<<<<<<<<<< - * - * have_slices, indices = _unellipsify(index, self.view.ndim) - */ - __Pyx_XDECREF(__pyx_r); - __Pyx_INCREF(((PyObject *)__pyx_v_self)); - __pyx_r = ((PyObject *)__pyx_v_self); - goto __pyx_L0; - } - - /* "View.MemoryView":360 - * return self - * - * have_slices, indices = _unellipsify(index, self.view.ndim) # <<<<<<<<<<<<<< - * - * cdef char *itemp - */ - __pyx_t_3 = _unellipsify(__pyx_v_index, __pyx_v_self->view.ndim); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 360; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - if (likely(__pyx_t_3 != Py_None)) { - PyObject* sequence = __pyx_t_3; - #if CYTHON_COMPILING_IN_CPYTHON - Py_ssize_t size = Py_SIZE(sequence); - #else - Py_ssize_t size = PySequence_Size(sequence); - #endif - if (unlikely(size != 2)) { - if (size > 2) __Pyx_RaiseTooManyValuesError(2); - else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); - {__pyx_filename = __pyx_f[2]; __pyx_lineno = 360; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - #if CYTHON_COMPILING_IN_CPYTHON - __pyx_t_4 = PyTuple_GET_ITEM(sequence, 0); - __pyx_t_5 = PyTuple_GET_ITEM(sequence, 1); - __Pyx_INCREF(__pyx_t_4); - __Pyx_INCREF(__pyx_t_5); - #else - __pyx_t_4 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 360; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_5 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 360; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_5); - #endif - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - } else { - __Pyx_RaiseNoneNotIterableError(); {__pyx_filename = __pyx_f[2]; __pyx_lineno = 360; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - __pyx_v_have_slices = __pyx_t_4; - __pyx_t_4 = 0; - __pyx_v_indices = __pyx_t_5; - __pyx_t_5 = 0; - - /* "View.MemoryView":363 - * - * cdef char *itemp - * if have_slices: # <<<<<<<<<<<<<< - * return memview_slice(self, indices) - * else: - */ - __pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_v_have_slices); if (unlikely(__pyx_t_2 < 0)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 363; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - if (__pyx_t_2) { - - /* "View.MemoryView":364 - * cdef char *itemp - * if have_slices: - * return memview_slice(self, indices) # <<<<<<<<<<<<<< - * else: - * itemp = self.get_item_pointer(indices) - */ - __Pyx_XDECREF(__pyx_r); - __pyx_t_3 = ((PyObject *)__pyx_memview_slice(__pyx_v_self, __pyx_v_indices)); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 364; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __pyx_r = __pyx_t_3; - __pyx_t_3 = 0; - goto __pyx_L0; - } - /*else*/ { - - /* "View.MemoryView":366 - * return memview_slice(self, indices) - * else: - * itemp = self.get_item_pointer(indices) # <<<<<<<<<<<<<< - * return self.convert_item_to_object(itemp) - * - */ - __pyx_t_6 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->get_item_pointer(__pyx_v_self, __pyx_v_indices); if (unlikely(__pyx_t_6 == NULL)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 366; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_v_itemp = __pyx_t_6; - - /* "View.MemoryView":367 - * else: - * itemp = self.get_item_pointer(indices) - * return self.convert_item_to_object(itemp) # <<<<<<<<<<<<<< - * - * def __setitem__(memoryview self, object index, object value): - */ - __Pyx_XDECREF(__pyx_r); - __pyx_t_3 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->convert_item_to_object(__pyx_v_self, __pyx_v_itemp); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 367; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __pyx_r = __pyx_t_3; - __pyx_t_3 = 0; - goto __pyx_L0; - } - - /* "View.MemoryView":356 - * - * - * def __getitem__(memoryview self, object index): # <<<<<<<<<<<<<< - * if index is Ellipsis: - * return self - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_3); - __Pyx_XDECREF(__pyx_t_4); - __Pyx_XDECREF(__pyx_t_5); - __Pyx_AddTraceback("View.MemoryView.memoryview.__getitem__", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = NULL; - __pyx_L0:; - __Pyx_XDECREF(__pyx_v_have_slices); - __Pyx_XDECREF(__pyx_v_indices); - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":369 - * return self.convert_item_to_object(itemp) - * - * def __setitem__(memoryview self, object index, object value): # <<<<<<<<<<<<<< - * have_slices, index = _unellipsify(index, self.view.ndim) - * - */ - -/* Python wrapper */ -static int __pyx_memoryview___setitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value); /*proto*/ -static int __pyx_memoryview___setitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value) { - int __pyx_r; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__setitem__ (wrapper)", 0); - __pyx_r = __pyx_memoryview_MemoryView_10memoryview_6__setitem__(((struct __pyx_memoryview_obj *)__pyx_v_self), ((PyObject *)__pyx_v_index), ((PyObject *)__pyx_v_value)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static int __pyx_memoryview_MemoryView_10memoryview_6__setitem__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value) { - PyObject *__pyx_v_have_slices = NULL; - PyObject *__pyx_v_obj = NULL; - int __pyx_r; - __Pyx_RefNannyDeclarations - PyObject *__pyx_t_1 = NULL; - PyObject *__pyx_t_2 = NULL; - PyObject *__pyx_t_3 = NULL; - int __pyx_t_4; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("__setitem__", 0); - __Pyx_INCREF(__pyx_v_index); - - /* "View.MemoryView":370 - * - * def __setitem__(memoryview self, object index, object value): - * have_slices, index = _unellipsify(index, self.view.ndim) # <<<<<<<<<<<<<< - * - * if have_slices: - */ - __pyx_t_1 = _unellipsify(__pyx_v_index, __pyx_v_self->view.ndim); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 370; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - if (likely(__pyx_t_1 != Py_None)) { - PyObject* sequence = __pyx_t_1; - #if CYTHON_COMPILING_IN_CPYTHON - Py_ssize_t size = Py_SIZE(sequence); - #else - Py_ssize_t size = PySequence_Size(sequence); - #endif - if (unlikely(size != 2)) { - if (size > 2) __Pyx_RaiseTooManyValuesError(2); - else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); - {__pyx_filename = __pyx_f[2]; __pyx_lineno = 370; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - #if CYTHON_COMPILING_IN_CPYTHON - __pyx_t_2 = PyTuple_GET_ITEM(sequence, 0); - __pyx_t_3 = PyTuple_GET_ITEM(sequence, 1); - __Pyx_INCREF(__pyx_t_2); - __Pyx_INCREF(__pyx_t_3); - #else - __pyx_t_2 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 370; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - __pyx_t_3 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 370; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - #endif - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - } else { - __Pyx_RaiseNoneNotIterableError(); {__pyx_filename = __pyx_f[2]; __pyx_lineno = 370; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - __pyx_v_have_slices = __pyx_t_2; - __pyx_t_2 = 0; - __Pyx_DECREF_SET(__pyx_v_index, __pyx_t_3); - __pyx_t_3 = 0; - - /* "View.MemoryView":372 - * have_slices, index = _unellipsify(index, self.view.ndim) - * - * if have_slices: # <<<<<<<<<<<<<< - * obj = self.is_slice(value) - * if obj: - */ - __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_v_have_slices); if (unlikely(__pyx_t_4 < 0)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 372; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - if (__pyx_t_4) { - - /* "View.MemoryView":373 - * - * if have_slices: - * obj = self.is_slice(value) # <<<<<<<<<<<<<< - * if obj: - * self.setitem_slice_assignment(self[index], obj) - */ - __pyx_t_1 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->is_slice(__pyx_v_self, __pyx_v_value); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 373; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __pyx_v_obj = __pyx_t_1; - __pyx_t_1 = 0; - - /* "View.MemoryView":374 - * if have_slices: - * obj = self.is_slice(value) - * if obj: # <<<<<<<<<<<<<< - * self.setitem_slice_assignment(self[index], obj) - * else: - */ - __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_v_obj); if (unlikely(__pyx_t_4 < 0)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 374; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - if (__pyx_t_4) { - - /* "View.MemoryView":375 - * obj = self.is_slice(value) - * if obj: - * self.setitem_slice_assignment(self[index], obj) # <<<<<<<<<<<<<< - * else: - * self.setitem_slice_assign_scalar(self[index], value) - */ - __pyx_t_1 = PyObject_GetItem(((PyObject *)__pyx_v_self), __pyx_v_index); if (unlikely(__pyx_t_1 == NULL)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 375; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; - __Pyx_GOTREF(__pyx_t_1); - __pyx_t_3 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->setitem_slice_assignment(__pyx_v_self, __pyx_t_1, __pyx_v_obj); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 375; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - goto __pyx_L4; - } - /*else*/ { - - /* "View.MemoryView":377 - * self.setitem_slice_assignment(self[index], obj) - * else: - * self.setitem_slice_assign_scalar(self[index], value) # <<<<<<<<<<<<<< - * else: - * self.setitem_indexed(index, value) - */ - __pyx_t_3 = PyObject_GetItem(((PyObject *)__pyx_v_self), __pyx_v_index); if (unlikely(__pyx_t_3 == NULL)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 377; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; - __Pyx_GOTREF(__pyx_t_3); - if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_memoryview_type))))) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 377; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_t_1 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->setitem_slice_assign_scalar(__pyx_v_self, ((struct __pyx_memoryview_obj *)__pyx_t_3), __pyx_v_value); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 377; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - } - __pyx_L4:; - goto __pyx_L3; - } - /*else*/ { - - /* "View.MemoryView":379 - * self.setitem_slice_assign_scalar(self[index], value) - * else: - * self.setitem_indexed(index, value) # <<<<<<<<<<<<<< - * - * cdef is_slice(self, obj): - */ - __pyx_t_1 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->setitem_indexed(__pyx_v_self, __pyx_v_index, __pyx_v_value); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 379; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - } - __pyx_L3:; - - /* "View.MemoryView":369 - * return self.convert_item_to_object(itemp) - * - * def __setitem__(memoryview self, object index, object value): # <<<<<<<<<<<<<< - * have_slices, index = _unellipsify(index, self.view.ndim) - * - */ - - /* function exit code */ - __pyx_r = 0; - goto __pyx_L0; - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_1); - __Pyx_XDECREF(__pyx_t_2); - __Pyx_XDECREF(__pyx_t_3); - __Pyx_AddTraceback("View.MemoryView.memoryview.__setitem__", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = -1; - __pyx_L0:; - __Pyx_XDECREF(__pyx_v_have_slices); - __Pyx_XDECREF(__pyx_v_obj); - __Pyx_XDECREF(__pyx_v_index); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":381 - * self.setitem_indexed(index, value) - * - * cdef is_slice(self, obj): # <<<<<<<<<<<<<< - * if not isinstance(obj, memoryview): - * try: - */ - -static PyObject *__pyx_memoryview_is_slice(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_obj) { - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - int __pyx_t_1; - int __pyx_t_2; - PyObject *__pyx_t_3 = NULL; - PyObject *__pyx_t_4 = NULL; - PyObject *__pyx_t_5 = NULL; - PyObject *__pyx_t_6 = NULL; - PyObject *__pyx_t_7 = NULL; - PyObject *__pyx_t_8 = NULL; - int __pyx_t_9; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("is_slice", 0); - __Pyx_INCREF(__pyx_v_obj); - - /* "View.MemoryView":382 - * - * cdef is_slice(self, obj): - * if not isinstance(obj, memoryview): # <<<<<<<<<<<<<< - * try: - * obj = memoryview(obj, self.flags|PyBUF_ANY_CONTIGUOUS, - */ - __pyx_t_1 = __Pyx_TypeCheck(__pyx_v_obj, ((PyObject *)__pyx_memoryview_type)); - __pyx_t_2 = ((!(__pyx_t_1 != 0)) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":383 - * cdef is_slice(self, obj): - * if not isinstance(obj, memoryview): - * try: # <<<<<<<<<<<<<< - * obj = memoryview(obj, self.flags|PyBUF_ANY_CONTIGUOUS, - * self.dtype_is_object) - */ - { - __Pyx_ExceptionSave(&__pyx_t_3, &__pyx_t_4, &__pyx_t_5); - __Pyx_XGOTREF(__pyx_t_3); - __Pyx_XGOTREF(__pyx_t_4); - __Pyx_XGOTREF(__pyx_t_5); - /*try:*/ { - - /* "View.MemoryView":384 - * if not isinstance(obj, memoryview): - * try: - * obj = memoryview(obj, self.flags|PyBUF_ANY_CONTIGUOUS, # <<<<<<<<<<<<<< - * self.dtype_is_object) - * except TypeError: - */ - __pyx_t_6 = __Pyx_PyInt_From_int((__pyx_v_self->flags | PyBUF_ANY_CONTIGUOUS)); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 384; __pyx_clineno = __LINE__; goto __pyx_L4_error;} - __Pyx_GOTREF(__pyx_t_6); - - /* "View.MemoryView":385 - * try: - * obj = memoryview(obj, self.flags|PyBUF_ANY_CONTIGUOUS, - * self.dtype_is_object) # <<<<<<<<<<<<<< - * except TypeError: - * return None - */ - __pyx_t_7 = __Pyx_PyBool_FromLong(__pyx_v_self->dtype_is_object); if (unlikely(!__pyx_t_7)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 385; __pyx_clineno = __LINE__; goto __pyx_L4_error;} - __Pyx_GOTREF(__pyx_t_7); - - /* "View.MemoryView":384 - * if not isinstance(obj, memoryview): - * try: - * obj = memoryview(obj, self.flags|PyBUF_ANY_CONTIGUOUS, # <<<<<<<<<<<<<< - * self.dtype_is_object) - * except TypeError: - */ - __pyx_t_8 = PyTuple_New(3); if (unlikely(!__pyx_t_8)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 384; __pyx_clineno = __LINE__; goto __pyx_L4_error;} - __Pyx_GOTREF(__pyx_t_8); - __Pyx_INCREF(__pyx_v_obj); - PyTuple_SET_ITEM(__pyx_t_8, 0, __pyx_v_obj); - __Pyx_GIVEREF(__pyx_v_obj); - PyTuple_SET_ITEM(__pyx_t_8, 1, __pyx_t_6); - __Pyx_GIVEREF(__pyx_t_6); - PyTuple_SET_ITEM(__pyx_t_8, 2, __pyx_t_7); - __Pyx_GIVEREF(__pyx_t_7); - __pyx_t_6 = 0; - __pyx_t_7 = 0; - __pyx_t_7 = __Pyx_PyObject_Call(((PyObject *)((PyObject *)__pyx_memoryview_type)), __pyx_t_8, NULL); if (unlikely(!__pyx_t_7)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 384; __pyx_clineno = __LINE__; goto __pyx_L4_error;} - __Pyx_GOTREF(__pyx_t_7); - __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; - __Pyx_DECREF_SET(__pyx_v_obj, __pyx_t_7); - __pyx_t_7 = 0; - } - __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; - __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; - __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; - goto __pyx_L11_try_end; - __pyx_L4_error:; - __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; - __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; - __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; - - /* "View.MemoryView":386 - * obj = memoryview(obj, self.flags|PyBUF_ANY_CONTIGUOUS, - * self.dtype_is_object) - * except TypeError: # <<<<<<<<<<<<<< - * return None - * - */ - __pyx_t_9 = PyErr_ExceptionMatches(__pyx_builtin_TypeError); - if (__pyx_t_9) { - __Pyx_AddTraceback("View.MemoryView.memoryview.is_slice", __pyx_clineno, __pyx_lineno, __pyx_filename); - if (__Pyx_GetException(&__pyx_t_7, &__pyx_t_8, &__pyx_t_6) < 0) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 386; __pyx_clineno = __LINE__; goto __pyx_L6_except_error;} - __Pyx_GOTREF(__pyx_t_7); - __Pyx_GOTREF(__pyx_t_8); - __Pyx_GOTREF(__pyx_t_6); - - /* "View.MemoryView":387 - * self.dtype_is_object) - * except TypeError: - * return None # <<<<<<<<<<<<<< - * - * return obj - */ - __Pyx_XDECREF(__pyx_r); - __Pyx_INCREF(Py_None); - __pyx_r = Py_None; - __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; - __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; - __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; - goto __pyx_L7_except_return; - __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; - __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; - __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; - goto __pyx_L5_exception_handled; - } - goto __pyx_L6_except_error; - __pyx_L6_except_error:; - __Pyx_XGIVEREF(__pyx_t_3); - __Pyx_XGIVEREF(__pyx_t_4); - __Pyx_XGIVEREF(__pyx_t_5); - __Pyx_ExceptionReset(__pyx_t_3, __pyx_t_4, __pyx_t_5); - goto __pyx_L1_error; - __pyx_L7_except_return:; - __Pyx_XGIVEREF(__pyx_t_3); - __Pyx_XGIVEREF(__pyx_t_4); - __Pyx_XGIVEREF(__pyx_t_5); - __Pyx_ExceptionReset(__pyx_t_3, __pyx_t_4, __pyx_t_5); - goto __pyx_L0; - __pyx_L5_exception_handled:; - __Pyx_XGIVEREF(__pyx_t_3); - __Pyx_XGIVEREF(__pyx_t_4); - __Pyx_XGIVEREF(__pyx_t_5); - __Pyx_ExceptionReset(__pyx_t_3, __pyx_t_4, __pyx_t_5); - __pyx_L11_try_end:; - } - goto __pyx_L3; - } - __pyx_L3:; - - /* "View.MemoryView":389 - * return None - * - * return obj # <<<<<<<<<<<<<< - * - * cdef setitem_slice_assignment(self, dst, src): - */ - __Pyx_XDECREF(__pyx_r); - __Pyx_INCREF(__pyx_v_obj); - __pyx_r = __pyx_v_obj; - goto __pyx_L0; - - /* "View.MemoryView":381 - * self.setitem_indexed(index, value) - * - * cdef is_slice(self, obj): # <<<<<<<<<<<<<< - * if not isinstance(obj, memoryview): - * try: - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_6); - __Pyx_XDECREF(__pyx_t_7); - __Pyx_XDECREF(__pyx_t_8); - __Pyx_AddTraceback("View.MemoryView.memoryview.is_slice", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = 0; - __pyx_L0:; - __Pyx_XDECREF(__pyx_v_obj); - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":391 - * return obj - * - * cdef setitem_slice_assignment(self, dst, src): # <<<<<<<<<<<<<< - * cdef __Pyx_memviewslice dst_slice - * cdef __Pyx_memviewslice src_slice - */ - -static PyObject *__pyx_memoryview_setitem_slice_assignment(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_dst, PyObject *__pyx_v_src) { - __Pyx_memviewslice __pyx_v_dst_slice; - __Pyx_memviewslice __pyx_v_src_slice; - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - PyObject *__pyx_t_1 = NULL; - int __pyx_t_2; - int __pyx_t_3; - int __pyx_t_4; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("setitem_slice_assignment", 0); - - /* "View.MemoryView":395 - * cdef __Pyx_memviewslice src_slice - * - * memoryview_copy_contents(get_slice_from_memview(src, &src_slice)[0], # <<<<<<<<<<<<<< - * get_slice_from_memview(dst, &dst_slice)[0], - * src.ndim, dst.ndim, self.dtype_is_object) - */ - if (!(likely(((__pyx_v_src) == Py_None) || likely(__Pyx_TypeTest(__pyx_v_src, __pyx_memoryview_type))))) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 395; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - - /* "View.MemoryView":396 - * - * memoryview_copy_contents(get_slice_from_memview(src, &src_slice)[0], - * get_slice_from_memview(dst, &dst_slice)[0], # <<<<<<<<<<<<<< - * src.ndim, dst.ndim, self.dtype_is_object) - * - */ - if (!(likely(((__pyx_v_dst) == Py_None) || likely(__Pyx_TypeTest(__pyx_v_dst, __pyx_memoryview_type))))) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 396; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - - /* "View.MemoryView":397 - * memoryview_copy_contents(get_slice_from_memview(src, &src_slice)[0], - * get_slice_from_memview(dst, &dst_slice)[0], - * src.ndim, dst.ndim, self.dtype_is_object) # <<<<<<<<<<<<<< - * - * cdef setitem_slice_assign_scalar(self, memoryview dst, value): - */ - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_src, __pyx_n_s_ndim); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 397; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __pyx_t_2 = __Pyx_PyInt_As_int(__pyx_t_1); if (unlikely((__pyx_t_2 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 397; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_dst, __pyx_n_s_ndim); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 397; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __pyx_t_3 = __Pyx_PyInt_As_int(__pyx_t_1); if (unlikely((__pyx_t_3 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 397; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - - /* "View.MemoryView":395 - * cdef __Pyx_memviewslice src_slice - * - * memoryview_copy_contents(get_slice_from_memview(src, &src_slice)[0], # <<<<<<<<<<<<<< - * get_slice_from_memview(dst, &dst_slice)[0], - * src.ndim, dst.ndim, self.dtype_is_object) - */ - __pyx_t_4 = __pyx_memoryview_copy_contents((__pyx_memoryview_get_slice_from_memoryview(((struct __pyx_memoryview_obj *)__pyx_v_src), (&__pyx_v_src_slice))[0]), (__pyx_memoryview_get_slice_from_memoryview(((struct __pyx_memoryview_obj *)__pyx_v_dst), (&__pyx_v_dst_slice))[0]), __pyx_t_2, __pyx_t_3, __pyx_v_self->dtype_is_object); if (unlikely(__pyx_t_4 == -1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 395; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - - /* "View.MemoryView":391 - * return obj - * - * cdef setitem_slice_assignment(self, dst, src): # <<<<<<<<<<<<<< - * cdef __Pyx_memviewslice dst_slice - * cdef __Pyx_memviewslice src_slice - */ - - /* function exit code */ - __pyx_r = Py_None; __Pyx_INCREF(Py_None); - goto __pyx_L0; - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_1); - __Pyx_AddTraceback("View.MemoryView.memoryview.setitem_slice_assignment", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = 0; - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":399 - * src.ndim, dst.ndim, self.dtype_is_object) - * - * cdef setitem_slice_assign_scalar(self, memoryview dst, value): # <<<<<<<<<<<<<< - * cdef int array[128] - * cdef void *tmp = NULL - */ - -static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memoryview_obj *__pyx_v_self, struct __pyx_memoryview_obj *__pyx_v_dst, PyObject *__pyx_v_value) { - int __pyx_v_array[128]; - void *__pyx_v_tmp; - void *__pyx_v_item; - __Pyx_memviewslice *__pyx_v_dst_slice; - __Pyx_memviewslice __pyx_v_tmp_slice; - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - int __pyx_t_1; - PyObject *__pyx_t_2 = NULL; - int __pyx_t_3; - int __pyx_t_4; - char const *__pyx_t_5; - PyObject *__pyx_t_6 = NULL; - PyObject *__pyx_t_7 = NULL; - PyObject *__pyx_t_8 = NULL; - PyObject *__pyx_t_9 = NULL; - PyObject *__pyx_t_10 = NULL; - PyObject *__pyx_t_11 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("setitem_slice_assign_scalar", 0); - - /* "View.MemoryView":401 - * cdef setitem_slice_assign_scalar(self, memoryview dst, value): - * cdef int array[128] - * cdef void *tmp = NULL # <<<<<<<<<<<<<< - * cdef void *item - * - */ - __pyx_v_tmp = NULL; - - /* "View.MemoryView":406 - * cdef __Pyx_memviewslice *dst_slice - * cdef __Pyx_memviewslice tmp_slice - * dst_slice = get_slice_from_memview(dst, &tmp_slice) # <<<<<<<<<<<<<< - * - * if self.view.itemsize > sizeof(array): - */ - __pyx_v_dst_slice = __pyx_memoryview_get_slice_from_memoryview(__pyx_v_dst, (&__pyx_v_tmp_slice)); - - /* "View.MemoryView":408 - * dst_slice = get_slice_from_memview(dst, &tmp_slice) - * - * if self.view.itemsize > sizeof(array): # <<<<<<<<<<<<<< - * tmp = PyMem_Malloc(self.view.itemsize) - * if tmp == NULL: - */ - __pyx_t_1 = ((((size_t)__pyx_v_self->view.itemsize) > (sizeof(__pyx_v_array))) != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":409 - * - * if self.view.itemsize > sizeof(array): - * tmp = PyMem_Malloc(self.view.itemsize) # <<<<<<<<<<<<<< - * if tmp == NULL: - * raise MemoryError - */ - __pyx_v_tmp = PyMem_Malloc(__pyx_v_self->view.itemsize); - - /* "View.MemoryView":410 - * if self.view.itemsize > sizeof(array): - * tmp = PyMem_Malloc(self.view.itemsize) - * if tmp == NULL: # <<<<<<<<<<<<<< - * raise MemoryError - * item = tmp - */ - __pyx_t_1 = ((__pyx_v_tmp == NULL) != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":411 - * tmp = PyMem_Malloc(self.view.itemsize) - * if tmp == NULL: - * raise MemoryError # <<<<<<<<<<<<<< - * item = tmp - * else: - */ - PyErr_NoMemory(); {__pyx_filename = __pyx_f[2]; __pyx_lineno = 411; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - - /* "View.MemoryView":412 - * if tmp == NULL: - * raise MemoryError - * item = tmp # <<<<<<<<<<<<<< - * else: - * item = array - */ - __pyx_v_item = __pyx_v_tmp; - goto __pyx_L3; - } - /*else*/ { - - /* "View.MemoryView":414 - * item = tmp - * else: - * item = array # <<<<<<<<<<<<<< - * - * try: - */ - __pyx_v_item = ((void *)__pyx_v_array); - } - __pyx_L3:; - - /* "View.MemoryView":416 - * item = array - * - * try: # <<<<<<<<<<<<<< - * if self.dtype_is_object: - * ( item)[0] = value - */ - /*try:*/ { - - /* "View.MemoryView":417 - * - * try: - * if self.dtype_is_object: # <<<<<<<<<<<<<< - * ( item)[0] = value - * else: - */ - __pyx_t_1 = (__pyx_v_self->dtype_is_object != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":418 - * try: - * if self.dtype_is_object: - * ( item)[0] = value # <<<<<<<<<<<<<< - * else: - * self.assign_item_from_object( item, value) - */ - (((PyObject **)__pyx_v_item)[0]) = ((PyObject *)__pyx_v_value); - goto __pyx_L8; - } - /*else*/ { - - /* "View.MemoryView":420 - * ( item)[0] = value - * else: - * self.assign_item_from_object( item, value) # <<<<<<<<<<<<<< - * - * - */ - __pyx_t_2 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->assign_item_from_object(__pyx_v_self, ((char *)__pyx_v_item), __pyx_v_value); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 420; __pyx_clineno = __LINE__; goto __pyx_L6_error;} - __Pyx_GOTREF(__pyx_t_2); - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - } - __pyx_L8:; - - /* "View.MemoryView":424 - * - * - * if self.view.suboffsets != NULL: # <<<<<<<<<<<<<< - * assert_direct_dimensions(self.view.suboffsets, self.view.ndim) - * slice_assign_scalar(dst_slice, dst.view.ndim, self.view.itemsize, - */ - __pyx_t_1 = ((__pyx_v_self->view.suboffsets != NULL) != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":425 - * - * if self.view.suboffsets != NULL: - * assert_direct_dimensions(self.view.suboffsets, self.view.ndim) # <<<<<<<<<<<<<< - * slice_assign_scalar(dst_slice, dst.view.ndim, self.view.itemsize, - * item, self.dtype_is_object) - */ - __pyx_t_2 = assert_direct_dimensions(__pyx_v_self->view.suboffsets, __pyx_v_self->view.ndim); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 425; __pyx_clineno = __LINE__; goto __pyx_L6_error;} - __Pyx_GOTREF(__pyx_t_2); - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - goto __pyx_L9; - } - __pyx_L9:; - - /* "View.MemoryView":426 - * if self.view.suboffsets != NULL: - * assert_direct_dimensions(self.view.suboffsets, self.view.ndim) - * slice_assign_scalar(dst_slice, dst.view.ndim, self.view.itemsize, # <<<<<<<<<<<<<< - * item, self.dtype_is_object) - * finally: - */ - __pyx_memoryview_slice_assign_scalar(__pyx_v_dst_slice, __pyx_v_dst->view.ndim, __pyx_v_self->view.itemsize, __pyx_v_item, __pyx_v_self->dtype_is_object); - } - - /* "View.MemoryView":429 - * item, self.dtype_is_object) - * finally: - * PyMem_Free(tmp) # <<<<<<<<<<<<<< - * - * cdef setitem_indexed(self, index, value): - */ - /*finally:*/ { - /*normal exit:*/{ - PyMem_Free(__pyx_v_tmp); - goto __pyx_L7; - } - /*exception exit:*/{ - __pyx_L6_error:; - __pyx_t_6 = 0; __pyx_t_7 = 0; __pyx_t_8 = 0; __pyx_t_9 = 0; __pyx_t_10 = 0; __pyx_t_11 = 0; - __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; - if (PY_MAJOR_VERSION >= 3) __Pyx_ExceptionSwap(&__pyx_t_9, &__pyx_t_10, &__pyx_t_11); - if ((PY_MAJOR_VERSION < 3) || unlikely(__Pyx_GetException(&__pyx_t_6, &__pyx_t_7, &__pyx_t_8) < 0)) __Pyx_ErrFetch(&__pyx_t_6, &__pyx_t_7, &__pyx_t_8); - __Pyx_XGOTREF(__pyx_t_6); - __Pyx_XGOTREF(__pyx_t_7); - __Pyx_XGOTREF(__pyx_t_8); - __Pyx_XGOTREF(__pyx_t_9); - __Pyx_XGOTREF(__pyx_t_10); - __Pyx_XGOTREF(__pyx_t_11); - __pyx_t_3 = __pyx_lineno; __pyx_t_4 = __pyx_clineno; __pyx_t_5 = __pyx_filename; - { - PyMem_Free(__pyx_v_tmp); - } - if (PY_MAJOR_VERSION >= 3) { - __Pyx_XGIVEREF(__pyx_t_9); - __Pyx_XGIVEREF(__pyx_t_10); - __Pyx_XGIVEREF(__pyx_t_11); - __Pyx_ExceptionReset(__pyx_t_9, __pyx_t_10, __pyx_t_11); - } - __Pyx_XGIVEREF(__pyx_t_6); - __Pyx_XGIVEREF(__pyx_t_7); - __Pyx_XGIVEREF(__pyx_t_8); - __Pyx_ErrRestore(__pyx_t_6, __pyx_t_7, __pyx_t_8); - __pyx_t_6 = 0; __pyx_t_7 = 0; __pyx_t_8 = 0; __pyx_t_9 = 0; __pyx_t_10 = 0; __pyx_t_11 = 0; - __pyx_lineno = __pyx_t_3; __pyx_clineno = __pyx_t_4; __pyx_filename = __pyx_t_5; - goto __pyx_L1_error; - } - __pyx_L7:; - } - - /* "View.MemoryView":399 - * src.ndim, dst.ndim, self.dtype_is_object) - * - * cdef setitem_slice_assign_scalar(self, memoryview dst, value): # <<<<<<<<<<<<<< - * cdef int array[128] - * cdef void *tmp = NULL - */ - - /* function exit code */ - __pyx_r = Py_None; __Pyx_INCREF(Py_None); - goto __pyx_L0; - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_2); - __Pyx_AddTraceback("View.MemoryView.memoryview.setitem_slice_assign_scalar", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = 0; - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":431 - * PyMem_Free(tmp) - * - * cdef setitem_indexed(self, index, value): # <<<<<<<<<<<<<< - * cdef char *itemp = self.get_item_pointer(index) - * self.assign_item_from_object(itemp, value) - */ - -static PyObject *__pyx_memoryview_setitem_indexed(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value) { - char *__pyx_v_itemp; - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - char *__pyx_t_1; - PyObject *__pyx_t_2 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("setitem_indexed", 0); - - /* "View.MemoryView":432 - * - * cdef setitem_indexed(self, index, value): - * cdef char *itemp = self.get_item_pointer(index) # <<<<<<<<<<<<<< - * self.assign_item_from_object(itemp, value) - * - */ - __pyx_t_1 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->get_item_pointer(__pyx_v_self, __pyx_v_index); if (unlikely(__pyx_t_1 == NULL)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 432; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_v_itemp = __pyx_t_1; - - /* "View.MemoryView":433 - * cdef setitem_indexed(self, index, value): - * cdef char *itemp = self.get_item_pointer(index) - * self.assign_item_from_object(itemp, value) # <<<<<<<<<<<<<< - * - * cdef convert_item_to_object(self, char *itemp): - */ - __pyx_t_2 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->assign_item_from_object(__pyx_v_self, __pyx_v_itemp, __pyx_v_value); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 433; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - - /* "View.MemoryView":431 - * PyMem_Free(tmp) - * - * cdef setitem_indexed(self, index, value): # <<<<<<<<<<<<<< - * cdef char *itemp = self.get_item_pointer(index) - * self.assign_item_from_object(itemp, value) - */ - - /* function exit code */ - __pyx_r = Py_None; __Pyx_INCREF(Py_None); - goto __pyx_L0; - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_2); - __Pyx_AddTraceback("View.MemoryView.memoryview.setitem_indexed", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = 0; - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":435 - * self.assign_item_from_object(itemp, value) - * - * cdef convert_item_to_object(self, char *itemp): # <<<<<<<<<<<<<< - * """Only used if instantiated manually by the user, or if Cython doesn't - * know how to convert the type""" - */ - -static PyObject *__pyx_memoryview_convert_item_to_object(struct __pyx_memoryview_obj *__pyx_v_self, char *__pyx_v_itemp) { - PyObject *__pyx_v_struct = NULL; - PyObject *__pyx_v_bytesitem = 0; - PyObject *__pyx_v_result = NULL; - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - PyObject *__pyx_t_1 = NULL; - PyObject *__pyx_t_2 = NULL; - PyObject *__pyx_t_3 = NULL; - PyObject *__pyx_t_4 = NULL; - PyObject *__pyx_t_5 = NULL; - PyObject *__pyx_t_6 = NULL; - size_t __pyx_t_7; - int __pyx_t_8; - int __pyx_t_9; - PyObject *__pyx_t_10 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("convert_item_to_object", 0); - - /* "View.MemoryView":438 - * """Only used if instantiated manually by the user, or if Cython doesn't - * know how to convert the type""" - * import struct # <<<<<<<<<<<<<< - * cdef bytes bytesitem - * - */ - __pyx_t_1 = __Pyx_Import(__pyx_n_s_struct, 0, -1); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 438; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __pyx_v_struct = __pyx_t_1; - __pyx_t_1 = 0; - - /* "View.MemoryView":441 - * cdef bytes bytesitem - * - * bytesitem = itemp[:self.view.itemsize] # <<<<<<<<<<<<<< - * try: - * result = struct.unpack(self.view.format, bytesitem) - */ - __pyx_t_1 = __Pyx_PyBytes_FromStringAndSize(__pyx_v_itemp + 0, __pyx_v_self->view.itemsize - 0); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 441; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __pyx_v_bytesitem = ((PyObject*)__pyx_t_1); - __pyx_t_1 = 0; - - /* "View.MemoryView":442 - * - * bytesitem = itemp[:self.view.itemsize] - * try: # <<<<<<<<<<<<<< - * result = struct.unpack(self.view.format, bytesitem) - * except struct.error: - */ - { - __Pyx_ExceptionSave(&__pyx_t_2, &__pyx_t_3, &__pyx_t_4); - __Pyx_XGOTREF(__pyx_t_2); - __Pyx_XGOTREF(__pyx_t_3); - __Pyx_XGOTREF(__pyx_t_4); - /*try:*/ { - - /* "View.MemoryView":443 - * bytesitem = itemp[:self.view.itemsize] - * try: - * result = struct.unpack(self.view.format, bytesitem) # <<<<<<<<<<<<<< - * except struct.error: - * raise ValueError("Unable to convert item to object") - */ - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_unpack); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 443; __pyx_clineno = __LINE__; goto __pyx_L3_error;} - __Pyx_GOTREF(__pyx_t_1); - __pyx_t_5 = __Pyx_PyBytes_FromString(__pyx_v_self->view.format); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 443; __pyx_clineno = __LINE__; goto __pyx_L3_error;} - __Pyx_GOTREF(__pyx_t_5); - __pyx_t_6 = PyTuple_New(2); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 443; __pyx_clineno = __LINE__; goto __pyx_L3_error;} - __Pyx_GOTREF(__pyx_t_6); - PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_5); - __Pyx_GIVEREF(__pyx_t_5); - __Pyx_INCREF(__pyx_v_bytesitem); - PyTuple_SET_ITEM(__pyx_t_6, 1, __pyx_v_bytesitem); - __Pyx_GIVEREF(__pyx_v_bytesitem); - __pyx_t_5 = 0; - __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_6, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 443; __pyx_clineno = __LINE__; goto __pyx_L3_error;} - __Pyx_GOTREF(__pyx_t_5); - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; - __pyx_v_result = __pyx_t_5; - __pyx_t_5 = 0; - } - /*else:*/ { - - /* "View.MemoryView":447 - * raise ValueError("Unable to convert item to object") - * else: - * if len(self.view.format) == 1: # <<<<<<<<<<<<<< - * return result[0] - * return result - */ - __pyx_t_7 = strlen(__pyx_v_self->view.format); - __pyx_t_8 = ((__pyx_t_7 == 1) != 0); - if (__pyx_t_8) { - - /* "View.MemoryView":448 - * else: - * if len(self.view.format) == 1: - * return result[0] # <<<<<<<<<<<<<< - * return result - * - */ - __Pyx_XDECREF(__pyx_r); - __pyx_t_5 = __Pyx_GetItemInt(__pyx_v_result, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 1); if (unlikely(__pyx_t_5 == NULL)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 448; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;}; - __Pyx_GOTREF(__pyx_t_5); - __pyx_r = __pyx_t_5; - __pyx_t_5 = 0; - goto __pyx_L6_except_return; - } - - /* "View.MemoryView":449 - * if len(self.view.format) == 1: - * return result[0] - * return result # <<<<<<<<<<<<<< - * - * cdef assign_item_from_object(self, char *itemp, object value): - */ - __Pyx_XDECREF(__pyx_r); - __Pyx_INCREF(__pyx_v_result); - __pyx_r = __pyx_v_result; - goto __pyx_L6_except_return; - } - __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; - __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; - __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; - goto __pyx_L10_try_end; - __pyx_L3_error:; - __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; - __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; - __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; - - /* "View.MemoryView":444 - * try: - * result = struct.unpack(self.view.format, bytesitem) - * except struct.error: # <<<<<<<<<<<<<< - * raise ValueError("Unable to convert item to object") - * else: - */ - __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_error); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 444; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} - __Pyx_GOTREF(__pyx_t_5); - __pyx_t_9 = PyErr_ExceptionMatches(__pyx_t_5); - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - if (__pyx_t_9) { - __Pyx_AddTraceback("View.MemoryView.memoryview.convert_item_to_object", __pyx_clineno, __pyx_lineno, __pyx_filename); - if (__Pyx_GetException(&__pyx_t_5, &__pyx_t_6, &__pyx_t_1) < 0) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 444; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} - __Pyx_GOTREF(__pyx_t_5); - __Pyx_GOTREF(__pyx_t_6); - __Pyx_GOTREF(__pyx_t_1); - - /* "View.MemoryView":445 - * result = struct.unpack(self.view.format, bytesitem) - * except struct.error: - * raise ValueError("Unable to convert item to object") # <<<<<<<<<<<<<< - * else: - * if len(self.view.format) == 1: - */ - __pyx_t_10 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__12, NULL); if (unlikely(!__pyx_t_10)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 445; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} - __Pyx_GOTREF(__pyx_t_10); - __Pyx_Raise(__pyx_t_10, 0, 0, 0); - __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; - {__pyx_filename = __pyx_f[2]; __pyx_lineno = 445; __pyx_clineno = __LINE__; goto __pyx_L5_except_error;} - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - goto __pyx_L4_exception_handled; - } - goto __pyx_L5_except_error; - __pyx_L5_except_error:; - __Pyx_XGIVEREF(__pyx_t_2); - __Pyx_XGIVEREF(__pyx_t_3); - __Pyx_XGIVEREF(__pyx_t_4); - __Pyx_ExceptionReset(__pyx_t_2, __pyx_t_3, __pyx_t_4); - goto __pyx_L1_error; - __pyx_L6_except_return:; - __Pyx_XGIVEREF(__pyx_t_2); - __Pyx_XGIVEREF(__pyx_t_3); - __Pyx_XGIVEREF(__pyx_t_4); - __Pyx_ExceptionReset(__pyx_t_2, __pyx_t_3, __pyx_t_4); - goto __pyx_L0; - __pyx_L4_exception_handled:; - __Pyx_XGIVEREF(__pyx_t_2); - __Pyx_XGIVEREF(__pyx_t_3); - __Pyx_XGIVEREF(__pyx_t_4); - __Pyx_ExceptionReset(__pyx_t_2, __pyx_t_3, __pyx_t_4); - __pyx_L10_try_end:; - } - - /* "View.MemoryView":435 - * self.assign_item_from_object(itemp, value) - * - * cdef convert_item_to_object(self, char *itemp): # <<<<<<<<<<<<<< - * """Only used if instantiated manually by the user, or if Cython doesn't - * know how to convert the type""" - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_1); - __Pyx_XDECREF(__pyx_t_5); - __Pyx_XDECREF(__pyx_t_6); - __Pyx_XDECREF(__pyx_t_10); - __Pyx_AddTraceback("View.MemoryView.memoryview.convert_item_to_object", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = 0; - __pyx_L0:; - __Pyx_XDECREF(__pyx_v_struct); - __Pyx_XDECREF(__pyx_v_bytesitem); - __Pyx_XDECREF(__pyx_v_result); - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":451 - * return result - * - * cdef assign_item_from_object(self, char *itemp, object value): # <<<<<<<<<<<<<< - * """Only used if instantiated manually by the user, or if Cython doesn't - * know how to convert the type""" - */ - -static PyObject *__pyx_memoryview_assign_item_from_object(struct __pyx_memoryview_obj *__pyx_v_self, char *__pyx_v_itemp, PyObject *__pyx_v_value) { - PyObject *__pyx_v_struct = NULL; - char __pyx_v_c; - PyObject *__pyx_v_bytesvalue = 0; - Py_ssize_t __pyx_v_i; - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - PyObject *__pyx_t_1 = NULL; - int __pyx_t_2; - int __pyx_t_3; - PyObject *__pyx_t_4 = NULL; - PyObject *__pyx_t_5 = NULL; - PyObject *__pyx_t_6 = NULL; - Py_ssize_t __pyx_t_7; - PyObject *__pyx_t_8 = NULL; - char *__pyx_t_9; - char *__pyx_t_10; - char *__pyx_t_11; - char *__pyx_t_12; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("assign_item_from_object", 0); - - /* "View.MemoryView":454 - * """Only used if instantiated manually by the user, or if Cython doesn't - * know how to convert the type""" - * import struct # <<<<<<<<<<<<<< - * cdef char c - * cdef bytes bytesvalue - */ - __pyx_t_1 = __Pyx_Import(__pyx_n_s_struct, 0, -1); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 454; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __pyx_v_struct = __pyx_t_1; - __pyx_t_1 = 0; - - /* "View.MemoryView":459 - * cdef Py_ssize_t i - * - * if isinstance(value, tuple): # <<<<<<<<<<<<<< - * bytesvalue = struct.pack(self.view.format, *value) - * else: - */ - __pyx_t_2 = PyTuple_Check(__pyx_v_value); - __pyx_t_3 = (__pyx_t_2 != 0); - if (__pyx_t_3) { - - /* "View.MemoryView":460 - * - * if isinstance(value, tuple): - * bytesvalue = struct.pack(self.view.format, *value) # <<<<<<<<<<<<<< - * else: - * bytesvalue = struct.pack(self.view.format, value) - */ - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_pack); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 460; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __pyx_t_4 = __Pyx_PyBytes_FromString(__pyx_v_self->view.format); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 460; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 460; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_5); - PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_4); - __Pyx_GIVEREF(__pyx_t_4); - __pyx_t_4 = 0; - __pyx_t_4 = PySequence_Tuple(__pyx_v_value); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 460; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_6 = PyNumber_Add(__pyx_t_5, __pyx_t_4); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 460; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_6); - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_6, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 460; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; - if (!(likely(PyBytes_CheckExact(__pyx_t_4))||((__pyx_t_4) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "bytes", Py_TYPE(__pyx_t_4)->tp_name), 0))) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 460; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_v_bytesvalue = ((PyObject*)__pyx_t_4); - __pyx_t_4 = 0; - goto __pyx_L3; - } - /*else*/ { - - /* "View.MemoryView":462 - * bytesvalue = struct.pack(self.view.format, *value) - * else: - * bytesvalue = struct.pack(self.view.format, value) # <<<<<<<<<<<<<< - * - * for i, c in enumerate(bytesvalue): - */ - __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_pack); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 462; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_6 = __Pyx_PyBytes_FromString(__pyx_v_self->view.format); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 462; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_6); - __pyx_t_1 = PyTuple_New(2); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 462; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_t_6); - __Pyx_GIVEREF(__pyx_t_6); - __Pyx_INCREF(__pyx_v_value); - PyTuple_SET_ITEM(__pyx_t_1, 1, __pyx_v_value); - __Pyx_GIVEREF(__pyx_v_value); - __pyx_t_6 = 0; - __pyx_t_6 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_1, NULL); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 462; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_6); - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - if (!(likely(PyBytes_CheckExact(__pyx_t_6))||((__pyx_t_6) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "bytes", Py_TYPE(__pyx_t_6)->tp_name), 0))) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 462; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_v_bytesvalue = ((PyObject*)__pyx_t_6); - __pyx_t_6 = 0; - } - __pyx_L3:; - - /* "View.MemoryView":464 - * bytesvalue = struct.pack(self.view.format, value) - * - * for i, c in enumerate(bytesvalue): # <<<<<<<<<<<<<< - * itemp[i] = c - * - */ - __pyx_t_7 = 0; - if (unlikely(__pyx_v_bytesvalue == Py_None)) { - PyErr_SetString(PyExc_TypeError, "'NoneType' is not iterable"); - {__pyx_filename = __pyx_f[2]; __pyx_lineno = 464; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - __Pyx_INCREF(__pyx_v_bytesvalue); - __pyx_t_8 = __pyx_v_bytesvalue; - __pyx_t_10 = PyBytes_AS_STRING(__pyx_t_8); - __pyx_t_11 = (__pyx_t_10 + PyBytes_GET_SIZE(__pyx_t_8)); - for (__pyx_t_12 = __pyx_t_10; __pyx_t_12 < __pyx_t_11; __pyx_t_12++) { - __pyx_t_9 = __pyx_t_12; - __pyx_v_c = (__pyx_t_9[0]); - - /* "View.MemoryView":465 - * - * for i, c in enumerate(bytesvalue): - * itemp[i] = c # <<<<<<<<<<<<<< - * - * @cname('getbuffer') - */ - __pyx_v_i = __pyx_t_7; - - /* "View.MemoryView":464 - * bytesvalue = struct.pack(self.view.format, value) - * - * for i, c in enumerate(bytesvalue): # <<<<<<<<<<<<<< - * itemp[i] = c - * - */ - __pyx_t_7 = (__pyx_t_7 + 1); - - /* "View.MemoryView":465 - * - * for i, c in enumerate(bytesvalue): - * itemp[i] = c # <<<<<<<<<<<<<< - * - * @cname('getbuffer') - */ - (__pyx_v_itemp[__pyx_v_i]) = __pyx_v_c; - } - __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; - - /* "View.MemoryView":451 - * return result - * - * cdef assign_item_from_object(self, char *itemp, object value): # <<<<<<<<<<<<<< - * """Only used if instantiated manually by the user, or if Cython doesn't - * know how to convert the type""" - */ - - /* function exit code */ - __pyx_r = Py_None; __Pyx_INCREF(Py_None); - goto __pyx_L0; - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_1); - __Pyx_XDECREF(__pyx_t_4); - __Pyx_XDECREF(__pyx_t_5); - __Pyx_XDECREF(__pyx_t_6); - __Pyx_XDECREF(__pyx_t_8); - __Pyx_AddTraceback("View.MemoryView.memoryview.assign_item_from_object", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = 0; - __pyx_L0:; - __Pyx_XDECREF(__pyx_v_struct); - __Pyx_XDECREF(__pyx_v_bytesvalue); - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":468 - * - * @cname('getbuffer') - * def __getbuffer__(self, Py_buffer *info, int flags): # <<<<<<<<<<<<<< - * if flags & PyBUF_STRIDES: - * info.shape = self.view.shape - */ - -/* Python wrapper */ -static CYTHON_UNUSED int __pyx_memoryview_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ -static CYTHON_UNUSED int __pyx_memoryview_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { - int __pyx_r; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__getbuffer__ (wrapper)", 0); - __pyx_r = __pyx_memoryview_getbuffer_MemoryView_10memoryview_8__getbuffer__(((struct __pyx_memoryview_obj *)__pyx_v_self), ((Py_buffer *)__pyx_v_info), ((int)__pyx_v_flags)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static int __pyx_memoryview_getbuffer_MemoryView_10memoryview_8__getbuffer__(struct __pyx_memoryview_obj *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { - int __pyx_r; - __Pyx_RefNannyDeclarations - int __pyx_t_1; - Py_ssize_t *__pyx_t_2; - char *__pyx_t_3; - void *__pyx_t_4; - int __pyx_t_5; - Py_ssize_t __pyx_t_6; - __Pyx_RefNannySetupContext("__getbuffer__", 0); - if (__pyx_v_info != NULL) { - __pyx_v_info->obj = Py_None; __Pyx_INCREF(Py_None); - __Pyx_GIVEREF(__pyx_v_info->obj); - } - - /* "View.MemoryView":469 - * @cname('getbuffer') - * def __getbuffer__(self, Py_buffer *info, int flags): - * if flags & PyBUF_STRIDES: # <<<<<<<<<<<<<< - * info.shape = self.view.shape - * else: - */ - __pyx_t_1 = ((__pyx_v_flags & PyBUF_STRIDES) != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":470 - * def __getbuffer__(self, Py_buffer *info, int flags): - * if flags & PyBUF_STRIDES: - * info.shape = self.view.shape # <<<<<<<<<<<<<< - * else: - * info.shape = NULL - */ - __pyx_t_2 = __pyx_v_self->view.shape; - __pyx_v_info->shape = __pyx_t_2; - goto __pyx_L3; - } - /*else*/ { - - /* "View.MemoryView":472 - * info.shape = self.view.shape - * else: - * info.shape = NULL # <<<<<<<<<<<<<< - * - * if flags & PyBUF_STRIDES: - */ - __pyx_v_info->shape = NULL; - } - __pyx_L3:; - - /* "View.MemoryView":474 - * info.shape = NULL - * - * if flags & PyBUF_STRIDES: # <<<<<<<<<<<<<< - * info.strides = self.view.strides - * else: - */ - __pyx_t_1 = ((__pyx_v_flags & PyBUF_STRIDES) != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":475 - * - * if flags & PyBUF_STRIDES: - * info.strides = self.view.strides # <<<<<<<<<<<<<< - * else: - * info.strides = NULL - */ - __pyx_t_2 = __pyx_v_self->view.strides; - __pyx_v_info->strides = __pyx_t_2; - goto __pyx_L4; - } - /*else*/ { - - /* "View.MemoryView":477 - * info.strides = self.view.strides - * else: - * info.strides = NULL # <<<<<<<<<<<<<< - * - * if flags & PyBUF_INDIRECT: - */ - __pyx_v_info->strides = NULL; - } - __pyx_L4:; - - /* "View.MemoryView":479 - * info.strides = NULL - * - * if flags & PyBUF_INDIRECT: # <<<<<<<<<<<<<< - * info.suboffsets = self.view.suboffsets - * else: - */ - __pyx_t_1 = ((__pyx_v_flags & PyBUF_INDIRECT) != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":480 - * - * if flags & PyBUF_INDIRECT: - * info.suboffsets = self.view.suboffsets # <<<<<<<<<<<<<< - * else: - * info.suboffsets = NULL - */ - __pyx_t_2 = __pyx_v_self->view.suboffsets; - __pyx_v_info->suboffsets = __pyx_t_2; - goto __pyx_L5; - } - /*else*/ { - - /* "View.MemoryView":482 - * info.suboffsets = self.view.suboffsets - * else: - * info.suboffsets = NULL # <<<<<<<<<<<<<< - * - * if flags & PyBUF_FORMAT: - */ - __pyx_v_info->suboffsets = NULL; - } - __pyx_L5:; - - /* "View.MemoryView":484 - * info.suboffsets = NULL - * - * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< - * info.format = self.view.format - * else: - */ - __pyx_t_1 = ((__pyx_v_flags & PyBUF_FORMAT) != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":485 - * - * if flags & PyBUF_FORMAT: - * info.format = self.view.format # <<<<<<<<<<<<<< - * else: - * info.format = NULL - */ - __pyx_t_3 = __pyx_v_self->view.format; - __pyx_v_info->format = __pyx_t_3; - goto __pyx_L6; - } - /*else*/ { - - /* "View.MemoryView":487 - * info.format = self.view.format - * else: - * info.format = NULL # <<<<<<<<<<<<<< - * - * info.buf = self.view.buf - */ - __pyx_v_info->format = NULL; - } - __pyx_L6:; - - /* "View.MemoryView":489 - * info.format = NULL - * - * info.buf = self.view.buf # <<<<<<<<<<<<<< - * info.ndim = self.view.ndim - * info.itemsize = self.view.itemsize - */ - __pyx_t_4 = __pyx_v_self->view.buf; - __pyx_v_info->buf = __pyx_t_4; - - /* "View.MemoryView":490 - * - * info.buf = self.view.buf - * info.ndim = self.view.ndim # <<<<<<<<<<<<<< - * info.itemsize = self.view.itemsize - * info.len = self.view.len - */ - __pyx_t_5 = __pyx_v_self->view.ndim; - __pyx_v_info->ndim = __pyx_t_5; - - /* "View.MemoryView":491 - * info.buf = self.view.buf - * info.ndim = self.view.ndim - * info.itemsize = self.view.itemsize # <<<<<<<<<<<<<< - * info.len = self.view.len - * info.readonly = 0 - */ - __pyx_t_6 = __pyx_v_self->view.itemsize; - __pyx_v_info->itemsize = __pyx_t_6; - - /* "View.MemoryView":492 - * info.ndim = self.view.ndim - * info.itemsize = self.view.itemsize - * info.len = self.view.len # <<<<<<<<<<<<<< - * info.readonly = 0 - * info.obj = self - */ - __pyx_t_6 = __pyx_v_self->view.len; - __pyx_v_info->len = __pyx_t_6; - - /* "View.MemoryView":493 - * info.itemsize = self.view.itemsize - * info.len = self.view.len - * info.readonly = 0 # <<<<<<<<<<<<<< - * info.obj = self - * - */ - __pyx_v_info->readonly = 0; - - /* "View.MemoryView":494 - * info.len = self.view.len - * info.readonly = 0 - * info.obj = self # <<<<<<<<<<<<<< - * - * __pyx_getbuffer = capsule( &__pyx_memoryview_getbuffer, "getbuffer(obj, view, flags)") - */ - __Pyx_INCREF(((PyObject *)__pyx_v_self)); - __Pyx_GIVEREF(((PyObject *)__pyx_v_self)); - __Pyx_GOTREF(__pyx_v_info->obj); - __Pyx_DECREF(__pyx_v_info->obj); - __pyx_v_info->obj = ((PyObject *)__pyx_v_self); - - /* "View.MemoryView":468 - * - * @cname('getbuffer') - * def __getbuffer__(self, Py_buffer *info, int flags): # <<<<<<<<<<<<<< - * if flags & PyBUF_STRIDES: - * info.shape = self.view.shape - */ - - /* function exit code */ - __pyx_r = 0; - if (__pyx_v_info != NULL && __pyx_v_info->obj == Py_None) { - __Pyx_GOTREF(Py_None); - __Pyx_DECREF(Py_None); __pyx_v_info->obj = NULL; - } - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":501 - * property T: - * @cname('__pyx_memoryview_transpose') - * def __get__(self): # <<<<<<<<<<<<<< - * cdef _memoryviewslice result = memoryview_copy(self) - * transpose_memslice(&result.from_slice) - */ - -/* Python wrapper */ -static PyObject *__pyx_memoryview_transpose(PyObject *__pyx_v_self); /*proto*/ -static PyObject *__pyx_memoryview_transpose(PyObject *__pyx_v_self) { - PyObject *__pyx_r = 0; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); - __pyx_r = __pyx_memoryview_transpose_MemoryView_10memoryview_1T___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static PyObject *__pyx_memoryview_transpose_MemoryView_10memoryview_1T___get__(struct __pyx_memoryview_obj *__pyx_v_self) { - struct __pyx_memoryviewslice_obj *__pyx_v_result = 0; - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - PyObject *__pyx_t_1 = NULL; - int __pyx_t_2; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("__get__", 0); - - /* "View.MemoryView":502 - * @cname('__pyx_memoryview_transpose') - * def __get__(self): - * cdef _memoryviewslice result = memoryview_copy(self) # <<<<<<<<<<<<<< - * transpose_memslice(&result.from_slice) - * return result - */ - __pyx_t_1 = __pyx_memoryview_copy_object(__pyx_v_self); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 502; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - if (!(likely(((__pyx_t_1) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_1, __pyx_memoryviewslice_type))))) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 502; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_v_result = ((struct __pyx_memoryviewslice_obj *)__pyx_t_1); - __pyx_t_1 = 0; - - /* "View.MemoryView":503 - * def __get__(self): - * cdef _memoryviewslice result = memoryview_copy(self) - * transpose_memslice(&result.from_slice) # <<<<<<<<<<<<<< - * return result - * - */ - __pyx_t_2 = __pyx_memslice_transpose((&__pyx_v_result->from_slice)); if (unlikely(__pyx_t_2 == 0)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 503; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - - /* "View.MemoryView":504 - * cdef _memoryviewslice result = memoryview_copy(self) - * transpose_memslice(&result.from_slice) - * return result # <<<<<<<<<<<<<< - * - * property base: - */ - __Pyx_XDECREF(__pyx_r); - __Pyx_INCREF(((PyObject *)__pyx_v_result)); - __pyx_r = ((PyObject *)__pyx_v_result); - goto __pyx_L0; - - /* "View.MemoryView":501 - * property T: - * @cname('__pyx_memoryview_transpose') - * def __get__(self): # <<<<<<<<<<<<<< - * cdef _memoryviewslice result = memoryview_copy(self) - * transpose_memslice(&result.from_slice) - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_1); - __Pyx_AddTraceback("View.MemoryView.memoryview.T.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = NULL; - __pyx_L0:; - __Pyx_XDECREF((PyObject *)__pyx_v_result); - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":508 - * property base: - * @cname('__pyx_memoryview__get__base') - * def __get__(self): # <<<<<<<<<<<<<< - * return self.obj - * - */ - -/* Python wrapper */ -static PyObject *__pyx_memoryview__get__base(PyObject *__pyx_v_self); /*proto*/ -static PyObject *__pyx_memoryview__get__base(PyObject *__pyx_v_self) { - PyObject *__pyx_r = 0; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); - __pyx_r = __pyx_memoryview__get__base_MemoryView_10memoryview_4base___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static PyObject *__pyx_memoryview__get__base_MemoryView_10memoryview_4base___get__(struct __pyx_memoryview_obj *__pyx_v_self) { - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__get__", 0); - - /* "View.MemoryView":509 - * @cname('__pyx_memoryview__get__base') - * def __get__(self): - * return self.obj # <<<<<<<<<<<<<< - * - * property shape: - */ - __Pyx_XDECREF(__pyx_r); - __Pyx_INCREF(__pyx_v_self->obj); - __pyx_r = __pyx_v_self->obj; - goto __pyx_L0; - - /* "View.MemoryView":508 - * property base: - * @cname('__pyx_memoryview__get__base') - * def __get__(self): # <<<<<<<<<<<<<< - * return self.obj - * - */ - - /* function exit code */ - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":513 - * property shape: - * @cname('__pyx_memoryview_get_shape') - * def __get__(self): # <<<<<<<<<<<<<< - * return tuple([self.view.shape[i] for i in xrange(self.view.ndim)]) - * - */ - -/* Python wrapper */ -static PyObject *__pyx_memoryview_get_shape(PyObject *__pyx_v_self); /*proto*/ -static PyObject *__pyx_memoryview_get_shape(PyObject *__pyx_v_self) { - PyObject *__pyx_r = 0; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); - __pyx_r = __pyx_memoryview_get_shape_MemoryView_10memoryview_5shape___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static PyObject *__pyx_memoryview_get_shape_MemoryView_10memoryview_5shape___get__(struct __pyx_memoryview_obj *__pyx_v_self) { - int __pyx_v_i; - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - PyObject *__pyx_t_1 = NULL; - int __pyx_t_2; - int __pyx_t_3; - PyObject *__pyx_t_4 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("__get__", 0); - - /* "View.MemoryView":514 - * @cname('__pyx_memoryview_get_shape') - * def __get__(self): - * return tuple([self.view.shape[i] for i in xrange(self.view.ndim)]) # <<<<<<<<<<<<<< - * - * property strides: - */ - __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = PyList_New(0); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 514; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __pyx_t_2 = __pyx_v_self->view.ndim; - for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { - __pyx_v_i = __pyx_t_3; - __pyx_t_4 = PyInt_FromSsize_t((__pyx_v_self->view.shape[__pyx_v_i])); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 514; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - if (unlikely(__Pyx_ListComp_Append(__pyx_t_1, (PyObject*)__pyx_t_4))) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 514; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - } - __pyx_t_4 = PyList_AsTuple(((PyObject*)__pyx_t_1)); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 514; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __pyx_r = __pyx_t_4; - __pyx_t_4 = 0; - goto __pyx_L0; - - /* "View.MemoryView":513 - * property shape: - * @cname('__pyx_memoryview_get_shape') - * def __get__(self): # <<<<<<<<<<<<<< - * return tuple([self.view.shape[i] for i in xrange(self.view.ndim)]) - * - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_1); - __Pyx_XDECREF(__pyx_t_4); - __Pyx_AddTraceback("View.MemoryView.memoryview.shape.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = NULL; - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":518 - * property strides: - * @cname('__pyx_memoryview_get_strides') - * def __get__(self): # <<<<<<<<<<<<<< - * if self.view.strides == NULL: - * - */ - -/* Python wrapper */ -static PyObject *__pyx_memoryview_get_strides(PyObject *__pyx_v_self); /*proto*/ -static PyObject *__pyx_memoryview_get_strides(PyObject *__pyx_v_self) { - PyObject *__pyx_r = 0; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); - __pyx_r = __pyx_memoryview_get_strides_MemoryView_10memoryview_7strides___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static PyObject *__pyx_memoryview_get_strides_MemoryView_10memoryview_7strides___get__(struct __pyx_memoryview_obj *__pyx_v_self) { - int __pyx_v_i; - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - int __pyx_t_1; - PyObject *__pyx_t_2 = NULL; - int __pyx_t_3; - int __pyx_t_4; - PyObject *__pyx_t_5 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("__get__", 0); - - /* "View.MemoryView":519 - * @cname('__pyx_memoryview_get_strides') - * def __get__(self): - * if self.view.strides == NULL: # <<<<<<<<<<<<<< - * - * raise ValueError("Buffer view does not expose strides") - */ - __pyx_t_1 = ((__pyx_v_self->view.strides == NULL) != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":521 - * if self.view.strides == NULL: - * - * raise ValueError("Buffer view does not expose strides") # <<<<<<<<<<<<<< - * - * return tuple([self.view.strides[i] for i in xrange(self.view.ndim)]) - */ - __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__13, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 521; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - __Pyx_Raise(__pyx_t_2, 0, 0, 0); - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - {__pyx_filename = __pyx_f[2]; __pyx_lineno = 521; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - - /* "View.MemoryView":523 - * raise ValueError("Buffer view does not expose strides") - * - * return tuple([self.view.strides[i] for i in xrange(self.view.ndim)]) # <<<<<<<<<<<<<< - * - * property suboffsets: - */ - __Pyx_XDECREF(__pyx_r); - __pyx_t_2 = PyList_New(0); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 523; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - __pyx_t_3 = __pyx_v_self->view.ndim; - for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { - __pyx_v_i = __pyx_t_4; - __pyx_t_5 = PyInt_FromSsize_t((__pyx_v_self->view.strides[__pyx_v_i])); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 523; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_5); - if (unlikely(__Pyx_ListComp_Append(__pyx_t_2, (PyObject*)__pyx_t_5))) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 523; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - } - __pyx_t_5 = PyList_AsTuple(((PyObject*)__pyx_t_2)); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 523; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_5); - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - __pyx_r = __pyx_t_5; - __pyx_t_5 = 0; - goto __pyx_L0; - - /* "View.MemoryView":518 - * property strides: - * @cname('__pyx_memoryview_get_strides') - * def __get__(self): # <<<<<<<<<<<<<< - * if self.view.strides == NULL: - * - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_2); - __Pyx_XDECREF(__pyx_t_5); - __Pyx_AddTraceback("View.MemoryView.memoryview.strides.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = NULL; - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":527 - * property suboffsets: - * @cname('__pyx_memoryview_get_suboffsets') - * def __get__(self): # <<<<<<<<<<<<<< - * if self.view.suboffsets == NULL: - * return [-1] * self.view.ndim - */ - -/* Python wrapper */ -static PyObject *__pyx_memoryview_get_suboffsets(PyObject *__pyx_v_self); /*proto*/ -static PyObject *__pyx_memoryview_get_suboffsets(PyObject *__pyx_v_self) { - PyObject *__pyx_r = 0; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); - __pyx_r = __pyx_memoryview_get_suboffsets_MemoryView_10memoryview_10suboffsets___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static PyObject *__pyx_memoryview_get_suboffsets_MemoryView_10memoryview_10suboffsets___get__(struct __pyx_memoryview_obj *__pyx_v_self) { - int __pyx_v_i; - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - int __pyx_t_1; - PyObject *__pyx_t_2 = NULL; - int __pyx_t_3; - int __pyx_t_4; - PyObject *__pyx_t_5 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("__get__", 0); - - /* "View.MemoryView":528 - * @cname('__pyx_memoryview_get_suboffsets') - * def __get__(self): - * if self.view.suboffsets == NULL: # <<<<<<<<<<<<<< - * return [-1] * self.view.ndim - * - */ - __pyx_t_1 = ((__pyx_v_self->view.suboffsets == NULL) != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":529 - * def __get__(self): - * if self.view.suboffsets == NULL: - * return [-1] * self.view.ndim # <<<<<<<<<<<<<< - * - * return tuple([self.view.suboffsets[i] for i in xrange(self.view.ndim)]) - */ - __Pyx_XDECREF(__pyx_r); - __pyx_t_2 = PyList_New(1 * ((__pyx_v_self->view.ndim<0) ? 0:__pyx_v_self->view.ndim)); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 529; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - { Py_ssize_t __pyx_temp; - for (__pyx_temp=0; __pyx_temp < __pyx_v_self->view.ndim; __pyx_temp++) { - __Pyx_INCREF(__pyx_int_neg_1); - PyList_SET_ITEM(__pyx_t_2, __pyx_temp, __pyx_int_neg_1); - __Pyx_GIVEREF(__pyx_int_neg_1); - } - } - __pyx_r = __pyx_t_2; - __pyx_t_2 = 0; - goto __pyx_L0; - } - - /* "View.MemoryView":531 - * return [-1] * self.view.ndim - * - * return tuple([self.view.suboffsets[i] for i in xrange(self.view.ndim)]) # <<<<<<<<<<<<<< - * - * property ndim: - */ - __Pyx_XDECREF(__pyx_r); - __pyx_t_2 = PyList_New(0); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 531; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - __pyx_t_3 = __pyx_v_self->view.ndim; - for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { - __pyx_v_i = __pyx_t_4; - __pyx_t_5 = PyInt_FromSsize_t((__pyx_v_self->view.suboffsets[__pyx_v_i])); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 531; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_5); - if (unlikely(__Pyx_ListComp_Append(__pyx_t_2, (PyObject*)__pyx_t_5))) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 531; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - } - __pyx_t_5 = PyList_AsTuple(((PyObject*)__pyx_t_2)); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 531; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_5); - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - __pyx_r = __pyx_t_5; - __pyx_t_5 = 0; - goto __pyx_L0; - - /* "View.MemoryView":527 - * property suboffsets: - * @cname('__pyx_memoryview_get_suboffsets') - * def __get__(self): # <<<<<<<<<<<<<< - * if self.view.suboffsets == NULL: - * return [-1] * self.view.ndim - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_2); - __Pyx_XDECREF(__pyx_t_5); - __Pyx_AddTraceback("View.MemoryView.memoryview.suboffsets.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = NULL; - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":535 - * property ndim: - * @cname('__pyx_memoryview_get_ndim') - * def __get__(self): # <<<<<<<<<<<<<< - * return self.view.ndim - * - */ - -/* Python wrapper */ -static PyObject *__pyx_memoryview_get_ndim(PyObject *__pyx_v_self); /*proto*/ -static PyObject *__pyx_memoryview_get_ndim(PyObject *__pyx_v_self) { - PyObject *__pyx_r = 0; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); - __pyx_r = __pyx_memoryview_get_ndim_MemoryView_10memoryview_4ndim___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static PyObject *__pyx_memoryview_get_ndim_MemoryView_10memoryview_4ndim___get__(struct __pyx_memoryview_obj *__pyx_v_self) { - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - PyObject *__pyx_t_1 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("__get__", 0); - - /* "View.MemoryView":536 - * @cname('__pyx_memoryview_get_ndim') - * def __get__(self): - * return self.view.ndim # <<<<<<<<<<<<<< - * - * property itemsize: - */ - __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_self->view.ndim); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 536; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __pyx_r = __pyx_t_1; - __pyx_t_1 = 0; - goto __pyx_L0; - - /* "View.MemoryView":535 - * property ndim: - * @cname('__pyx_memoryview_get_ndim') - * def __get__(self): # <<<<<<<<<<<<<< - * return self.view.ndim - * - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_1); - __Pyx_AddTraceback("View.MemoryView.memoryview.ndim.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = NULL; - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":540 - * property itemsize: - * @cname('__pyx_memoryview_get_itemsize') - * def __get__(self): # <<<<<<<<<<<<<< - * return self.view.itemsize - * - */ - -/* Python wrapper */ -static PyObject *__pyx_memoryview_get_itemsize(PyObject *__pyx_v_self); /*proto*/ -static PyObject *__pyx_memoryview_get_itemsize(PyObject *__pyx_v_self) { - PyObject *__pyx_r = 0; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); - __pyx_r = __pyx_memoryview_get_itemsize_MemoryView_10memoryview_8itemsize___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static PyObject *__pyx_memoryview_get_itemsize_MemoryView_10memoryview_8itemsize___get__(struct __pyx_memoryview_obj *__pyx_v_self) { - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - PyObject *__pyx_t_1 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("__get__", 0); - - /* "View.MemoryView":541 - * @cname('__pyx_memoryview_get_itemsize') - * def __get__(self): - * return self.view.itemsize # <<<<<<<<<<<<<< - * - * property nbytes: - */ - __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = PyInt_FromSsize_t(__pyx_v_self->view.itemsize); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 541; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __pyx_r = __pyx_t_1; - __pyx_t_1 = 0; - goto __pyx_L0; - - /* "View.MemoryView":540 - * property itemsize: - * @cname('__pyx_memoryview_get_itemsize') - * def __get__(self): # <<<<<<<<<<<<<< - * return self.view.itemsize - * - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_1); - __Pyx_AddTraceback("View.MemoryView.memoryview.itemsize.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = NULL; - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":545 - * property nbytes: - * @cname('__pyx_memoryview_get_nbytes') - * def __get__(self): # <<<<<<<<<<<<<< - * return self.size * self.view.itemsize - * - */ - -/* Python wrapper */ -static PyObject *__pyx_memoryview_get_nbytes(PyObject *__pyx_v_self); /*proto*/ -static PyObject *__pyx_memoryview_get_nbytes(PyObject *__pyx_v_self) { - PyObject *__pyx_r = 0; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); - __pyx_r = __pyx_memoryview_get_nbytes_MemoryView_10memoryview_6nbytes___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static PyObject *__pyx_memoryview_get_nbytes_MemoryView_10memoryview_6nbytes___get__(struct __pyx_memoryview_obj *__pyx_v_self) { - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - PyObject *__pyx_t_1 = NULL; - PyObject *__pyx_t_2 = NULL; - PyObject *__pyx_t_3 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("__get__", 0); - - /* "View.MemoryView":546 - * @cname('__pyx_memoryview_get_nbytes') - * def __get__(self): - * return self.size * self.view.itemsize # <<<<<<<<<<<<<< - * - * property size: - */ - __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_size); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 546; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_self->view.itemsize); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 546; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - __pyx_t_3 = PyNumber_Multiply(__pyx_t_1, __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 546; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - __pyx_r = __pyx_t_3; - __pyx_t_3 = 0; - goto __pyx_L0; - - /* "View.MemoryView":545 - * property nbytes: - * @cname('__pyx_memoryview_get_nbytes') - * def __get__(self): # <<<<<<<<<<<<<< - * return self.size * self.view.itemsize - * - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_1); - __Pyx_XDECREF(__pyx_t_2); - __Pyx_XDECREF(__pyx_t_3); - __Pyx_AddTraceback("View.MemoryView.memoryview.nbytes.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = NULL; - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":550 - * property size: - * @cname('__pyx_memoryview_get_size') - * def __get__(self): # <<<<<<<<<<<<<< - * if self._size is None: - * result = 1 - */ - -/* Python wrapper */ -static PyObject *__pyx_memoryview_get_size(PyObject *__pyx_v_self); /*proto*/ -static PyObject *__pyx_memoryview_get_size(PyObject *__pyx_v_self) { - PyObject *__pyx_r = 0; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); - __pyx_r = __pyx_memoryview_get_size_MemoryView_10memoryview_4size___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static PyObject *__pyx_memoryview_get_size_MemoryView_10memoryview_4size___get__(struct __pyx_memoryview_obj *__pyx_v_self) { - PyObject *__pyx_v_result = NULL; - PyObject *__pyx_v_length = NULL; - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - int __pyx_t_1; - int __pyx_t_2; - PyObject *__pyx_t_3 = NULL; - PyObject *__pyx_t_4 = NULL; - Py_ssize_t __pyx_t_5; - PyObject *(*__pyx_t_6)(PyObject *); - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("__get__", 0); - - /* "View.MemoryView":551 - * @cname('__pyx_memoryview_get_size') - * def __get__(self): - * if self._size is None: # <<<<<<<<<<<<<< - * result = 1 - * - */ - __pyx_t_1 = (__pyx_v_self->_size == Py_None); - __pyx_t_2 = (__pyx_t_1 != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":552 - * def __get__(self): - * if self._size is None: - * result = 1 # <<<<<<<<<<<<<< - * - * for length in self.shape: - */ - __Pyx_INCREF(__pyx_int_1); - __pyx_v_result = __pyx_int_1; - - /* "View.MemoryView":554 - * result = 1 - * - * for length in self.shape: # <<<<<<<<<<<<<< - * result *= length - * - */ - __pyx_t_3 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_shape); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 554; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - if (PyList_CheckExact(__pyx_t_3) || PyTuple_CheckExact(__pyx_t_3)) { - __pyx_t_4 = __pyx_t_3; __Pyx_INCREF(__pyx_t_4); __pyx_t_5 = 0; - __pyx_t_6 = NULL; - } else { - __pyx_t_5 = -1; __pyx_t_4 = PyObject_GetIter(__pyx_t_3); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 554; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_6 = Py_TYPE(__pyx_t_4)->tp_iternext; - } - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - for (;;) { - if (!__pyx_t_6 && PyList_CheckExact(__pyx_t_4)) { - if (__pyx_t_5 >= PyList_GET_SIZE(__pyx_t_4)) break; - #if CYTHON_COMPILING_IN_CPYTHON - __pyx_t_3 = PyList_GET_ITEM(__pyx_t_4, __pyx_t_5); __Pyx_INCREF(__pyx_t_3); __pyx_t_5++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 554; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #else - __pyx_t_3 = PySequence_ITEM(__pyx_t_4, __pyx_t_5); __pyx_t_5++; if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 554; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #endif - } else if (!__pyx_t_6 && PyTuple_CheckExact(__pyx_t_4)) { - if (__pyx_t_5 >= PyTuple_GET_SIZE(__pyx_t_4)) break; - #if CYTHON_COMPILING_IN_CPYTHON - __pyx_t_3 = PyTuple_GET_ITEM(__pyx_t_4, __pyx_t_5); __Pyx_INCREF(__pyx_t_3); __pyx_t_5++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 554; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #else - __pyx_t_3 = PySequence_ITEM(__pyx_t_4, __pyx_t_5); __pyx_t_5++; if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 554; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #endif - } else { - __pyx_t_3 = __pyx_t_6(__pyx_t_4); - if (unlikely(!__pyx_t_3)) { - PyObject* exc_type = PyErr_Occurred(); - if (exc_type) { - if (likely(exc_type == PyExc_StopIteration || PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); - else {__pyx_filename = __pyx_f[2]; __pyx_lineno = 554; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - break; - } - __Pyx_GOTREF(__pyx_t_3); - } - __Pyx_XDECREF_SET(__pyx_v_length, __pyx_t_3); - __pyx_t_3 = 0; - - /* "View.MemoryView":555 - * - * for length in self.shape: - * result *= length # <<<<<<<<<<<<<< - * - * self._size = result - */ - __pyx_t_3 = PyNumber_InPlaceMultiply(__pyx_v_result, __pyx_v_length); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 555; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __Pyx_DECREF_SET(__pyx_v_result, __pyx_t_3); - __pyx_t_3 = 0; - } - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - - /* "View.MemoryView":557 - * result *= length - * - * self._size = result # <<<<<<<<<<<<<< - * - * return self._size - */ - __Pyx_INCREF(__pyx_v_result); - __Pyx_GIVEREF(__pyx_v_result); - __Pyx_GOTREF(__pyx_v_self->_size); - __Pyx_DECREF(__pyx_v_self->_size); - __pyx_v_self->_size = __pyx_v_result; - goto __pyx_L3; - } - __pyx_L3:; - - /* "View.MemoryView":559 - * self._size = result - * - * return self._size # <<<<<<<<<<<<<< - * - * def __len__(self): - */ - __Pyx_XDECREF(__pyx_r); - __Pyx_INCREF(__pyx_v_self->_size); - __pyx_r = __pyx_v_self->_size; - goto __pyx_L0; - - /* "View.MemoryView":550 - * property size: - * @cname('__pyx_memoryview_get_size') - * def __get__(self): # <<<<<<<<<<<<<< - * if self._size is None: - * result = 1 - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_3); - __Pyx_XDECREF(__pyx_t_4); - __Pyx_AddTraceback("View.MemoryView.memoryview.size.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = NULL; - __pyx_L0:; - __Pyx_XDECREF(__pyx_v_result); - __Pyx_XDECREF(__pyx_v_length); - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":561 - * return self._size - * - * def __len__(self): # <<<<<<<<<<<<<< - * if self.view.ndim >= 1: - * return self.view.shape[0] - */ - -/* Python wrapper */ -static Py_ssize_t __pyx_memoryview___len__(PyObject *__pyx_v_self); /*proto*/ -static Py_ssize_t __pyx_memoryview___len__(PyObject *__pyx_v_self) { - Py_ssize_t __pyx_r; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__len__ (wrapper)", 0); - __pyx_r = __pyx_memoryview_MemoryView_10memoryview_10__len__(((struct __pyx_memoryview_obj *)__pyx_v_self)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static Py_ssize_t __pyx_memoryview_MemoryView_10memoryview_10__len__(struct __pyx_memoryview_obj *__pyx_v_self) { - Py_ssize_t __pyx_r; - __Pyx_RefNannyDeclarations - int __pyx_t_1; - __Pyx_RefNannySetupContext("__len__", 0); - - /* "View.MemoryView":562 - * - * def __len__(self): - * if self.view.ndim >= 1: # <<<<<<<<<<<<<< - * return self.view.shape[0] - * - */ - __pyx_t_1 = ((__pyx_v_self->view.ndim >= 1) != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":563 - * def __len__(self): - * if self.view.ndim >= 1: - * return self.view.shape[0] # <<<<<<<<<<<<<< - * - * return 0 - */ - __pyx_r = (__pyx_v_self->view.shape[0]); - goto __pyx_L0; - } - - /* "View.MemoryView":565 - * return self.view.shape[0] - * - * return 0 # <<<<<<<<<<<<<< - * - * def __repr__(self): - */ - __pyx_r = 0; - goto __pyx_L0; - - /* "View.MemoryView":561 - * return self._size - * - * def __len__(self): # <<<<<<<<<<<<<< - * if self.view.ndim >= 1: - * return self.view.shape[0] - */ - - /* function exit code */ - __pyx_L0:; - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":567 - * return 0 - * - * def __repr__(self): # <<<<<<<<<<<<<< - * return "" % (self.base.__class__.__name__, - * id(self)) - */ - -/* Python wrapper */ -static PyObject *__pyx_memoryview___repr__(PyObject *__pyx_v_self); /*proto*/ -static PyObject *__pyx_memoryview___repr__(PyObject *__pyx_v_self) { - PyObject *__pyx_r = 0; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__repr__ (wrapper)", 0); - __pyx_r = __pyx_memoryview_MemoryView_10memoryview_12__repr__(((struct __pyx_memoryview_obj *)__pyx_v_self)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static PyObject *__pyx_memoryview_MemoryView_10memoryview_12__repr__(struct __pyx_memoryview_obj *__pyx_v_self) { - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - PyObject *__pyx_t_1 = NULL; - PyObject *__pyx_t_2 = NULL; - PyObject *__pyx_t_3 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("__repr__", 0); - - /* "View.MemoryView":568 - * - * def __repr__(self): - * return "" % (self.base.__class__.__name__, # <<<<<<<<<<<<<< - * id(self)) - * - */ - __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_base); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 568; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_class); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 568; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_name_2); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 568; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - - /* "View.MemoryView":569 - * def __repr__(self): - * return "" % (self.base.__class__.__name__, - * id(self)) # <<<<<<<<<<<<<< - * - * def __str__(self): - */ - __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 569; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - __Pyx_INCREF(((PyObject *)__pyx_v_self)); - PyTuple_SET_ITEM(__pyx_t_2, 0, ((PyObject *)__pyx_v_self)); - __Pyx_GIVEREF(((PyObject *)__pyx_v_self)); - __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_id, __pyx_t_2, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 569; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - - /* "View.MemoryView":568 - * - * def __repr__(self): - * return "" % (self.base.__class__.__name__, # <<<<<<<<<<<<<< - * id(self)) - * - */ - __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 568; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_1); - __Pyx_GIVEREF(__pyx_t_1); - PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_t_3); - __Pyx_GIVEREF(__pyx_t_3); - __pyx_t_1 = 0; - __pyx_t_3 = 0; - __pyx_t_3 = __Pyx_PyString_Format(__pyx_kp_s_MemoryView_of_r_at_0x_x, __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 568; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - __pyx_r = __pyx_t_3; - __pyx_t_3 = 0; - goto __pyx_L0; - - /* "View.MemoryView":567 - * return 0 - * - * def __repr__(self): # <<<<<<<<<<<<<< - * return "" % (self.base.__class__.__name__, - * id(self)) - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_1); - __Pyx_XDECREF(__pyx_t_2); - __Pyx_XDECREF(__pyx_t_3); - __Pyx_AddTraceback("View.MemoryView.memoryview.__repr__", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = NULL; - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":571 - * id(self)) - * - * def __str__(self): # <<<<<<<<<<<<<< - * return "" % (self.base.__class__.__name__,) - * - */ - -/* Python wrapper */ -static PyObject *__pyx_memoryview___str__(PyObject *__pyx_v_self); /*proto*/ -static PyObject *__pyx_memoryview___str__(PyObject *__pyx_v_self) { - PyObject *__pyx_r = 0; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__str__ (wrapper)", 0); - __pyx_r = __pyx_memoryview_MemoryView_10memoryview_14__str__(((struct __pyx_memoryview_obj *)__pyx_v_self)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static PyObject *__pyx_memoryview_MemoryView_10memoryview_14__str__(struct __pyx_memoryview_obj *__pyx_v_self) { - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - PyObject *__pyx_t_1 = NULL; - PyObject *__pyx_t_2 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("__str__", 0); - - /* "View.MemoryView":572 - * - * def __str__(self): - * return "" % (self.base.__class__.__name__,) # <<<<<<<<<<<<<< - * - * - */ - __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_base); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 572; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_class); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 572; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_name_2); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 572; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 572; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_1); - __Pyx_GIVEREF(__pyx_t_1); - __pyx_t_1 = 0; - __pyx_t_1 = __Pyx_PyString_Format(__pyx_kp_s_MemoryView_of_r_object, __pyx_t_2); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 572; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - __pyx_r = __pyx_t_1; - __pyx_t_1 = 0; - goto __pyx_L0; - - /* "View.MemoryView":571 - * id(self)) - * - * def __str__(self): # <<<<<<<<<<<<<< - * return "" % (self.base.__class__.__name__,) - * - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_1); - __Pyx_XDECREF(__pyx_t_2); - __Pyx_AddTraceback("View.MemoryView.memoryview.__str__", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = NULL; - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":575 - * - * - * def is_c_contig(self): # <<<<<<<<<<<<<< - * cdef __Pyx_memviewslice *mslice - * cdef __Pyx_memviewslice tmp - */ - -/* Python wrapper */ -static PyObject *__pyx_memoryview_is_c_contig(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ -static PyObject *__pyx_memoryview_is_c_contig(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { - PyObject *__pyx_r = 0; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("is_c_contig (wrapper)", 0); - __pyx_r = __pyx_memoryview_MemoryView_10memoryview_16is_c_contig(((struct __pyx_memoryview_obj *)__pyx_v_self)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static PyObject *__pyx_memoryview_MemoryView_10memoryview_16is_c_contig(struct __pyx_memoryview_obj *__pyx_v_self) { - __Pyx_memviewslice *__pyx_v_mslice; - __Pyx_memviewslice __pyx_v_tmp; - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - PyObject *__pyx_t_1 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("is_c_contig", 0); - - /* "View.MemoryView":578 - * cdef __Pyx_memviewslice *mslice - * cdef __Pyx_memviewslice tmp - * mslice = get_slice_from_memview(self, &tmp) # <<<<<<<<<<<<<< - * return slice_is_contig(mslice, 'C', self.view.ndim) - * - */ - __pyx_v_mslice = __pyx_memoryview_get_slice_from_memoryview(__pyx_v_self, (&__pyx_v_tmp)); - - /* "View.MemoryView":579 - * cdef __Pyx_memviewslice tmp - * mslice = get_slice_from_memview(self, &tmp) - * return slice_is_contig(mslice, 'C', self.view.ndim) # <<<<<<<<<<<<<< - * - * def is_f_contig(self): - */ - __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = __Pyx_PyBool_FromLong(__pyx_memviewslice_is_contig(__pyx_v_mslice, 'C', __pyx_v_self->view.ndim)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 579; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __pyx_r = __pyx_t_1; - __pyx_t_1 = 0; - goto __pyx_L0; - - /* "View.MemoryView":575 - * - * - * def is_c_contig(self): # <<<<<<<<<<<<<< - * cdef __Pyx_memviewslice *mslice - * cdef __Pyx_memviewslice tmp - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_1); - __Pyx_AddTraceback("View.MemoryView.memoryview.is_c_contig", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = NULL; - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":581 - * return slice_is_contig(mslice, 'C', self.view.ndim) - * - * def is_f_contig(self): # <<<<<<<<<<<<<< - * cdef __Pyx_memviewslice *mslice - * cdef __Pyx_memviewslice tmp - */ - -/* Python wrapper */ -static PyObject *__pyx_memoryview_is_f_contig(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ -static PyObject *__pyx_memoryview_is_f_contig(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { - PyObject *__pyx_r = 0; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("is_f_contig (wrapper)", 0); - __pyx_r = __pyx_memoryview_MemoryView_10memoryview_18is_f_contig(((struct __pyx_memoryview_obj *)__pyx_v_self)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static PyObject *__pyx_memoryview_MemoryView_10memoryview_18is_f_contig(struct __pyx_memoryview_obj *__pyx_v_self) { - __Pyx_memviewslice *__pyx_v_mslice; - __Pyx_memviewslice __pyx_v_tmp; - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - PyObject *__pyx_t_1 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("is_f_contig", 0); - - /* "View.MemoryView":584 - * cdef __Pyx_memviewslice *mslice - * cdef __Pyx_memviewslice tmp - * mslice = get_slice_from_memview(self, &tmp) # <<<<<<<<<<<<<< - * return slice_is_contig(mslice, 'F', self.view.ndim) - * - */ - __pyx_v_mslice = __pyx_memoryview_get_slice_from_memoryview(__pyx_v_self, (&__pyx_v_tmp)); - - /* "View.MemoryView":585 - * cdef __Pyx_memviewslice tmp - * mslice = get_slice_from_memview(self, &tmp) - * return slice_is_contig(mslice, 'F', self.view.ndim) # <<<<<<<<<<<<<< - * - * def copy(self): - */ - __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = __Pyx_PyBool_FromLong(__pyx_memviewslice_is_contig(__pyx_v_mslice, 'F', __pyx_v_self->view.ndim)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 585; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __pyx_r = __pyx_t_1; - __pyx_t_1 = 0; - goto __pyx_L0; - - /* "View.MemoryView":581 - * return slice_is_contig(mslice, 'C', self.view.ndim) - * - * def is_f_contig(self): # <<<<<<<<<<<<<< - * cdef __Pyx_memviewslice *mslice - * cdef __Pyx_memviewslice tmp - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_1); - __Pyx_AddTraceback("View.MemoryView.memoryview.is_f_contig", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = NULL; - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":587 - * return slice_is_contig(mslice, 'F', self.view.ndim) - * - * def copy(self): # <<<<<<<<<<<<<< - * cdef __Pyx_memviewslice mslice - * cdef int flags = self.flags & ~PyBUF_F_CONTIGUOUS - */ - -/* Python wrapper */ -static PyObject *__pyx_memoryview_copy(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ -static PyObject *__pyx_memoryview_copy(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { - PyObject *__pyx_r = 0; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("copy (wrapper)", 0); - __pyx_r = __pyx_memoryview_MemoryView_10memoryview_20copy(((struct __pyx_memoryview_obj *)__pyx_v_self)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static PyObject *__pyx_memoryview_MemoryView_10memoryview_20copy(struct __pyx_memoryview_obj *__pyx_v_self) { - __Pyx_memviewslice __pyx_v_mslice; - int __pyx_v_flags; - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - __Pyx_memviewslice __pyx_t_1; - PyObject *__pyx_t_2 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("copy", 0); - - /* "View.MemoryView":589 - * def copy(self): - * cdef __Pyx_memviewslice mslice - * cdef int flags = self.flags & ~PyBUF_F_CONTIGUOUS # <<<<<<<<<<<<<< - * - * slice_copy(self, &mslice) - */ - __pyx_v_flags = (__pyx_v_self->flags & (~PyBUF_F_CONTIGUOUS)); - - /* "View.MemoryView":591 - * cdef int flags = self.flags & ~PyBUF_F_CONTIGUOUS - * - * slice_copy(self, &mslice) # <<<<<<<<<<<<<< - * mslice = slice_copy_contig(&mslice, "c", self.view.ndim, - * self.view.itemsize, - */ - __pyx_memoryview_slice_copy(__pyx_v_self, (&__pyx_v_mslice)); - - /* "View.MemoryView":592 - * - * slice_copy(self, &mslice) - * mslice = slice_copy_contig(&mslice, "c", self.view.ndim, # <<<<<<<<<<<<<< - * self.view.itemsize, - * flags|PyBUF_C_CONTIGUOUS, - */ - __pyx_t_1 = __pyx_memoryview_copy_new_contig((&__pyx_v_mslice), __pyx_k_c, __pyx_v_self->view.ndim, __pyx_v_self->view.itemsize, (__pyx_v_flags | PyBUF_C_CONTIGUOUS), __pyx_v_self->dtype_is_object); if (unlikely(PyErr_Occurred())) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 592; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_v_mslice = __pyx_t_1; - - /* "View.MemoryView":597 - * self.dtype_is_object) - * - * return memoryview_copy_from_slice(self, &mslice) # <<<<<<<<<<<<<< - * - * def copy_fortran(self): - */ - __Pyx_XDECREF(__pyx_r); - __pyx_t_2 = __pyx_memoryview_copy_object_from_slice(__pyx_v_self, (&__pyx_v_mslice)); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 597; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - __pyx_r = __pyx_t_2; - __pyx_t_2 = 0; - goto __pyx_L0; - - /* "View.MemoryView":587 - * return slice_is_contig(mslice, 'F', self.view.ndim) - * - * def copy(self): # <<<<<<<<<<<<<< - * cdef __Pyx_memviewslice mslice - * cdef int flags = self.flags & ~PyBUF_F_CONTIGUOUS - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_2); - __Pyx_AddTraceback("View.MemoryView.memoryview.copy", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = NULL; - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":599 - * return memoryview_copy_from_slice(self, &mslice) - * - * def copy_fortran(self): # <<<<<<<<<<<<<< - * cdef __Pyx_memviewslice src, dst - * cdef int flags = self.flags & ~PyBUF_C_CONTIGUOUS - */ - -/* Python wrapper */ -static PyObject *__pyx_memoryview_copy_fortran(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ -static PyObject *__pyx_memoryview_copy_fortran(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { - PyObject *__pyx_r = 0; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("copy_fortran (wrapper)", 0); - __pyx_r = __pyx_memoryview_MemoryView_10memoryview_22copy_fortran(((struct __pyx_memoryview_obj *)__pyx_v_self)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static PyObject *__pyx_memoryview_MemoryView_10memoryview_22copy_fortran(struct __pyx_memoryview_obj *__pyx_v_self) { - __Pyx_memviewslice __pyx_v_src; - __Pyx_memviewslice __pyx_v_dst; - int __pyx_v_flags; - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - __Pyx_memviewslice __pyx_t_1; - PyObject *__pyx_t_2 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("copy_fortran", 0); - - /* "View.MemoryView":601 - * def copy_fortran(self): - * cdef __Pyx_memviewslice src, dst - * cdef int flags = self.flags & ~PyBUF_C_CONTIGUOUS # <<<<<<<<<<<<<< - * - * slice_copy(self, &src) - */ - __pyx_v_flags = (__pyx_v_self->flags & (~PyBUF_C_CONTIGUOUS)); - - /* "View.MemoryView":603 - * cdef int flags = self.flags & ~PyBUF_C_CONTIGUOUS - * - * slice_copy(self, &src) # <<<<<<<<<<<<<< - * dst = slice_copy_contig(&src, "fortran", self.view.ndim, - * self.view.itemsize, - */ - __pyx_memoryview_slice_copy(__pyx_v_self, (&__pyx_v_src)); - - /* "View.MemoryView":604 - * - * slice_copy(self, &src) - * dst = slice_copy_contig(&src, "fortran", self.view.ndim, # <<<<<<<<<<<<<< - * self.view.itemsize, - * flags|PyBUF_F_CONTIGUOUS, - */ - __pyx_t_1 = __pyx_memoryview_copy_new_contig((&__pyx_v_src), __pyx_k_fortran, __pyx_v_self->view.ndim, __pyx_v_self->view.itemsize, (__pyx_v_flags | PyBUF_F_CONTIGUOUS), __pyx_v_self->dtype_is_object); if (unlikely(PyErr_Occurred())) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 604; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_v_dst = __pyx_t_1; - - /* "View.MemoryView":609 - * self.dtype_is_object) - * - * return memoryview_copy_from_slice(self, &dst) # <<<<<<<<<<<<<< - * - * - */ - __Pyx_XDECREF(__pyx_r); - __pyx_t_2 = __pyx_memoryview_copy_object_from_slice(__pyx_v_self, (&__pyx_v_dst)); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 609; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - __pyx_r = __pyx_t_2; - __pyx_t_2 = 0; - goto __pyx_L0; - - /* "View.MemoryView":599 - * return memoryview_copy_from_slice(self, &mslice) - * - * def copy_fortran(self): # <<<<<<<<<<<<<< - * cdef __Pyx_memviewslice src, dst - * cdef int flags = self.flags & ~PyBUF_C_CONTIGUOUS - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_2); - __Pyx_AddTraceback("View.MemoryView.memoryview.copy_fortran", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = NULL; - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":613 - * - * @cname('__pyx_memoryview_new') - * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): # <<<<<<<<<<<<<< - * cdef memoryview result = memoryview(o, flags, dtype_is_object) - * result.typeinfo = typeinfo - */ - -static PyObject *__pyx_memoryview_new(PyObject *__pyx_v_o, int __pyx_v_flags, int __pyx_v_dtype_is_object, __Pyx_TypeInfo *__pyx_v_typeinfo) { - struct __pyx_memoryview_obj *__pyx_v_result = 0; - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - PyObject *__pyx_t_1 = NULL; - PyObject *__pyx_t_2 = NULL; - PyObject *__pyx_t_3 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("memoryview_cwrapper", 0); - - /* "View.MemoryView":614 - * @cname('__pyx_memoryview_new') - * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): - * cdef memoryview result = memoryview(o, flags, dtype_is_object) # <<<<<<<<<<<<<< - * result.typeinfo = typeinfo - * return result - */ - __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_flags); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 614; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_v_dtype_is_object); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 614; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 614; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __Pyx_INCREF(__pyx_v_o); - PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_o); - __Pyx_GIVEREF(__pyx_v_o); - PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_1); - __Pyx_GIVEREF(__pyx_t_1); - PyTuple_SET_ITEM(__pyx_t_3, 2, __pyx_t_2); - __Pyx_GIVEREF(__pyx_t_2); - __pyx_t_1 = 0; - __pyx_t_2 = 0; - __pyx_t_2 = __Pyx_PyObject_Call(((PyObject *)((PyObject *)__pyx_memoryview_type)), __pyx_t_3, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 614; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_v_result = ((struct __pyx_memoryview_obj *)__pyx_t_2); - __pyx_t_2 = 0; - - /* "View.MemoryView":615 - * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): - * cdef memoryview result = memoryview(o, flags, dtype_is_object) - * result.typeinfo = typeinfo # <<<<<<<<<<<<<< - * return result - * - */ - __pyx_v_result->typeinfo = __pyx_v_typeinfo; - - /* "View.MemoryView":616 - * cdef memoryview result = memoryview(o, flags, dtype_is_object) - * result.typeinfo = typeinfo - * return result # <<<<<<<<<<<<<< - * - * @cname('__pyx_memoryview_check') - */ - __Pyx_XDECREF(__pyx_r); - __Pyx_INCREF(((PyObject *)__pyx_v_result)); - __pyx_r = ((PyObject *)__pyx_v_result); - goto __pyx_L0; - - /* "View.MemoryView":613 - * - * @cname('__pyx_memoryview_new') - * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): # <<<<<<<<<<<<<< - * cdef memoryview result = memoryview(o, flags, dtype_is_object) - * result.typeinfo = typeinfo - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_1); - __Pyx_XDECREF(__pyx_t_2); - __Pyx_XDECREF(__pyx_t_3); - __Pyx_AddTraceback("View.MemoryView.memoryview_cwrapper", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = 0; - __pyx_L0:; - __Pyx_XDECREF((PyObject *)__pyx_v_result); - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":619 - * - * @cname('__pyx_memoryview_check') - * cdef inline bint memoryview_check(object o): # <<<<<<<<<<<<<< - * return isinstance(o, memoryview) - * - */ - -static CYTHON_INLINE int __pyx_memoryview_check(PyObject *__pyx_v_o) { - int __pyx_r; - __Pyx_RefNannyDeclarations - int __pyx_t_1; - __Pyx_RefNannySetupContext("memoryview_check", 0); - - /* "View.MemoryView":620 - * @cname('__pyx_memoryview_check') - * cdef inline bint memoryview_check(object o): - * return isinstance(o, memoryview) # <<<<<<<<<<<<<< - * - * cdef tuple _unellipsify(object index, int ndim): - */ - __pyx_t_1 = __Pyx_TypeCheck(__pyx_v_o, ((PyObject *)__pyx_memoryview_type)); - __pyx_r = __pyx_t_1; - goto __pyx_L0; - - /* "View.MemoryView":619 - * - * @cname('__pyx_memoryview_check') - * cdef inline bint memoryview_check(object o): # <<<<<<<<<<<<<< - * return isinstance(o, memoryview) - * - */ - - /* function exit code */ - __pyx_L0:; - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":622 - * return isinstance(o, memoryview) - * - * cdef tuple _unellipsify(object index, int ndim): # <<<<<<<<<<<<<< - * """ - * Replace all ellipses with full slices and fill incomplete indices with - */ - -static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { - PyObject *__pyx_v_tup = NULL; - PyObject *__pyx_v_result = NULL; - int __pyx_v_have_slices; - int __pyx_v_seen_ellipsis; - CYTHON_UNUSED PyObject *__pyx_v_idx = NULL; - PyObject *__pyx_v_item = NULL; - Py_ssize_t __pyx_v_nslices; - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - int __pyx_t_1; - int __pyx_t_2; - PyObject *__pyx_t_3 = NULL; - PyObject *__pyx_t_4 = NULL; - Py_ssize_t __pyx_t_5; - PyObject *(*__pyx_t_6)(PyObject *); - PyObject *__pyx_t_7 = NULL; - Py_ssize_t __pyx_t_8; - PyObject *__pyx_t_9 = NULL; - int __pyx_t_10; - int __pyx_t_11; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("_unellipsify", 0); - - /* "View.MemoryView":627 - * full slices. - * """ - * if not isinstance(index, tuple): # <<<<<<<<<<<<<< - * tup = (index,) - * else: - */ - __pyx_t_1 = PyTuple_Check(__pyx_v_index); - __pyx_t_2 = ((!(__pyx_t_1 != 0)) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":628 - * """ - * if not isinstance(index, tuple): - * tup = (index,) # <<<<<<<<<<<<<< - * else: - * tup = index - */ - __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 628; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __Pyx_INCREF(__pyx_v_index); - PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_index); - __Pyx_GIVEREF(__pyx_v_index); - __pyx_v_tup = __pyx_t_3; - __pyx_t_3 = 0; - goto __pyx_L3; - } - /*else*/ { - - /* "View.MemoryView":630 - * tup = (index,) - * else: - * tup = index # <<<<<<<<<<<<<< - * - * result = [] - */ - __Pyx_INCREF(__pyx_v_index); - __pyx_v_tup = __pyx_v_index; - } - __pyx_L3:; - - /* "View.MemoryView":632 - * tup = index - * - * result = [] # <<<<<<<<<<<<<< - * have_slices = False - * seen_ellipsis = False - */ - __pyx_t_3 = PyList_New(0); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 632; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __pyx_v_result = ((PyObject*)__pyx_t_3); - __pyx_t_3 = 0; - - /* "View.MemoryView":633 - * - * result = [] - * have_slices = False # <<<<<<<<<<<<<< - * seen_ellipsis = False - * for idx, item in enumerate(tup): - */ - __pyx_v_have_slices = 0; - - /* "View.MemoryView":634 - * result = [] - * have_slices = False - * seen_ellipsis = False # <<<<<<<<<<<<<< - * for idx, item in enumerate(tup): - * if item is Ellipsis: - */ - __pyx_v_seen_ellipsis = 0; - - /* "View.MemoryView":635 - * have_slices = False - * seen_ellipsis = False - * for idx, item in enumerate(tup): # <<<<<<<<<<<<<< - * if item is Ellipsis: - * if not seen_ellipsis: - */ - __Pyx_INCREF(__pyx_int_0); - __pyx_t_3 = __pyx_int_0; - if (PyList_CheckExact(__pyx_v_tup) || PyTuple_CheckExact(__pyx_v_tup)) { - __pyx_t_4 = __pyx_v_tup; __Pyx_INCREF(__pyx_t_4); __pyx_t_5 = 0; - __pyx_t_6 = NULL; - } else { - __pyx_t_5 = -1; __pyx_t_4 = PyObject_GetIter(__pyx_v_tup); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 635; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_6 = Py_TYPE(__pyx_t_4)->tp_iternext; - } - for (;;) { - if (!__pyx_t_6 && PyList_CheckExact(__pyx_t_4)) { - if (__pyx_t_5 >= PyList_GET_SIZE(__pyx_t_4)) break; - #if CYTHON_COMPILING_IN_CPYTHON - __pyx_t_7 = PyList_GET_ITEM(__pyx_t_4, __pyx_t_5); __Pyx_INCREF(__pyx_t_7); __pyx_t_5++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 635; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #else - __pyx_t_7 = PySequence_ITEM(__pyx_t_4, __pyx_t_5); __pyx_t_5++; if (unlikely(!__pyx_t_7)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 635; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #endif - } else if (!__pyx_t_6 && PyTuple_CheckExact(__pyx_t_4)) { - if (__pyx_t_5 >= PyTuple_GET_SIZE(__pyx_t_4)) break; - #if CYTHON_COMPILING_IN_CPYTHON - __pyx_t_7 = PyTuple_GET_ITEM(__pyx_t_4, __pyx_t_5); __Pyx_INCREF(__pyx_t_7); __pyx_t_5++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 635; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #else - __pyx_t_7 = PySequence_ITEM(__pyx_t_4, __pyx_t_5); __pyx_t_5++; if (unlikely(!__pyx_t_7)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 635; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #endif - } else { - __pyx_t_7 = __pyx_t_6(__pyx_t_4); - if (unlikely(!__pyx_t_7)) { - PyObject* exc_type = PyErr_Occurred(); - if (exc_type) { - if (likely(exc_type == PyExc_StopIteration || PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); - else {__pyx_filename = __pyx_f[2]; __pyx_lineno = 635; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - break; - } - __Pyx_GOTREF(__pyx_t_7); - } - __Pyx_XDECREF_SET(__pyx_v_item, __pyx_t_7); - __pyx_t_7 = 0; - __Pyx_INCREF(__pyx_t_3); - __Pyx_XDECREF_SET(__pyx_v_idx, __pyx_t_3); - __pyx_t_7 = PyNumber_Add(__pyx_t_3, __pyx_int_1); if (unlikely(!__pyx_t_7)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 635; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_7); - __Pyx_DECREF(__pyx_t_3); - __pyx_t_3 = __pyx_t_7; - __pyx_t_7 = 0; - - /* "View.MemoryView":636 - * seen_ellipsis = False - * for idx, item in enumerate(tup): - * if item is Ellipsis: # <<<<<<<<<<<<<< - * if not seen_ellipsis: - * result.extend([slice(None)] * (ndim - len(tup) + 1)) - */ - __pyx_t_2 = (__pyx_v_item == __pyx_builtin_Ellipsis); - __pyx_t_1 = (__pyx_t_2 != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":637 - * for idx, item in enumerate(tup): - * if item is Ellipsis: - * if not seen_ellipsis: # <<<<<<<<<<<<<< - * result.extend([slice(None)] * (ndim - len(tup) + 1)) - * seen_ellipsis = True - */ - __pyx_t_1 = ((!(__pyx_v_seen_ellipsis != 0)) != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":638 - * if item is Ellipsis: - * if not seen_ellipsis: - * result.extend([slice(None)] * (ndim - len(tup) + 1)) # <<<<<<<<<<<<<< - * seen_ellipsis = True - * else: - */ - __pyx_t_7 = __Pyx_PyObject_Call(((PyObject *)((PyObject*)(&PySlice_Type))), __pyx_tuple__14, NULL); if (unlikely(!__pyx_t_7)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 638; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_7); - __pyx_t_8 = PyObject_Length(__pyx_v_tup); if (unlikely(__pyx_t_8 == -1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 638; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_t_9 = PyList_New(1 * ((((__pyx_v_ndim - __pyx_t_8) + 1)<0) ? 0:((__pyx_v_ndim - __pyx_t_8) + 1))); if (unlikely(!__pyx_t_9)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 638; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_9); - { Py_ssize_t __pyx_temp; - for (__pyx_temp=0; __pyx_temp < ((__pyx_v_ndim - __pyx_t_8) + 1); __pyx_temp++) { - __Pyx_INCREF(__pyx_t_7); - PyList_SET_ITEM(__pyx_t_9, __pyx_temp, __pyx_t_7); - __Pyx_GIVEREF(__pyx_t_7); - } - } - __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; - __pyx_t_10 = __Pyx_PyList_Extend(__pyx_v_result, __pyx_t_9); if (unlikely(__pyx_t_10 == -1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 638; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; - - /* "View.MemoryView":639 - * if not seen_ellipsis: - * result.extend([slice(None)] * (ndim - len(tup) + 1)) - * seen_ellipsis = True # <<<<<<<<<<<<<< - * else: - * result.append(slice(None)) - */ - __pyx_v_seen_ellipsis = 1; - goto __pyx_L7; - } - /*else*/ { - - /* "View.MemoryView":641 - * seen_ellipsis = True - * else: - * result.append(slice(None)) # <<<<<<<<<<<<<< - * have_slices = True - * else: - */ - __pyx_t_9 = __Pyx_PyObject_Call(((PyObject *)((PyObject*)(&PySlice_Type))), __pyx_tuple__15, NULL); if (unlikely(!__pyx_t_9)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 641; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_9); - __pyx_t_10 = __Pyx_PyList_Append(__pyx_v_result, __pyx_t_9); if (unlikely(__pyx_t_10 == -1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 641; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; - } - __pyx_L7:; - - /* "View.MemoryView":642 - * else: - * result.append(slice(None)) - * have_slices = True # <<<<<<<<<<<<<< - * else: - * if not isinstance(item, slice) and not PyIndex_Check(item): - */ - __pyx_v_have_slices = 1; - goto __pyx_L6; - } - /*else*/ { - - /* "View.MemoryView":644 - * have_slices = True - * else: - * if not isinstance(item, slice) and not PyIndex_Check(item): # <<<<<<<<<<<<<< - * raise TypeError("Cannot index with type '%s'" % type(item)) - * - */ - __pyx_t_1 = PySlice_Check(__pyx_v_item); - __pyx_t_2 = ((!(__pyx_t_1 != 0)) != 0); - if (__pyx_t_2) { - __pyx_t_1 = ((!(__Pyx_PyIndex_Check(__pyx_v_item) != 0)) != 0); - __pyx_t_11 = __pyx_t_1; - } else { - __pyx_t_11 = __pyx_t_2; - } - if (__pyx_t_11) { - - /* "View.MemoryView":645 - * else: - * if not isinstance(item, slice) and not PyIndex_Check(item): - * raise TypeError("Cannot index with type '%s'" % type(item)) # <<<<<<<<<<<<<< - * - * have_slices = have_slices or isinstance(item, slice) - */ - __pyx_t_9 = __Pyx_PyString_Format(__pyx_kp_s_Cannot_index_with_type_s, ((PyObject *)Py_TYPE(__pyx_v_item))); if (unlikely(!__pyx_t_9)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 645; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_9); - __pyx_t_7 = PyTuple_New(1); if (unlikely(!__pyx_t_7)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 645; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_7); - PyTuple_SET_ITEM(__pyx_t_7, 0, __pyx_t_9); - __Pyx_GIVEREF(__pyx_t_9); - __pyx_t_9 = 0; - __pyx_t_9 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_t_7, NULL); if (unlikely(!__pyx_t_9)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 645; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_9); - __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; - __Pyx_Raise(__pyx_t_9, 0, 0, 0); - __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; - {__pyx_filename = __pyx_f[2]; __pyx_lineno = 645; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - - /* "View.MemoryView":647 - * raise TypeError("Cannot index with type '%s'" % type(item)) - * - * have_slices = have_slices or isinstance(item, slice) # <<<<<<<<<<<<<< - * result.append(item) - * - */ - if (!__pyx_v_have_slices) { - __pyx_t_11 = PySlice_Check(__pyx_v_item); - __pyx_t_2 = __pyx_t_11; - } else { - __pyx_t_2 = __pyx_v_have_slices; - } - __pyx_v_have_slices = __pyx_t_2; - - /* "View.MemoryView":648 - * - * have_slices = have_slices or isinstance(item, slice) - * result.append(item) # <<<<<<<<<<<<<< - * - * nslices = ndim - len(result) - */ - __pyx_t_10 = __Pyx_PyList_Append(__pyx_v_result, __pyx_v_item); if (unlikely(__pyx_t_10 == -1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 648; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - __pyx_L6:; - } - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - - /* "View.MemoryView":650 - * result.append(item) - * - * nslices = ndim - len(result) # <<<<<<<<<<<<<< - * if nslices: - * result.extend([slice(None)] * nslices) - */ - __pyx_t_5 = PyList_GET_SIZE(__pyx_v_result); if (unlikely(__pyx_t_5 == -1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 650; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_v_nslices = (__pyx_v_ndim - __pyx_t_5); - - /* "View.MemoryView":651 - * - * nslices = ndim - len(result) - * if nslices: # <<<<<<<<<<<<<< - * result.extend([slice(None)] * nslices) - * - */ - __pyx_t_2 = (__pyx_v_nslices != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":652 - * nslices = ndim - len(result) - * if nslices: - * result.extend([slice(None)] * nslices) # <<<<<<<<<<<<<< - * - * return have_slices or nslices, tuple(result) - */ - __pyx_t_3 = __Pyx_PyObject_Call(((PyObject *)((PyObject*)(&PySlice_Type))), __pyx_tuple__16, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 652; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __pyx_t_4 = PyList_New(1 * ((__pyx_v_nslices<0) ? 0:__pyx_v_nslices)); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 652; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - { Py_ssize_t __pyx_temp; - for (__pyx_temp=0; __pyx_temp < __pyx_v_nslices; __pyx_temp++) { - __Pyx_INCREF(__pyx_t_3); - PyList_SET_ITEM(__pyx_t_4, __pyx_temp, __pyx_t_3); - __Pyx_GIVEREF(__pyx_t_3); - } - } - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_t_10 = __Pyx_PyList_Extend(__pyx_v_result, __pyx_t_4); if (unlikely(__pyx_t_10 == -1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 652; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - goto __pyx_L9; - } - __pyx_L9:; - - /* "View.MemoryView":654 - * result.extend([slice(None)] * nslices) - * - * return have_slices or nslices, tuple(result) # <<<<<<<<<<<<<< - * - * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): - */ - __Pyx_XDECREF(__pyx_r); - __pyx_t_4 = __Pyx_PyBool_FromLong(__pyx_v_have_slices); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 654; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_2 < 0)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 654; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - if (!__pyx_t_2) { - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_3 = PyInt_FromSsize_t(__pyx_v_nslices); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 654; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __pyx_t_9 = __pyx_t_3; - __pyx_t_3 = 0; - } else { - __pyx_t_9 = __pyx_t_4; - __pyx_t_4 = 0; - } - __pyx_t_4 = PyList_AsTuple(__pyx_v_result); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 654; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 654; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_9); - __Pyx_GIVEREF(__pyx_t_9); - PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_4); - __Pyx_GIVEREF(__pyx_t_4); - __pyx_t_9 = 0; - __pyx_t_4 = 0; - __pyx_r = ((PyObject*)__pyx_t_3); - __pyx_t_3 = 0; - goto __pyx_L0; - - /* "View.MemoryView":622 - * return isinstance(o, memoryview) - * - * cdef tuple _unellipsify(object index, int ndim): # <<<<<<<<<<<<<< - * """ - * Replace all ellipses with full slices and fill incomplete indices with - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_3); - __Pyx_XDECREF(__pyx_t_4); - __Pyx_XDECREF(__pyx_t_7); - __Pyx_XDECREF(__pyx_t_9); - __Pyx_AddTraceback("View.MemoryView._unellipsify", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = 0; - __pyx_L0:; - __Pyx_XDECREF(__pyx_v_tup); - __Pyx_XDECREF(__pyx_v_result); - __Pyx_XDECREF(__pyx_v_idx); - __Pyx_XDECREF(__pyx_v_item); - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":656 - * return have_slices or nslices, tuple(result) - * - * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): # <<<<<<<<<<<<<< - * cdef int i - * for i in range(ndim): - */ - -static PyObject *assert_direct_dimensions(Py_ssize_t *__pyx_v_suboffsets, int __pyx_v_ndim) { - int __pyx_v_i; - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - int __pyx_t_1; - int __pyx_t_2; - int __pyx_t_3; - PyObject *__pyx_t_4 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("assert_direct_dimensions", 0); - - /* "View.MemoryView":658 - * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): - * cdef int i - * for i in range(ndim): # <<<<<<<<<<<<<< - * if suboffsets[i] >= 0: - * raise ValueError("Indirect dimensions not supported") - */ - __pyx_t_1 = __pyx_v_ndim; - for (__pyx_t_2 = 0; __pyx_t_2 < __pyx_t_1; __pyx_t_2+=1) { - __pyx_v_i = __pyx_t_2; - - /* "View.MemoryView":659 - * cdef int i - * for i in range(ndim): - * if suboffsets[i] >= 0: # <<<<<<<<<<<<<< - * raise ValueError("Indirect dimensions not supported") - * - */ - __pyx_t_3 = (((__pyx_v_suboffsets[__pyx_v_i]) >= 0) != 0); - if (__pyx_t_3) { - - /* "View.MemoryView":660 - * for i in range(ndim): - * if suboffsets[i] >= 0: - * raise ValueError("Indirect dimensions not supported") # <<<<<<<<<<<<<< - * - * - */ - __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__17, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 660; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __Pyx_Raise(__pyx_t_4, 0, 0, 0); - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - {__pyx_filename = __pyx_f[2]; __pyx_lineno = 660; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - } - - /* "View.MemoryView":656 - * return have_slices or nslices, tuple(result) - * - * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): # <<<<<<<<<<<<<< - * cdef int i - * for i in range(ndim): - */ - - /* function exit code */ - __pyx_r = Py_None; __Pyx_INCREF(Py_None); - goto __pyx_L0; - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_4); - __Pyx_AddTraceback("View.MemoryView.assert_direct_dimensions", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = 0; - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":667 - * - * @cname('__pyx_memview_slice') - * cdef memoryview memview_slice(memoryview memview, object indices): # <<<<<<<<<<<<<< - * cdef int new_ndim = 0, suboffset_dim = -1, dim - * cdef bint negative_step - */ - -static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_obj *__pyx_v_memview, PyObject *__pyx_v_indices) { - int __pyx_v_new_ndim; - int __pyx_v_suboffset_dim; - int __pyx_v_dim; - __Pyx_memviewslice __pyx_v_src; - __Pyx_memviewslice __pyx_v_dst; - __Pyx_memviewslice *__pyx_v_p_src; - struct __pyx_memoryviewslice_obj *__pyx_v_memviewsliceobj = 0; - __Pyx_memviewslice *__pyx_v_p_dst; - int *__pyx_v_p_suboffset_dim; - Py_ssize_t __pyx_v_start; - Py_ssize_t __pyx_v_stop; - Py_ssize_t __pyx_v_step; - int __pyx_v_have_start; - int __pyx_v_have_stop; - int __pyx_v_have_step; - PyObject *__pyx_v_index = NULL; - struct __pyx_memoryview_obj *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - int __pyx_t_1; - int __pyx_t_2; - PyObject *__pyx_t_3 = NULL; - struct __pyx_memoryview_obj *__pyx_t_4; - char *__pyx_t_5; - int __pyx_t_6; - Py_ssize_t __pyx_t_7; - PyObject *(*__pyx_t_8)(PyObject *); - PyObject *__pyx_t_9 = NULL; - Py_ssize_t __pyx_t_10; - int __pyx_t_11; - PyObject *__pyx_t_12 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("memview_slice", 0); - - /* "View.MemoryView":668 - * @cname('__pyx_memview_slice') - * cdef memoryview memview_slice(memoryview memview, object indices): - * cdef int new_ndim = 0, suboffset_dim = -1, dim # <<<<<<<<<<<<<< - * cdef bint negative_step - * cdef __Pyx_memviewslice src, dst - */ - __pyx_v_new_ndim = 0; - __pyx_v_suboffset_dim = -1; - - /* "View.MemoryView":675 - * - * - * memset(&dst, 0, sizeof(dst)) # <<<<<<<<<<<<<< - * - * cdef _memoryviewslice memviewsliceobj - */ - memset((&__pyx_v_dst), 0, (sizeof(__pyx_v_dst))); - - /* "View.MemoryView":679 - * cdef _memoryviewslice memviewsliceobj - * - * assert memview.view.ndim > 0 # <<<<<<<<<<<<<< - * - * if isinstance(memview, _memoryviewslice): - */ - #ifndef CYTHON_WITHOUT_ASSERTIONS - if (unlikely(!Py_OptimizeFlag)) { - if (unlikely(!((__pyx_v_memview->view.ndim > 0) != 0))) { - PyErr_SetNone(PyExc_AssertionError); - {__pyx_filename = __pyx_f[2]; __pyx_lineno = 679; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - } - #endif - - /* "View.MemoryView":681 - * assert memview.view.ndim > 0 - * - * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< - * memviewsliceobj = memview - * p_src = &memviewsliceobj.from_slice - */ - __pyx_t_1 = __Pyx_TypeCheck(((PyObject *)__pyx_v_memview), ((PyObject *)__pyx_memoryviewslice_type)); - __pyx_t_2 = (__pyx_t_1 != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":682 - * - * if isinstance(memview, _memoryviewslice): - * memviewsliceobj = memview # <<<<<<<<<<<<<< - * p_src = &memviewsliceobj.from_slice - * else: - */ - if (!(likely(((((PyObject *)__pyx_v_memview)) == Py_None) || likely(__Pyx_TypeTest(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type))))) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 682; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_t_3 = ((PyObject *)__pyx_v_memview); - __Pyx_INCREF(__pyx_t_3); - __pyx_v_memviewsliceobj = ((struct __pyx_memoryviewslice_obj *)__pyx_t_3); - __pyx_t_3 = 0; - - /* "View.MemoryView":683 - * if isinstance(memview, _memoryviewslice): - * memviewsliceobj = memview - * p_src = &memviewsliceobj.from_slice # <<<<<<<<<<<<<< - * else: - * slice_copy(memview, &src) - */ - __pyx_v_p_src = (&__pyx_v_memviewsliceobj->from_slice); - goto __pyx_L3; - } - /*else*/ { - - /* "View.MemoryView":685 - * p_src = &memviewsliceobj.from_slice - * else: - * slice_copy(memview, &src) # <<<<<<<<<<<<<< - * p_src = &src - * - */ - __pyx_memoryview_slice_copy(__pyx_v_memview, (&__pyx_v_src)); - - /* "View.MemoryView":686 - * else: - * slice_copy(memview, &src) - * p_src = &src # <<<<<<<<<<<<<< - * - * - */ - __pyx_v_p_src = (&__pyx_v_src); - } - __pyx_L3:; - - /* "View.MemoryView":692 - * - * - * dst.memview = p_src.memview # <<<<<<<<<<<<<< - * dst.data = p_src.data - * - */ - __pyx_t_4 = __pyx_v_p_src->memview; - __pyx_v_dst.memview = __pyx_t_4; - - /* "View.MemoryView":693 - * - * dst.memview = p_src.memview - * dst.data = p_src.data # <<<<<<<<<<<<<< - * - * - */ - __pyx_t_5 = __pyx_v_p_src->data; - __pyx_v_dst.data = __pyx_t_5; - - /* "View.MemoryView":698 - * - * - * cdef __Pyx_memviewslice *p_dst = &dst # <<<<<<<<<<<<<< - * cdef int *p_suboffset_dim = &suboffset_dim - * cdef Py_ssize_t start, stop, step - */ - __pyx_v_p_dst = (&__pyx_v_dst); - - /* "View.MemoryView":699 - * - * cdef __Pyx_memviewslice *p_dst = &dst - * cdef int *p_suboffset_dim = &suboffset_dim # <<<<<<<<<<<<<< - * cdef Py_ssize_t start, stop, step - * cdef bint have_start, have_stop, have_step - */ - __pyx_v_p_suboffset_dim = (&__pyx_v_suboffset_dim); - - /* "View.MemoryView":703 - * cdef bint have_start, have_stop, have_step - * - * for dim, index in enumerate(indices): # <<<<<<<<<<<<<< - * if PyIndex_Check(index): - * slice_memviewslice( - */ - __pyx_t_6 = 0; - if (PyList_CheckExact(__pyx_v_indices) || PyTuple_CheckExact(__pyx_v_indices)) { - __pyx_t_3 = __pyx_v_indices; __Pyx_INCREF(__pyx_t_3); __pyx_t_7 = 0; - __pyx_t_8 = NULL; - } else { - __pyx_t_7 = -1; __pyx_t_3 = PyObject_GetIter(__pyx_v_indices); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 703; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __pyx_t_8 = Py_TYPE(__pyx_t_3)->tp_iternext; - } - for (;;) { - if (!__pyx_t_8 && PyList_CheckExact(__pyx_t_3)) { - if (__pyx_t_7 >= PyList_GET_SIZE(__pyx_t_3)) break; - #if CYTHON_COMPILING_IN_CPYTHON - __pyx_t_9 = PyList_GET_ITEM(__pyx_t_3, __pyx_t_7); __Pyx_INCREF(__pyx_t_9); __pyx_t_7++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 703; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #else - __pyx_t_9 = PySequence_ITEM(__pyx_t_3, __pyx_t_7); __pyx_t_7++; if (unlikely(!__pyx_t_9)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 703; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #endif - } else if (!__pyx_t_8 && PyTuple_CheckExact(__pyx_t_3)) { - if (__pyx_t_7 >= PyTuple_GET_SIZE(__pyx_t_3)) break; - #if CYTHON_COMPILING_IN_CPYTHON - __pyx_t_9 = PyTuple_GET_ITEM(__pyx_t_3, __pyx_t_7); __Pyx_INCREF(__pyx_t_9); __pyx_t_7++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 703; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #else - __pyx_t_9 = PySequence_ITEM(__pyx_t_3, __pyx_t_7); __pyx_t_7++; if (unlikely(!__pyx_t_9)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 703; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #endif - } else { - __pyx_t_9 = __pyx_t_8(__pyx_t_3); - if (unlikely(!__pyx_t_9)) { - PyObject* exc_type = PyErr_Occurred(); - if (exc_type) { - if (likely(exc_type == PyExc_StopIteration || PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); - else {__pyx_filename = __pyx_f[2]; __pyx_lineno = 703; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - break; - } - __Pyx_GOTREF(__pyx_t_9); - } - __Pyx_XDECREF_SET(__pyx_v_index, __pyx_t_9); - __pyx_t_9 = 0; - __pyx_v_dim = __pyx_t_6; - __pyx_t_6 = (__pyx_t_6 + 1); - - /* "View.MemoryView":704 - * - * for dim, index in enumerate(indices): - * if PyIndex_Check(index): # <<<<<<<<<<<<<< - * slice_memviewslice( - * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], - */ - __pyx_t_2 = (__Pyx_PyIndex_Check(__pyx_v_index) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":708 - * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], - * dim, new_ndim, p_suboffset_dim, - * index, 0, 0, # start, stop, step # <<<<<<<<<<<<<< - * 0, 0, 0, # have_{start,stop,step} - * False) - */ - __pyx_t_10 = __Pyx_PyIndex_AsSsize_t(__pyx_v_index); if (unlikely((__pyx_t_10 == (Py_ssize_t)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 708; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - - /* "View.MemoryView":705 - * for dim, index in enumerate(indices): - * if PyIndex_Check(index): - * slice_memviewslice( # <<<<<<<<<<<<<< - * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], - * dim, new_ndim, p_suboffset_dim, - */ - __pyx_t_11 = __pyx_memoryview_slice_memviewslice(__pyx_v_p_dst, (__pyx_v_p_src->shape[__pyx_v_dim]), (__pyx_v_p_src->strides[__pyx_v_dim]), (__pyx_v_p_src->suboffsets[__pyx_v_dim]), __pyx_v_dim, __pyx_v_new_ndim, __pyx_v_p_suboffset_dim, __pyx_t_10, 0, 0, 0, 0, 0, 0); if (unlikely(__pyx_t_11 == -1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 705; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - goto __pyx_L6; - } - - /* "View.MemoryView":711 - * 0, 0, 0, # have_{start,stop,step} - * False) - * elif index is None: # <<<<<<<<<<<<<< - * p_dst.shape[new_ndim] = 1 - * p_dst.strides[new_ndim] = 0 - */ - __pyx_t_2 = (__pyx_v_index == Py_None); - __pyx_t_1 = (__pyx_t_2 != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":712 - * False) - * elif index is None: - * p_dst.shape[new_ndim] = 1 # <<<<<<<<<<<<<< - * p_dst.strides[new_ndim] = 0 - * p_dst.suboffsets[new_ndim] = -1 - */ - (__pyx_v_p_dst->shape[__pyx_v_new_ndim]) = 1; - - /* "View.MemoryView":713 - * elif index is None: - * p_dst.shape[new_ndim] = 1 - * p_dst.strides[new_ndim] = 0 # <<<<<<<<<<<<<< - * p_dst.suboffsets[new_ndim] = -1 - * new_ndim += 1 - */ - (__pyx_v_p_dst->strides[__pyx_v_new_ndim]) = 0; - - /* "View.MemoryView":714 - * p_dst.shape[new_ndim] = 1 - * p_dst.strides[new_ndim] = 0 - * p_dst.suboffsets[new_ndim] = -1 # <<<<<<<<<<<<<< - * new_ndim += 1 - * else: - */ - (__pyx_v_p_dst->suboffsets[__pyx_v_new_ndim]) = -1; - - /* "View.MemoryView":715 - * p_dst.strides[new_ndim] = 0 - * p_dst.suboffsets[new_ndim] = -1 - * new_ndim += 1 # <<<<<<<<<<<<<< - * else: - * start = index.start or 0 - */ - __pyx_v_new_ndim = (__pyx_v_new_ndim + 1); - goto __pyx_L6; - } - /*else*/ { - - /* "View.MemoryView":717 - * new_ndim += 1 - * else: - * start = index.start or 0 # <<<<<<<<<<<<<< - * stop = index.stop or 0 - * step = index.step or 0 - */ - __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_start); if (unlikely(!__pyx_t_9)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 717; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_9); - __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_9); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 717; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - if (!__pyx_t_1) { - __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; - __Pyx_INCREF(__pyx_int_0); - __pyx_t_12 = __pyx_int_0; - } else { - __pyx_t_12 = __pyx_t_9; - __pyx_t_9 = 0; - } - __pyx_t_10 = __Pyx_PyIndex_AsSsize_t(__pyx_t_12); if (unlikely((__pyx_t_10 == (Py_ssize_t)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 717; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; - __pyx_v_start = __pyx_t_10; - - /* "View.MemoryView":718 - * else: - * start = index.start or 0 - * stop = index.stop or 0 # <<<<<<<<<<<<<< - * step = index.step or 0 - * - */ - __pyx_t_12 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_stop); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 718; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_12); - __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_12); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 718; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - if (!__pyx_t_1) { - __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; - __Pyx_INCREF(__pyx_int_0); - __pyx_t_9 = __pyx_int_0; - } else { - __pyx_t_9 = __pyx_t_12; - __pyx_t_12 = 0; - } - __pyx_t_10 = __Pyx_PyIndex_AsSsize_t(__pyx_t_9); if (unlikely((__pyx_t_10 == (Py_ssize_t)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 718; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; - __pyx_v_stop = __pyx_t_10; - - /* "View.MemoryView":719 - * start = index.start or 0 - * stop = index.stop or 0 - * step = index.step or 0 # <<<<<<<<<<<<<< - * - * have_start = index.start is not None - */ - __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_step); if (unlikely(!__pyx_t_9)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 719; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_9); - __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_9); if (unlikely(__pyx_t_1 < 0)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 719; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - if (!__pyx_t_1) { - __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; - __Pyx_INCREF(__pyx_int_0); - __pyx_t_12 = __pyx_int_0; - } else { - __pyx_t_12 = __pyx_t_9; - __pyx_t_9 = 0; - } - __pyx_t_10 = __Pyx_PyIndex_AsSsize_t(__pyx_t_12); if (unlikely((__pyx_t_10 == (Py_ssize_t)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 719; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; - __pyx_v_step = __pyx_t_10; - - /* "View.MemoryView":721 - * step = index.step or 0 - * - * have_start = index.start is not None # <<<<<<<<<<<<<< - * have_stop = index.stop is not None - * have_step = index.step is not None - */ - __pyx_t_12 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_start); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 721; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_12); - __pyx_t_1 = (__pyx_t_12 != Py_None); - __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; - __pyx_v_have_start = __pyx_t_1; - - /* "View.MemoryView":722 - * - * have_start = index.start is not None - * have_stop = index.stop is not None # <<<<<<<<<<<<<< - * have_step = index.step is not None - * - */ - __pyx_t_12 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_stop); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 722; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_12); - __pyx_t_1 = (__pyx_t_12 != Py_None); - __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; - __pyx_v_have_stop = __pyx_t_1; - - /* "View.MemoryView":723 - * have_start = index.start is not None - * have_stop = index.stop is not None - * have_step = index.step is not None # <<<<<<<<<<<<<< - * - * slice_memviewslice( - */ - __pyx_t_12 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_step); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 723; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_12); - __pyx_t_1 = (__pyx_t_12 != Py_None); - __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; - __pyx_v_have_step = __pyx_t_1; - - /* "View.MemoryView":725 - * have_step = index.step is not None - * - * slice_memviewslice( # <<<<<<<<<<<<<< - * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], - * dim, new_ndim, p_suboffset_dim, - */ - __pyx_t_11 = __pyx_memoryview_slice_memviewslice(__pyx_v_p_dst, (__pyx_v_p_src->shape[__pyx_v_dim]), (__pyx_v_p_src->strides[__pyx_v_dim]), (__pyx_v_p_src->suboffsets[__pyx_v_dim]), __pyx_v_dim, __pyx_v_new_ndim, __pyx_v_p_suboffset_dim, __pyx_v_start, __pyx_v_stop, __pyx_v_step, __pyx_v_have_start, __pyx_v_have_stop, __pyx_v_have_step, 1); if (unlikely(__pyx_t_11 == -1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 725; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - - /* "View.MemoryView":731 - * have_start, have_stop, have_step, - * True) - * new_ndim += 1 # <<<<<<<<<<<<<< - * - * if isinstance(memview, _memoryviewslice): - */ - __pyx_v_new_ndim = (__pyx_v_new_ndim + 1); - } - __pyx_L6:; - } - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - - /* "View.MemoryView":733 - * new_ndim += 1 - * - * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< - * return memoryview_fromslice(dst, new_ndim, - * memviewsliceobj.to_object_func, - */ - __pyx_t_1 = __Pyx_TypeCheck(((PyObject *)__pyx_v_memview), ((PyObject *)__pyx_memoryviewslice_type)); - __pyx_t_2 = (__pyx_t_1 != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":734 - * - * if isinstance(memview, _memoryviewslice): - * return memoryview_fromslice(dst, new_ndim, # <<<<<<<<<<<<<< - * memviewsliceobj.to_object_func, - * memviewsliceobj.to_dtype_func, - */ - __Pyx_XDECREF(((PyObject *)__pyx_r)); - - /* "View.MemoryView":735 - * if isinstance(memview, _memoryviewslice): - * return memoryview_fromslice(dst, new_ndim, - * memviewsliceobj.to_object_func, # <<<<<<<<<<<<<< - * memviewsliceobj.to_dtype_func, - * memview.dtype_is_object) - */ - if (unlikely(!__pyx_v_memviewsliceobj)) { __Pyx_RaiseUnboundLocalError("memviewsliceobj"); {__pyx_filename = __pyx_f[2]; __pyx_lineno = 735; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } - - /* "View.MemoryView":736 - * return memoryview_fromslice(dst, new_ndim, - * memviewsliceobj.to_object_func, - * memviewsliceobj.to_dtype_func, # <<<<<<<<<<<<<< - * memview.dtype_is_object) - * else: - */ - if (unlikely(!__pyx_v_memviewsliceobj)) { __Pyx_RaiseUnboundLocalError("memviewsliceobj"); {__pyx_filename = __pyx_f[2]; __pyx_lineno = 736; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } - - /* "View.MemoryView":734 - * - * if isinstance(memview, _memoryviewslice): - * return memoryview_fromslice(dst, new_ndim, # <<<<<<<<<<<<<< - * memviewsliceobj.to_object_func, - * memviewsliceobj.to_dtype_func, - */ - __pyx_t_3 = __pyx_memoryview_fromslice(__pyx_v_dst, __pyx_v_new_ndim, __pyx_v_memviewsliceobj->to_object_func, __pyx_v_memviewsliceobj->to_dtype_func, __pyx_v_memview->dtype_is_object); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 734; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_memoryview_type))))) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 734; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_r = ((struct __pyx_memoryview_obj *)__pyx_t_3); - __pyx_t_3 = 0; - goto __pyx_L0; - } - /*else*/ { - - /* "View.MemoryView":739 - * memview.dtype_is_object) - * else: - * return memoryview_fromslice(dst, new_ndim, NULL, NULL, # <<<<<<<<<<<<<< - * memview.dtype_is_object) - * - */ - __Pyx_XDECREF(((PyObject *)__pyx_r)); - - /* "View.MemoryView":740 - * else: - * return memoryview_fromslice(dst, new_ndim, NULL, NULL, - * memview.dtype_is_object) # <<<<<<<<<<<<<< - * - * - */ - __pyx_t_3 = __pyx_memoryview_fromslice(__pyx_v_dst, __pyx_v_new_ndim, NULL, NULL, __pyx_v_memview->dtype_is_object); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 739; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - - /* "View.MemoryView":739 - * memview.dtype_is_object) - * else: - * return memoryview_fromslice(dst, new_ndim, NULL, NULL, # <<<<<<<<<<<<<< - * memview.dtype_is_object) - * - */ - if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_memoryview_type))))) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 739; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_r = ((struct __pyx_memoryview_obj *)__pyx_t_3); - __pyx_t_3 = 0; - goto __pyx_L0; - } - - /* "View.MemoryView":667 - * - * @cname('__pyx_memview_slice') - * cdef memoryview memview_slice(memoryview memview, object indices): # <<<<<<<<<<<<<< - * cdef int new_ndim = 0, suboffset_dim = -1, dim - * cdef bint negative_step - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_3); - __Pyx_XDECREF(__pyx_t_9); - __Pyx_XDECREF(__pyx_t_12); - __Pyx_AddTraceback("View.MemoryView.memview_slice", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = 0; - __pyx_L0:; - __Pyx_XDECREF((PyObject *)__pyx_v_memviewsliceobj); - __Pyx_XDECREF(__pyx_v_index); - __Pyx_XGIVEREF((PyObject *)__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":764 - * - * @cname('__pyx_memoryview_slice_memviewslice') - * cdef int slice_memviewslice( # <<<<<<<<<<<<<< - * __Pyx_memviewslice *dst, - * Py_ssize_t shape, Py_ssize_t stride, Py_ssize_t suboffset, - */ - -static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, Py_ssize_t __pyx_v_shape, Py_ssize_t __pyx_v_stride, Py_ssize_t __pyx_v_suboffset, int __pyx_v_dim, int __pyx_v_new_ndim, int *__pyx_v_suboffset_dim, Py_ssize_t __pyx_v_start, Py_ssize_t __pyx_v_stop, Py_ssize_t __pyx_v_step, int __pyx_v_have_start, int __pyx_v_have_stop, int __pyx_v_have_step, int __pyx_v_is_slice) { - Py_ssize_t __pyx_v_new_shape; - int __pyx_v_negative_step; - int __pyx_r; - int __pyx_t_1; - int __pyx_t_2; - int __pyx_t_3; - int __pyx_t_4; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - - /* "View.MemoryView":784 - * cdef bint negative_step - * - * if not is_slice: # <<<<<<<<<<<<<< - * - * if start < 0: - */ - __pyx_t_1 = ((!(__pyx_v_is_slice != 0)) != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":786 - * if not is_slice: - * - * if start < 0: # <<<<<<<<<<<<<< - * start += shape - * if not 0 <= start < shape: - */ - __pyx_t_1 = ((__pyx_v_start < 0) != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":787 - * - * if start < 0: - * start += shape # <<<<<<<<<<<<<< - * if not 0 <= start < shape: - * _err_dim(IndexError, "Index out of bounds (axis %d)", dim) - */ - __pyx_v_start = (__pyx_v_start + __pyx_v_shape); - goto __pyx_L4; - } - __pyx_L4:; - - /* "View.MemoryView":788 - * if start < 0: - * start += shape - * if not 0 <= start < shape: # <<<<<<<<<<<<<< - * _err_dim(IndexError, "Index out of bounds (axis %d)", dim) - * else: - */ - __pyx_t_1 = (0 <= __pyx_v_start); - if (__pyx_t_1) { - __pyx_t_1 = (__pyx_v_start < __pyx_v_shape); - } - __pyx_t_2 = ((!(__pyx_t_1 != 0)) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":789 - * start += shape - * if not 0 <= start < shape: - * _err_dim(IndexError, "Index out of bounds (axis %d)", dim) # <<<<<<<<<<<<<< - * else: - * - */ - __pyx_t_3 = __pyx_memoryview_err_dim(__pyx_builtin_IndexError, __pyx_k_Index_out_of_bounds_axis_d, __pyx_v_dim); if (unlikely(__pyx_t_3 == -1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 789; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - goto __pyx_L5; - } - __pyx_L5:; - goto __pyx_L3; - } - /*else*/ { - - /* "View.MemoryView":792 - * else: - * - * negative_step = have_step != 0 and step < 0 # <<<<<<<<<<<<<< - * - * if have_step and step == 0: - */ - __pyx_t_2 = (__pyx_v_have_step != 0); - if (__pyx_t_2) { - __pyx_t_1 = (__pyx_v_step < 0); - __pyx_t_4 = __pyx_t_1; - } else { - __pyx_t_4 = __pyx_t_2; - } - __pyx_v_negative_step = __pyx_t_4; - - /* "View.MemoryView":794 - * negative_step = have_step != 0 and step < 0 - * - * if have_step and step == 0: # <<<<<<<<<<<<<< - * _err_dim(ValueError, "Step may not be zero (axis %d)", dim) - * - */ - if ((__pyx_v_have_step != 0)) { - __pyx_t_4 = (__pyx_v_step == 0); - __pyx_t_2 = __pyx_t_4; - } else { - __pyx_t_2 = (__pyx_v_have_step != 0); - } - if (__pyx_t_2) { - - /* "View.MemoryView":795 - * - * if have_step and step == 0: - * _err_dim(ValueError, "Step may not be zero (axis %d)", dim) # <<<<<<<<<<<<<< - * - * - */ - __pyx_t_3 = __pyx_memoryview_err_dim(__pyx_builtin_ValueError, __pyx_k_Step_may_not_be_zero_axis_d, __pyx_v_dim); if (unlikely(__pyx_t_3 == -1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 795; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - goto __pyx_L6; - } - __pyx_L6:; - - /* "View.MemoryView":798 - * - * - * if have_start: # <<<<<<<<<<<<<< - * if start < 0: - * start += shape - */ - __pyx_t_2 = (__pyx_v_have_start != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":799 - * - * if have_start: - * if start < 0: # <<<<<<<<<<<<<< - * start += shape - * if start < 0: - */ - __pyx_t_2 = ((__pyx_v_start < 0) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":800 - * if have_start: - * if start < 0: - * start += shape # <<<<<<<<<<<<<< - * if start < 0: - * start = 0 - */ - __pyx_v_start = (__pyx_v_start + __pyx_v_shape); - - /* "View.MemoryView":801 - * if start < 0: - * start += shape - * if start < 0: # <<<<<<<<<<<<<< - * start = 0 - * elif start >= shape: - */ - __pyx_t_2 = ((__pyx_v_start < 0) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":802 - * start += shape - * if start < 0: - * start = 0 # <<<<<<<<<<<<<< - * elif start >= shape: - * if negative_step: - */ - __pyx_v_start = 0; - goto __pyx_L9; - } - __pyx_L9:; - goto __pyx_L8; - } - - /* "View.MemoryView":803 - * if start < 0: - * start = 0 - * elif start >= shape: # <<<<<<<<<<<<<< - * if negative_step: - * start = shape - 1 - */ - __pyx_t_2 = ((__pyx_v_start >= __pyx_v_shape) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":804 - * start = 0 - * elif start >= shape: - * if negative_step: # <<<<<<<<<<<<<< - * start = shape - 1 - * else: - */ - __pyx_t_2 = (__pyx_v_negative_step != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":805 - * elif start >= shape: - * if negative_step: - * start = shape - 1 # <<<<<<<<<<<<<< - * else: - * start = shape - */ - __pyx_v_start = (__pyx_v_shape - 1); - goto __pyx_L10; - } - /*else*/ { - - /* "View.MemoryView":807 - * start = shape - 1 - * else: - * start = shape # <<<<<<<<<<<<<< - * else: - * if negative_step: - */ - __pyx_v_start = __pyx_v_shape; - } - __pyx_L10:; - goto __pyx_L8; - } - __pyx_L8:; - goto __pyx_L7; - } - /*else*/ { - - /* "View.MemoryView":809 - * start = shape - * else: - * if negative_step: # <<<<<<<<<<<<<< - * start = shape - 1 - * else: - */ - __pyx_t_2 = (__pyx_v_negative_step != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":810 - * else: - * if negative_step: - * start = shape - 1 # <<<<<<<<<<<<<< - * else: - * start = 0 - */ - __pyx_v_start = (__pyx_v_shape - 1); - goto __pyx_L11; - } - /*else*/ { - - /* "View.MemoryView":812 - * start = shape - 1 - * else: - * start = 0 # <<<<<<<<<<<<<< - * - * if have_stop: - */ - __pyx_v_start = 0; - } - __pyx_L11:; - } - __pyx_L7:; - - /* "View.MemoryView":814 - * start = 0 - * - * if have_stop: # <<<<<<<<<<<<<< - * if stop < 0: - * stop += shape - */ - __pyx_t_2 = (__pyx_v_have_stop != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":815 - * - * if have_stop: - * if stop < 0: # <<<<<<<<<<<<<< - * stop += shape - * if stop < 0: - */ - __pyx_t_2 = ((__pyx_v_stop < 0) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":816 - * if have_stop: - * if stop < 0: - * stop += shape # <<<<<<<<<<<<<< - * if stop < 0: - * stop = 0 - */ - __pyx_v_stop = (__pyx_v_stop + __pyx_v_shape); - - /* "View.MemoryView":817 - * if stop < 0: - * stop += shape - * if stop < 0: # <<<<<<<<<<<<<< - * stop = 0 - * elif stop > shape: - */ - __pyx_t_2 = ((__pyx_v_stop < 0) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":818 - * stop += shape - * if stop < 0: - * stop = 0 # <<<<<<<<<<<<<< - * elif stop > shape: - * stop = shape - */ - __pyx_v_stop = 0; - goto __pyx_L14; - } - __pyx_L14:; - goto __pyx_L13; - } - - /* "View.MemoryView":819 - * if stop < 0: - * stop = 0 - * elif stop > shape: # <<<<<<<<<<<<<< - * stop = shape - * else: - */ - __pyx_t_2 = ((__pyx_v_stop > __pyx_v_shape) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":820 - * stop = 0 - * elif stop > shape: - * stop = shape # <<<<<<<<<<<<<< - * else: - * if negative_step: - */ - __pyx_v_stop = __pyx_v_shape; - goto __pyx_L13; - } - __pyx_L13:; - goto __pyx_L12; - } - /*else*/ { - - /* "View.MemoryView":822 - * stop = shape - * else: - * if negative_step: # <<<<<<<<<<<<<< - * stop = -1 - * else: - */ - __pyx_t_2 = (__pyx_v_negative_step != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":823 - * else: - * if negative_step: - * stop = -1 # <<<<<<<<<<<<<< - * else: - * stop = shape - */ - __pyx_v_stop = -1; - goto __pyx_L15; - } - /*else*/ { - - /* "View.MemoryView":825 - * stop = -1 - * else: - * stop = shape # <<<<<<<<<<<<<< - * - * if not have_step: - */ - __pyx_v_stop = __pyx_v_shape; - } - __pyx_L15:; - } - __pyx_L12:; - - /* "View.MemoryView":827 - * stop = shape - * - * if not have_step: # <<<<<<<<<<<<<< - * step = 1 - * - */ - __pyx_t_2 = ((!(__pyx_v_have_step != 0)) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":828 - * - * if not have_step: - * step = 1 # <<<<<<<<<<<<<< - * - * - */ - __pyx_v_step = 1; - goto __pyx_L16; - } - __pyx_L16:; - - /* "View.MemoryView":832 - * - * with cython.cdivision(True): - * new_shape = (stop - start) // step # <<<<<<<<<<<<<< - * - * if (stop - start) - step * new_shape: - */ - __pyx_v_new_shape = ((__pyx_v_stop - __pyx_v_start) / __pyx_v_step); - - /* "View.MemoryView":834 - * new_shape = (stop - start) // step - * - * if (stop - start) - step * new_shape: # <<<<<<<<<<<<<< - * new_shape += 1 - * - */ - __pyx_t_2 = (((__pyx_v_stop - __pyx_v_start) - (__pyx_v_step * __pyx_v_new_shape)) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":835 - * - * if (stop - start) - step * new_shape: - * new_shape += 1 # <<<<<<<<<<<<<< - * - * if new_shape < 0: - */ - __pyx_v_new_shape = (__pyx_v_new_shape + 1); - goto __pyx_L17; - } - __pyx_L17:; - - /* "View.MemoryView":837 - * new_shape += 1 - * - * if new_shape < 0: # <<<<<<<<<<<<<< - * new_shape = 0 - * - */ - __pyx_t_2 = ((__pyx_v_new_shape < 0) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":838 - * - * if new_shape < 0: - * new_shape = 0 # <<<<<<<<<<<<<< - * - * - */ - __pyx_v_new_shape = 0; - goto __pyx_L18; - } - __pyx_L18:; - - /* "View.MemoryView":841 - * - * - * dst.strides[new_ndim] = stride * step # <<<<<<<<<<<<<< - * dst.shape[new_ndim] = new_shape - * dst.suboffsets[new_ndim] = suboffset - */ - (__pyx_v_dst->strides[__pyx_v_new_ndim]) = (__pyx_v_stride * __pyx_v_step); - - /* "View.MemoryView":842 - * - * dst.strides[new_ndim] = stride * step - * dst.shape[new_ndim] = new_shape # <<<<<<<<<<<<<< - * dst.suboffsets[new_ndim] = suboffset - * - */ - (__pyx_v_dst->shape[__pyx_v_new_ndim]) = __pyx_v_new_shape; - - /* "View.MemoryView":843 - * dst.strides[new_ndim] = stride * step - * dst.shape[new_ndim] = new_shape - * dst.suboffsets[new_ndim] = suboffset # <<<<<<<<<<<<<< - * - * - */ - (__pyx_v_dst->suboffsets[__pyx_v_new_ndim]) = __pyx_v_suboffset; - } - __pyx_L3:; - - /* "View.MemoryView":846 - * - * - * if suboffset_dim[0] < 0: # <<<<<<<<<<<<<< - * dst.data += start * stride - * else: - */ - __pyx_t_2 = (((__pyx_v_suboffset_dim[0]) < 0) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":847 - * - * if suboffset_dim[0] < 0: - * dst.data += start * stride # <<<<<<<<<<<<<< - * else: - * dst.suboffsets[suboffset_dim[0]] += start * stride - */ - __pyx_v_dst->data = (__pyx_v_dst->data + (__pyx_v_start * __pyx_v_stride)); - goto __pyx_L19; - } - /*else*/ { - - /* "View.MemoryView":849 - * dst.data += start * stride - * else: - * dst.suboffsets[suboffset_dim[0]] += start * stride # <<<<<<<<<<<<<< - * - * if suboffset >= 0: - */ - __pyx_t_3 = (__pyx_v_suboffset_dim[0]); - (__pyx_v_dst->suboffsets[__pyx_t_3]) = ((__pyx_v_dst->suboffsets[__pyx_t_3]) + (__pyx_v_start * __pyx_v_stride)); - } - __pyx_L19:; - - /* "View.MemoryView":851 - * dst.suboffsets[suboffset_dim[0]] += start * stride - * - * if suboffset >= 0: # <<<<<<<<<<<<<< - * if not is_slice: - * if new_ndim == 0: - */ - __pyx_t_2 = ((__pyx_v_suboffset >= 0) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":852 - * - * if suboffset >= 0: - * if not is_slice: # <<<<<<<<<<<<<< - * if new_ndim == 0: - * dst.data = ( dst.data)[0] + suboffset - */ - __pyx_t_2 = ((!(__pyx_v_is_slice != 0)) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":853 - * if suboffset >= 0: - * if not is_slice: - * if new_ndim == 0: # <<<<<<<<<<<<<< - * dst.data = ( dst.data)[0] + suboffset - * else: - */ - __pyx_t_2 = ((__pyx_v_new_ndim == 0) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":854 - * if not is_slice: - * if new_ndim == 0: - * dst.data = ( dst.data)[0] + suboffset # <<<<<<<<<<<<<< - * else: - * _err_dim(IndexError, "All dimensions preceding dimension %d " - */ - __pyx_v_dst->data = ((((char **)__pyx_v_dst->data)[0]) + __pyx_v_suboffset); - goto __pyx_L22; - } - /*else*/ { - - /* "View.MemoryView":856 - * dst.data = ( dst.data)[0] + suboffset - * else: - * _err_dim(IndexError, "All dimensions preceding dimension %d " # <<<<<<<<<<<<<< - * "must be indexed and not sliced", dim) - * else: - */ - __pyx_t_3 = __pyx_memoryview_err_dim(__pyx_builtin_IndexError, __pyx_k_All_dimensions_preceding_dimensi, __pyx_v_dim); if (unlikely(__pyx_t_3 == -1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 856; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - __pyx_L22:; - goto __pyx_L21; - } - /*else*/ { - - /* "View.MemoryView":859 - * "must be indexed and not sliced", dim) - * else: - * suboffset_dim[0] = new_ndim # <<<<<<<<<<<<<< - * - * return 0 - */ - (__pyx_v_suboffset_dim[0]) = __pyx_v_new_ndim; - } - __pyx_L21:; - goto __pyx_L20; - } - __pyx_L20:; - - /* "View.MemoryView":861 - * suboffset_dim[0] = new_ndim - * - * return 0 # <<<<<<<<<<<<<< - * - * - */ - __pyx_r = 0; - goto __pyx_L0; - - /* "View.MemoryView":764 - * - * @cname('__pyx_memoryview_slice_memviewslice') - * cdef int slice_memviewslice( # <<<<<<<<<<<<<< - * __Pyx_memviewslice *dst, - * Py_ssize_t shape, Py_ssize_t stride, Py_ssize_t suboffset, - */ - - /* function exit code */ - __pyx_L1_error:; - { - #ifdef WITH_THREAD - PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); - #endif - __Pyx_AddTraceback("View.MemoryView.slice_memviewslice", __pyx_clineno, __pyx_lineno, __pyx_filename); - #ifdef WITH_THREAD - PyGILState_Release(__pyx_gilstate_save); - #endif - } - __pyx_r = -1; - __pyx_L0:; - return __pyx_r; -} - -/* "View.MemoryView":867 - * - * @cname('__pyx_pybuffer_index') - * cdef char *pybuffer_index(Py_buffer *view, char *bufp, Py_ssize_t index, # <<<<<<<<<<<<<< - * Py_ssize_t dim) except NULL: - * cdef Py_ssize_t shape, stride, suboffset = -1 - */ - -static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, Py_ssize_t __pyx_v_index, Py_ssize_t __pyx_v_dim) { - Py_ssize_t __pyx_v_shape; - Py_ssize_t __pyx_v_stride; - Py_ssize_t __pyx_v_suboffset; - Py_ssize_t __pyx_v_itemsize; - char *__pyx_v_resultp; - char *__pyx_r; - __Pyx_RefNannyDeclarations - Py_ssize_t __pyx_t_1; - int __pyx_t_2; - PyObject *__pyx_t_3 = NULL; - PyObject *__pyx_t_4 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("pybuffer_index", 0); - - /* "View.MemoryView":869 - * cdef char *pybuffer_index(Py_buffer *view, char *bufp, Py_ssize_t index, - * Py_ssize_t dim) except NULL: - * cdef Py_ssize_t shape, stride, suboffset = -1 # <<<<<<<<<<<<<< - * cdef Py_ssize_t itemsize = view.itemsize - * cdef char *resultp - */ - __pyx_v_suboffset = -1; - - /* "View.MemoryView":870 - * Py_ssize_t dim) except NULL: - * cdef Py_ssize_t shape, stride, suboffset = -1 - * cdef Py_ssize_t itemsize = view.itemsize # <<<<<<<<<<<<<< - * cdef char *resultp - * - */ - __pyx_t_1 = __pyx_v_view->itemsize; - __pyx_v_itemsize = __pyx_t_1; - - /* "View.MemoryView":873 - * cdef char *resultp - * - * if view.ndim == 0: # <<<<<<<<<<<<<< - * shape = view.len / itemsize - * stride = itemsize - */ - __pyx_t_2 = ((__pyx_v_view->ndim == 0) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":874 - * - * if view.ndim == 0: - * shape = view.len / itemsize # <<<<<<<<<<<<<< - * stride = itemsize - * else: - */ - if (unlikely(__pyx_v_itemsize == 0)) { - #ifdef WITH_THREAD - PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); - #endif - PyErr_SetString(PyExc_ZeroDivisionError, "integer division or modulo by zero"); - #ifdef WITH_THREAD - PyGILState_Release(__pyx_gilstate_save); - #endif - {__pyx_filename = __pyx_f[2]; __pyx_lineno = 874; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - else if (sizeof(Py_ssize_t) == sizeof(long) && unlikely(__pyx_v_itemsize == -1) && unlikely(UNARY_NEG_WOULD_OVERFLOW(__pyx_v_view->len))) { - #ifdef WITH_THREAD - PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); - #endif - PyErr_SetString(PyExc_OverflowError, "value too large to perform division"); - #ifdef WITH_THREAD - PyGILState_Release(__pyx_gilstate_save); - #endif - {__pyx_filename = __pyx_f[2]; __pyx_lineno = 874; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - __pyx_v_shape = __Pyx_div_Py_ssize_t(__pyx_v_view->len, __pyx_v_itemsize); - - /* "View.MemoryView":875 - * if view.ndim == 0: - * shape = view.len / itemsize - * stride = itemsize # <<<<<<<<<<<<<< - * else: - * shape = view.shape[dim] - */ - __pyx_v_stride = __pyx_v_itemsize; - goto __pyx_L3; - } - /*else*/ { - - /* "View.MemoryView":877 - * stride = itemsize - * else: - * shape = view.shape[dim] # <<<<<<<<<<<<<< - * stride = view.strides[dim] - * if view.suboffsets != NULL: - */ - __pyx_v_shape = (__pyx_v_view->shape[__pyx_v_dim]); - - /* "View.MemoryView":878 - * else: - * shape = view.shape[dim] - * stride = view.strides[dim] # <<<<<<<<<<<<<< - * if view.suboffsets != NULL: - * suboffset = view.suboffsets[dim] - */ - __pyx_v_stride = (__pyx_v_view->strides[__pyx_v_dim]); - - /* "View.MemoryView":879 - * shape = view.shape[dim] - * stride = view.strides[dim] - * if view.suboffsets != NULL: # <<<<<<<<<<<<<< - * suboffset = view.suboffsets[dim] - * - */ - __pyx_t_2 = ((__pyx_v_view->suboffsets != NULL) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":880 - * stride = view.strides[dim] - * if view.suboffsets != NULL: - * suboffset = view.suboffsets[dim] # <<<<<<<<<<<<<< - * - * if index < 0: - */ - __pyx_v_suboffset = (__pyx_v_view->suboffsets[__pyx_v_dim]); - goto __pyx_L4; - } - __pyx_L4:; - } - __pyx_L3:; - - /* "View.MemoryView":882 - * suboffset = view.suboffsets[dim] - * - * if index < 0: # <<<<<<<<<<<<<< - * index += view.shape[dim] - * if index < 0: - */ - __pyx_t_2 = ((__pyx_v_index < 0) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":883 - * - * if index < 0: - * index += view.shape[dim] # <<<<<<<<<<<<<< - * if index < 0: - * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) - */ - __pyx_v_index = (__pyx_v_index + (__pyx_v_view->shape[__pyx_v_dim])); - - /* "View.MemoryView":884 - * if index < 0: - * index += view.shape[dim] - * if index < 0: # <<<<<<<<<<<<<< - * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) - * - */ - __pyx_t_2 = ((__pyx_v_index < 0) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":885 - * index += view.shape[dim] - * if index < 0: - * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) # <<<<<<<<<<<<<< - * - * if index >= shape: - */ - __pyx_t_3 = PyInt_FromSsize_t(__pyx_v_dim); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 885; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __pyx_t_4 = __Pyx_PyString_Format(__pyx_kp_s_Out_of_bounds_on_buffer_access_a, __pyx_t_3); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 885; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 885; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_4); - __Pyx_GIVEREF(__pyx_t_4); - __pyx_t_4 = 0; - __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_IndexError, __pyx_t_3, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 885; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __Pyx_Raise(__pyx_t_4, 0, 0, 0); - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - {__pyx_filename = __pyx_f[2]; __pyx_lineno = 885; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - goto __pyx_L5; - } - __pyx_L5:; - - /* "View.MemoryView":887 - * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) - * - * if index >= shape: # <<<<<<<<<<<<<< - * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) - * - */ - __pyx_t_2 = ((__pyx_v_index >= __pyx_v_shape) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":888 - * - * if index >= shape: - * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) # <<<<<<<<<<<<<< - * - * resultp = bufp + index * stride - */ - __pyx_t_4 = PyInt_FromSsize_t(__pyx_v_dim); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 888; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_3 = __Pyx_PyString_Format(__pyx_kp_s_Out_of_bounds_on_buffer_access_a, __pyx_t_4); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 888; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 888; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_3); - __Pyx_GIVEREF(__pyx_t_3); - __pyx_t_3 = 0; - __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_IndexError, __pyx_t_4, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 888; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __Pyx_Raise(__pyx_t_3, 0, 0, 0); - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - {__pyx_filename = __pyx_f[2]; __pyx_lineno = 888; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - - /* "View.MemoryView":890 - * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) - * - * resultp = bufp + index * stride # <<<<<<<<<<<<<< - * if suboffset >= 0: - * resultp = ( resultp)[0] + suboffset - */ - __pyx_v_resultp = (__pyx_v_bufp + (__pyx_v_index * __pyx_v_stride)); - - /* "View.MemoryView":891 - * - * resultp = bufp + index * stride - * if suboffset >= 0: # <<<<<<<<<<<<<< - * resultp = ( resultp)[0] + suboffset - * - */ - __pyx_t_2 = ((__pyx_v_suboffset >= 0) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":892 - * resultp = bufp + index * stride - * if suboffset >= 0: - * resultp = ( resultp)[0] + suboffset # <<<<<<<<<<<<<< - * - * return resultp - */ - __pyx_v_resultp = ((((char **)__pyx_v_resultp)[0]) + __pyx_v_suboffset); - goto __pyx_L8; - } - __pyx_L8:; - - /* "View.MemoryView":894 - * resultp = ( resultp)[0] + suboffset - * - * return resultp # <<<<<<<<<<<<<< - * - * - */ - __pyx_r = __pyx_v_resultp; - goto __pyx_L0; - - /* "View.MemoryView":867 - * - * @cname('__pyx_pybuffer_index') - * cdef char *pybuffer_index(Py_buffer *view, char *bufp, Py_ssize_t index, # <<<<<<<<<<<<<< - * Py_ssize_t dim) except NULL: - * cdef Py_ssize_t shape, stride, suboffset = -1 - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_3); - __Pyx_XDECREF(__pyx_t_4); - __Pyx_AddTraceback("View.MemoryView.pybuffer_index", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = NULL; - __pyx_L0:; - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":900 - * - * @cname('__pyx_memslice_transpose') - * cdef int transpose_memslice(__Pyx_memviewslice *memslice) nogil except 0: # <<<<<<<<<<<<<< - * cdef int ndim = memslice.memview.view.ndim - * - */ - -static int __pyx_memslice_transpose(__Pyx_memviewslice *__pyx_v_memslice) { - int __pyx_v_ndim; - Py_ssize_t *__pyx_v_shape; - Py_ssize_t *__pyx_v_strides; - int __pyx_v_i; - int __pyx_v_j; - int __pyx_r; - int __pyx_t_1; - Py_ssize_t *__pyx_t_2; - long __pyx_t_3; - Py_ssize_t __pyx_t_4; - Py_ssize_t __pyx_t_5; - int __pyx_t_6; - int __pyx_t_7; - int __pyx_t_8; - int __pyx_t_9; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - - /* "View.MemoryView":901 - * @cname('__pyx_memslice_transpose') - * cdef int transpose_memslice(__Pyx_memviewslice *memslice) nogil except 0: - * cdef int ndim = memslice.memview.view.ndim # <<<<<<<<<<<<<< - * - * cdef Py_ssize_t *shape = memslice.shape - */ - __pyx_t_1 = __pyx_v_memslice->memview->view.ndim; - __pyx_v_ndim = __pyx_t_1; - - /* "View.MemoryView":903 - * cdef int ndim = memslice.memview.view.ndim - * - * cdef Py_ssize_t *shape = memslice.shape # <<<<<<<<<<<<<< - * cdef Py_ssize_t *strides = memslice.strides - * - */ - __pyx_t_2 = __pyx_v_memslice->shape; - __pyx_v_shape = __pyx_t_2; - - /* "View.MemoryView":904 - * - * cdef Py_ssize_t *shape = memslice.shape - * cdef Py_ssize_t *strides = memslice.strides # <<<<<<<<<<<<<< - * - * - */ - __pyx_t_2 = __pyx_v_memslice->strides; - __pyx_v_strides = __pyx_t_2; - - /* "View.MemoryView":908 - * - * cdef int i, j - * for i in range(ndim / 2): # <<<<<<<<<<<<<< - * j = ndim - 1 - i - * strides[i], strides[j] = strides[j], strides[i] - */ - __pyx_t_3 = __Pyx_div_long(__pyx_v_ndim, 2); - for (__pyx_t_1 = 0; __pyx_t_1 < __pyx_t_3; __pyx_t_1+=1) { - __pyx_v_i = __pyx_t_1; - - /* "View.MemoryView":909 - * cdef int i, j - * for i in range(ndim / 2): - * j = ndim - 1 - i # <<<<<<<<<<<<<< - * strides[i], strides[j] = strides[j], strides[i] - * shape[i], shape[j] = shape[j], shape[i] - */ - __pyx_v_j = ((__pyx_v_ndim - 1) - __pyx_v_i); - - /* "View.MemoryView":910 - * for i in range(ndim / 2): - * j = ndim - 1 - i - * strides[i], strides[j] = strides[j], strides[i] # <<<<<<<<<<<<<< - * shape[i], shape[j] = shape[j], shape[i] - * - */ - __pyx_t_4 = (__pyx_v_strides[__pyx_v_j]); - __pyx_t_5 = (__pyx_v_strides[__pyx_v_i]); - (__pyx_v_strides[__pyx_v_i]) = __pyx_t_4; - (__pyx_v_strides[__pyx_v_j]) = __pyx_t_5; - - /* "View.MemoryView":911 - * j = ndim - 1 - i - * strides[i], strides[j] = strides[j], strides[i] - * shape[i], shape[j] = shape[j], shape[i] # <<<<<<<<<<<<<< - * - * if memslice.suboffsets[i] >= 0 or memslice.suboffsets[j] >= 0: - */ - __pyx_t_5 = (__pyx_v_shape[__pyx_v_j]); - __pyx_t_4 = (__pyx_v_shape[__pyx_v_i]); - (__pyx_v_shape[__pyx_v_i]) = __pyx_t_5; - (__pyx_v_shape[__pyx_v_j]) = __pyx_t_4; - - /* "View.MemoryView":913 - * shape[i], shape[j] = shape[j], shape[i] - * - * if memslice.suboffsets[i] >= 0 or memslice.suboffsets[j] >= 0: # <<<<<<<<<<<<<< - * _err(ValueError, "Cannot transpose memoryview with indirect dimensions") - * - */ - __pyx_t_6 = (((__pyx_v_memslice->suboffsets[__pyx_v_i]) >= 0) != 0); - if (!__pyx_t_6) { - __pyx_t_7 = (((__pyx_v_memslice->suboffsets[__pyx_v_j]) >= 0) != 0); - __pyx_t_8 = __pyx_t_7; - } else { - __pyx_t_8 = __pyx_t_6; - } - if (__pyx_t_8) { - - /* "View.MemoryView":914 - * - * if memslice.suboffsets[i] >= 0 or memslice.suboffsets[j] >= 0: - * _err(ValueError, "Cannot transpose memoryview with indirect dimensions") # <<<<<<<<<<<<<< - * - * return 1 - */ - __pyx_t_9 = __pyx_memoryview_err(__pyx_builtin_ValueError, __pyx_k_Cannot_transpose_memoryview_with); if (unlikely(__pyx_t_9 == -1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 914; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - goto __pyx_L5; - } - __pyx_L5:; - } - - /* "View.MemoryView":916 - * _err(ValueError, "Cannot transpose memoryview with indirect dimensions") - * - * return 1 # <<<<<<<<<<<<<< - * - * - */ - __pyx_r = 1; - goto __pyx_L0; - - /* "View.MemoryView":900 - * - * @cname('__pyx_memslice_transpose') - * cdef int transpose_memslice(__Pyx_memviewslice *memslice) nogil except 0: # <<<<<<<<<<<<<< - * cdef int ndim = memslice.memview.view.ndim - * - */ - - /* function exit code */ - __pyx_L1_error:; - { - #ifdef WITH_THREAD - PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); - #endif - __Pyx_AddTraceback("View.MemoryView.transpose_memslice", __pyx_clineno, __pyx_lineno, __pyx_filename); - #ifdef WITH_THREAD - PyGILState_Release(__pyx_gilstate_save); - #endif - } - __pyx_r = 0; - __pyx_L0:; - return __pyx_r; -} - -/* "View.MemoryView":933 - * cdef int (*to_dtype_func)(char *, object) except 0 - * - * def __dealloc__(self): # <<<<<<<<<<<<<< - * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) - * - */ - -/* Python wrapper */ -static void __pyx_memoryviewslice___dealloc__(PyObject *__pyx_v_self); /*proto*/ -static void __pyx_memoryviewslice___dealloc__(PyObject *__pyx_v_self) { - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__dealloc__ (wrapper)", 0); - __pyx_memoryviewslice_MemoryView_16_memoryviewslice___dealloc__(((struct __pyx_memoryviewslice_obj *)__pyx_v_self)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); -} - -static void __pyx_memoryviewslice_MemoryView_16_memoryviewslice___dealloc__(struct __pyx_memoryviewslice_obj *__pyx_v_self) { - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__dealloc__", 0); - - /* "View.MemoryView":934 - * - * def __dealloc__(self): - * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) # <<<<<<<<<<<<<< - * - * cdef convert_item_to_object(self, char *itemp): - */ - __PYX_XDEC_MEMVIEW((&__pyx_v_self->from_slice), 1); - - /* "View.MemoryView":933 - * cdef int (*to_dtype_func)(char *, object) except 0 - * - * def __dealloc__(self): # <<<<<<<<<<<<<< - * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) - * - */ - - /* function exit code */ - __Pyx_RefNannyFinishContext(); -} - -/* "View.MemoryView":936 - * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) - * - * cdef convert_item_to_object(self, char *itemp): # <<<<<<<<<<<<<< - * if self.to_object_func != NULL: - * return self.to_object_func(itemp) - */ - -static PyObject *__pyx_memoryviewslice_convert_item_to_object(struct __pyx_memoryviewslice_obj *__pyx_v_self, char *__pyx_v_itemp) { - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - int __pyx_t_1; - PyObject *__pyx_t_2 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("convert_item_to_object", 0); - - /* "View.MemoryView":937 - * - * cdef convert_item_to_object(self, char *itemp): - * if self.to_object_func != NULL: # <<<<<<<<<<<<<< - * return self.to_object_func(itemp) - * else: - */ - __pyx_t_1 = ((__pyx_v_self->to_object_func != NULL) != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":938 - * cdef convert_item_to_object(self, char *itemp): - * if self.to_object_func != NULL: - * return self.to_object_func(itemp) # <<<<<<<<<<<<<< - * else: - * return memoryview.convert_item_to_object(self, itemp) - */ - __Pyx_XDECREF(__pyx_r); - __pyx_t_2 = __pyx_v_self->to_object_func(__pyx_v_itemp); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 938; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - __pyx_r = __pyx_t_2; - __pyx_t_2 = 0; - goto __pyx_L0; - } - /*else*/ { - - /* "View.MemoryView":940 - * return self.to_object_func(itemp) - * else: - * return memoryview.convert_item_to_object(self, itemp) # <<<<<<<<<<<<<< - * - * cdef assign_item_from_object(self, char *itemp, object value): - */ - __Pyx_XDECREF(__pyx_r); - __pyx_t_2 = __pyx_vtabptr_memoryview->convert_item_to_object(((struct __pyx_memoryview_obj *)__pyx_v_self), __pyx_v_itemp); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 940; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - __pyx_r = __pyx_t_2; - __pyx_t_2 = 0; - goto __pyx_L0; - } - - /* "View.MemoryView":936 - * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) - * - * cdef convert_item_to_object(self, char *itemp): # <<<<<<<<<<<<<< - * if self.to_object_func != NULL: - * return self.to_object_func(itemp) - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_2); - __Pyx_AddTraceback("View.MemoryView._memoryviewslice.convert_item_to_object", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = 0; - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":942 - * return memoryview.convert_item_to_object(self, itemp) - * - * cdef assign_item_from_object(self, char *itemp, object value): # <<<<<<<<<<<<<< - * if self.to_dtype_func != NULL: - * self.to_dtype_func(itemp, value) - */ - -static PyObject *__pyx_memoryviewslice_assign_item_from_object(struct __pyx_memoryviewslice_obj *__pyx_v_self, char *__pyx_v_itemp, PyObject *__pyx_v_value) { - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - int __pyx_t_1; - int __pyx_t_2; - PyObject *__pyx_t_3 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("assign_item_from_object", 0); - - /* "View.MemoryView":943 - * - * cdef assign_item_from_object(self, char *itemp, object value): - * if self.to_dtype_func != NULL: # <<<<<<<<<<<<<< - * self.to_dtype_func(itemp, value) - * else: - */ - __pyx_t_1 = ((__pyx_v_self->to_dtype_func != NULL) != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":944 - * cdef assign_item_from_object(self, char *itemp, object value): - * if self.to_dtype_func != NULL: - * self.to_dtype_func(itemp, value) # <<<<<<<<<<<<<< - * else: - * memoryview.assign_item_from_object(self, itemp, value) - */ - __pyx_t_2 = __pyx_v_self->to_dtype_func(__pyx_v_itemp, __pyx_v_value); if (unlikely(__pyx_t_2 == 0)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 944; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - goto __pyx_L3; - } - /*else*/ { - - /* "View.MemoryView":946 - * self.to_dtype_func(itemp, value) - * else: - * memoryview.assign_item_from_object(self, itemp, value) # <<<<<<<<<<<<<< - * - * property base: - */ - __pyx_t_3 = __pyx_vtabptr_memoryview->assign_item_from_object(((struct __pyx_memoryview_obj *)__pyx_v_self), __pyx_v_itemp, __pyx_v_value); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 946; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - } - __pyx_L3:; - - /* "View.MemoryView":942 - * return memoryview.convert_item_to_object(self, itemp) - * - * cdef assign_item_from_object(self, char *itemp, object value): # <<<<<<<<<<<<<< - * if self.to_dtype_func != NULL: - * self.to_dtype_func(itemp, value) - */ - - /* function exit code */ - __pyx_r = Py_None; __Pyx_INCREF(Py_None); - goto __pyx_L0; - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_3); - __Pyx_AddTraceback("View.MemoryView._memoryviewslice.assign_item_from_object", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = 0; - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":950 - * property base: - * @cname('__pyx_memoryviewslice__get__base') - * def __get__(self): # <<<<<<<<<<<<<< - * return self.from_object - * - */ - -/* Python wrapper */ -static PyObject *__pyx_memoryviewslice__get__base(PyObject *__pyx_v_self); /*proto*/ -static PyObject *__pyx_memoryviewslice__get__base(PyObject *__pyx_v_self) { - PyObject *__pyx_r = 0; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); - __pyx_r = __pyx_memoryviewslice__get__base_MemoryView_16_memoryviewslice_4base___get__(((struct __pyx_memoryviewslice_obj *)__pyx_v_self)); - - /* function exit code */ - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -static PyObject *__pyx_memoryviewslice__get__base_MemoryView_16_memoryviewslice_4base___get__(struct __pyx_memoryviewslice_obj *__pyx_v_self) { - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__get__", 0); - - /* "View.MemoryView":951 - * @cname('__pyx_memoryviewslice__get__base') - * def __get__(self): - * return self.from_object # <<<<<<<<<<<<<< - * - * __pyx_getbuffer = capsule( &__pyx_memoryview_getbuffer, "getbuffer(obj, view, flags)") - */ - __Pyx_XDECREF(__pyx_r); - __Pyx_INCREF(__pyx_v_self->from_object); - __pyx_r = __pyx_v_self->from_object; - goto __pyx_L0; - - /* "View.MemoryView":950 - * property base: - * @cname('__pyx_memoryviewslice__get__base') - * def __get__(self): # <<<<<<<<<<<<<< - * return self.from_object - * - */ - - /* function exit code */ - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":957 - * - * @cname('__pyx_memoryview_fromslice') - * cdef memoryview_fromslice(__Pyx_memviewslice memviewslice, # <<<<<<<<<<<<<< - * int ndim, - * object (*to_object_func)(char *), - */ - -static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice __pyx_v_memviewslice, int __pyx_v_ndim, PyObject *(*__pyx_v_to_object_func)(char *), int (*__pyx_v_to_dtype_func)(char *, PyObject *), int __pyx_v_dtype_is_object) { - struct __pyx_memoryviewslice_obj *__pyx_v_result = 0; - int __pyx_v_i; - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - int __pyx_t_1; - PyObject *__pyx_t_2 = NULL; - PyObject *__pyx_t_3 = NULL; - __Pyx_TypeInfo *__pyx_t_4; - Py_buffer __pyx_t_5; - Py_ssize_t __pyx_t_6; - int __pyx_t_7; - int __pyx_t_8; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("memoryview_fromslice", 0); - - /* "View.MemoryView":966 - * cdef int i - * - * if memviewslice.memview == Py_None: # <<<<<<<<<<<<<< - * return None - * - */ - __pyx_t_1 = ((((PyObject *)__pyx_v_memviewslice.memview) == Py_None) != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":967 - * - * if memviewslice.memview == Py_None: - * return None # <<<<<<<<<<<<<< - * - * - */ - __Pyx_XDECREF(__pyx_r); - __Pyx_INCREF(Py_None); - __pyx_r = Py_None; - goto __pyx_L0; - } - - /* "View.MemoryView":972 - * - * - * result = _memoryviewslice(None, 0, dtype_is_object) # <<<<<<<<<<<<<< - * - * result.from_slice = memviewslice - */ - __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_v_dtype_is_object); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 972; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 972; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __Pyx_INCREF(Py_None); - PyTuple_SET_ITEM(__pyx_t_3, 0, Py_None); - __Pyx_GIVEREF(Py_None); - __Pyx_INCREF(__pyx_int_0); - PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_int_0); - __Pyx_GIVEREF(__pyx_int_0); - PyTuple_SET_ITEM(__pyx_t_3, 2, __pyx_t_2); - __Pyx_GIVEREF(__pyx_t_2); - __pyx_t_2 = 0; - __pyx_t_2 = __Pyx_PyObject_Call(((PyObject *)((PyObject *)__pyx_memoryviewslice_type)), __pyx_t_3, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 972; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_v_result = ((struct __pyx_memoryviewslice_obj *)__pyx_t_2); - __pyx_t_2 = 0; - - /* "View.MemoryView":974 - * result = _memoryviewslice(None, 0, dtype_is_object) - * - * result.from_slice = memviewslice # <<<<<<<<<<<<<< - * __PYX_INC_MEMVIEW(&memviewslice, 1) - * - */ - __pyx_v_result->from_slice = __pyx_v_memviewslice; - - /* "View.MemoryView":975 - * - * result.from_slice = memviewslice - * __PYX_INC_MEMVIEW(&memviewslice, 1) # <<<<<<<<<<<<<< - * - * result.from_object = ( memviewslice.memview).base - */ - __PYX_INC_MEMVIEW((&__pyx_v_memviewslice), 1); - - /* "View.MemoryView":977 - * __PYX_INC_MEMVIEW(&memviewslice, 1) - * - * result.from_object = ( memviewslice.memview).base # <<<<<<<<<<<<<< - * result.typeinfo = memviewslice.memview.typeinfo - * - */ - __pyx_t_2 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_memviewslice.memview), __pyx_n_s_base); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 977; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - __Pyx_GIVEREF(__pyx_t_2); - __Pyx_GOTREF(__pyx_v_result->from_object); - __Pyx_DECREF(__pyx_v_result->from_object); - __pyx_v_result->from_object = __pyx_t_2; - __pyx_t_2 = 0; - - /* "View.MemoryView":978 - * - * result.from_object = ( memviewslice.memview).base - * result.typeinfo = memviewslice.memview.typeinfo # <<<<<<<<<<<<<< - * - * result.view = memviewslice.memview.view - */ - __pyx_t_4 = __pyx_v_memviewslice.memview->typeinfo; - __pyx_v_result->__pyx_base.typeinfo = __pyx_t_4; - - /* "View.MemoryView":980 - * result.typeinfo = memviewslice.memview.typeinfo - * - * result.view = memviewslice.memview.view # <<<<<<<<<<<<<< - * result.view.buf = memviewslice.data - * result.view.ndim = ndim - */ - __pyx_t_5 = __pyx_v_memviewslice.memview->view; - __pyx_v_result->__pyx_base.view = __pyx_t_5; - - /* "View.MemoryView":981 - * - * result.view = memviewslice.memview.view - * result.view.buf = memviewslice.data # <<<<<<<<<<<<<< - * result.view.ndim = ndim - * (<__pyx_buffer *> &result.view).obj = Py_None - */ - __pyx_v_result->__pyx_base.view.buf = ((void *)__pyx_v_memviewslice.data); - - /* "View.MemoryView":982 - * result.view = memviewslice.memview.view - * result.view.buf = memviewslice.data - * result.view.ndim = ndim # <<<<<<<<<<<<<< - * (<__pyx_buffer *> &result.view).obj = Py_None - * Py_INCREF(Py_None) - */ - __pyx_v_result->__pyx_base.view.ndim = __pyx_v_ndim; - - /* "View.MemoryView":983 - * result.view.buf = memviewslice.data - * result.view.ndim = ndim - * (<__pyx_buffer *> &result.view).obj = Py_None # <<<<<<<<<<<<<< - * Py_INCREF(Py_None) - * - */ - ((Py_buffer *)(&__pyx_v_result->__pyx_base.view))->obj = Py_None; - - /* "View.MemoryView":984 - * result.view.ndim = ndim - * (<__pyx_buffer *> &result.view).obj = Py_None - * Py_INCREF(Py_None) # <<<<<<<<<<<<<< - * - * result.flags = PyBUF_RECORDS - */ - Py_INCREF(Py_None); - - /* "View.MemoryView":986 - * Py_INCREF(Py_None) - * - * result.flags = PyBUF_RECORDS # <<<<<<<<<<<<<< - * - * result.view.shape = result.from_slice.shape - */ - __pyx_v_result->__pyx_base.flags = PyBUF_RECORDS; - - /* "View.MemoryView":988 - * result.flags = PyBUF_RECORDS - * - * result.view.shape = result.from_slice.shape # <<<<<<<<<<<<<< - * result.view.strides = result.from_slice.strides - * result.view.suboffsets = result.from_slice.suboffsets - */ - __pyx_v_result->__pyx_base.view.shape = ((Py_ssize_t *)__pyx_v_result->from_slice.shape); - - /* "View.MemoryView":989 - * - * result.view.shape = result.from_slice.shape - * result.view.strides = result.from_slice.strides # <<<<<<<<<<<<<< - * result.view.suboffsets = result.from_slice.suboffsets - * - */ - __pyx_v_result->__pyx_base.view.strides = ((Py_ssize_t *)__pyx_v_result->from_slice.strides); - - /* "View.MemoryView":990 - * result.view.shape = result.from_slice.shape - * result.view.strides = result.from_slice.strides - * result.view.suboffsets = result.from_slice.suboffsets # <<<<<<<<<<<<<< - * - * result.view.len = result.view.itemsize - */ - __pyx_v_result->__pyx_base.view.suboffsets = ((Py_ssize_t *)__pyx_v_result->from_slice.suboffsets); - - /* "View.MemoryView":992 - * result.view.suboffsets = result.from_slice.suboffsets - * - * result.view.len = result.view.itemsize # <<<<<<<<<<<<<< - * for i in range(ndim): - * result.view.len *= result.view.shape[i] - */ - __pyx_t_6 = __pyx_v_result->__pyx_base.view.itemsize; - __pyx_v_result->__pyx_base.view.len = __pyx_t_6; - - /* "View.MemoryView":993 - * - * result.view.len = result.view.itemsize - * for i in range(ndim): # <<<<<<<<<<<<<< - * result.view.len *= result.view.shape[i] - * - */ - __pyx_t_7 = __pyx_v_ndim; - for (__pyx_t_8 = 0; __pyx_t_8 < __pyx_t_7; __pyx_t_8+=1) { - __pyx_v_i = __pyx_t_8; - - /* "View.MemoryView":994 - * result.view.len = result.view.itemsize - * for i in range(ndim): - * result.view.len *= result.view.shape[i] # <<<<<<<<<<<<<< - * - * result.to_object_func = to_object_func - */ - __pyx_v_result->__pyx_base.view.len = (__pyx_v_result->__pyx_base.view.len * (__pyx_v_result->__pyx_base.view.shape[__pyx_v_i])); - } - - /* "View.MemoryView":996 - * result.view.len *= result.view.shape[i] - * - * result.to_object_func = to_object_func # <<<<<<<<<<<<<< - * result.to_dtype_func = to_dtype_func - * - */ - __pyx_v_result->to_object_func = __pyx_v_to_object_func; - - /* "View.MemoryView":997 - * - * result.to_object_func = to_object_func - * result.to_dtype_func = to_dtype_func # <<<<<<<<<<<<<< - * - * return result - */ - __pyx_v_result->to_dtype_func = __pyx_v_to_dtype_func; - - /* "View.MemoryView":999 - * result.to_dtype_func = to_dtype_func - * - * return result # <<<<<<<<<<<<<< - * - * @cname('__pyx_memoryview_get_slice_from_memoryview') - */ - __Pyx_XDECREF(__pyx_r); - __Pyx_INCREF(((PyObject *)__pyx_v_result)); - __pyx_r = ((PyObject *)__pyx_v_result); - goto __pyx_L0; - - /* "View.MemoryView":957 - * - * @cname('__pyx_memoryview_fromslice') - * cdef memoryview_fromslice(__Pyx_memviewslice memviewslice, # <<<<<<<<<<<<<< - * int ndim, - * object (*to_object_func)(char *), - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_2); - __Pyx_XDECREF(__pyx_t_3); - __Pyx_AddTraceback("View.MemoryView.memoryview_fromslice", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = 0; - __pyx_L0:; - __Pyx_XDECREF((PyObject *)__pyx_v_result); - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":1002 - * - * @cname('__pyx_memoryview_get_slice_from_memoryview') - * cdef __Pyx_memviewslice *get_slice_from_memview(memoryview memview, # <<<<<<<<<<<<<< - * __Pyx_memviewslice *mslice): - * cdef _memoryviewslice obj - */ - -static __Pyx_memviewslice *__pyx_memoryview_get_slice_from_memoryview(struct __pyx_memoryview_obj *__pyx_v_memview, __Pyx_memviewslice *__pyx_v_mslice) { - struct __pyx_memoryviewslice_obj *__pyx_v_obj = 0; - __Pyx_memviewslice *__pyx_r; - __Pyx_RefNannyDeclarations - int __pyx_t_1; - int __pyx_t_2; - PyObject *__pyx_t_3 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("get_slice_from_memview", 0); - - /* "View.MemoryView":1005 - * __Pyx_memviewslice *mslice): - * cdef _memoryviewslice obj - * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< - * obj = memview - * return &obj.from_slice - */ - __pyx_t_1 = __Pyx_TypeCheck(((PyObject *)__pyx_v_memview), ((PyObject *)__pyx_memoryviewslice_type)); - __pyx_t_2 = (__pyx_t_1 != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":1006 - * cdef _memoryviewslice obj - * if isinstance(memview, _memoryviewslice): - * obj = memview # <<<<<<<<<<<<<< - * return &obj.from_slice - * else: - */ - if (!(likely(((((PyObject *)__pyx_v_memview)) == Py_None) || likely(__Pyx_TypeTest(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type))))) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 1006; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_t_3 = ((PyObject *)__pyx_v_memview); - __Pyx_INCREF(__pyx_t_3); - __pyx_v_obj = ((struct __pyx_memoryviewslice_obj *)__pyx_t_3); - __pyx_t_3 = 0; - - /* "View.MemoryView":1007 - * if isinstance(memview, _memoryviewslice): - * obj = memview - * return &obj.from_slice # <<<<<<<<<<<<<< - * else: - * slice_copy(memview, mslice) - */ - __pyx_r = (&__pyx_v_obj->from_slice); - goto __pyx_L0; - } - /*else*/ { - - /* "View.MemoryView":1009 - * return &obj.from_slice - * else: - * slice_copy(memview, mslice) # <<<<<<<<<<<<<< - * return mslice - * - */ - __pyx_memoryview_slice_copy(__pyx_v_memview, __pyx_v_mslice); - - /* "View.MemoryView":1010 - * else: - * slice_copy(memview, mslice) - * return mslice # <<<<<<<<<<<<<< - * - * @cname('__pyx_memoryview_slice_copy') - */ - __pyx_r = __pyx_v_mslice; - goto __pyx_L0; - } - - /* "View.MemoryView":1002 - * - * @cname('__pyx_memoryview_get_slice_from_memoryview') - * cdef __Pyx_memviewslice *get_slice_from_memview(memoryview memview, # <<<<<<<<<<<<<< - * __Pyx_memviewslice *mslice): - * cdef _memoryviewslice obj - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_3); - __Pyx_WriteUnraisable("View.MemoryView.get_slice_from_memview", __pyx_clineno, __pyx_lineno, __pyx_filename, 0); - __pyx_r = 0; - __pyx_L0:; - __Pyx_XDECREF((PyObject *)__pyx_v_obj); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":1013 - * - * @cname('__pyx_memoryview_slice_copy') - * cdef void slice_copy(memoryview memview, __Pyx_memviewslice *dst): # <<<<<<<<<<<<<< - * cdef int dim - * cdef (Py_ssize_t*) shape, strides, suboffsets - */ - -static void __pyx_memoryview_slice_copy(struct __pyx_memoryview_obj *__pyx_v_memview, __Pyx_memviewslice *__pyx_v_dst) { - int __pyx_v_dim; - Py_ssize_t *__pyx_v_shape; - Py_ssize_t *__pyx_v_strides; - Py_ssize_t *__pyx_v_suboffsets; - __Pyx_RefNannyDeclarations - Py_ssize_t *__pyx_t_1; - int __pyx_t_2; - int __pyx_t_3; - int __pyx_t_4; - __Pyx_RefNannySetupContext("slice_copy", 0); - - /* "View.MemoryView":1017 - * cdef (Py_ssize_t*) shape, strides, suboffsets - * - * shape = memview.view.shape # <<<<<<<<<<<<<< - * strides = memview.view.strides - * suboffsets = memview.view.suboffsets - */ - __pyx_t_1 = __pyx_v_memview->view.shape; - __pyx_v_shape = __pyx_t_1; - - /* "View.MemoryView":1018 - * - * shape = memview.view.shape - * strides = memview.view.strides # <<<<<<<<<<<<<< - * suboffsets = memview.view.suboffsets - * - */ - __pyx_t_1 = __pyx_v_memview->view.strides; - __pyx_v_strides = __pyx_t_1; - - /* "View.MemoryView":1019 - * shape = memview.view.shape - * strides = memview.view.strides - * suboffsets = memview.view.suboffsets # <<<<<<<<<<<<<< - * - * dst.memview = <__pyx_memoryview *> memview - */ - __pyx_t_1 = __pyx_v_memview->view.suboffsets; - __pyx_v_suboffsets = __pyx_t_1; - - /* "View.MemoryView":1021 - * suboffsets = memview.view.suboffsets - * - * dst.memview = <__pyx_memoryview *> memview # <<<<<<<<<<<<<< - * dst.data = memview.view.buf - * - */ - __pyx_v_dst->memview = ((struct __pyx_memoryview_obj *)__pyx_v_memview); - - /* "View.MemoryView":1022 - * - * dst.memview = <__pyx_memoryview *> memview - * dst.data = memview.view.buf # <<<<<<<<<<<<<< - * - * for dim in range(memview.view.ndim): - */ - __pyx_v_dst->data = ((char *)__pyx_v_memview->view.buf); - - /* "View.MemoryView":1024 - * dst.data = memview.view.buf - * - * for dim in range(memview.view.ndim): # <<<<<<<<<<<<<< - * dst.shape[dim] = shape[dim] - * dst.strides[dim] = strides[dim] - */ - __pyx_t_2 = __pyx_v_memview->view.ndim; - for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { - __pyx_v_dim = __pyx_t_3; - - /* "View.MemoryView":1025 - * - * for dim in range(memview.view.ndim): - * dst.shape[dim] = shape[dim] # <<<<<<<<<<<<<< - * dst.strides[dim] = strides[dim] - * if suboffsets == NULL: - */ - (__pyx_v_dst->shape[__pyx_v_dim]) = (__pyx_v_shape[__pyx_v_dim]); - - /* "View.MemoryView":1026 - * for dim in range(memview.view.ndim): - * dst.shape[dim] = shape[dim] - * dst.strides[dim] = strides[dim] # <<<<<<<<<<<<<< - * if suboffsets == NULL: - * dst.suboffsets[dim] = -1 - */ - (__pyx_v_dst->strides[__pyx_v_dim]) = (__pyx_v_strides[__pyx_v_dim]); - - /* "View.MemoryView":1027 - * dst.shape[dim] = shape[dim] - * dst.strides[dim] = strides[dim] - * if suboffsets == NULL: # <<<<<<<<<<<<<< - * dst.suboffsets[dim] = -1 - * else: - */ - __pyx_t_4 = ((__pyx_v_suboffsets == NULL) != 0); - if (__pyx_t_4) { - - /* "View.MemoryView":1028 - * dst.strides[dim] = strides[dim] - * if suboffsets == NULL: - * dst.suboffsets[dim] = -1 # <<<<<<<<<<<<<< - * else: - * dst.suboffsets[dim] = suboffsets[dim] - */ - (__pyx_v_dst->suboffsets[__pyx_v_dim]) = -1; - goto __pyx_L5; - } - /*else*/ { - - /* "View.MemoryView":1030 - * dst.suboffsets[dim] = -1 - * else: - * dst.suboffsets[dim] = suboffsets[dim] # <<<<<<<<<<<<<< - * - * @cname('__pyx_memoryview_copy_object') - */ - (__pyx_v_dst->suboffsets[__pyx_v_dim]) = (__pyx_v_suboffsets[__pyx_v_dim]); - } - __pyx_L5:; - } - - /* "View.MemoryView":1013 - * - * @cname('__pyx_memoryview_slice_copy') - * cdef void slice_copy(memoryview memview, __Pyx_memviewslice *dst): # <<<<<<<<<<<<<< - * cdef int dim - * cdef (Py_ssize_t*) shape, strides, suboffsets - */ - - /* function exit code */ - __Pyx_RefNannyFinishContext(); -} - -/* "View.MemoryView":1033 - * - * @cname('__pyx_memoryview_copy_object') - * cdef memoryview_copy(memoryview memview): # <<<<<<<<<<<<<< - * "Create a new memoryview object" - * cdef __Pyx_memviewslice memviewslice - */ - -static PyObject *__pyx_memoryview_copy_object(struct __pyx_memoryview_obj *__pyx_v_memview) { - __Pyx_memviewslice __pyx_v_memviewslice; - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - PyObject *__pyx_t_1 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("memoryview_copy", 0); - - /* "View.MemoryView":1036 - * "Create a new memoryview object" - * cdef __Pyx_memviewslice memviewslice - * slice_copy(memview, &memviewslice) # <<<<<<<<<<<<<< - * return memoryview_copy_from_slice(memview, &memviewslice) - * - */ - __pyx_memoryview_slice_copy(__pyx_v_memview, (&__pyx_v_memviewslice)); - - /* "View.MemoryView":1037 - * cdef __Pyx_memviewslice memviewslice - * slice_copy(memview, &memviewslice) - * return memoryview_copy_from_slice(memview, &memviewslice) # <<<<<<<<<<<<<< - * - * @cname('__pyx_memoryview_copy_object_from_slice') - */ - __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = __pyx_memoryview_copy_object_from_slice(__pyx_v_memview, (&__pyx_v_memviewslice)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 1037; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __pyx_r = __pyx_t_1; - __pyx_t_1 = 0; - goto __pyx_L0; - - /* "View.MemoryView":1033 - * - * @cname('__pyx_memoryview_copy_object') - * cdef memoryview_copy(memoryview memview): # <<<<<<<<<<<<<< - * "Create a new memoryview object" - * cdef __Pyx_memviewslice memviewslice - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_1); - __Pyx_AddTraceback("View.MemoryView.memoryview_copy", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = 0; - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":1040 - * - * @cname('__pyx_memoryview_copy_object_from_slice') - * cdef memoryview_copy_from_slice(memoryview memview, __Pyx_memviewslice *memviewslice): # <<<<<<<<<<<<<< - * """ - * Create a new memoryview object from a given memoryview object and slice. - */ - -static PyObject *__pyx_memoryview_copy_object_from_slice(struct __pyx_memoryview_obj *__pyx_v_memview, __Pyx_memviewslice *__pyx_v_memviewslice) { - PyObject *(*__pyx_v_to_object_func)(char *); - int (*__pyx_v_to_dtype_func)(char *, PyObject *); - PyObject *__pyx_r = NULL; - __Pyx_RefNannyDeclarations - int __pyx_t_1; - int __pyx_t_2; - PyObject *(*__pyx_t_3)(char *); - int (*__pyx_t_4)(char *, PyObject *); - PyObject *__pyx_t_5 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannySetupContext("memoryview_copy_from_slice", 0); - - /* "View.MemoryView":1047 - * cdef int (*to_dtype_func)(char *, object) except 0 - * - * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< - * to_object_func = (<_memoryviewslice> memview).to_object_func - * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func - */ - __pyx_t_1 = __Pyx_TypeCheck(((PyObject *)__pyx_v_memview), ((PyObject *)__pyx_memoryviewslice_type)); - __pyx_t_2 = (__pyx_t_1 != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":1048 - * - * if isinstance(memview, _memoryviewslice): - * to_object_func = (<_memoryviewslice> memview).to_object_func # <<<<<<<<<<<<<< - * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func - * else: - */ - __pyx_t_3 = ((struct __pyx_memoryviewslice_obj *)__pyx_v_memview)->to_object_func; - __pyx_v_to_object_func = __pyx_t_3; - - /* "View.MemoryView":1049 - * if isinstance(memview, _memoryviewslice): - * to_object_func = (<_memoryviewslice> memview).to_object_func - * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func # <<<<<<<<<<<<<< - * else: - * to_object_func = NULL - */ - __pyx_t_4 = ((struct __pyx_memoryviewslice_obj *)__pyx_v_memview)->to_dtype_func; - __pyx_v_to_dtype_func = __pyx_t_4; - goto __pyx_L3; - } - /*else*/ { - - /* "View.MemoryView":1051 - * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func - * else: - * to_object_func = NULL # <<<<<<<<<<<<<< - * to_dtype_func = NULL - * - */ - __pyx_v_to_object_func = NULL; - - /* "View.MemoryView":1052 - * else: - * to_object_func = NULL - * to_dtype_func = NULL # <<<<<<<<<<<<<< - * - * return memoryview_fromslice(memviewslice[0], memview.view.ndim, - */ - __pyx_v_to_dtype_func = NULL; - } - __pyx_L3:; - - /* "View.MemoryView":1054 - * to_dtype_func = NULL - * - * return memoryview_fromslice(memviewslice[0], memview.view.ndim, # <<<<<<<<<<<<<< - * to_object_func, to_dtype_func, - * memview.dtype_is_object) - */ - __Pyx_XDECREF(__pyx_r); - - /* "View.MemoryView":1056 - * return memoryview_fromslice(memviewslice[0], memview.view.ndim, - * to_object_func, to_dtype_func, - * memview.dtype_is_object) # <<<<<<<<<<<<<< - * - * - */ - __pyx_t_5 = __pyx_memoryview_fromslice((__pyx_v_memviewslice[0]), __pyx_v_memview->view.ndim, __pyx_v_to_object_func, __pyx_v_to_dtype_func, __pyx_v_memview->dtype_is_object); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 1054; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_5); - __pyx_r = __pyx_t_5; - __pyx_t_5 = 0; - goto __pyx_L0; - - /* "View.MemoryView":1040 - * - * @cname('__pyx_memoryview_copy_object_from_slice') - * cdef memoryview_copy_from_slice(memoryview memview, __Pyx_memviewslice *memviewslice): # <<<<<<<<<<<<<< - * """ - * Create a new memoryview object from a given memoryview object and slice. - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_5); - __Pyx_AddTraceback("View.MemoryView.memoryview_copy_from_slice", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = 0; - __pyx_L0:; - __Pyx_XGIVEREF(__pyx_r); - __Pyx_RefNannyFinishContext(); - return __pyx_r; -} - -/* "View.MemoryView":1062 - * - * - * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: # <<<<<<<<<<<<<< - * if arg < 0: - * return -arg - */ - -static Py_ssize_t abs_py_ssize_t(Py_ssize_t __pyx_v_arg) { - Py_ssize_t __pyx_r; - int __pyx_t_1; - - /* "View.MemoryView":1063 - * - * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: - * if arg < 0: # <<<<<<<<<<<<<< - * return -arg - * else: - */ - __pyx_t_1 = ((__pyx_v_arg < 0) != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":1064 - * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: - * if arg < 0: - * return -arg # <<<<<<<<<<<<<< - * else: - * return arg - */ - __pyx_r = (-__pyx_v_arg); - goto __pyx_L0; - } - /*else*/ { - - /* "View.MemoryView":1066 - * return -arg - * else: - * return arg # <<<<<<<<<<<<<< - * - * @cname('__pyx_get_best_slice_order') - */ - __pyx_r = __pyx_v_arg; - goto __pyx_L0; - } - - /* "View.MemoryView":1062 - * - * - * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: # <<<<<<<<<<<<<< - * if arg < 0: - * return -arg - */ - - /* function exit code */ - __pyx_L0:; - return __pyx_r; -} - -/* "View.MemoryView":1069 - * - * @cname('__pyx_get_best_slice_order') - * cdef char get_best_order(__Pyx_memviewslice *mslice, int ndim) nogil: # <<<<<<<<<<<<<< - * """ - * Figure out the best memory access order for a given slice. - */ - -static char __pyx_get_best_slice_order(__Pyx_memviewslice *__pyx_v_mslice, int __pyx_v_ndim) { - int __pyx_v_i; - Py_ssize_t __pyx_v_c_stride; - Py_ssize_t __pyx_v_f_stride; - char __pyx_r; - int __pyx_t_1; - int __pyx_t_2; - int __pyx_t_3; - - /* "View.MemoryView":1074 - * """ - * cdef int i - * cdef Py_ssize_t c_stride = 0 # <<<<<<<<<<<<<< - * cdef Py_ssize_t f_stride = 0 - * - */ - __pyx_v_c_stride = 0; - - /* "View.MemoryView":1075 - * cdef int i - * cdef Py_ssize_t c_stride = 0 - * cdef Py_ssize_t f_stride = 0 # <<<<<<<<<<<<<< - * - * for i in range(ndim - 1, -1, -1): - */ - __pyx_v_f_stride = 0; - - /* "View.MemoryView":1077 - * cdef Py_ssize_t f_stride = 0 - * - * for i in range(ndim - 1, -1, -1): # <<<<<<<<<<<<<< - * if mslice.shape[i] > 1: - * c_stride = mslice.strides[i] - */ - for (__pyx_t_1 = (__pyx_v_ndim - 1); __pyx_t_1 > -1; __pyx_t_1-=1) { - __pyx_v_i = __pyx_t_1; - - /* "View.MemoryView":1078 - * - * for i in range(ndim - 1, -1, -1): - * if mslice.shape[i] > 1: # <<<<<<<<<<<<<< - * c_stride = mslice.strides[i] - * break - */ - __pyx_t_2 = (((__pyx_v_mslice->shape[__pyx_v_i]) > 1) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":1079 - * for i in range(ndim - 1, -1, -1): - * if mslice.shape[i] > 1: - * c_stride = mslice.strides[i] # <<<<<<<<<<<<<< - * break - * - */ - __pyx_v_c_stride = (__pyx_v_mslice->strides[__pyx_v_i]); - - /* "View.MemoryView":1080 - * if mslice.shape[i] > 1: - * c_stride = mslice.strides[i] - * break # <<<<<<<<<<<<<< - * - * for i in range(ndim): - */ - goto __pyx_L4_break; - } - } - __pyx_L4_break:; - - /* "View.MemoryView":1082 - * break - * - * for i in range(ndim): # <<<<<<<<<<<<<< - * if mslice.shape[i] > 1: - * f_stride = mslice.strides[i] - */ - __pyx_t_1 = __pyx_v_ndim; - for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_1; __pyx_t_3+=1) { - __pyx_v_i = __pyx_t_3; - - /* "View.MemoryView":1083 - * - * for i in range(ndim): - * if mslice.shape[i] > 1: # <<<<<<<<<<<<<< - * f_stride = mslice.strides[i] - * break - */ - __pyx_t_2 = (((__pyx_v_mslice->shape[__pyx_v_i]) > 1) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":1084 - * for i in range(ndim): - * if mslice.shape[i] > 1: - * f_stride = mslice.strides[i] # <<<<<<<<<<<<<< - * break - * - */ - __pyx_v_f_stride = (__pyx_v_mslice->strides[__pyx_v_i]); - - /* "View.MemoryView":1085 - * if mslice.shape[i] > 1: - * f_stride = mslice.strides[i] - * break # <<<<<<<<<<<<<< - * - * if abs_py_ssize_t(c_stride) <= abs_py_ssize_t(f_stride): - */ - goto __pyx_L7_break; - } - } - __pyx_L7_break:; - - /* "View.MemoryView":1087 - * break - * - * if abs_py_ssize_t(c_stride) <= abs_py_ssize_t(f_stride): # <<<<<<<<<<<<<< - * return 'C' - * else: - */ - __pyx_t_2 = ((abs_py_ssize_t(__pyx_v_c_stride) <= abs_py_ssize_t(__pyx_v_f_stride)) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":1088 - * - * if abs_py_ssize_t(c_stride) <= abs_py_ssize_t(f_stride): - * return 'C' # <<<<<<<<<<<<<< - * else: - * return 'F' - */ - __pyx_r = 'C'; - goto __pyx_L0; - } - /*else*/ { - - /* "View.MemoryView":1090 - * return 'C' - * else: - * return 'F' # <<<<<<<<<<<<<< - * - * @cython.cdivision(True) - */ - __pyx_r = 'F'; - goto __pyx_L0; - } - - /* "View.MemoryView":1069 - * - * @cname('__pyx_get_best_slice_order') - * cdef char get_best_order(__Pyx_memviewslice *mslice, int ndim) nogil: # <<<<<<<<<<<<<< - * """ - * Figure out the best memory access order for a given slice. - */ - - /* function exit code */ - __pyx_L0:; - return __pyx_r; -} - -/* "View.MemoryView":1093 - * - * @cython.cdivision(True) - * cdef void _copy_strided_to_strided(char *src_data, Py_ssize_t *src_strides, # <<<<<<<<<<<<<< - * char *dst_data, Py_ssize_t *dst_strides, - * Py_ssize_t *src_shape, Py_ssize_t *dst_shape, - */ - -static void _copy_strided_to_strided(char *__pyx_v_src_data, Py_ssize_t *__pyx_v_src_strides, char *__pyx_v_dst_data, Py_ssize_t *__pyx_v_dst_strides, Py_ssize_t *__pyx_v_src_shape, Py_ssize_t *__pyx_v_dst_shape, int __pyx_v_ndim, size_t __pyx_v_itemsize) { - CYTHON_UNUSED Py_ssize_t __pyx_v_i; - CYTHON_UNUSED Py_ssize_t __pyx_v_src_extent; - Py_ssize_t __pyx_v_dst_extent; - Py_ssize_t __pyx_v_src_stride; - Py_ssize_t __pyx_v_dst_stride; - int __pyx_t_1; - int __pyx_t_2; - int __pyx_t_3; - int __pyx_t_4; - Py_ssize_t __pyx_t_5; - Py_ssize_t __pyx_t_6; - - /* "View.MemoryView":1100 - * - * cdef Py_ssize_t i - * cdef Py_ssize_t src_extent = src_shape[0] # <<<<<<<<<<<<<< - * cdef Py_ssize_t dst_extent = dst_shape[0] - * cdef Py_ssize_t src_stride = src_strides[0] - */ - __pyx_v_src_extent = (__pyx_v_src_shape[0]); - - /* "View.MemoryView":1101 - * cdef Py_ssize_t i - * cdef Py_ssize_t src_extent = src_shape[0] - * cdef Py_ssize_t dst_extent = dst_shape[0] # <<<<<<<<<<<<<< - * cdef Py_ssize_t src_stride = src_strides[0] - * cdef Py_ssize_t dst_stride = dst_strides[0] - */ - __pyx_v_dst_extent = (__pyx_v_dst_shape[0]); - - /* "View.MemoryView":1102 - * cdef Py_ssize_t src_extent = src_shape[0] - * cdef Py_ssize_t dst_extent = dst_shape[0] - * cdef Py_ssize_t src_stride = src_strides[0] # <<<<<<<<<<<<<< - * cdef Py_ssize_t dst_stride = dst_strides[0] - * - */ - __pyx_v_src_stride = (__pyx_v_src_strides[0]); - - /* "View.MemoryView":1103 - * cdef Py_ssize_t dst_extent = dst_shape[0] - * cdef Py_ssize_t src_stride = src_strides[0] - * cdef Py_ssize_t dst_stride = dst_strides[0] # <<<<<<<<<<<<<< - * - * if ndim == 1: - */ - __pyx_v_dst_stride = (__pyx_v_dst_strides[0]); - - /* "View.MemoryView":1105 - * cdef Py_ssize_t dst_stride = dst_strides[0] - * - * if ndim == 1: # <<<<<<<<<<<<<< - * if (src_stride > 0 and dst_stride > 0 and - * src_stride == itemsize == dst_stride): - */ - __pyx_t_1 = ((__pyx_v_ndim == 1) != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":1106 - * - * if ndim == 1: - * if (src_stride > 0 and dst_stride > 0 and # <<<<<<<<<<<<<< - * src_stride == itemsize == dst_stride): - * memcpy(dst_data, src_data, itemsize * dst_extent) - */ - __pyx_t_1 = ((__pyx_v_src_stride > 0) != 0); - if (__pyx_t_1) { - __pyx_t_2 = ((__pyx_v_dst_stride > 0) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":1107 - * if ndim == 1: - * if (src_stride > 0 and dst_stride > 0 and - * src_stride == itemsize == dst_stride): # <<<<<<<<<<<<<< - * memcpy(dst_data, src_data, itemsize * dst_extent) - * else: - */ - __pyx_t_3 = (((size_t)__pyx_v_src_stride) == __pyx_v_itemsize); - if (__pyx_t_3) { - __pyx_t_3 = (__pyx_v_itemsize == ((size_t)__pyx_v_dst_stride)); - } - __pyx_t_4 = (__pyx_t_3 != 0); - } else { - __pyx_t_4 = __pyx_t_2; - } - __pyx_t_2 = __pyx_t_4; - } else { - __pyx_t_2 = __pyx_t_1; - } - if (__pyx_t_2) { - - /* "View.MemoryView":1108 - * if (src_stride > 0 and dst_stride > 0 and - * src_stride == itemsize == dst_stride): - * memcpy(dst_data, src_data, itemsize * dst_extent) # <<<<<<<<<<<<<< - * else: - * for i in range(dst_extent): - */ - memcpy(__pyx_v_dst_data, __pyx_v_src_data, (__pyx_v_itemsize * __pyx_v_dst_extent)); - goto __pyx_L4; - } - /*else*/ { - - /* "View.MemoryView":1110 - * memcpy(dst_data, src_data, itemsize * dst_extent) - * else: - * for i in range(dst_extent): # <<<<<<<<<<<<<< - * memcpy(dst_data, src_data, itemsize) - * src_data += src_stride - */ - __pyx_t_5 = __pyx_v_dst_extent; - for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) { - __pyx_v_i = __pyx_t_6; - - /* "View.MemoryView":1111 - * else: - * for i in range(dst_extent): - * memcpy(dst_data, src_data, itemsize) # <<<<<<<<<<<<<< - * src_data += src_stride - * dst_data += dst_stride - */ - memcpy(__pyx_v_dst_data, __pyx_v_src_data, __pyx_v_itemsize); - - /* "View.MemoryView":1112 - * for i in range(dst_extent): - * memcpy(dst_data, src_data, itemsize) - * src_data += src_stride # <<<<<<<<<<<<<< - * dst_data += dst_stride - * else: - */ - __pyx_v_src_data = (__pyx_v_src_data + __pyx_v_src_stride); - - /* "View.MemoryView":1113 - * memcpy(dst_data, src_data, itemsize) - * src_data += src_stride - * dst_data += dst_stride # <<<<<<<<<<<<<< - * else: - * for i in range(dst_extent): - */ - __pyx_v_dst_data = (__pyx_v_dst_data + __pyx_v_dst_stride); - } - } - __pyx_L4:; - goto __pyx_L3; - } - /*else*/ { - - /* "View.MemoryView":1115 - * dst_data += dst_stride - * else: - * for i in range(dst_extent): # <<<<<<<<<<<<<< - * _copy_strided_to_strided(src_data, src_strides + 1, - * dst_data, dst_strides + 1, - */ - __pyx_t_5 = __pyx_v_dst_extent; - for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) { - __pyx_v_i = __pyx_t_6; - - /* "View.MemoryView":1116 - * else: - * for i in range(dst_extent): - * _copy_strided_to_strided(src_data, src_strides + 1, # <<<<<<<<<<<<<< - * dst_data, dst_strides + 1, - * src_shape + 1, dst_shape + 1, - */ - _copy_strided_to_strided(__pyx_v_src_data, (__pyx_v_src_strides + 1), __pyx_v_dst_data, (__pyx_v_dst_strides + 1), (__pyx_v_src_shape + 1), (__pyx_v_dst_shape + 1), (__pyx_v_ndim - 1), __pyx_v_itemsize); - - /* "View.MemoryView":1120 - * src_shape + 1, dst_shape + 1, - * ndim - 1, itemsize) - * src_data += src_stride # <<<<<<<<<<<<<< - * dst_data += dst_stride - * - */ - __pyx_v_src_data = (__pyx_v_src_data + __pyx_v_src_stride); - - /* "View.MemoryView":1121 - * ndim - 1, itemsize) - * src_data += src_stride - * dst_data += dst_stride # <<<<<<<<<<<<<< - * - * cdef void copy_strided_to_strided(__Pyx_memviewslice *src, - */ - __pyx_v_dst_data = (__pyx_v_dst_data + __pyx_v_dst_stride); - } - } - __pyx_L3:; - - /* "View.MemoryView":1093 - * - * @cython.cdivision(True) - * cdef void _copy_strided_to_strided(char *src_data, Py_ssize_t *src_strides, # <<<<<<<<<<<<<< - * char *dst_data, Py_ssize_t *dst_strides, - * Py_ssize_t *src_shape, Py_ssize_t *dst_shape, - */ - - /* function exit code */ -} - -/* "View.MemoryView":1123 - * dst_data += dst_stride - * - * cdef void copy_strided_to_strided(__Pyx_memviewslice *src, # <<<<<<<<<<<<<< - * __Pyx_memviewslice *dst, - * int ndim, size_t itemsize) nogil: - */ - -static void copy_strided_to_strided(__Pyx_memviewslice *__pyx_v_src, __Pyx_memviewslice *__pyx_v_dst, int __pyx_v_ndim, size_t __pyx_v_itemsize) { - - /* "View.MemoryView":1126 - * __Pyx_memviewslice *dst, - * int ndim, size_t itemsize) nogil: - * _copy_strided_to_strided(src.data, src.strides, dst.data, dst.strides, # <<<<<<<<<<<<<< - * src.shape, dst.shape, ndim, itemsize) - * - */ - _copy_strided_to_strided(__pyx_v_src->data, __pyx_v_src->strides, __pyx_v_dst->data, __pyx_v_dst->strides, __pyx_v_src->shape, __pyx_v_dst->shape, __pyx_v_ndim, __pyx_v_itemsize); - - /* "View.MemoryView":1123 - * dst_data += dst_stride - * - * cdef void copy_strided_to_strided(__Pyx_memviewslice *src, # <<<<<<<<<<<<<< - * __Pyx_memviewslice *dst, - * int ndim, size_t itemsize) nogil: - */ - - /* function exit code */ -} - -/* "View.MemoryView":1130 - * - * @cname('__pyx_memoryview_slice_get_size') - * cdef Py_ssize_t slice_get_size(__Pyx_memviewslice *src, int ndim) nogil: # <<<<<<<<<<<<<< - * "Return the size of the memory occupied by the slice in number of bytes" - * cdef int i - */ - -static Py_ssize_t __pyx_memoryview_slice_get_size(__Pyx_memviewslice *__pyx_v_src, int __pyx_v_ndim) { - int __pyx_v_i; - Py_ssize_t __pyx_v_size; - Py_ssize_t __pyx_r; - Py_ssize_t __pyx_t_1; - int __pyx_t_2; - int __pyx_t_3; - - /* "View.MemoryView":1133 - * "Return the size of the memory occupied by the slice in number of bytes" - * cdef int i - * cdef Py_ssize_t size = src.memview.view.itemsize # <<<<<<<<<<<<<< - * - * for i in range(ndim): - */ - __pyx_t_1 = __pyx_v_src->memview->view.itemsize; - __pyx_v_size = __pyx_t_1; - - /* "View.MemoryView":1135 - * cdef Py_ssize_t size = src.memview.view.itemsize - * - * for i in range(ndim): # <<<<<<<<<<<<<< - * size *= src.shape[i] - * - */ - __pyx_t_2 = __pyx_v_ndim; - for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { - __pyx_v_i = __pyx_t_3; - - /* "View.MemoryView":1136 - * - * for i in range(ndim): - * size *= src.shape[i] # <<<<<<<<<<<<<< - * - * return size - */ - __pyx_v_size = (__pyx_v_size * (__pyx_v_src->shape[__pyx_v_i])); - } - - /* "View.MemoryView":1138 - * size *= src.shape[i] - * - * return size # <<<<<<<<<<<<<< - * - * @cname('__pyx_fill_contig_strides_array') - */ - __pyx_r = __pyx_v_size; - goto __pyx_L0; - - /* "View.MemoryView":1130 - * - * @cname('__pyx_memoryview_slice_get_size') - * cdef Py_ssize_t slice_get_size(__Pyx_memviewslice *src, int ndim) nogil: # <<<<<<<<<<<<<< - * "Return the size of the memory occupied by the slice in number of bytes" - * cdef int i - */ - - /* function exit code */ - __pyx_L0:; - return __pyx_r; -} - -/* "View.MemoryView":1141 - * - * @cname('__pyx_fill_contig_strides_array') - * cdef Py_ssize_t fill_contig_strides_array( # <<<<<<<<<<<<<< - * Py_ssize_t *shape, Py_ssize_t *strides, Py_ssize_t stride, - * int ndim, char order) nogil: - */ - -static Py_ssize_t __pyx_fill_contig_strides_array(Py_ssize_t *__pyx_v_shape, Py_ssize_t *__pyx_v_strides, Py_ssize_t __pyx_v_stride, int __pyx_v_ndim, char __pyx_v_order) { - int __pyx_v_idx; - Py_ssize_t __pyx_r; - int __pyx_t_1; - int __pyx_t_2; - int __pyx_t_3; - - /* "View.MemoryView":1150 - * cdef int idx - * - * if order == 'F': # <<<<<<<<<<<<<< - * for idx in range(ndim): - * strides[idx] = stride - */ - __pyx_t_1 = ((__pyx_v_order == 'F') != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":1151 - * - * if order == 'F': - * for idx in range(ndim): # <<<<<<<<<<<<<< - * strides[idx] = stride - * stride = stride * shape[idx] - */ - __pyx_t_2 = __pyx_v_ndim; - for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { - __pyx_v_idx = __pyx_t_3; - - /* "View.MemoryView":1152 - * if order == 'F': - * for idx in range(ndim): - * strides[idx] = stride # <<<<<<<<<<<<<< - * stride = stride * shape[idx] - * else: - */ - (__pyx_v_strides[__pyx_v_idx]) = __pyx_v_stride; - - /* "View.MemoryView":1153 - * for idx in range(ndim): - * strides[idx] = stride - * stride = stride * shape[idx] # <<<<<<<<<<<<<< - * else: - * for idx in range(ndim - 1, -1, -1): - */ - __pyx_v_stride = (__pyx_v_stride * (__pyx_v_shape[__pyx_v_idx])); - } - goto __pyx_L3; - } - /*else*/ { - - /* "View.MemoryView":1155 - * stride = stride * shape[idx] - * else: - * for idx in range(ndim - 1, -1, -1): # <<<<<<<<<<<<<< - * strides[idx] = stride - * stride = stride * shape[idx] - */ - for (__pyx_t_2 = (__pyx_v_ndim - 1); __pyx_t_2 > -1; __pyx_t_2-=1) { - __pyx_v_idx = __pyx_t_2; - - /* "View.MemoryView":1156 - * else: - * for idx in range(ndim - 1, -1, -1): - * strides[idx] = stride # <<<<<<<<<<<<<< - * stride = stride * shape[idx] - * - */ - (__pyx_v_strides[__pyx_v_idx]) = __pyx_v_stride; - - /* "View.MemoryView":1157 - * for idx in range(ndim - 1, -1, -1): - * strides[idx] = stride - * stride = stride * shape[idx] # <<<<<<<<<<<<<< - * - * return stride - */ - __pyx_v_stride = (__pyx_v_stride * (__pyx_v_shape[__pyx_v_idx])); - } - } - __pyx_L3:; - - /* "View.MemoryView":1159 - * stride = stride * shape[idx] - * - * return stride # <<<<<<<<<<<<<< - * - * @cname('__pyx_memoryview_copy_data_to_temp') - */ - __pyx_r = __pyx_v_stride; - goto __pyx_L0; - - /* "View.MemoryView":1141 - * - * @cname('__pyx_fill_contig_strides_array') - * cdef Py_ssize_t fill_contig_strides_array( # <<<<<<<<<<<<<< - * Py_ssize_t *shape, Py_ssize_t *strides, Py_ssize_t stride, - * int ndim, char order) nogil: - */ - - /* function exit code */ - __pyx_L0:; - return __pyx_r; -} - -/* "View.MemoryView":1162 - * - * @cname('__pyx_memoryview_copy_data_to_temp') - * cdef void *copy_data_to_temp(__Pyx_memviewslice *src, # <<<<<<<<<<<<<< - * __Pyx_memviewslice *tmpslice, - * char order, - */ - -static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *__pyx_v_src, __Pyx_memviewslice *__pyx_v_tmpslice, char __pyx_v_order, int __pyx_v_ndim) { - int __pyx_v_i; - void *__pyx_v_result; - size_t __pyx_v_itemsize; - size_t __pyx_v_size; - void *__pyx_r; - Py_ssize_t __pyx_t_1; - int __pyx_t_2; - int __pyx_t_3; - struct __pyx_memoryview_obj *__pyx_t_4; - int __pyx_t_5; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - - /* "View.MemoryView":1173 - * cdef void *result - * - * cdef size_t itemsize = src.memview.view.itemsize # <<<<<<<<<<<<<< - * cdef size_t size = slice_get_size(src, ndim) - * - */ - __pyx_t_1 = __pyx_v_src->memview->view.itemsize; - __pyx_v_itemsize = __pyx_t_1; - - /* "View.MemoryView":1174 - * - * cdef size_t itemsize = src.memview.view.itemsize - * cdef size_t size = slice_get_size(src, ndim) # <<<<<<<<<<<<<< - * - * result = malloc(size) - */ - __pyx_v_size = __pyx_memoryview_slice_get_size(__pyx_v_src, __pyx_v_ndim); - - /* "View.MemoryView":1176 - * cdef size_t size = slice_get_size(src, ndim) - * - * result = malloc(size) # <<<<<<<<<<<<<< - * if not result: - * _err(MemoryError, NULL) - */ - __pyx_v_result = malloc(__pyx_v_size); - - /* "View.MemoryView":1177 - * - * result = malloc(size) - * if not result: # <<<<<<<<<<<<<< - * _err(MemoryError, NULL) - * - */ - __pyx_t_2 = ((!(__pyx_v_result != 0)) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":1178 - * result = malloc(size) - * if not result: - * _err(MemoryError, NULL) # <<<<<<<<<<<<<< - * - * - */ - __pyx_t_3 = __pyx_memoryview_err(__pyx_builtin_MemoryError, NULL); if (unlikely(__pyx_t_3 == -1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 1178; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - goto __pyx_L3; - } - __pyx_L3:; - - /* "View.MemoryView":1181 - * - * - * tmpslice.data = result # <<<<<<<<<<<<<< - * tmpslice.memview = src.memview - * for i in range(ndim): - */ - __pyx_v_tmpslice->data = ((char *)__pyx_v_result); - - /* "View.MemoryView":1182 - * - * tmpslice.data = result - * tmpslice.memview = src.memview # <<<<<<<<<<<<<< - * for i in range(ndim): - * tmpslice.shape[i] = src.shape[i] - */ - __pyx_t_4 = __pyx_v_src->memview; - __pyx_v_tmpslice->memview = __pyx_t_4; - - /* "View.MemoryView":1183 - * tmpslice.data = result - * tmpslice.memview = src.memview - * for i in range(ndim): # <<<<<<<<<<<<<< - * tmpslice.shape[i] = src.shape[i] - * tmpslice.suboffsets[i] = -1 - */ - __pyx_t_3 = __pyx_v_ndim; - for (__pyx_t_5 = 0; __pyx_t_5 < __pyx_t_3; __pyx_t_5+=1) { - __pyx_v_i = __pyx_t_5; - - /* "View.MemoryView":1184 - * tmpslice.memview = src.memview - * for i in range(ndim): - * tmpslice.shape[i] = src.shape[i] # <<<<<<<<<<<<<< - * tmpslice.suboffsets[i] = -1 - * - */ - (__pyx_v_tmpslice->shape[__pyx_v_i]) = (__pyx_v_src->shape[__pyx_v_i]); - - /* "View.MemoryView":1185 - * for i in range(ndim): - * tmpslice.shape[i] = src.shape[i] - * tmpslice.suboffsets[i] = -1 # <<<<<<<<<<<<<< - * - * fill_contig_strides_array(&tmpslice.shape[0], &tmpslice.strides[0], itemsize, - */ - (__pyx_v_tmpslice->suboffsets[__pyx_v_i]) = -1; - } - - /* "View.MemoryView":1187 - * tmpslice.suboffsets[i] = -1 - * - * fill_contig_strides_array(&tmpslice.shape[0], &tmpslice.strides[0], itemsize, # <<<<<<<<<<<<<< - * ndim, order) - * - */ - __pyx_fill_contig_strides_array((&(__pyx_v_tmpslice->shape[0])), (&(__pyx_v_tmpslice->strides[0])), __pyx_v_itemsize, __pyx_v_ndim, __pyx_v_order); - - /* "View.MemoryView":1191 - * - * - * for i in range(ndim): # <<<<<<<<<<<<<< - * if tmpslice.shape[i] == 1: - * tmpslice.strides[i] = 0 - */ - __pyx_t_3 = __pyx_v_ndim; - for (__pyx_t_5 = 0; __pyx_t_5 < __pyx_t_3; __pyx_t_5+=1) { - __pyx_v_i = __pyx_t_5; - - /* "View.MemoryView":1192 - * - * for i in range(ndim): - * if tmpslice.shape[i] == 1: # <<<<<<<<<<<<<< - * tmpslice.strides[i] = 0 - * - */ - __pyx_t_2 = (((__pyx_v_tmpslice->shape[__pyx_v_i]) == 1) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":1193 - * for i in range(ndim): - * if tmpslice.shape[i] == 1: - * tmpslice.strides[i] = 0 # <<<<<<<<<<<<<< - * - * if slice_is_contig(src, order, ndim): - */ - (__pyx_v_tmpslice->strides[__pyx_v_i]) = 0; - goto __pyx_L8; - } - __pyx_L8:; - } - - /* "View.MemoryView":1195 - * tmpslice.strides[i] = 0 - * - * if slice_is_contig(src, order, ndim): # <<<<<<<<<<<<<< - * memcpy(result, src.data, size) - * else: - */ - __pyx_t_2 = (__pyx_memviewslice_is_contig(__pyx_v_src, __pyx_v_order, __pyx_v_ndim) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":1196 - * - * if slice_is_contig(src, order, ndim): - * memcpy(result, src.data, size) # <<<<<<<<<<<<<< - * else: - * copy_strided_to_strided(src, tmpslice, ndim, itemsize) - */ - memcpy(__pyx_v_result, __pyx_v_src->data, __pyx_v_size); - goto __pyx_L9; - } - /*else*/ { - - /* "View.MemoryView":1198 - * memcpy(result, src.data, size) - * else: - * copy_strided_to_strided(src, tmpslice, ndim, itemsize) # <<<<<<<<<<<<<< - * - * return result - */ - copy_strided_to_strided(__pyx_v_src, __pyx_v_tmpslice, __pyx_v_ndim, __pyx_v_itemsize); - } - __pyx_L9:; - - /* "View.MemoryView":1200 - * copy_strided_to_strided(src, tmpslice, ndim, itemsize) - * - * return result # <<<<<<<<<<<<<< - * - * - */ - __pyx_r = __pyx_v_result; - goto __pyx_L0; - - /* "View.MemoryView":1162 - * - * @cname('__pyx_memoryview_copy_data_to_temp') - * cdef void *copy_data_to_temp(__Pyx_memviewslice *src, # <<<<<<<<<<<<<< - * __Pyx_memviewslice *tmpslice, - * char order, - */ - - /* function exit code */ - __pyx_L1_error:; - { - #ifdef WITH_THREAD - PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); - #endif - __Pyx_AddTraceback("View.MemoryView.copy_data_to_temp", __pyx_clineno, __pyx_lineno, __pyx_filename); - #ifdef WITH_THREAD - PyGILState_Release(__pyx_gilstate_save); - #endif - } - __pyx_r = NULL; - __pyx_L0:; - return __pyx_r; -} - -/* "View.MemoryView":1205 - * - * @cname('__pyx_memoryview_err_extents') - * cdef int _err_extents(int i, Py_ssize_t extent1, # <<<<<<<<<<<<<< - * Py_ssize_t extent2) except -1 with gil: - * raise ValueError("got differing extents in dimension %d (got %d and %d)" % - */ - -static int __pyx_memoryview_err_extents(int __pyx_v_i, Py_ssize_t __pyx_v_extent1, Py_ssize_t __pyx_v_extent2) { - int __pyx_r; - __Pyx_RefNannyDeclarations - PyObject *__pyx_t_1 = NULL; - PyObject *__pyx_t_2 = NULL; - PyObject *__pyx_t_3 = NULL; - PyObject *__pyx_t_4 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - #ifdef WITH_THREAD - PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); - #endif - __Pyx_RefNannySetupContext("_err_extents", 0); - - /* "View.MemoryView":1208 - * Py_ssize_t extent2) except -1 with gil: - * raise ValueError("got differing extents in dimension %d (got %d and %d)" % - * (i, extent1, extent2)) # <<<<<<<<<<<<<< - * - * @cname('__pyx_memoryview_err_dim') - */ - __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_i); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 1208; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_extent1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 1208; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - __pyx_t_3 = PyInt_FromSsize_t(__pyx_v_extent2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 1208; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __pyx_t_4 = PyTuple_New(3); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 1208; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_1); - __Pyx_GIVEREF(__pyx_t_1); - PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_2); - __Pyx_GIVEREF(__pyx_t_2); - PyTuple_SET_ITEM(__pyx_t_4, 2, __pyx_t_3); - __Pyx_GIVEREF(__pyx_t_3); - __pyx_t_1 = 0; - __pyx_t_2 = 0; - __pyx_t_3 = 0; - - /* "View.MemoryView":1207 - * cdef int _err_extents(int i, Py_ssize_t extent1, - * Py_ssize_t extent2) except -1 with gil: - * raise ValueError("got differing extents in dimension %d (got %d and %d)" % # <<<<<<<<<<<<<< - * (i, extent1, extent2)) - * - */ - __pyx_t_3 = __Pyx_PyString_Format(__pyx_kp_s_got_differing_extents_in_dimensi, __pyx_t_4); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 1207; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 1207; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_3); - __Pyx_GIVEREF(__pyx_t_3); - __pyx_t_3 = 0; - __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_t_4, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 1207; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __Pyx_Raise(__pyx_t_3, 0, 0, 0); - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - {__pyx_filename = __pyx_f[2]; __pyx_lineno = 1207; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - - /* "View.MemoryView":1205 - * - * @cname('__pyx_memoryview_err_extents') - * cdef int _err_extents(int i, Py_ssize_t extent1, # <<<<<<<<<<<<<< - * Py_ssize_t extent2) except -1 with gil: - * raise ValueError("got differing extents in dimension %d (got %d and %d)" % - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_1); - __Pyx_XDECREF(__pyx_t_2); - __Pyx_XDECREF(__pyx_t_3); - __Pyx_XDECREF(__pyx_t_4); - __Pyx_AddTraceback("View.MemoryView._err_extents", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = -1; - __Pyx_RefNannyFinishContext(); - #ifdef WITH_THREAD - PyGILState_Release(__pyx_gilstate_save); - #endif - return __pyx_r; -} - -/* "View.MemoryView":1211 - * - * @cname('__pyx_memoryview_err_dim') - * cdef int _err_dim(object error, char *msg, int dim) except -1 with gil: # <<<<<<<<<<<<<< - * raise error(msg.decode('ascii') % dim) - * - */ - -static int __pyx_memoryview_err_dim(PyObject *__pyx_v_error, char *__pyx_v_msg, int __pyx_v_dim) { - int __pyx_r; - __Pyx_RefNannyDeclarations - PyObject *__pyx_t_1 = NULL; - PyObject *__pyx_t_2 = NULL; - PyObject *__pyx_t_3 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - #ifdef WITH_THREAD - PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); - #endif - __Pyx_RefNannySetupContext("_err_dim", 0); - __Pyx_INCREF(__pyx_v_error); - - /* "View.MemoryView":1212 - * @cname('__pyx_memoryview_err_dim') - * cdef int _err_dim(object error, char *msg, int dim) except -1 with gil: - * raise error(msg.decode('ascii') % dim) # <<<<<<<<<<<<<< - * - * @cname('__pyx_memoryview_err') - */ - __pyx_t_1 = __Pyx_decode_c_string(__pyx_v_msg, 0, strlen(__pyx_v_msg), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 1212; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __pyx_t_2 = __Pyx_PyInt_From_int(__pyx_v_dim); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 1212; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - __pyx_t_3 = PyUnicode_Format(__pyx_t_1, __pyx_t_2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 1212; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 1212; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_3); - __Pyx_GIVEREF(__pyx_t_3); - __pyx_t_3 = 0; - __pyx_t_3 = __Pyx_PyObject_Call(__pyx_v_error, __pyx_t_2, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 1212; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - __Pyx_Raise(__pyx_t_3, 0, 0, 0); - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - {__pyx_filename = __pyx_f[2]; __pyx_lineno = 1212; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - - /* "View.MemoryView":1211 - * - * @cname('__pyx_memoryview_err_dim') - * cdef int _err_dim(object error, char *msg, int dim) except -1 with gil: # <<<<<<<<<<<<<< - * raise error(msg.decode('ascii') % dim) - * - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_1); - __Pyx_XDECREF(__pyx_t_2); - __Pyx_XDECREF(__pyx_t_3); - __Pyx_AddTraceback("View.MemoryView._err_dim", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = -1; - __Pyx_XDECREF(__pyx_v_error); - __Pyx_RefNannyFinishContext(); - #ifdef WITH_THREAD - PyGILState_Release(__pyx_gilstate_save); - #endif - return __pyx_r; -} - -/* "View.MemoryView":1215 - * - * @cname('__pyx_memoryview_err') - * cdef int _err(object error, char *msg) except -1 with gil: # <<<<<<<<<<<<<< - * if msg != NULL: - * raise error(msg.decode('ascii')) - */ - -static int __pyx_memoryview_err(PyObject *__pyx_v_error, char *__pyx_v_msg) { - int __pyx_r; - __Pyx_RefNannyDeclarations - int __pyx_t_1; - PyObject *__pyx_t_2 = NULL; - PyObject *__pyx_t_3 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - #ifdef WITH_THREAD - PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); - #endif - __Pyx_RefNannySetupContext("_err", 0); - __Pyx_INCREF(__pyx_v_error); - - /* "View.MemoryView":1216 - * @cname('__pyx_memoryview_err') - * cdef int _err(object error, char *msg) except -1 with gil: - * if msg != NULL: # <<<<<<<<<<<<<< - * raise error(msg.decode('ascii')) - * else: - */ - __pyx_t_1 = ((__pyx_v_msg != NULL) != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":1217 - * cdef int _err(object error, char *msg) except -1 with gil: - * if msg != NULL: - * raise error(msg.decode('ascii')) # <<<<<<<<<<<<<< - * else: - * raise error - */ - __pyx_t_2 = __Pyx_decode_c_string(__pyx_v_msg, 0, strlen(__pyx_v_msg), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 1217; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 1217; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_2); - __Pyx_GIVEREF(__pyx_t_2); - __pyx_t_2 = 0; - __pyx_t_2 = __Pyx_PyObject_Call(__pyx_v_error, __pyx_t_3, NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 1217; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_2); - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __Pyx_Raise(__pyx_t_2, 0, 0, 0); - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - {__pyx_filename = __pyx_f[2]; __pyx_lineno = 1217; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - /*else*/ { - - /* "View.MemoryView":1219 - * raise error(msg.decode('ascii')) - * else: - * raise error # <<<<<<<<<<<<<< - * - * @cname('__pyx_memoryview_copy_contents') - */ - __Pyx_Raise(__pyx_v_error, 0, 0, 0); - {__pyx_filename = __pyx_f[2]; __pyx_lineno = 1219; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - - /* "View.MemoryView":1215 - * - * @cname('__pyx_memoryview_err') - * cdef int _err(object error, char *msg) except -1 with gil: # <<<<<<<<<<<<<< - * if msg != NULL: - * raise error(msg.decode('ascii')) - */ - - /* function exit code */ - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_2); - __Pyx_XDECREF(__pyx_t_3); - __Pyx_AddTraceback("View.MemoryView._err", __pyx_clineno, __pyx_lineno, __pyx_filename); - __pyx_r = -1; - __Pyx_XDECREF(__pyx_v_error); - __Pyx_RefNannyFinishContext(); - #ifdef WITH_THREAD - PyGILState_Release(__pyx_gilstate_save); - #endif - return __pyx_r; -} - -/* "View.MemoryView":1222 - * - * @cname('__pyx_memoryview_copy_contents') - * cdef int memoryview_copy_contents(__Pyx_memviewslice src, # <<<<<<<<<<<<<< - * __Pyx_memviewslice dst, - * int src_ndim, int dst_ndim, - */ - -static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_memviewslice __pyx_v_dst, int __pyx_v_src_ndim, int __pyx_v_dst_ndim, int __pyx_v_dtype_is_object) { - void *__pyx_v_tmpdata; - size_t __pyx_v_itemsize; - int __pyx_v_i; - char __pyx_v_order; - int __pyx_v_broadcasting; - int __pyx_v_direct_copy; - __Pyx_memviewslice __pyx_v_tmp; - int __pyx_v_ndim; - int __pyx_r; - Py_ssize_t __pyx_t_1; - int __pyx_t_2; - int __pyx_t_3; - int __pyx_t_4; - int __pyx_t_5; - void *__pyx_t_6; - int __pyx_t_7; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - - /* "View.MemoryView":1230 - * Check for overlapping memory and verify the shapes. - * """ - * cdef void *tmpdata = NULL # <<<<<<<<<<<<<< - * cdef size_t itemsize = src.memview.view.itemsize - * cdef int i - */ - __pyx_v_tmpdata = NULL; - - /* "View.MemoryView":1231 - * """ - * cdef void *tmpdata = NULL - * cdef size_t itemsize = src.memview.view.itemsize # <<<<<<<<<<<<<< - * cdef int i - * cdef char order = get_best_order(&src, src_ndim) - */ - __pyx_t_1 = __pyx_v_src.memview->view.itemsize; - __pyx_v_itemsize = __pyx_t_1; - - /* "View.MemoryView":1233 - * cdef size_t itemsize = src.memview.view.itemsize - * cdef int i - * cdef char order = get_best_order(&src, src_ndim) # <<<<<<<<<<<<<< - * cdef bint broadcasting = False - * cdef bint direct_copy = False - */ - __pyx_v_order = __pyx_get_best_slice_order((&__pyx_v_src), __pyx_v_src_ndim); - - /* "View.MemoryView":1234 - * cdef int i - * cdef char order = get_best_order(&src, src_ndim) - * cdef bint broadcasting = False # <<<<<<<<<<<<<< - * cdef bint direct_copy = False - * cdef __Pyx_memviewslice tmp - */ - __pyx_v_broadcasting = 0; - - /* "View.MemoryView":1235 - * cdef char order = get_best_order(&src, src_ndim) - * cdef bint broadcasting = False - * cdef bint direct_copy = False # <<<<<<<<<<<<<< - * cdef __Pyx_memviewslice tmp - * - */ - __pyx_v_direct_copy = 0; - - /* "View.MemoryView":1238 - * cdef __Pyx_memviewslice tmp - * - * if src_ndim < dst_ndim: # <<<<<<<<<<<<<< - * broadcast_leading(&src, src_ndim, dst_ndim) - * elif dst_ndim < src_ndim: - */ - __pyx_t_2 = ((__pyx_v_src_ndim < __pyx_v_dst_ndim) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":1239 - * - * if src_ndim < dst_ndim: - * broadcast_leading(&src, src_ndim, dst_ndim) # <<<<<<<<<<<<<< - * elif dst_ndim < src_ndim: - * broadcast_leading(&dst, dst_ndim, src_ndim) - */ - __pyx_memoryview_broadcast_leading((&__pyx_v_src), __pyx_v_src_ndim, __pyx_v_dst_ndim); - goto __pyx_L3; - } - - /* "View.MemoryView":1240 - * if src_ndim < dst_ndim: - * broadcast_leading(&src, src_ndim, dst_ndim) - * elif dst_ndim < src_ndim: # <<<<<<<<<<<<<< - * broadcast_leading(&dst, dst_ndim, src_ndim) - * - */ - __pyx_t_2 = ((__pyx_v_dst_ndim < __pyx_v_src_ndim) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":1241 - * broadcast_leading(&src, src_ndim, dst_ndim) - * elif dst_ndim < src_ndim: - * broadcast_leading(&dst, dst_ndim, src_ndim) # <<<<<<<<<<<<<< - * - * cdef int ndim = max(src_ndim, dst_ndim) - */ - __pyx_memoryview_broadcast_leading((&__pyx_v_dst), __pyx_v_dst_ndim, __pyx_v_src_ndim); - goto __pyx_L3; - } - __pyx_L3:; - - /* "View.MemoryView":1243 - * broadcast_leading(&dst, dst_ndim, src_ndim) - * - * cdef int ndim = max(src_ndim, dst_ndim) # <<<<<<<<<<<<<< - * - * for i in range(ndim): - */ - __pyx_t_3 = __pyx_v_dst_ndim; - __pyx_t_4 = __pyx_v_src_ndim; - if (((__pyx_t_3 > __pyx_t_4) != 0)) { - __pyx_t_5 = __pyx_t_3; - } else { - __pyx_t_5 = __pyx_t_4; - } - __pyx_v_ndim = __pyx_t_5; - - /* "View.MemoryView":1245 - * cdef int ndim = max(src_ndim, dst_ndim) - * - * for i in range(ndim): # <<<<<<<<<<<<<< - * if src.shape[i] != dst.shape[i]: - * if src.shape[i] == 1: - */ - __pyx_t_5 = __pyx_v_ndim; - for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_5; __pyx_t_3+=1) { - __pyx_v_i = __pyx_t_3; - - /* "View.MemoryView":1246 - * - * for i in range(ndim): - * if src.shape[i] != dst.shape[i]: # <<<<<<<<<<<<<< - * if src.shape[i] == 1: - * broadcasting = True - */ - __pyx_t_2 = (((__pyx_v_src.shape[__pyx_v_i]) != (__pyx_v_dst.shape[__pyx_v_i])) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":1247 - * for i in range(ndim): - * if src.shape[i] != dst.shape[i]: - * if src.shape[i] == 1: # <<<<<<<<<<<<<< - * broadcasting = True - * src.strides[i] = 0 - */ - __pyx_t_2 = (((__pyx_v_src.shape[__pyx_v_i]) == 1) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":1248 - * if src.shape[i] != dst.shape[i]: - * if src.shape[i] == 1: - * broadcasting = True # <<<<<<<<<<<<<< - * src.strides[i] = 0 - * else: - */ - __pyx_v_broadcasting = 1; - - /* "View.MemoryView":1249 - * if src.shape[i] == 1: - * broadcasting = True - * src.strides[i] = 0 # <<<<<<<<<<<<<< - * else: - * _err_extents(i, dst.shape[i], src.shape[i]) - */ - (__pyx_v_src.strides[__pyx_v_i]) = 0; - goto __pyx_L7; - } - /*else*/ { - - /* "View.MemoryView":1251 - * src.strides[i] = 0 - * else: - * _err_extents(i, dst.shape[i], src.shape[i]) # <<<<<<<<<<<<<< - * - * if src.suboffsets[i] >= 0: - */ - __pyx_t_4 = __pyx_memoryview_err_extents(__pyx_v_i, (__pyx_v_dst.shape[__pyx_v_i]), (__pyx_v_src.shape[__pyx_v_i])); if (unlikely(__pyx_t_4 == -1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 1251; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - __pyx_L7:; - goto __pyx_L6; - } - __pyx_L6:; - - /* "View.MemoryView":1253 - * _err_extents(i, dst.shape[i], src.shape[i]) - * - * if src.suboffsets[i] >= 0: # <<<<<<<<<<<<<< - * _err_dim(ValueError, "Dimension %d is not direct", i) - * - */ - __pyx_t_2 = (((__pyx_v_src.suboffsets[__pyx_v_i]) >= 0) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":1254 - * - * if src.suboffsets[i] >= 0: - * _err_dim(ValueError, "Dimension %d is not direct", i) # <<<<<<<<<<<<<< - * - * if slices_overlap(&src, &dst, ndim, itemsize): - */ - __pyx_t_4 = __pyx_memoryview_err_dim(__pyx_builtin_ValueError, __pyx_k_Dimension_d_is_not_direct, __pyx_v_i); if (unlikely(__pyx_t_4 == -1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 1254; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - goto __pyx_L8; - } - __pyx_L8:; - } - - /* "View.MemoryView":1256 - * _err_dim(ValueError, "Dimension %d is not direct", i) - * - * if slices_overlap(&src, &dst, ndim, itemsize): # <<<<<<<<<<<<<< - * - * if not slice_is_contig(&src, order, ndim): - */ - __pyx_t_2 = (__pyx_slices_overlap((&__pyx_v_src), (&__pyx_v_dst), __pyx_v_ndim, __pyx_v_itemsize) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":1258 - * if slices_overlap(&src, &dst, ndim, itemsize): - * - * if not slice_is_contig(&src, order, ndim): # <<<<<<<<<<<<<< - * order = get_best_order(&dst, ndim) - * - */ - __pyx_t_2 = ((!(__pyx_memviewslice_is_contig((&__pyx_v_src), __pyx_v_order, __pyx_v_ndim) != 0)) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":1259 - * - * if not slice_is_contig(&src, order, ndim): - * order = get_best_order(&dst, ndim) # <<<<<<<<<<<<<< - * - * tmpdata = copy_data_to_temp(&src, &tmp, order, ndim) - */ - __pyx_v_order = __pyx_get_best_slice_order((&__pyx_v_dst), __pyx_v_ndim); - goto __pyx_L10; - } - __pyx_L10:; - - /* "View.MemoryView":1261 - * order = get_best_order(&dst, ndim) - * - * tmpdata = copy_data_to_temp(&src, &tmp, order, ndim) # <<<<<<<<<<<<<< - * src = tmp - * - */ - __pyx_t_6 = __pyx_memoryview_copy_data_to_temp((&__pyx_v_src), (&__pyx_v_tmp), __pyx_v_order, __pyx_v_ndim); if (unlikely(__pyx_t_6 == NULL)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 1261; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_v_tmpdata = __pyx_t_6; - - /* "View.MemoryView":1262 - * - * tmpdata = copy_data_to_temp(&src, &tmp, order, ndim) - * src = tmp # <<<<<<<<<<<<<< - * - * if not broadcasting: - */ - __pyx_v_src = __pyx_v_tmp; - goto __pyx_L9; - } - __pyx_L9:; - - /* "View.MemoryView":1264 - * src = tmp - * - * if not broadcasting: # <<<<<<<<<<<<<< - * - * - */ - __pyx_t_2 = ((!(__pyx_v_broadcasting != 0)) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":1267 - * - * - * if slice_is_contig(&src, 'C', ndim): # <<<<<<<<<<<<<< - * direct_copy = slice_is_contig(&dst, 'C', ndim) - * elif slice_is_contig(&src, 'F', ndim): - */ - __pyx_t_2 = (__pyx_memviewslice_is_contig((&__pyx_v_src), 'C', __pyx_v_ndim) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":1268 - * - * if slice_is_contig(&src, 'C', ndim): - * direct_copy = slice_is_contig(&dst, 'C', ndim) # <<<<<<<<<<<<<< - * elif slice_is_contig(&src, 'F', ndim): - * direct_copy = slice_is_contig(&dst, 'F', ndim) - */ - __pyx_v_direct_copy = __pyx_memviewslice_is_contig((&__pyx_v_dst), 'C', __pyx_v_ndim); - goto __pyx_L12; - } - - /* "View.MemoryView":1269 - * if slice_is_contig(&src, 'C', ndim): - * direct_copy = slice_is_contig(&dst, 'C', ndim) - * elif slice_is_contig(&src, 'F', ndim): # <<<<<<<<<<<<<< - * direct_copy = slice_is_contig(&dst, 'F', ndim) - * - */ - __pyx_t_2 = (__pyx_memviewslice_is_contig((&__pyx_v_src), 'F', __pyx_v_ndim) != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":1270 - * direct_copy = slice_is_contig(&dst, 'C', ndim) - * elif slice_is_contig(&src, 'F', ndim): - * direct_copy = slice_is_contig(&dst, 'F', ndim) # <<<<<<<<<<<<<< - * - * if direct_copy: - */ - __pyx_v_direct_copy = __pyx_memviewslice_is_contig((&__pyx_v_dst), 'F', __pyx_v_ndim); - goto __pyx_L12; - } - __pyx_L12:; - - /* "View.MemoryView":1272 - * direct_copy = slice_is_contig(&dst, 'F', ndim) - * - * if direct_copy: # <<<<<<<<<<<<<< - * - * refcount_copying(&dst, dtype_is_object, ndim, False) - */ - __pyx_t_2 = (__pyx_v_direct_copy != 0); - if (__pyx_t_2) { - - /* "View.MemoryView":1274 - * if direct_copy: - * - * refcount_copying(&dst, dtype_is_object, ndim, False) # <<<<<<<<<<<<<< - * memcpy(dst.data, src.data, slice_get_size(&src, ndim)) - * refcount_copying(&dst, dtype_is_object, ndim, True) - */ - __pyx_memoryview_refcount_copying((&__pyx_v_dst), __pyx_v_dtype_is_object, __pyx_v_ndim, 0); - - /* "View.MemoryView":1275 - * - * refcount_copying(&dst, dtype_is_object, ndim, False) - * memcpy(dst.data, src.data, slice_get_size(&src, ndim)) # <<<<<<<<<<<<<< - * refcount_copying(&dst, dtype_is_object, ndim, True) - * free(tmpdata) - */ - memcpy(__pyx_v_dst.data, __pyx_v_src.data, __pyx_memoryview_slice_get_size((&__pyx_v_src), __pyx_v_ndim)); - - /* "View.MemoryView":1276 - * refcount_copying(&dst, dtype_is_object, ndim, False) - * memcpy(dst.data, src.data, slice_get_size(&src, ndim)) - * refcount_copying(&dst, dtype_is_object, ndim, True) # <<<<<<<<<<<<<< - * free(tmpdata) - * return 0 - */ - __pyx_memoryview_refcount_copying((&__pyx_v_dst), __pyx_v_dtype_is_object, __pyx_v_ndim, 1); - - /* "View.MemoryView":1277 - * memcpy(dst.data, src.data, slice_get_size(&src, ndim)) - * refcount_copying(&dst, dtype_is_object, ndim, True) - * free(tmpdata) # <<<<<<<<<<<<<< - * return 0 - * - */ - free(__pyx_v_tmpdata); - - /* "View.MemoryView":1278 - * refcount_copying(&dst, dtype_is_object, ndim, True) - * free(tmpdata) - * return 0 # <<<<<<<<<<<<<< - * - * if order == 'F' == get_best_order(&dst, ndim): - */ - __pyx_r = 0; - goto __pyx_L0; - } - goto __pyx_L11; - } - __pyx_L11:; - - /* "View.MemoryView":1280 - * return 0 - * - * if order == 'F' == get_best_order(&dst, ndim): # <<<<<<<<<<<<<< - * - * - */ - __pyx_t_2 = (__pyx_v_order == 'F'); - if (__pyx_t_2) { - __pyx_t_2 = ('F' == __pyx_get_best_slice_order((&__pyx_v_dst), __pyx_v_ndim)); - } - __pyx_t_7 = (__pyx_t_2 != 0); - if (__pyx_t_7) { - - /* "View.MemoryView":1283 - * - * - * transpose_memslice(&src) # <<<<<<<<<<<<<< - * transpose_memslice(&dst) - * - */ - __pyx_t_5 = __pyx_memslice_transpose((&__pyx_v_src)); if (unlikely(__pyx_t_5 == 0)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 1283; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - - /* "View.MemoryView":1284 - * - * transpose_memslice(&src) - * transpose_memslice(&dst) # <<<<<<<<<<<<<< - * - * refcount_copying(&dst, dtype_is_object, ndim, False) - */ - __pyx_t_5 = __pyx_memslice_transpose((&__pyx_v_dst)); if (unlikely(__pyx_t_5 == 0)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 1284; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - goto __pyx_L14; - } - __pyx_L14:; - - /* "View.MemoryView":1286 - * transpose_memslice(&dst) - * - * refcount_copying(&dst, dtype_is_object, ndim, False) # <<<<<<<<<<<<<< - * copy_strided_to_strided(&src, &dst, ndim, itemsize) - * refcount_copying(&dst, dtype_is_object, ndim, True) - */ - __pyx_memoryview_refcount_copying((&__pyx_v_dst), __pyx_v_dtype_is_object, __pyx_v_ndim, 0); - - /* "View.MemoryView":1287 - * - * refcount_copying(&dst, dtype_is_object, ndim, False) - * copy_strided_to_strided(&src, &dst, ndim, itemsize) # <<<<<<<<<<<<<< - * refcount_copying(&dst, dtype_is_object, ndim, True) - * - */ - copy_strided_to_strided((&__pyx_v_src), (&__pyx_v_dst), __pyx_v_ndim, __pyx_v_itemsize); - - /* "View.MemoryView":1288 - * refcount_copying(&dst, dtype_is_object, ndim, False) - * copy_strided_to_strided(&src, &dst, ndim, itemsize) - * refcount_copying(&dst, dtype_is_object, ndim, True) # <<<<<<<<<<<<<< - * - * free(tmpdata) - */ - __pyx_memoryview_refcount_copying((&__pyx_v_dst), __pyx_v_dtype_is_object, __pyx_v_ndim, 1); - - /* "View.MemoryView":1290 - * refcount_copying(&dst, dtype_is_object, ndim, True) - * - * free(tmpdata) # <<<<<<<<<<<<<< - * return 0 - * - */ - free(__pyx_v_tmpdata); - - /* "View.MemoryView":1291 - * - * free(tmpdata) - * return 0 # <<<<<<<<<<<<<< - * - * @cname('__pyx_memoryview_broadcast_leading') - */ - __pyx_r = 0; - goto __pyx_L0; - - /* "View.MemoryView":1222 - * - * @cname('__pyx_memoryview_copy_contents') - * cdef int memoryview_copy_contents(__Pyx_memviewslice src, # <<<<<<<<<<<<<< - * __Pyx_memviewslice dst, - * int src_ndim, int dst_ndim, - */ - - /* function exit code */ - __pyx_L1_error:; - { - #ifdef WITH_THREAD - PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); - #endif - __Pyx_AddTraceback("View.MemoryView.memoryview_copy_contents", __pyx_clineno, __pyx_lineno, __pyx_filename); - #ifdef WITH_THREAD - PyGILState_Release(__pyx_gilstate_save); - #endif - } - __pyx_r = -1; - __pyx_L0:; - return __pyx_r; -} - -/* "View.MemoryView":1294 - * - * @cname('__pyx_memoryview_broadcast_leading') - * cdef void broadcast_leading(__Pyx_memviewslice *slice, # <<<<<<<<<<<<<< - * int ndim, - * int ndim_other) nogil: - */ - -static void __pyx_memoryview_broadcast_leading(__Pyx_memviewslice *__pyx_v_slice, int __pyx_v_ndim, int __pyx_v_ndim_other) { - int __pyx_v_i; - int __pyx_v_offset; - int __pyx_t_1; - int __pyx_t_2; - - /* "View.MemoryView":1298 - * int ndim_other) nogil: - * cdef int i - * cdef int offset = ndim_other - ndim # <<<<<<<<<<<<<< - * - * for i in range(ndim - 1, -1, -1): - */ - __pyx_v_offset = (__pyx_v_ndim_other - __pyx_v_ndim); - - /* "View.MemoryView":1300 - * cdef int offset = ndim_other - ndim - * - * for i in range(ndim - 1, -1, -1): # <<<<<<<<<<<<<< - * slice.shape[i + offset] = slice.shape[i] - * slice.strides[i + offset] = slice.strides[i] - */ - for (__pyx_t_1 = (__pyx_v_ndim - 1); __pyx_t_1 > -1; __pyx_t_1-=1) { - __pyx_v_i = __pyx_t_1; - - /* "View.MemoryView":1301 - * - * for i in range(ndim - 1, -1, -1): - * slice.shape[i + offset] = slice.shape[i] # <<<<<<<<<<<<<< - * slice.strides[i + offset] = slice.strides[i] - * slice.suboffsets[i + offset] = slice.suboffsets[i] - */ - (__pyx_v_slice->shape[(__pyx_v_i + __pyx_v_offset)]) = (__pyx_v_slice->shape[__pyx_v_i]); - - /* "View.MemoryView":1302 - * for i in range(ndim - 1, -1, -1): - * slice.shape[i + offset] = slice.shape[i] - * slice.strides[i + offset] = slice.strides[i] # <<<<<<<<<<<<<< - * slice.suboffsets[i + offset] = slice.suboffsets[i] - * - */ - (__pyx_v_slice->strides[(__pyx_v_i + __pyx_v_offset)]) = (__pyx_v_slice->strides[__pyx_v_i]); - - /* "View.MemoryView":1303 - * slice.shape[i + offset] = slice.shape[i] - * slice.strides[i + offset] = slice.strides[i] - * slice.suboffsets[i + offset] = slice.suboffsets[i] # <<<<<<<<<<<<<< - * - * for i in range(offset): - */ - (__pyx_v_slice->suboffsets[(__pyx_v_i + __pyx_v_offset)]) = (__pyx_v_slice->suboffsets[__pyx_v_i]); - } - - /* "View.MemoryView":1305 - * slice.suboffsets[i + offset] = slice.suboffsets[i] - * - * for i in range(offset): # <<<<<<<<<<<<<< - * slice.shape[i] = 1 - * slice.strides[i] = slice.strides[0] - */ - __pyx_t_1 = __pyx_v_offset; - for (__pyx_t_2 = 0; __pyx_t_2 < __pyx_t_1; __pyx_t_2+=1) { - __pyx_v_i = __pyx_t_2; - - /* "View.MemoryView":1306 - * - * for i in range(offset): - * slice.shape[i] = 1 # <<<<<<<<<<<<<< - * slice.strides[i] = slice.strides[0] - * slice.suboffsets[i] = -1 - */ - (__pyx_v_slice->shape[__pyx_v_i]) = 1; - - /* "View.MemoryView":1307 - * for i in range(offset): - * slice.shape[i] = 1 - * slice.strides[i] = slice.strides[0] # <<<<<<<<<<<<<< - * slice.suboffsets[i] = -1 - * - */ - (__pyx_v_slice->strides[__pyx_v_i]) = (__pyx_v_slice->strides[0]); - - /* "View.MemoryView":1308 - * slice.shape[i] = 1 - * slice.strides[i] = slice.strides[0] - * slice.suboffsets[i] = -1 # <<<<<<<<<<<<<< - * - * - */ - (__pyx_v_slice->suboffsets[__pyx_v_i]) = -1; - } - - /* "View.MemoryView":1294 - * - * @cname('__pyx_memoryview_broadcast_leading') - * cdef void broadcast_leading(__Pyx_memviewslice *slice, # <<<<<<<<<<<<<< - * int ndim, - * int ndim_other) nogil: - */ - - /* function exit code */ -} - -/* "View.MemoryView":1316 - * - * @cname('__pyx_memoryview_refcount_copying') - * cdef void refcount_copying(__Pyx_memviewslice *dst, bint dtype_is_object, # <<<<<<<<<<<<<< - * int ndim, bint inc) nogil: - * - */ - -static void __pyx_memoryview_refcount_copying(__Pyx_memviewslice *__pyx_v_dst, int __pyx_v_dtype_is_object, int __pyx_v_ndim, int __pyx_v_inc) { - int __pyx_t_1; - - /* "View.MemoryView":1320 - * - * - * if dtype_is_object: # <<<<<<<<<<<<<< - * refcount_objects_in_slice_with_gil(dst.data, dst.shape, - * dst.strides, ndim, inc) - */ - __pyx_t_1 = (__pyx_v_dtype_is_object != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":1321 - * - * if dtype_is_object: - * refcount_objects_in_slice_with_gil(dst.data, dst.shape, # <<<<<<<<<<<<<< - * dst.strides, ndim, inc) - * - */ - __pyx_memoryview_refcount_objects_in_slice_with_gil(__pyx_v_dst->data, __pyx_v_dst->shape, __pyx_v_dst->strides, __pyx_v_ndim, __pyx_v_inc); - goto __pyx_L3; - } - __pyx_L3:; - - /* "View.MemoryView":1316 - * - * @cname('__pyx_memoryview_refcount_copying') - * cdef void refcount_copying(__Pyx_memviewslice *dst, bint dtype_is_object, # <<<<<<<<<<<<<< - * int ndim, bint inc) nogil: - * - */ - - /* function exit code */ -} - -/* "View.MemoryView":1325 - * - * @cname('__pyx_memoryview_refcount_objects_in_slice_with_gil') - * cdef void refcount_objects_in_slice_with_gil(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< - * Py_ssize_t *strides, int ndim, - * bint inc) with gil: - */ - -static void __pyx_memoryview_refcount_objects_in_slice_with_gil(char *__pyx_v_data, Py_ssize_t *__pyx_v_shape, Py_ssize_t *__pyx_v_strides, int __pyx_v_ndim, int __pyx_v_inc) { - __Pyx_RefNannyDeclarations - #ifdef WITH_THREAD - PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); - #endif - __Pyx_RefNannySetupContext("refcount_objects_in_slice_with_gil", 0); - - /* "View.MemoryView":1328 - * Py_ssize_t *strides, int ndim, - * bint inc) with gil: - * refcount_objects_in_slice(data, shape, strides, ndim, inc) # <<<<<<<<<<<<<< - * - * @cname('__pyx_memoryview_refcount_objects_in_slice') - */ - __pyx_memoryview_refcount_objects_in_slice(__pyx_v_data, __pyx_v_shape, __pyx_v_strides, __pyx_v_ndim, __pyx_v_inc); - - /* "View.MemoryView":1325 - * - * @cname('__pyx_memoryview_refcount_objects_in_slice_with_gil') - * cdef void refcount_objects_in_slice_with_gil(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< - * Py_ssize_t *strides, int ndim, - * bint inc) with gil: - */ - - /* function exit code */ - __Pyx_RefNannyFinishContext(); - #ifdef WITH_THREAD - PyGILState_Release(__pyx_gilstate_save); - #endif -} - -/* "View.MemoryView":1331 - * - * @cname('__pyx_memoryview_refcount_objects_in_slice') - * cdef void refcount_objects_in_slice(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< - * Py_ssize_t *strides, int ndim, bint inc): - * cdef Py_ssize_t i - */ - -static void __pyx_memoryview_refcount_objects_in_slice(char *__pyx_v_data, Py_ssize_t *__pyx_v_shape, Py_ssize_t *__pyx_v_strides, int __pyx_v_ndim, int __pyx_v_inc) { - CYTHON_UNUSED Py_ssize_t __pyx_v_i; - __Pyx_RefNannyDeclarations - Py_ssize_t __pyx_t_1; - Py_ssize_t __pyx_t_2; - int __pyx_t_3; - __Pyx_RefNannySetupContext("refcount_objects_in_slice", 0); - - /* "View.MemoryView":1335 - * cdef Py_ssize_t i - * - * for i in range(shape[0]): # <<<<<<<<<<<<<< - * if ndim == 1: - * if inc: - */ - __pyx_t_1 = (__pyx_v_shape[0]); - for (__pyx_t_2 = 0; __pyx_t_2 < __pyx_t_1; __pyx_t_2+=1) { - __pyx_v_i = __pyx_t_2; - - /* "View.MemoryView":1336 - * - * for i in range(shape[0]): - * if ndim == 1: # <<<<<<<<<<<<<< - * if inc: - * Py_INCREF(( data)[0]) - */ - __pyx_t_3 = ((__pyx_v_ndim == 1) != 0); - if (__pyx_t_3) { - - /* "View.MemoryView":1337 - * for i in range(shape[0]): - * if ndim == 1: - * if inc: # <<<<<<<<<<<<<< - * Py_INCREF(( data)[0]) - * else: - */ - __pyx_t_3 = (__pyx_v_inc != 0); - if (__pyx_t_3) { - - /* "View.MemoryView":1338 - * if ndim == 1: - * if inc: - * Py_INCREF(( data)[0]) # <<<<<<<<<<<<<< - * else: - * Py_DECREF(( data)[0]) - */ - Py_INCREF((((PyObject **)__pyx_v_data)[0])); - goto __pyx_L6; - } - /*else*/ { - - /* "View.MemoryView":1340 - * Py_INCREF(( data)[0]) - * else: - * Py_DECREF(( data)[0]) # <<<<<<<<<<<<<< - * else: - * refcount_objects_in_slice(data, shape + 1, strides + 1, - */ - Py_DECREF((((PyObject **)__pyx_v_data)[0])); - } - __pyx_L6:; - goto __pyx_L5; - } - /*else*/ { - - /* "View.MemoryView":1342 - * Py_DECREF(( data)[0]) - * else: - * refcount_objects_in_slice(data, shape + 1, strides + 1, # <<<<<<<<<<<<<< - * ndim - 1, inc) - * - */ - __pyx_memoryview_refcount_objects_in_slice(__pyx_v_data, (__pyx_v_shape + 1), (__pyx_v_strides + 1), (__pyx_v_ndim - 1), __pyx_v_inc); - } - __pyx_L5:; - - /* "View.MemoryView":1345 - * ndim - 1, inc) - * - * data += strides[0] # <<<<<<<<<<<<<< - * - * - */ - __pyx_v_data = (__pyx_v_data + (__pyx_v_strides[0])); - } - - /* "View.MemoryView":1331 - * - * @cname('__pyx_memoryview_refcount_objects_in_slice') - * cdef void refcount_objects_in_slice(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< - * Py_ssize_t *strides, int ndim, bint inc): - * cdef Py_ssize_t i - */ - - /* function exit code */ - __Pyx_RefNannyFinishContext(); -} - -/* "View.MemoryView":1351 - * - * @cname('__pyx_memoryview_slice_assign_scalar') - * cdef void slice_assign_scalar(__Pyx_memviewslice *dst, int ndim, # <<<<<<<<<<<<<< - * size_t itemsize, void *item, - * bint dtype_is_object) nogil: - */ - -static void __pyx_memoryview_slice_assign_scalar(__Pyx_memviewslice *__pyx_v_dst, int __pyx_v_ndim, size_t __pyx_v_itemsize, void *__pyx_v_item, int __pyx_v_dtype_is_object) { - - /* "View.MemoryView":1354 - * size_t itemsize, void *item, - * bint dtype_is_object) nogil: - * refcount_copying(dst, dtype_is_object, ndim, False) # <<<<<<<<<<<<<< - * _slice_assign_scalar(dst.data, dst.shape, dst.strides, ndim, - * itemsize, item) - */ - __pyx_memoryview_refcount_copying(__pyx_v_dst, __pyx_v_dtype_is_object, __pyx_v_ndim, 0); - - /* "View.MemoryView":1355 - * bint dtype_is_object) nogil: - * refcount_copying(dst, dtype_is_object, ndim, False) - * _slice_assign_scalar(dst.data, dst.shape, dst.strides, ndim, # <<<<<<<<<<<<<< - * itemsize, item) - * refcount_copying(dst, dtype_is_object, ndim, True) - */ - __pyx_memoryview__slice_assign_scalar(__pyx_v_dst->data, __pyx_v_dst->shape, __pyx_v_dst->strides, __pyx_v_ndim, __pyx_v_itemsize, __pyx_v_item); - - /* "View.MemoryView":1357 - * _slice_assign_scalar(dst.data, dst.shape, dst.strides, ndim, - * itemsize, item) - * refcount_copying(dst, dtype_is_object, ndim, True) # <<<<<<<<<<<<<< - * - * - */ - __pyx_memoryview_refcount_copying(__pyx_v_dst, __pyx_v_dtype_is_object, __pyx_v_ndim, 1); - - /* "View.MemoryView":1351 - * - * @cname('__pyx_memoryview_slice_assign_scalar') - * cdef void slice_assign_scalar(__Pyx_memviewslice *dst, int ndim, # <<<<<<<<<<<<<< - * size_t itemsize, void *item, - * bint dtype_is_object) nogil: - */ - - /* function exit code */ -} - -/* "View.MemoryView":1361 - * - * @cname('__pyx_memoryview__slice_assign_scalar') - * cdef void _slice_assign_scalar(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< - * Py_ssize_t *strides, int ndim, - * size_t itemsize, void *item) nogil: - */ - -static void __pyx_memoryview__slice_assign_scalar(char *__pyx_v_data, Py_ssize_t *__pyx_v_shape, Py_ssize_t *__pyx_v_strides, int __pyx_v_ndim, size_t __pyx_v_itemsize, void *__pyx_v_item) { - CYTHON_UNUSED Py_ssize_t __pyx_v_i; - Py_ssize_t __pyx_v_stride; - Py_ssize_t __pyx_v_extent; - int __pyx_t_1; - Py_ssize_t __pyx_t_2; - Py_ssize_t __pyx_t_3; - - /* "View.MemoryView":1365 - * size_t itemsize, void *item) nogil: - * cdef Py_ssize_t i - * cdef Py_ssize_t stride = strides[0] # <<<<<<<<<<<<<< - * cdef Py_ssize_t extent = shape[0] - * - */ - __pyx_v_stride = (__pyx_v_strides[0]); - - /* "View.MemoryView":1366 - * cdef Py_ssize_t i - * cdef Py_ssize_t stride = strides[0] - * cdef Py_ssize_t extent = shape[0] # <<<<<<<<<<<<<< - * - * if ndim == 1: - */ - __pyx_v_extent = (__pyx_v_shape[0]); - - /* "View.MemoryView":1368 - * cdef Py_ssize_t extent = shape[0] - * - * if ndim == 1: # <<<<<<<<<<<<<< - * for i in range(extent): - * memcpy(data, item, itemsize) - */ - __pyx_t_1 = ((__pyx_v_ndim == 1) != 0); - if (__pyx_t_1) { - - /* "View.MemoryView":1369 - * - * if ndim == 1: - * for i in range(extent): # <<<<<<<<<<<<<< - * memcpy(data, item, itemsize) - * data += stride - */ - __pyx_t_2 = __pyx_v_extent; - for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { - __pyx_v_i = __pyx_t_3; - - /* "View.MemoryView":1370 - * if ndim == 1: - * for i in range(extent): - * memcpy(data, item, itemsize) # <<<<<<<<<<<<<< - * data += stride - * else: - */ - memcpy(__pyx_v_data, __pyx_v_item, __pyx_v_itemsize); - - /* "View.MemoryView":1371 - * for i in range(extent): - * memcpy(data, item, itemsize) - * data += stride # <<<<<<<<<<<<<< - * else: - * for i in range(extent): - */ - __pyx_v_data = (__pyx_v_data + __pyx_v_stride); - } - goto __pyx_L3; - } - /*else*/ { - - /* "View.MemoryView":1373 - * data += stride - * else: - * for i in range(extent): # <<<<<<<<<<<<<< - * _slice_assign_scalar(data, shape + 1, strides + 1, - * ndim - 1, itemsize, item) - */ - __pyx_t_2 = __pyx_v_extent; - for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { - __pyx_v_i = __pyx_t_3; - - /* "View.MemoryView":1374 - * else: - * for i in range(extent): - * _slice_assign_scalar(data, shape + 1, strides + 1, # <<<<<<<<<<<<<< - * ndim - 1, itemsize, item) - * data += stride - */ - __pyx_memoryview__slice_assign_scalar(__pyx_v_data, (__pyx_v_shape + 1), (__pyx_v_strides + 1), (__pyx_v_ndim - 1), __pyx_v_itemsize, __pyx_v_item); - - /* "View.MemoryView":1376 - * _slice_assign_scalar(data, shape + 1, strides + 1, - * ndim - 1, itemsize, item) - * data += stride # <<<<<<<<<<<<<< - * - * - */ - __pyx_v_data = (__pyx_v_data + __pyx_v_stride); - } - } - __pyx_L3:; - - /* "View.MemoryView":1361 - * - * @cname('__pyx_memoryview__slice_assign_scalar') - * cdef void _slice_assign_scalar(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< - * Py_ssize_t *strides, int ndim, - * size_t itemsize, void *item) nogil: - */ - - /* function exit code */ -} - -static PyObject *__pyx_tp_new_array(PyTypeObject *t, PyObject *a, PyObject *k) { - struct __pyx_array_obj *p; - PyObject *o; - if (likely((t->tp_flags & Py_TPFLAGS_IS_ABSTRACT) == 0)) { - o = (*t->tp_alloc)(t, 0); - } else { - o = (PyObject *) PyBaseObject_Type.tp_new(t, __pyx_empty_tuple, 0); - } - if (unlikely(!o)) return 0; - p = ((struct __pyx_array_obj *)o); - p->mode = ((PyObject*)Py_None); Py_INCREF(Py_None); - p->_format = ((PyObject*)Py_None); Py_INCREF(Py_None); - if (unlikely(__pyx_array___cinit__(o, a, k) < 0)) { - Py_DECREF(o); o = 0; - } - return o; -} - -static void __pyx_tp_dealloc_array(PyObject *o) { - struct __pyx_array_obj *p = (struct __pyx_array_obj *)o; - #if PY_VERSION_HEX >= 0x030400a1 - if (unlikely(Py_TYPE(o)->tp_finalize) && (!PyType_IS_GC(Py_TYPE(o)) || !_PyGC_FINALIZED(o))) { - if (PyObject_CallFinalizerFromDealloc(o)) return; - } - #endif - { - PyObject *etype, *eval, *etb; - PyErr_Fetch(&etype, &eval, &etb); - ++Py_REFCNT(o); - __pyx_array___dealloc__(o); - --Py_REFCNT(o); - PyErr_Restore(etype, eval, etb); - } - Py_CLEAR(p->mode); - Py_CLEAR(p->_format); - (*Py_TYPE(o)->tp_free)(o); -} -static PyObject *__pyx_sq_item_array(PyObject *o, Py_ssize_t i) { - PyObject *r; - PyObject *x = PyInt_FromSsize_t(i); if(!x) return 0; - r = Py_TYPE(o)->tp_as_mapping->mp_subscript(o, x); - Py_DECREF(x); - return r; -} - -static int __pyx_mp_ass_subscript_array(PyObject *o, PyObject *i, PyObject *v) { - if (v) { - return __pyx_array___setitem__(o, i, v); - } - else { - PyErr_Format(PyExc_NotImplementedError, - "Subscript deletion not supported by %.200s", Py_TYPE(o)->tp_name); - return -1; - } -} - -static PyObject *__pyx_tp_getattro_array(PyObject *o, PyObject *n) { - PyObject *v = PyObject_GenericGetAttr(o, n); - if (!v && PyErr_ExceptionMatches(PyExc_AttributeError)) { - PyErr_Clear(); - v = __pyx_array___getattr__(o, n); - } - return v; -} - -static PyObject *__pyx_getprop___pyx_array_memview(PyObject *o, CYTHON_UNUSED void *x) { - return get_memview(o); -} - -static PyMethodDef __pyx_methods_array[] = { - {__Pyx_NAMESTR("__getattr__"), (PyCFunction)__pyx_array___getattr__, METH_O|METH_COEXIST, __Pyx_DOCSTR(0)}, - {0, 0, 0, 0} -}; - -static struct PyGetSetDef __pyx_getsets_array[] = { - {(char *)"memview", __pyx_getprop___pyx_array_memview, 0, 0, 0}, - {0, 0, 0, 0, 0} -}; - -static PySequenceMethods __pyx_tp_as_sequence_array = { - 0, /*sq_length*/ - 0, /*sq_concat*/ - 0, /*sq_repeat*/ - __pyx_sq_item_array, /*sq_item*/ - 0, /*sq_slice*/ - 0, /*sq_ass_item*/ - 0, /*sq_ass_slice*/ - 0, /*sq_contains*/ - 0, /*sq_inplace_concat*/ - 0, /*sq_inplace_repeat*/ -}; - -static PyMappingMethods __pyx_tp_as_mapping_array = { - 0, /*mp_length*/ - __pyx_array___getitem__, /*mp_subscript*/ - __pyx_mp_ass_subscript_array, /*mp_ass_subscript*/ -}; - -static PyBufferProcs __pyx_tp_as_buffer_array = { - #if PY_MAJOR_VERSION < 3 - 0, /*bf_getreadbuffer*/ - #endif - #if PY_MAJOR_VERSION < 3 - 0, /*bf_getwritebuffer*/ - #endif - #if PY_MAJOR_VERSION < 3 - 0, /*bf_getsegcount*/ - #endif - #if PY_MAJOR_VERSION < 3 - 0, /*bf_getcharbuffer*/ - #endif - #if PY_VERSION_HEX >= 0x02060000 - __pyx_array_getbuffer, /*bf_getbuffer*/ - #endif - #if PY_VERSION_HEX >= 0x02060000 - 0, /*bf_releasebuffer*/ - #endif -}; - -static PyTypeObject __pyx_type___pyx_array = { - PyVarObject_HEAD_INIT(0, 0) - __Pyx_NAMESTR("cython_bubblesort_nomagic.array"), /*tp_name*/ - sizeof(struct __pyx_array_obj), /*tp_basicsize*/ - 0, /*tp_itemsize*/ - __pyx_tp_dealloc_array, /*tp_dealloc*/ - 0, /*tp_print*/ - 0, /*tp_getattr*/ - 0, /*tp_setattr*/ - #if PY_MAJOR_VERSION < 3 - 0, /*tp_compare*/ - #else - 0, /*reserved*/ - #endif - 0, /*tp_repr*/ - 0, /*tp_as_number*/ - &__pyx_tp_as_sequence_array, /*tp_as_sequence*/ - &__pyx_tp_as_mapping_array, /*tp_as_mapping*/ - 0, /*tp_hash*/ - 0, /*tp_call*/ - 0, /*tp_str*/ - __pyx_tp_getattro_array, /*tp_getattro*/ - 0, /*tp_setattro*/ - &__pyx_tp_as_buffer_array, /*tp_as_buffer*/ - Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_VERSION_TAG|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE, /*tp_flags*/ - 0, /*tp_doc*/ - 0, /*tp_traverse*/ - 0, /*tp_clear*/ - 0, /*tp_richcompare*/ - 0, /*tp_weaklistoffset*/ - 0, /*tp_iter*/ - 0, /*tp_iternext*/ - __pyx_methods_array, /*tp_methods*/ - 0, /*tp_members*/ - __pyx_getsets_array, /*tp_getset*/ - 0, /*tp_base*/ - 0, /*tp_dict*/ - 0, /*tp_descr_get*/ - 0, /*tp_descr_set*/ - 0, /*tp_dictoffset*/ - 0, /*tp_init*/ - 0, /*tp_alloc*/ - __pyx_tp_new_array, /*tp_new*/ - 0, /*tp_free*/ - 0, /*tp_is_gc*/ - 0, /*tp_bases*/ - 0, /*tp_mro*/ - 0, /*tp_cache*/ - 0, /*tp_subclasses*/ - 0, /*tp_weaklist*/ - 0, /*tp_del*/ - #if PY_VERSION_HEX >= 0x02060000 - 0, /*tp_version_tag*/ - #endif - #if PY_VERSION_HEX >= 0x030400a1 - 0, /*tp_finalize*/ - #endif -}; - -static PyObject *__pyx_tp_new_Enum(PyTypeObject *t, CYTHON_UNUSED PyObject *a, CYTHON_UNUSED PyObject *k) { - struct __pyx_MemviewEnum_obj *p; - PyObject *o; - if (likely((t->tp_flags & Py_TPFLAGS_IS_ABSTRACT) == 0)) { - o = (*t->tp_alloc)(t, 0); - } else { - o = (PyObject *) PyBaseObject_Type.tp_new(t, __pyx_empty_tuple, 0); - } - if (unlikely(!o)) return 0; - p = ((struct __pyx_MemviewEnum_obj *)o); - p->name = Py_None; Py_INCREF(Py_None); - return o; -} - -static void __pyx_tp_dealloc_Enum(PyObject *o) { - struct __pyx_MemviewEnum_obj *p = (struct __pyx_MemviewEnum_obj *)o; - #if PY_VERSION_HEX >= 0x030400a1 - if (unlikely(Py_TYPE(o)->tp_finalize) && !_PyGC_FINALIZED(o)) { - if (PyObject_CallFinalizerFromDealloc(o)) return; - } - #endif - PyObject_GC_UnTrack(o); - Py_CLEAR(p->name); - (*Py_TYPE(o)->tp_free)(o); -} - -static int __pyx_tp_traverse_Enum(PyObject *o, visitproc v, void *a) { - int e; - struct __pyx_MemviewEnum_obj *p = (struct __pyx_MemviewEnum_obj *)o; - if (p->name) { - e = (*v)(p->name, a); if (e) return e; - } - return 0; -} - -static int __pyx_tp_clear_Enum(PyObject *o) { - PyObject* tmp; - struct __pyx_MemviewEnum_obj *p = (struct __pyx_MemviewEnum_obj *)o; - tmp = ((PyObject*)p->name); - p->name = Py_None; Py_INCREF(Py_None); - Py_XDECREF(tmp); - return 0; -} - -static PyMethodDef __pyx_methods_Enum[] = { - {0, 0, 0, 0} -}; - -static PyTypeObject __pyx_type___pyx_MemviewEnum = { - PyVarObject_HEAD_INIT(0, 0) - __Pyx_NAMESTR("cython_bubblesort_nomagic.Enum"), /*tp_name*/ - sizeof(struct __pyx_MemviewEnum_obj), /*tp_basicsize*/ - 0, /*tp_itemsize*/ - __pyx_tp_dealloc_Enum, /*tp_dealloc*/ - 0, /*tp_print*/ - 0, /*tp_getattr*/ - 0, /*tp_setattr*/ - #if PY_MAJOR_VERSION < 3 - 0, /*tp_compare*/ - #else - 0, /*reserved*/ - #endif - __pyx_MemviewEnum___repr__, /*tp_repr*/ - 0, /*tp_as_number*/ - 0, /*tp_as_sequence*/ - 0, /*tp_as_mapping*/ - 0, /*tp_hash*/ - 0, /*tp_call*/ - 0, /*tp_str*/ - 0, /*tp_getattro*/ - 0, /*tp_setattro*/ - 0, /*tp_as_buffer*/ - Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_VERSION_TAG|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE|Py_TPFLAGS_HAVE_GC, /*tp_flags*/ - 0, /*tp_doc*/ - __pyx_tp_traverse_Enum, /*tp_traverse*/ - __pyx_tp_clear_Enum, /*tp_clear*/ - 0, /*tp_richcompare*/ - 0, /*tp_weaklistoffset*/ - 0, /*tp_iter*/ - 0, /*tp_iternext*/ - __pyx_methods_Enum, /*tp_methods*/ - 0, /*tp_members*/ - 0, /*tp_getset*/ - 0, /*tp_base*/ - 0, /*tp_dict*/ - 0, /*tp_descr_get*/ - 0, /*tp_descr_set*/ - 0, /*tp_dictoffset*/ - __pyx_MemviewEnum___init__, /*tp_init*/ - 0, /*tp_alloc*/ - __pyx_tp_new_Enum, /*tp_new*/ - 0, /*tp_free*/ - 0, /*tp_is_gc*/ - 0, /*tp_bases*/ - 0, /*tp_mro*/ - 0, /*tp_cache*/ - 0, /*tp_subclasses*/ - 0, /*tp_weaklist*/ - 0, /*tp_del*/ - #if PY_VERSION_HEX >= 0x02060000 - 0, /*tp_version_tag*/ - #endif - #if PY_VERSION_HEX >= 0x030400a1 - 0, /*tp_finalize*/ - #endif -}; -static struct __pyx_vtabstruct_memoryview __pyx_vtable_memoryview; - -static PyObject *__pyx_tp_new_memoryview(PyTypeObject *t, PyObject *a, PyObject *k) { - struct __pyx_memoryview_obj *p; - PyObject *o; - if (likely((t->tp_flags & Py_TPFLAGS_IS_ABSTRACT) == 0)) { - o = (*t->tp_alloc)(t, 0); - } else { - o = (PyObject *) PyBaseObject_Type.tp_new(t, __pyx_empty_tuple, 0); - } - if (unlikely(!o)) return 0; - p = ((struct __pyx_memoryview_obj *)o); - p->__pyx_vtab = __pyx_vtabptr_memoryview; - p->obj = Py_None; Py_INCREF(Py_None); - p->_size = Py_None; Py_INCREF(Py_None); - p->_array_interface = Py_None; Py_INCREF(Py_None); - p->view.obj = NULL; - if (unlikely(__pyx_memoryview___cinit__(o, a, k) < 0)) { - Py_DECREF(o); o = 0; - } - return o; -} - -static void __pyx_tp_dealloc_memoryview(PyObject *o) { - struct __pyx_memoryview_obj *p = (struct __pyx_memoryview_obj *)o; - #if PY_VERSION_HEX >= 0x030400a1 - if (unlikely(Py_TYPE(o)->tp_finalize) && !_PyGC_FINALIZED(o)) { - if (PyObject_CallFinalizerFromDealloc(o)) return; - } - #endif - PyObject_GC_UnTrack(o); - { - PyObject *etype, *eval, *etb; - PyErr_Fetch(&etype, &eval, &etb); - ++Py_REFCNT(o); - __pyx_memoryview___dealloc__(o); - --Py_REFCNT(o); - PyErr_Restore(etype, eval, etb); - } - Py_CLEAR(p->obj); - Py_CLEAR(p->_size); - Py_CLEAR(p->_array_interface); - (*Py_TYPE(o)->tp_free)(o); -} - -static int __pyx_tp_traverse_memoryview(PyObject *o, visitproc v, void *a) { - int e; - struct __pyx_memoryview_obj *p = (struct __pyx_memoryview_obj *)o; - if (p->obj) { - e = (*v)(p->obj, a); if (e) return e; - } - if (p->_size) { - e = (*v)(p->_size, a); if (e) return e; - } - if (p->_array_interface) { - e = (*v)(p->_array_interface, a); if (e) return e; - } - if (p->view.obj) { - e = (*v)(p->view.obj, a); if (e) return e; - } - return 0; -} - -static int __pyx_tp_clear_memoryview(PyObject *o) { - PyObject* tmp; - struct __pyx_memoryview_obj *p = (struct __pyx_memoryview_obj *)o; - tmp = ((PyObject*)p->obj); - p->obj = Py_None; Py_INCREF(Py_None); - Py_XDECREF(tmp); - tmp = ((PyObject*)p->_size); - p->_size = Py_None; Py_INCREF(Py_None); - Py_XDECREF(tmp); - tmp = ((PyObject*)p->_array_interface); - p->_array_interface = Py_None; Py_INCREF(Py_None); - Py_XDECREF(tmp); - Py_CLEAR(p->view.obj); - return 0; -} -static PyObject *__pyx_sq_item_memoryview(PyObject *o, Py_ssize_t i) { - PyObject *r; - PyObject *x = PyInt_FromSsize_t(i); if(!x) return 0; - r = Py_TYPE(o)->tp_as_mapping->mp_subscript(o, x); - Py_DECREF(x); - return r; -} - -static int __pyx_mp_ass_subscript_memoryview(PyObject *o, PyObject *i, PyObject *v) { - if (v) { - return __pyx_memoryview___setitem__(o, i, v); - } - else { - PyErr_Format(PyExc_NotImplementedError, - "Subscript deletion not supported by %.200s", Py_TYPE(o)->tp_name); - return -1; - } -} - -static PyObject *__pyx_getprop___pyx_memoryview_T(PyObject *o, CYTHON_UNUSED void *x) { - return __pyx_memoryview_transpose(o); -} - -static PyObject *__pyx_getprop___pyx_memoryview_base(PyObject *o, CYTHON_UNUSED void *x) { - return __pyx_memoryview__get__base(o); -} - -static PyObject *__pyx_getprop___pyx_memoryview_shape(PyObject *o, CYTHON_UNUSED void *x) { - return __pyx_memoryview_get_shape(o); -} - -static PyObject *__pyx_getprop___pyx_memoryview_strides(PyObject *o, CYTHON_UNUSED void *x) { - return __pyx_memoryview_get_strides(o); -} - -static PyObject *__pyx_getprop___pyx_memoryview_suboffsets(PyObject *o, CYTHON_UNUSED void *x) { - return __pyx_memoryview_get_suboffsets(o); -} - -static PyObject *__pyx_getprop___pyx_memoryview_ndim(PyObject *o, CYTHON_UNUSED void *x) { - return __pyx_memoryview_get_ndim(o); -} - -static PyObject *__pyx_getprop___pyx_memoryview_itemsize(PyObject *o, CYTHON_UNUSED void *x) { - return __pyx_memoryview_get_itemsize(o); -} - -static PyObject *__pyx_getprop___pyx_memoryview_nbytes(PyObject *o, CYTHON_UNUSED void *x) { - return __pyx_memoryview_get_nbytes(o); -} - -static PyObject *__pyx_getprop___pyx_memoryview_size(PyObject *o, CYTHON_UNUSED void *x) { - return __pyx_memoryview_get_size(o); -} - -static PyMethodDef __pyx_methods_memoryview[] = { - {__Pyx_NAMESTR("is_c_contig"), (PyCFunction)__pyx_memoryview_is_c_contig, METH_NOARGS, __Pyx_DOCSTR(0)}, - {__Pyx_NAMESTR("is_f_contig"), (PyCFunction)__pyx_memoryview_is_f_contig, METH_NOARGS, __Pyx_DOCSTR(0)}, - {__Pyx_NAMESTR("copy"), (PyCFunction)__pyx_memoryview_copy, METH_NOARGS, __Pyx_DOCSTR(0)}, - {__Pyx_NAMESTR("copy_fortran"), (PyCFunction)__pyx_memoryview_copy_fortran, METH_NOARGS, __Pyx_DOCSTR(0)}, - {0, 0, 0, 0} -}; - -static struct PyGetSetDef __pyx_getsets_memoryview[] = { - {(char *)"T", __pyx_getprop___pyx_memoryview_T, 0, 0, 0}, - {(char *)"base", __pyx_getprop___pyx_memoryview_base, 0, 0, 0}, - {(char *)"shape", __pyx_getprop___pyx_memoryview_shape, 0, 0, 0}, - {(char *)"strides", __pyx_getprop___pyx_memoryview_strides, 0, 0, 0}, - {(char *)"suboffsets", __pyx_getprop___pyx_memoryview_suboffsets, 0, 0, 0}, - {(char *)"ndim", __pyx_getprop___pyx_memoryview_ndim, 0, 0, 0}, - {(char *)"itemsize", __pyx_getprop___pyx_memoryview_itemsize, 0, 0, 0}, - {(char *)"nbytes", __pyx_getprop___pyx_memoryview_nbytes, 0, 0, 0}, - {(char *)"size", __pyx_getprop___pyx_memoryview_size, 0, 0, 0}, - {0, 0, 0, 0, 0} -}; - -static PySequenceMethods __pyx_tp_as_sequence_memoryview = { - __pyx_memoryview___len__, /*sq_length*/ - 0, /*sq_concat*/ - 0, /*sq_repeat*/ - __pyx_sq_item_memoryview, /*sq_item*/ - 0, /*sq_slice*/ - 0, /*sq_ass_item*/ - 0, /*sq_ass_slice*/ - 0, /*sq_contains*/ - 0, /*sq_inplace_concat*/ - 0, /*sq_inplace_repeat*/ -}; - -static PyMappingMethods __pyx_tp_as_mapping_memoryview = { - __pyx_memoryview___len__, /*mp_length*/ - __pyx_memoryview___getitem__, /*mp_subscript*/ - __pyx_mp_ass_subscript_memoryview, /*mp_ass_subscript*/ -}; - -static PyBufferProcs __pyx_tp_as_buffer_memoryview = { - #if PY_MAJOR_VERSION < 3 - 0, /*bf_getreadbuffer*/ - #endif - #if PY_MAJOR_VERSION < 3 - 0, /*bf_getwritebuffer*/ - #endif - #if PY_MAJOR_VERSION < 3 - 0, /*bf_getsegcount*/ - #endif - #if PY_MAJOR_VERSION < 3 - 0, /*bf_getcharbuffer*/ - #endif - #if PY_VERSION_HEX >= 0x02060000 - __pyx_memoryview_getbuffer, /*bf_getbuffer*/ - #endif - #if PY_VERSION_HEX >= 0x02060000 - 0, /*bf_releasebuffer*/ - #endif -}; - -static PyTypeObject __pyx_type___pyx_memoryview = { - PyVarObject_HEAD_INIT(0, 0) - __Pyx_NAMESTR("cython_bubblesort_nomagic.memoryview"), /*tp_name*/ - sizeof(struct __pyx_memoryview_obj), /*tp_basicsize*/ - 0, /*tp_itemsize*/ - __pyx_tp_dealloc_memoryview, /*tp_dealloc*/ - 0, /*tp_print*/ - 0, /*tp_getattr*/ - 0, /*tp_setattr*/ - #if PY_MAJOR_VERSION < 3 - 0, /*tp_compare*/ - #else - 0, /*reserved*/ - #endif - __pyx_memoryview___repr__, /*tp_repr*/ - 0, /*tp_as_number*/ - &__pyx_tp_as_sequence_memoryview, /*tp_as_sequence*/ - &__pyx_tp_as_mapping_memoryview, /*tp_as_mapping*/ - 0, /*tp_hash*/ - 0, /*tp_call*/ - __pyx_memoryview___str__, /*tp_str*/ - 0, /*tp_getattro*/ - 0, /*tp_setattro*/ - &__pyx_tp_as_buffer_memoryview, /*tp_as_buffer*/ - Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_VERSION_TAG|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE|Py_TPFLAGS_HAVE_GC, /*tp_flags*/ - 0, /*tp_doc*/ - __pyx_tp_traverse_memoryview, /*tp_traverse*/ - __pyx_tp_clear_memoryview, /*tp_clear*/ - 0, /*tp_richcompare*/ - 0, /*tp_weaklistoffset*/ - 0, /*tp_iter*/ - 0, /*tp_iternext*/ - __pyx_methods_memoryview, /*tp_methods*/ - 0, /*tp_members*/ - __pyx_getsets_memoryview, /*tp_getset*/ - 0, /*tp_base*/ - 0, /*tp_dict*/ - 0, /*tp_descr_get*/ - 0, /*tp_descr_set*/ - 0, /*tp_dictoffset*/ - 0, /*tp_init*/ - 0, /*tp_alloc*/ - __pyx_tp_new_memoryview, /*tp_new*/ - 0, /*tp_free*/ - 0, /*tp_is_gc*/ - 0, /*tp_bases*/ - 0, /*tp_mro*/ - 0, /*tp_cache*/ - 0, /*tp_subclasses*/ - 0, /*tp_weaklist*/ - 0, /*tp_del*/ - #if PY_VERSION_HEX >= 0x02060000 - 0, /*tp_version_tag*/ - #endif - #if PY_VERSION_HEX >= 0x030400a1 - 0, /*tp_finalize*/ - #endif -}; -static struct __pyx_vtabstruct__memoryviewslice __pyx_vtable__memoryviewslice; - -static PyObject *__pyx_tp_new__memoryviewslice(PyTypeObject *t, PyObject *a, PyObject *k) { - struct __pyx_memoryviewslice_obj *p; - PyObject *o = __pyx_tp_new_memoryview(t, a, k); - if (unlikely(!o)) return 0; - p = ((struct __pyx_memoryviewslice_obj *)o); - p->__pyx_base.__pyx_vtab = (struct __pyx_vtabstruct_memoryview*)__pyx_vtabptr__memoryviewslice; - p->from_object = Py_None; Py_INCREF(Py_None); - p->from_slice.memview = NULL; - return o; -} - -static void __pyx_tp_dealloc__memoryviewslice(PyObject *o) { - struct __pyx_memoryviewslice_obj *p = (struct __pyx_memoryviewslice_obj *)o; - #if PY_VERSION_HEX >= 0x030400a1 - if (unlikely(Py_TYPE(o)->tp_finalize) && !_PyGC_FINALIZED(o)) { - if (PyObject_CallFinalizerFromDealloc(o)) return; - } - #endif - PyObject_GC_UnTrack(o); - { - PyObject *etype, *eval, *etb; - PyErr_Fetch(&etype, &eval, &etb); - ++Py_REFCNT(o); - __pyx_memoryviewslice___dealloc__(o); - --Py_REFCNT(o); - PyErr_Restore(etype, eval, etb); - } - Py_CLEAR(p->from_object); - PyObject_GC_Track(o); - __pyx_tp_dealloc_memoryview(o); -} - -static int __pyx_tp_traverse__memoryviewslice(PyObject *o, visitproc v, void *a) { - int e; - struct __pyx_memoryviewslice_obj *p = (struct __pyx_memoryviewslice_obj *)o; - e = __pyx_tp_traverse_memoryview(o, v, a); if (e) return e; - if (p->from_object) { - e = (*v)(p->from_object, a); if (e) return e; - } - return 0; -} - -static int __pyx_tp_clear__memoryviewslice(PyObject *o) { - PyObject* tmp; - struct __pyx_memoryviewslice_obj *p = (struct __pyx_memoryviewslice_obj *)o; - __pyx_tp_clear_memoryview(o); - tmp = ((PyObject*)p->from_object); - p->from_object = Py_None; Py_INCREF(Py_None); - Py_XDECREF(tmp); - __PYX_XDEC_MEMVIEW(&p->from_slice, 1); - return 0; -} - -static PyObject *__pyx_getprop___pyx_memoryviewslice_base(PyObject *o, CYTHON_UNUSED void *x) { - return __pyx_memoryviewslice__get__base(o); -} - -static PyMethodDef __pyx_methods__memoryviewslice[] = { - {0, 0, 0, 0} -}; - -static struct PyGetSetDef __pyx_getsets__memoryviewslice[] = { - {(char *)"base", __pyx_getprop___pyx_memoryviewslice_base, 0, 0, 0}, - {0, 0, 0, 0, 0} -}; - -static PyTypeObject __pyx_type___pyx_memoryviewslice = { - PyVarObject_HEAD_INIT(0, 0) - __Pyx_NAMESTR("cython_bubblesort_nomagic._memoryviewslice"), /*tp_name*/ - sizeof(struct __pyx_memoryviewslice_obj), /*tp_basicsize*/ - 0, /*tp_itemsize*/ - __pyx_tp_dealloc__memoryviewslice, /*tp_dealloc*/ - 0, /*tp_print*/ - 0, /*tp_getattr*/ - 0, /*tp_setattr*/ - #if PY_MAJOR_VERSION < 3 - 0, /*tp_compare*/ - #else - 0, /*reserved*/ - #endif - #if CYTHON_COMPILING_IN_PYPY - __pyx_memoryview___repr__, /*tp_repr*/ - #else - 0, /*tp_repr*/ - #endif - 0, /*tp_as_number*/ - 0, /*tp_as_sequence*/ - 0, /*tp_as_mapping*/ - 0, /*tp_hash*/ - 0, /*tp_call*/ - #if CYTHON_COMPILING_IN_PYPY - __pyx_memoryview___str__, /*tp_str*/ - #else - 0, /*tp_str*/ - #endif - 0, /*tp_getattro*/ - 0, /*tp_setattro*/ - 0, /*tp_as_buffer*/ - Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_VERSION_TAG|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE|Py_TPFLAGS_HAVE_GC, /*tp_flags*/ - __Pyx_DOCSTR("Internal class for passing memoryview slices to Python"), /*tp_doc*/ - __pyx_tp_traverse__memoryviewslice, /*tp_traverse*/ - __pyx_tp_clear__memoryviewslice, /*tp_clear*/ - 0, /*tp_richcompare*/ - 0, /*tp_weaklistoffset*/ - 0, /*tp_iter*/ - 0, /*tp_iternext*/ - __pyx_methods__memoryviewslice, /*tp_methods*/ - 0, /*tp_members*/ - __pyx_getsets__memoryviewslice, /*tp_getset*/ - 0, /*tp_base*/ - 0, /*tp_dict*/ - 0, /*tp_descr_get*/ - 0, /*tp_descr_set*/ - 0, /*tp_dictoffset*/ - 0, /*tp_init*/ - 0, /*tp_alloc*/ - __pyx_tp_new__memoryviewslice, /*tp_new*/ - 0, /*tp_free*/ - 0, /*tp_is_gc*/ - 0, /*tp_bases*/ - 0, /*tp_mro*/ - 0, /*tp_cache*/ - 0, /*tp_subclasses*/ - 0, /*tp_weaklist*/ - 0, /*tp_del*/ - #if PY_VERSION_HEX >= 0x02060000 - 0, /*tp_version_tag*/ - #endif - #if PY_VERSION_HEX >= 0x030400a1 - 0, /*tp_finalize*/ - #endif -}; - -static PyMethodDef __pyx_methods[] = { - {__Pyx_NAMESTR("cython_bubblesort_nomagic"), (PyCFunction)__pyx_pw_25cython_bubblesort_nomagic_1cython_bubblesort_nomagic, METH_O, __Pyx_DOCSTR(__pyx_doc_25cython_bubblesort_nomagic_cython_bubblesort_nomagic)}, - {0, 0, 0, 0} -}; - -#if PY_MAJOR_VERSION >= 3 -static struct PyModuleDef __pyx_moduledef = { - #if PY_VERSION_HEX < 0x03020000 - { PyObject_HEAD_INIT(NULL) NULL, 0, NULL }, - #else - PyModuleDef_HEAD_INIT, - #endif - __Pyx_NAMESTR("cython_bubblesort_nomagic"), - 0, /* m_doc */ - -1, /* m_size */ - __pyx_methods /* m_methods */, - NULL, /* m_reload */ - NULL, /* m_traverse */ - NULL, /* m_clear */ - NULL /* m_free */ -}; -#endif - -static __Pyx_StringTabEntry __pyx_string_tab[] = { - {&__pyx_kp_s_Buffer_view_does_not_expose_stri, __pyx_k_Buffer_view_does_not_expose_stri, sizeof(__pyx_k_Buffer_view_does_not_expose_stri), 0, 0, 1, 0}, - {&__pyx_kp_s_Can_only_create_a_buffer_that_is, __pyx_k_Can_only_create_a_buffer_that_is, sizeof(__pyx_k_Can_only_create_a_buffer_that_is), 0, 0, 1, 0}, - {&__pyx_kp_s_Cannot_index_with_type_s, __pyx_k_Cannot_index_with_type_s, sizeof(__pyx_k_Cannot_index_with_type_s), 0, 0, 1, 0}, - {&__pyx_n_s_Ellipsis, __pyx_k_Ellipsis, sizeof(__pyx_k_Ellipsis), 0, 0, 1, 1}, - {&__pyx_kp_s_Empty_shape_tuple_for_cython_arr, __pyx_k_Empty_shape_tuple_for_cython_arr, sizeof(__pyx_k_Empty_shape_tuple_for_cython_arr), 0, 0, 1, 0}, - {&__pyx_kp_u_Format_string_allocated_too_shor, __pyx_k_Format_string_allocated_too_shor, sizeof(__pyx_k_Format_string_allocated_too_shor), 0, 1, 0, 0}, - {&__pyx_kp_u_Format_string_allocated_too_shor_2, __pyx_k_Format_string_allocated_too_shor_2, sizeof(__pyx_k_Format_string_allocated_too_shor_2), 0, 1, 0, 0}, - {&__pyx_n_s_IndexError, __pyx_k_IndexError, sizeof(__pyx_k_IndexError), 0, 0, 1, 1}, - {&__pyx_kp_s_Indirect_dimensions_not_supporte, __pyx_k_Indirect_dimensions_not_supporte, sizeof(__pyx_k_Indirect_dimensions_not_supporte), 0, 0, 1, 0}, - {&__pyx_kp_s_Invalid_mode_expected_c_or_fortr, __pyx_k_Invalid_mode_expected_c_or_fortr, sizeof(__pyx_k_Invalid_mode_expected_c_or_fortr), 0, 0, 1, 0}, - {&__pyx_kp_s_Invalid_shape_in_axis_d_d, __pyx_k_Invalid_shape_in_axis_d_d, sizeof(__pyx_k_Invalid_shape_in_axis_d_d), 0, 0, 1, 0}, - {&__pyx_n_s_MemoryError, __pyx_k_MemoryError, sizeof(__pyx_k_MemoryError), 0, 0, 1, 1}, - {&__pyx_kp_s_MemoryView_of_r_at_0x_x, __pyx_k_MemoryView_of_r_at_0x_x, sizeof(__pyx_k_MemoryView_of_r_at_0x_x), 0, 0, 1, 0}, - {&__pyx_kp_s_MemoryView_of_r_object, __pyx_k_MemoryView_of_r_object, sizeof(__pyx_k_MemoryView_of_r_object), 0, 0, 1, 0}, - {&__pyx_kp_u_Non_native_byte_order_not_suppor, __pyx_k_Non_native_byte_order_not_suppor, sizeof(__pyx_k_Non_native_byte_order_not_suppor), 0, 1, 0, 0}, - {&__pyx_n_b_O, __pyx_k_O, sizeof(__pyx_k_O), 0, 0, 0, 1}, - {&__pyx_kp_s_Out_of_bounds_on_buffer_access_a, __pyx_k_Out_of_bounds_on_buffer_access_a, sizeof(__pyx_k_Out_of_bounds_on_buffer_access_a), 0, 0, 1, 0}, - {&__pyx_n_s_RuntimeError, __pyx_k_RuntimeError, sizeof(__pyx_k_RuntimeError), 0, 0, 1, 1}, - {&__pyx_n_s_TypeError, __pyx_k_TypeError, sizeof(__pyx_k_TypeError), 0, 0, 1, 1}, - {&__pyx_kp_s_Unable_to_convert_item_to_object, __pyx_k_Unable_to_convert_item_to_object, sizeof(__pyx_k_Unable_to_convert_item_to_object), 0, 0, 1, 0}, - {&__pyx_n_s_ValueError, __pyx_k_ValueError, sizeof(__pyx_k_ValueError), 0, 0, 1, 1}, - {&__pyx_n_s_allocate_buffer, __pyx_k_allocate_buffer, sizeof(__pyx_k_allocate_buffer), 0, 0, 1, 1}, - {&__pyx_n_s_base, __pyx_k_base, sizeof(__pyx_k_base), 0, 0, 1, 1}, - {&__pyx_n_s_c, __pyx_k_c, sizeof(__pyx_k_c), 0, 0, 1, 1}, - {&__pyx_n_u_c, __pyx_k_c, sizeof(__pyx_k_c), 0, 1, 0, 1}, - {&__pyx_n_s_class, __pyx_k_class, sizeof(__pyx_k_class), 0, 0, 1, 1}, - {&__pyx_kp_s_contiguous_and_direct, __pyx_k_contiguous_and_direct, sizeof(__pyx_k_contiguous_and_direct), 0, 0, 1, 0}, - {&__pyx_kp_s_contiguous_and_indirect, __pyx_k_contiguous_and_indirect, sizeof(__pyx_k_contiguous_and_indirect), 0, 0, 1, 0}, - {&__pyx_n_s_dtype_is_object, __pyx_k_dtype_is_object, sizeof(__pyx_k_dtype_is_object), 0, 0, 1, 1}, - {&__pyx_n_s_enumerate, __pyx_k_enumerate, sizeof(__pyx_k_enumerate), 0, 0, 1, 1}, - {&__pyx_n_s_error, __pyx_k_error, sizeof(__pyx_k_error), 0, 0, 1, 1}, - {&__pyx_n_s_flags, __pyx_k_flags, sizeof(__pyx_k_flags), 0, 0, 1, 1}, - {&__pyx_n_s_format, __pyx_k_format, sizeof(__pyx_k_format), 0, 0, 1, 1}, - {&__pyx_n_s_fortran, __pyx_k_fortran, sizeof(__pyx_k_fortran), 0, 0, 1, 1}, - {&__pyx_n_u_fortran, __pyx_k_fortran, sizeof(__pyx_k_fortran), 0, 1, 0, 1}, - {&__pyx_kp_s_got_differing_extents_in_dimensi, __pyx_k_got_differing_extents_in_dimensi, sizeof(__pyx_k_got_differing_extents_in_dimensi), 0, 0, 1, 0}, - {&__pyx_n_s_id, __pyx_k_id, sizeof(__pyx_k_id), 0, 0, 1, 1}, - {&__pyx_n_s_import, __pyx_k_import, sizeof(__pyx_k_import), 0, 0, 1, 1}, - {&__pyx_n_s_itemsize, __pyx_k_itemsize, sizeof(__pyx_k_itemsize), 0, 0, 1, 1}, - {&__pyx_kp_s_itemsize_0_for_cython_array, __pyx_k_itemsize_0_for_cython_array, sizeof(__pyx_k_itemsize_0_for_cython_array), 0, 0, 1, 0}, - {&__pyx_n_s_main, __pyx_k_main, sizeof(__pyx_k_main), 0, 0, 1, 1}, - {&__pyx_n_s_memview, __pyx_k_memview, sizeof(__pyx_k_memview), 0, 0, 1, 1}, - {&__pyx_n_s_mode, __pyx_k_mode, sizeof(__pyx_k_mode), 0, 0, 1, 1}, - {&__pyx_n_s_name, __pyx_k_name, sizeof(__pyx_k_name), 0, 0, 1, 1}, - {&__pyx_n_s_name_2, __pyx_k_name_2, sizeof(__pyx_k_name_2), 0, 0, 1, 1}, - {&__pyx_kp_u_ndarray_is_not_C_contiguous, __pyx_k_ndarray_is_not_C_contiguous, sizeof(__pyx_k_ndarray_is_not_C_contiguous), 0, 1, 0, 0}, - {&__pyx_kp_u_ndarray_is_not_Fortran_contiguou, __pyx_k_ndarray_is_not_Fortran_contiguou, sizeof(__pyx_k_ndarray_is_not_Fortran_contiguou), 0, 1, 0, 0}, - {&__pyx_n_s_ndim, __pyx_k_ndim, sizeof(__pyx_k_ndim), 0, 0, 1, 1}, - {&__pyx_n_s_obj, __pyx_k_obj, sizeof(__pyx_k_obj), 0, 0, 1, 1}, - {&__pyx_n_s_pack, __pyx_k_pack, sizeof(__pyx_k_pack), 0, 0, 1, 1}, - {&__pyx_n_s_pyx_getbuffer, __pyx_k_pyx_getbuffer, sizeof(__pyx_k_pyx_getbuffer), 0, 0, 1, 1}, - {&__pyx_n_s_pyx_releasebuffer, __pyx_k_pyx_releasebuffer, sizeof(__pyx_k_pyx_releasebuffer), 0, 0, 1, 1}, - {&__pyx_n_s_pyx_vtable, __pyx_k_pyx_vtable, sizeof(__pyx_k_pyx_vtable), 0, 0, 1, 1}, - {&__pyx_n_s_range, __pyx_k_range, sizeof(__pyx_k_range), 0, 0, 1, 1}, - {&__pyx_n_s_shape, __pyx_k_shape, sizeof(__pyx_k_shape), 0, 0, 1, 1}, - {&__pyx_n_s_size, __pyx_k_size, sizeof(__pyx_k_size), 0, 0, 1, 1}, - {&__pyx_n_s_start, __pyx_k_start, sizeof(__pyx_k_start), 0, 0, 1, 1}, - {&__pyx_n_s_step, __pyx_k_step, sizeof(__pyx_k_step), 0, 0, 1, 1}, - {&__pyx_n_s_stop, __pyx_k_stop, sizeof(__pyx_k_stop), 0, 0, 1, 1}, - {&__pyx_kp_s_strided_and_direct, __pyx_k_strided_and_direct, sizeof(__pyx_k_strided_and_direct), 0, 0, 1, 0}, - {&__pyx_kp_s_strided_and_direct_or_indirect, __pyx_k_strided_and_direct_or_indirect, sizeof(__pyx_k_strided_and_direct_or_indirect), 0, 0, 1, 0}, - {&__pyx_kp_s_strided_and_indirect, __pyx_k_strided_and_indirect, sizeof(__pyx_k_strided_and_indirect), 0, 0, 1, 0}, - {&__pyx_n_s_struct, __pyx_k_struct, sizeof(__pyx_k_struct), 0, 0, 1, 1}, - {&__pyx_n_s_test, __pyx_k_test, sizeof(__pyx_k_test), 0, 0, 1, 1}, - {&__pyx_kp_s_unable_to_allocate_array_data, __pyx_k_unable_to_allocate_array_data, sizeof(__pyx_k_unable_to_allocate_array_data), 0, 0, 1, 0}, - {&__pyx_kp_s_unable_to_allocate_shape_and_str, __pyx_k_unable_to_allocate_shape_and_str, sizeof(__pyx_k_unable_to_allocate_shape_and_str), 0, 0, 1, 0}, - {&__pyx_kp_u_unknown_dtype_code_in_numpy_pxd, __pyx_k_unknown_dtype_code_in_numpy_pxd, sizeof(__pyx_k_unknown_dtype_code_in_numpy_pxd), 0, 1, 0, 0}, - {&__pyx_n_s_unpack, __pyx_k_unpack, sizeof(__pyx_k_unpack), 0, 0, 1, 1}, - {&__pyx_n_s_xrange, __pyx_k_xrange, sizeof(__pyx_k_xrange), 0, 0, 1, 1}, - {0, 0, 0, 0, 0, 0, 0} -}; -static int __Pyx_InitCachedBuiltins(void) { - #if PY_MAJOR_VERSION >= 3 - __pyx_builtin_xrange = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_xrange) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 12; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #else - __pyx_builtin_xrange = __Pyx_GetBuiltinName(__pyx_n_s_xrange); if (!__pyx_builtin_xrange) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 12; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #endif - __pyx_builtin_ValueError = __Pyx_GetBuiltinName(__pyx_n_s_ValueError); if (!__pyx_builtin_ValueError) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 215; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_builtin_range = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_range) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 228; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_builtin_RuntimeError = __Pyx_GetBuiltinName(__pyx_n_s_RuntimeError); if (!__pyx_builtin_RuntimeError) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 799; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_builtin_MemoryError = __Pyx_GetBuiltinName(__pyx_n_s_MemoryError); if (!__pyx_builtin_MemoryError) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 142; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_builtin_enumerate = __Pyx_GetBuiltinName(__pyx_n_s_enumerate); if (!__pyx_builtin_enumerate) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 145; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_builtin_Ellipsis = __Pyx_GetBuiltinName(__pyx_n_s_Ellipsis); if (!__pyx_builtin_Ellipsis) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 357; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_builtin_TypeError = __Pyx_GetBuiltinName(__pyx_n_s_TypeError); if (!__pyx_builtin_TypeError) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 386; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_builtin_id = __Pyx_GetBuiltinName(__pyx_n_s_id); if (!__pyx_builtin_id) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 569; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_builtin_IndexError = __Pyx_GetBuiltinName(__pyx_n_s_IndexError); if (!__pyx_builtin_IndexError) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 789; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - return 0; - __pyx_L1_error:; - return -1; -} - -static int __Pyx_InitCachedConstants(void) { - __Pyx_RefNannyDeclarations - __Pyx_RefNannySetupContext("__Pyx_InitCachedConstants", 0); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":215 - * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) - * and not PyArray_CHKFLAGS(self, NPY_C_CONTIGUOUS)): - * raise ValueError(u"ndarray is not C contiguous") # <<<<<<<<<<<<<< - * - * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) - */ - __pyx_tuple_ = PyTuple_Pack(1, __pyx_kp_u_ndarray_is_not_C_contiguous); if (unlikely(!__pyx_tuple_)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 215; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_tuple_); - __Pyx_GIVEREF(__pyx_tuple_); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":219 - * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) - * and not PyArray_CHKFLAGS(self, NPY_F_CONTIGUOUS)): - * raise ValueError(u"ndarray is not Fortran contiguous") # <<<<<<<<<<<<<< - * - * info.buf = PyArray_DATA(self) - */ - __pyx_tuple__2 = PyTuple_Pack(1, __pyx_kp_u_ndarray_is_not_Fortran_contiguou); if (unlikely(!__pyx_tuple__2)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 219; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_tuple__2); - __Pyx_GIVEREF(__pyx_tuple__2); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":257 - * if ((descr.byteorder == c'>' and little_endian) or - * (descr.byteorder == c'<' and not little_endian)): - * raise ValueError(u"Non-native byte order not supported") # <<<<<<<<<<<<<< - * if t == NPY_BYTE: f = "b" - * elif t == NPY_UBYTE: f = "B" - */ - __pyx_tuple__3 = PyTuple_Pack(1, __pyx_kp_u_Non_native_byte_order_not_suppor); if (unlikely(!__pyx_tuple__3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 257; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_tuple__3); - __Pyx_GIVEREF(__pyx_tuple__3); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":799 - * - * if (end - f) - (new_offset - offset[0]) < 15: - * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") # <<<<<<<<<<<<<< - * - * if ((child.byteorder == c'>' and little_endian) or - */ - __pyx_tuple__4 = PyTuple_Pack(1, __pyx_kp_u_Format_string_allocated_too_shor); if (unlikely(!__pyx_tuple__4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 799; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_tuple__4); - __Pyx_GIVEREF(__pyx_tuple__4); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":803 - * if ((child.byteorder == c'>' and little_endian) or - * (child.byteorder == c'<' and not little_endian)): - * raise ValueError(u"Non-native byte order not supported") # <<<<<<<<<<<<<< - * # One could encode it in the format string and have Cython - * # complain instead, BUT: < and > in format strings also imply - */ - __pyx_tuple__5 = PyTuple_Pack(1, __pyx_kp_u_Non_native_byte_order_not_suppor); if (unlikely(!__pyx_tuple__5)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 803; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_tuple__5); - __Pyx_GIVEREF(__pyx_tuple__5); - - /* "/Users/sebastian/miniconda3/envs/py34/lib/python3.4/site-packages/Cython/Includes/numpy/__init__.pxd":823 - * t = child.type_num - * if end - f < 5: - * raise RuntimeError(u"Format string allocated too short.") # <<<<<<<<<<<<<< - * - * # Until ticket #99 is fixed, use integers to avoid warnings - */ - __pyx_tuple__6 = PyTuple_Pack(1, __pyx_kp_u_Format_string_allocated_too_shor_2); if (unlikely(!__pyx_tuple__6)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 823; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_tuple__6); - __Pyx_GIVEREF(__pyx_tuple__6); - - /* "View.MemoryView":127 - * - * if not self.ndim: - * raise ValueError("Empty shape tuple for cython.array") # <<<<<<<<<<<<<< - * - * if itemsize <= 0: - */ - __pyx_tuple__7 = PyTuple_Pack(1, __pyx_kp_s_Empty_shape_tuple_for_cython_arr); if (unlikely(!__pyx_tuple__7)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 127; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_tuple__7); - __Pyx_GIVEREF(__pyx_tuple__7); - - /* "View.MemoryView":130 - * - * if itemsize <= 0: - * raise ValueError("itemsize <= 0 for cython.array") # <<<<<<<<<<<<<< - * - * if isinstance(format, unicode): - */ - __pyx_tuple__8 = PyTuple_Pack(1, __pyx_kp_s_itemsize_0_for_cython_array); if (unlikely(!__pyx_tuple__8)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 130; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_tuple__8); - __Pyx_GIVEREF(__pyx_tuple__8); - - /* "View.MemoryView":142 - * - * if not self._shape: - * raise MemoryError("unable to allocate shape and strides.") # <<<<<<<<<<<<<< - * - * - */ - __pyx_tuple__9 = PyTuple_Pack(1, __pyx_kp_s_unable_to_allocate_shape_and_str); if (unlikely(!__pyx_tuple__9)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 142; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_tuple__9); - __Pyx_GIVEREF(__pyx_tuple__9); - - /* "View.MemoryView":170 - * self.data = malloc(self.len) - * if not self.data: - * raise MemoryError("unable to allocate array data.") # <<<<<<<<<<<<<< - * - * if self.dtype_is_object: - */ - __pyx_tuple__10 = PyTuple_Pack(1, __pyx_kp_s_unable_to_allocate_array_data); if (unlikely(!__pyx_tuple__10)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 170; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_tuple__10); - __Pyx_GIVEREF(__pyx_tuple__10); - - /* "View.MemoryView":186 - * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS - * if not (flags & bufmode): - * raise ValueError("Can only create a buffer that is contiguous in memory.") # <<<<<<<<<<<<<< - * info.buf = self.data - * info.len = self.len - */ - __pyx_tuple__11 = PyTuple_Pack(1, __pyx_kp_s_Can_only_create_a_buffer_that_is); if (unlikely(!__pyx_tuple__11)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 186; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_tuple__11); - __Pyx_GIVEREF(__pyx_tuple__11); - - /* "View.MemoryView":445 - * result = struct.unpack(self.view.format, bytesitem) - * except struct.error: - * raise ValueError("Unable to convert item to object") # <<<<<<<<<<<<<< - * else: - * if len(self.view.format) == 1: - */ - __pyx_tuple__12 = PyTuple_Pack(1, __pyx_kp_s_Unable_to_convert_item_to_object); if (unlikely(!__pyx_tuple__12)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 445; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_tuple__12); - __Pyx_GIVEREF(__pyx_tuple__12); - - /* "View.MemoryView":521 - * if self.view.strides == NULL: - * - * raise ValueError("Buffer view does not expose strides") # <<<<<<<<<<<<<< - * - * return tuple([self.view.strides[i] for i in xrange(self.view.ndim)]) - */ - __pyx_tuple__13 = PyTuple_Pack(1, __pyx_kp_s_Buffer_view_does_not_expose_stri); if (unlikely(!__pyx_tuple__13)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 521; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_tuple__13); - __Pyx_GIVEREF(__pyx_tuple__13); - - /* "View.MemoryView":638 - * if item is Ellipsis: - * if not seen_ellipsis: - * result.extend([slice(None)] * (ndim - len(tup) + 1)) # <<<<<<<<<<<<<< - * seen_ellipsis = True - * else: - */ - __pyx_tuple__14 = PyTuple_Pack(1, Py_None); if (unlikely(!__pyx_tuple__14)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 638; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_tuple__14); - __Pyx_GIVEREF(__pyx_tuple__14); - - /* "View.MemoryView":641 - * seen_ellipsis = True - * else: - * result.append(slice(None)) # <<<<<<<<<<<<<< - * have_slices = True - * else: - */ - __pyx_tuple__15 = PyTuple_Pack(1, Py_None); if (unlikely(!__pyx_tuple__15)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 641; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_tuple__15); - __Pyx_GIVEREF(__pyx_tuple__15); - - /* "View.MemoryView":652 - * nslices = ndim - len(result) - * if nslices: - * result.extend([slice(None)] * nslices) # <<<<<<<<<<<<<< - * - * return have_slices or nslices, tuple(result) - */ - __pyx_tuple__16 = PyTuple_Pack(1, Py_None); if (unlikely(!__pyx_tuple__16)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 652; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_tuple__16); - __Pyx_GIVEREF(__pyx_tuple__16); - - /* "View.MemoryView":660 - * for i in range(ndim): - * if suboffsets[i] >= 0: - * raise ValueError("Indirect dimensions not supported") # <<<<<<<<<<<<<< - * - * - */ - __pyx_tuple__17 = PyTuple_Pack(1, __pyx_kp_s_Indirect_dimensions_not_supporte); if (unlikely(!__pyx_tuple__17)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 660; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_tuple__17); - __Pyx_GIVEREF(__pyx_tuple__17); - - /* "View.MemoryView":276 - * return self.name - * - * cdef generic = Enum("") # <<<<<<<<<<<<<< - * cdef strided = Enum("") # default - * cdef indirect = Enum("") - */ - __pyx_tuple__18 = PyTuple_Pack(1, __pyx_kp_s_strided_and_direct_or_indirect); if (unlikely(!__pyx_tuple__18)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 276; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_tuple__18); - __Pyx_GIVEREF(__pyx_tuple__18); - - /* "View.MemoryView":277 - * - * cdef generic = Enum("") - * cdef strided = Enum("") # default # <<<<<<<<<<<<<< - * cdef indirect = Enum("") - * - */ - __pyx_tuple__19 = PyTuple_Pack(1, __pyx_kp_s_strided_and_direct); if (unlikely(!__pyx_tuple__19)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 277; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_tuple__19); - __Pyx_GIVEREF(__pyx_tuple__19); - - /* "View.MemoryView":278 - * cdef generic = Enum("") - * cdef strided = Enum("") # default - * cdef indirect = Enum("") # <<<<<<<<<<<<<< - * - * - */ - __pyx_tuple__20 = PyTuple_Pack(1, __pyx_kp_s_strided_and_indirect); if (unlikely(!__pyx_tuple__20)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 278; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_tuple__20); - __Pyx_GIVEREF(__pyx_tuple__20); - - /* "View.MemoryView":281 - * - * - * cdef contiguous = Enum("") # <<<<<<<<<<<<<< - * cdef indirect_contiguous = Enum("") - * - */ - __pyx_tuple__21 = PyTuple_Pack(1, __pyx_kp_s_contiguous_and_direct); if (unlikely(!__pyx_tuple__21)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 281; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_tuple__21); - __Pyx_GIVEREF(__pyx_tuple__21); - - /* "View.MemoryView":282 - * - * cdef contiguous = Enum("") - * cdef indirect_contiguous = Enum("") # <<<<<<<<<<<<<< - * - * - */ - __pyx_tuple__22 = PyTuple_Pack(1, __pyx_kp_s_contiguous_and_indirect); if (unlikely(!__pyx_tuple__22)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 282; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_tuple__22); - __Pyx_GIVEREF(__pyx_tuple__22); - __Pyx_RefNannyFinishContext(); - return 0; - __pyx_L1_error:; - __Pyx_RefNannyFinishContext(); - return -1; -} - -static int __Pyx_InitGlobals(void) { - if (__Pyx_InitStrings(__pyx_string_tab) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; - __pyx_int_0 = PyInt_FromLong(0); if (unlikely(!__pyx_int_0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_int_1 = PyInt_FromLong(1); if (unlikely(!__pyx_int_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_int_neg_1 = PyInt_FromLong(-1); if (unlikely(!__pyx_int_neg_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - return 0; - __pyx_L1_error:; - return -1; -} - -#if PY_MAJOR_VERSION < 3 -PyMODINIT_FUNC initcython_bubblesort_nomagic(void); /*proto*/ -PyMODINIT_FUNC initcython_bubblesort_nomagic(void) -#else -PyMODINIT_FUNC PyInit_cython_bubblesort_nomagic(void); /*proto*/ -PyMODINIT_FUNC PyInit_cython_bubblesort_nomagic(void) -#endif -{ - PyObject *__pyx_t_1 = NULL; - int __pyx_lineno = 0; - const char *__pyx_filename = NULL; - int __pyx_clineno = 0; - __Pyx_RefNannyDeclarations - #if CYTHON_REFNANNY - __Pyx_RefNanny = __Pyx_RefNannyImportAPI("refnanny"); - if (!__Pyx_RefNanny) { - PyErr_Clear(); - __Pyx_RefNanny = __Pyx_RefNannyImportAPI("Cython.Runtime.refnanny"); - if (!__Pyx_RefNanny) - Py_FatalError("failed to import 'refnanny' module"); - } - #endif - __Pyx_RefNannySetupContext("PyMODINIT_FUNC PyInit_cython_bubblesort_nomagic(void)", 0); - if ( __Pyx_check_binary_version() < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_empty_tuple = PyTuple_New(0); if (unlikely(!__pyx_empty_tuple)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_empty_bytes = PyBytes_FromStringAndSize("", 0); if (unlikely(!__pyx_empty_bytes)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #ifdef __Pyx_CyFunction_USED - if (__Pyx_CyFunction_init() < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #endif - #ifdef __Pyx_FusedFunction_USED - if (__pyx_FusedFunction_init() < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #endif - #ifdef __Pyx_Generator_USED - if (__pyx_Generator_init() < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #endif - /*--- Library function declarations ---*/ - /*--- Threads initialization code ---*/ - #if defined(__PYX_FORCE_INIT_THREADS) && __PYX_FORCE_INIT_THREADS - #ifdef WITH_THREAD /* Python build with threading support? */ - PyEval_InitThreads(); - #endif - #endif - /*--- Module creation code ---*/ - #if PY_MAJOR_VERSION < 3 - __pyx_m = Py_InitModule4(__Pyx_NAMESTR("cython_bubblesort_nomagic"), __pyx_methods, 0, 0, PYTHON_API_VERSION); Py_XINCREF(__pyx_m); - #else - __pyx_m = PyModule_Create(&__pyx_moduledef); - #endif - if (unlikely(!__pyx_m)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_d = PyModule_GetDict(__pyx_m); if (unlikely(!__pyx_d)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - Py_INCREF(__pyx_d); - __pyx_b = PyImport_AddModule(__Pyx_NAMESTR(__Pyx_BUILTIN_MODULE_NAME)); if (unlikely(!__pyx_b)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #if CYTHON_COMPILING_IN_PYPY - Py_INCREF(__pyx_b); - #endif - if (__Pyx_SetAttrString(__pyx_m, "__builtins__", __pyx_b) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; - /*--- Initialize various global constants etc. ---*/ - if (unlikely(__Pyx_InitGlobals() < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #if PY_MAJOR_VERSION < 3 && (__PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT) - if (__Pyx_init_sys_getdefaultencoding_params() < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #endif - if (__pyx_module_is_main_cython_bubblesort_nomagic) { - if (__Pyx_SetAttrString(__pyx_m, "__name__", __pyx_n_s_main) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; - } - #if PY_MAJOR_VERSION >= 3 - { - PyObject *modules = PyImport_GetModuleDict(); if (unlikely(!modules)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - if (!PyDict_GetItemString(modules, "cython_bubblesort_nomagic")) { - if (unlikely(PyDict_SetItemString(modules, "cython_bubblesort_nomagic", __pyx_m) < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - } - #endif - /*--- Builtin init code ---*/ - if (unlikely(__Pyx_InitCachedBuiltins() < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - /*--- Constants init code ---*/ - if (unlikely(__Pyx_InitCachedConstants() < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - /*--- Global init code ---*/ - generic = Py_None; Py_INCREF(Py_None); - strided = Py_None; Py_INCREF(Py_None); - indirect = Py_None; Py_INCREF(Py_None); - contiguous = Py_None; Py_INCREF(Py_None); - indirect_contiguous = Py_None; Py_INCREF(Py_None); - /*--- Variable export code ---*/ - /*--- Function export code ---*/ - /*--- Type init code ---*/ - if (PyType_Ready(&__pyx_type___pyx_array) < 0) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 99; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_type___pyx_array.tp_print = 0; - __pyx_array_type = &__pyx_type___pyx_array; - if (PyType_Ready(&__pyx_type___pyx_MemviewEnum) < 0) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 269; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_type___pyx_MemviewEnum.tp_print = 0; - __pyx_MemviewEnum_type = &__pyx_type___pyx_MemviewEnum; - __pyx_vtabptr_memoryview = &__pyx_vtable_memoryview; - __pyx_vtable_memoryview.get_item_pointer = (char *(*)(struct __pyx_memoryview_obj *, PyObject *))__pyx_memoryview_get_item_pointer; - __pyx_vtable_memoryview.is_slice = (PyObject *(*)(struct __pyx_memoryview_obj *, PyObject *))__pyx_memoryview_is_slice; - __pyx_vtable_memoryview.setitem_slice_assignment = (PyObject *(*)(struct __pyx_memoryview_obj *, PyObject *, PyObject *))__pyx_memoryview_setitem_slice_assignment; - __pyx_vtable_memoryview.setitem_slice_assign_scalar = (PyObject *(*)(struct __pyx_memoryview_obj *, struct __pyx_memoryview_obj *, PyObject *))__pyx_memoryview_setitem_slice_assign_scalar; - __pyx_vtable_memoryview.setitem_indexed = (PyObject *(*)(struct __pyx_memoryview_obj *, PyObject *, PyObject *))__pyx_memoryview_setitem_indexed; - __pyx_vtable_memoryview.convert_item_to_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *))__pyx_memoryview_convert_item_to_object; - __pyx_vtable_memoryview.assign_item_from_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *, PyObject *))__pyx_memoryview_assign_item_from_object; - if (PyType_Ready(&__pyx_type___pyx_memoryview) < 0) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 302; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_type___pyx_memoryview.tp_print = 0; - if (__Pyx_SetVtable(__pyx_type___pyx_memoryview.tp_dict, __pyx_vtabptr_memoryview) < 0) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 302; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_memoryview_type = &__pyx_type___pyx_memoryview; - __pyx_vtabptr__memoryviewslice = &__pyx_vtable__memoryviewslice; - __pyx_vtable__memoryviewslice.__pyx_base = *__pyx_vtabptr_memoryview; - __pyx_vtable__memoryviewslice.__pyx_base.convert_item_to_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *))__pyx_memoryviewslice_convert_item_to_object; - __pyx_vtable__memoryviewslice.__pyx_base.assign_item_from_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *, PyObject *))__pyx_memoryviewslice_assign_item_from_object; - __pyx_type___pyx_memoryviewslice.tp_base = __pyx_memoryview_type; - if (PyType_Ready(&__pyx_type___pyx_memoryviewslice) < 0) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 922; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_type___pyx_memoryviewslice.tp_print = 0; - if (__Pyx_SetVtable(__pyx_type___pyx_memoryviewslice.tp_dict, __pyx_vtabptr__memoryviewslice) < 0) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 922; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_memoryviewslice_type = &__pyx_type___pyx_memoryviewslice; - /*--- Type import code ---*/ - __pyx_ptype_7cpython_4type_type = __Pyx_ImportType(__Pyx_BUILTIN_MODULE_NAME, "type", - #if CYTHON_COMPILING_IN_PYPY - sizeof(PyTypeObject), - #else - sizeof(PyHeapTypeObject), - #endif - 0); if (unlikely(!__pyx_ptype_7cpython_4type_type)) {__pyx_filename = __pyx_f[3]; __pyx_lineno = 9; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_ptype_5numpy_dtype = __Pyx_ImportType("numpy", "dtype", sizeof(PyArray_Descr), 0); if (unlikely(!__pyx_ptype_5numpy_dtype)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 155; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_ptype_5numpy_flatiter = __Pyx_ImportType("numpy", "flatiter", sizeof(PyArrayIterObject), 0); if (unlikely(!__pyx_ptype_5numpy_flatiter)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 165; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_ptype_5numpy_broadcast = __Pyx_ImportType("numpy", "broadcast", sizeof(PyArrayMultiIterObject), 0); if (unlikely(!__pyx_ptype_5numpy_broadcast)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 169; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_ptype_5numpy_ndarray = __Pyx_ImportType("numpy", "ndarray", sizeof(PyArrayObject), 0); if (unlikely(!__pyx_ptype_5numpy_ndarray)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 178; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_ptype_5numpy_ufunc = __Pyx_ImportType("numpy", "ufunc", sizeof(PyUFuncObject), 0); if (unlikely(!__pyx_ptype_5numpy_ufunc)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 861; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - /*--- Variable import code ---*/ - /*--- Function import code ---*/ - /*--- Execution code ---*/ - - /* "cython_bubblesort_nomagic.pyx":2 - * - * cimport numpy as np # <<<<<<<<<<<<<< - * cimport cython - * @cython.boundscheck(False) - */ - __pyx_t_1 = PyDict_New(); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - if (PyDict_SetItem(__pyx_d, __pyx_n_s_test, __pyx_t_1) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 2; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - - /* "View.MemoryView":203 - * info.obj = self - * - * __pyx_getbuffer = capsule( &__pyx_array_getbuffer, "getbuffer(obj, view, flags)") # <<<<<<<<<<<<<< - * - * def __dealloc__(array self): - */ - __pyx_t_1 = __pyx_capsule_create(((void *)(&__pyx_array_getbuffer)), __pyx_k_getbuffer_obj_view_flags); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 203; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - if (PyDict_SetItem(__pyx_array_type->tp_dict, __pyx_n_s_pyx_getbuffer, __pyx_t_1) < 0) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 203; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - PyType_Modified(__pyx_array_type); - - /* "View.MemoryView":276 - * return self.name - * - * cdef generic = Enum("") # <<<<<<<<<<<<<< - * cdef strided = Enum("") # default - * cdef indirect = Enum("") - */ - __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)((PyObject *)__pyx_MemviewEnum_type)), __pyx_tuple__18, NULL); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 276; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __Pyx_XGOTREF(generic); - __Pyx_DECREF_SET(generic, __pyx_t_1); - __Pyx_GIVEREF(__pyx_t_1); - __pyx_t_1 = 0; - - /* "View.MemoryView":277 - * - * cdef generic = Enum("") - * cdef strided = Enum("") # default # <<<<<<<<<<<<<< - * cdef indirect = Enum("") - * - */ - __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)((PyObject *)__pyx_MemviewEnum_type)), __pyx_tuple__19, NULL); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 277; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __Pyx_XGOTREF(strided); - __Pyx_DECREF_SET(strided, __pyx_t_1); - __Pyx_GIVEREF(__pyx_t_1); - __pyx_t_1 = 0; - - /* "View.MemoryView":278 - * cdef generic = Enum("") - * cdef strided = Enum("") # default - * cdef indirect = Enum("") # <<<<<<<<<<<<<< - * - * - */ - __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)((PyObject *)__pyx_MemviewEnum_type)), __pyx_tuple__20, NULL); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 278; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __Pyx_XGOTREF(indirect); - __Pyx_DECREF_SET(indirect, __pyx_t_1); - __Pyx_GIVEREF(__pyx_t_1); - __pyx_t_1 = 0; - - /* "View.MemoryView":281 - * - * - * cdef contiguous = Enum("") # <<<<<<<<<<<<<< - * cdef indirect_contiguous = Enum("") - * - */ - __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)((PyObject *)__pyx_MemviewEnum_type)), __pyx_tuple__21, NULL); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 281; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __Pyx_XGOTREF(contiguous); - __Pyx_DECREF_SET(contiguous, __pyx_t_1); - __Pyx_GIVEREF(__pyx_t_1); - __pyx_t_1 = 0; - - /* "View.MemoryView":282 - * - * cdef contiguous = Enum("") - * cdef indirect_contiguous = Enum("") # <<<<<<<<<<<<<< - * - * - */ - __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)((PyObject *)__pyx_MemviewEnum_type)), __pyx_tuple__22, NULL); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 282; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - __Pyx_XGOTREF(indirect_contiguous); - __Pyx_DECREF_SET(indirect_contiguous, __pyx_t_1); - __Pyx_GIVEREF(__pyx_t_1); - __pyx_t_1 = 0; - - /* "View.MemoryView":496 - * info.obj = self - * - * __pyx_getbuffer = capsule( &__pyx_memoryview_getbuffer, "getbuffer(obj, view, flags)") # <<<<<<<<<<<<<< - * - * - */ - __pyx_t_1 = __pyx_capsule_create(((void *)(&__pyx_memoryview_getbuffer)), __pyx_k_getbuffer_obj_view_flags); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 496; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - if (PyDict_SetItem(__pyx_memoryview_type->tp_dict, __pyx_n_s_pyx_getbuffer, __pyx_t_1) < 0) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 496; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - PyType_Modified(__pyx_memoryview_type); - - /* "View.MemoryView":953 - * return self.from_object - * - * __pyx_getbuffer = capsule( &__pyx_memoryview_getbuffer, "getbuffer(obj, view, flags)") # <<<<<<<<<<<<<< - * - * - */ - __pyx_t_1 = __pyx_capsule_create(((void *)(&__pyx_memoryview_getbuffer)), __pyx_k_getbuffer_obj_view_flags); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 953; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_1); - if (PyDict_SetItem(__pyx_memoryviewslice_type->tp_dict, __pyx_n_s_pyx_getbuffer, __pyx_t_1) < 0) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 953; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - PyType_Modified(__pyx_memoryviewslice_type); - - /* "View.MemoryView":1361 - * - * @cname('__pyx_memoryview__slice_assign_scalar') - * cdef void _slice_assign_scalar(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< - * Py_ssize_t *strides, int ndim, - * size_t itemsize, void *item) nogil: - */ - goto __pyx_L0; - __pyx_L1_error:; - __Pyx_XDECREF(__pyx_t_1); - if (__pyx_m) { - __Pyx_AddTraceback("init cython_bubblesort_nomagic", __pyx_clineno, __pyx_lineno, __pyx_filename); - Py_DECREF(__pyx_m); __pyx_m = 0; - } else if (!PyErr_Occurred()) { - PyErr_SetString(PyExc_ImportError, "init cython_bubblesort_nomagic"); - } - __pyx_L0:; - __Pyx_RefNannyFinishContext(); - #if PY_MAJOR_VERSION < 3 - return; - #else - return __pyx_m; - #endif -} - -/* Runtime support code */ -#if CYTHON_REFNANNY -static __Pyx_RefNannyAPIStruct *__Pyx_RefNannyImportAPI(const char *modname) { - PyObject *m = NULL, *p = NULL; - void *r = NULL; - m = PyImport_ImportModule((char *)modname); - if (!m) goto end; - p = PyObject_GetAttrString(m, (char *)"RefNannyAPI"); - if (!p) goto end; - r = PyLong_AsVoidPtr(p); -end: - Py_XDECREF(p); - Py_XDECREF(m); - return (__Pyx_RefNannyAPIStruct *)r; -} -#endif /* CYTHON_REFNANNY */ - -static PyObject *__Pyx_GetBuiltinName(PyObject *name) { - PyObject* result = __Pyx_PyObject_GetAttrStr(__pyx_b, name); - if (unlikely(!result)) { - PyErr_Format(PyExc_NameError, -#if PY_MAJOR_VERSION >= 3 - "name '%U' is not defined", name); -#else - "name '%.200s' is not defined", PyString_AS_STRING(name)); -#endif - } - return result; -} - -static CYTHON_INLINE int __Pyx_IsLittleEndian(void) { - unsigned int n = 1; - return *(unsigned char*)(&n) != 0; -} -static void __Pyx_BufFmt_Init(__Pyx_BufFmt_Context* ctx, - __Pyx_BufFmt_StackElem* stack, - __Pyx_TypeInfo* type) { - stack[0].field = &ctx->root; - stack[0].parent_offset = 0; - ctx->root.type = type; - ctx->root.name = "buffer dtype"; - ctx->root.offset = 0; - ctx->head = stack; - ctx->head->field = &ctx->root; - ctx->fmt_offset = 0; - ctx->head->parent_offset = 0; - ctx->new_packmode = '@'; - ctx->enc_packmode = '@'; - ctx->new_count = 1; - ctx->enc_count = 0; - ctx->enc_type = 0; - ctx->is_complex = 0; - ctx->is_valid_array = 0; - ctx->struct_alignment = 0; - while (type->typegroup == 'S') { - ++ctx->head; - ctx->head->field = type->fields; - ctx->head->parent_offset = 0; - type = type->fields->type; - } -} -static int __Pyx_BufFmt_ParseNumber(const char** ts) { - int count; - const char* t = *ts; - if (*t < '0' || *t > '9') { - return -1; - } else { - count = *t++ - '0'; - while (*t >= '0' && *t < '9') { - count *= 10; - count += *t++ - '0'; - } - } - *ts = t; - return count; -} -static int __Pyx_BufFmt_ExpectNumber(const char **ts) { - int number = __Pyx_BufFmt_ParseNumber(ts); - if (number == -1) /* First char was not a digit */ - PyErr_Format(PyExc_ValueError,\ - "Does not understand character buffer dtype format string ('%c')", **ts); - return number; -} -static void __Pyx_BufFmt_RaiseUnexpectedChar(char ch) { - PyErr_Format(PyExc_ValueError, - "Unexpected format string character: '%c'", ch); -} -static const char* __Pyx_BufFmt_DescribeTypeChar(char ch, int is_complex) { - switch (ch) { - case 'c': return "'char'"; - case 'b': return "'signed char'"; - case 'B': return "'unsigned char'"; - case 'h': return "'short'"; - case 'H': return "'unsigned short'"; - case 'i': return "'int'"; - case 'I': return "'unsigned int'"; - case 'l': return "'long'"; - case 'L': return "'unsigned long'"; - case 'q': return "'long long'"; - case 'Q': return "'unsigned long long'"; - case 'f': return (is_complex ? "'complex float'" : "'float'"); - case 'd': return (is_complex ? "'complex double'" : "'double'"); - case 'g': return (is_complex ? "'complex long double'" : "'long double'"); - case 'T': return "a struct"; - case 'O': return "Python object"; - case 'P': return "a pointer"; - case 's': case 'p': return "a string"; - case 0: return "end"; - default: return "unparseable format string"; - } -} -static size_t __Pyx_BufFmt_TypeCharToStandardSize(char ch, int is_complex) { - switch (ch) { - case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; - case 'h': case 'H': return 2; - case 'i': case 'I': case 'l': case 'L': return 4; - case 'q': case 'Q': return 8; - case 'f': return (is_complex ? 8 : 4); - case 'd': return (is_complex ? 16 : 8); - case 'g': { - PyErr_SetString(PyExc_ValueError, "Python does not define a standard format string size for long double ('g').."); - return 0; - } - case 'O': case 'P': return sizeof(void*); - default: - __Pyx_BufFmt_RaiseUnexpectedChar(ch); - return 0; - } -} -static size_t __Pyx_BufFmt_TypeCharToNativeSize(char ch, int is_complex) { - switch (ch) { - case 'c': case 'b': case 'B': case 's': case 'p': return 1; - case 'h': case 'H': return sizeof(short); - case 'i': case 'I': return sizeof(int); - case 'l': case 'L': return sizeof(long); - #ifdef HAVE_LONG_LONG - case 'q': case 'Q': return sizeof(PY_LONG_LONG); - #endif - case 'f': return sizeof(float) * (is_complex ? 2 : 1); - case 'd': return sizeof(double) * (is_complex ? 2 : 1); - case 'g': return sizeof(long double) * (is_complex ? 2 : 1); - case 'O': case 'P': return sizeof(void*); - default: { - __Pyx_BufFmt_RaiseUnexpectedChar(ch); - return 0; - } - } -} -typedef struct { char c; short x; } __Pyx_st_short; -typedef struct { char c; int x; } __Pyx_st_int; -typedef struct { char c; long x; } __Pyx_st_long; -typedef struct { char c; float x; } __Pyx_st_float; -typedef struct { char c; double x; } __Pyx_st_double; -typedef struct { char c; long double x; } __Pyx_st_longdouble; -typedef struct { char c; void *x; } __Pyx_st_void_p; -#ifdef HAVE_LONG_LONG -typedef struct { char c; PY_LONG_LONG x; } __Pyx_st_longlong; -#endif -static size_t __Pyx_BufFmt_TypeCharToAlignment(char ch, CYTHON_UNUSED int is_complex) { - switch (ch) { - case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; - case 'h': case 'H': return sizeof(__Pyx_st_short) - sizeof(short); - case 'i': case 'I': return sizeof(__Pyx_st_int) - sizeof(int); - case 'l': case 'L': return sizeof(__Pyx_st_long) - sizeof(long); -#ifdef HAVE_LONG_LONG - case 'q': case 'Q': return sizeof(__Pyx_st_longlong) - sizeof(PY_LONG_LONG); -#endif - case 'f': return sizeof(__Pyx_st_float) - sizeof(float); - case 'd': return sizeof(__Pyx_st_double) - sizeof(double); - case 'g': return sizeof(__Pyx_st_longdouble) - sizeof(long double); - case 'P': case 'O': return sizeof(__Pyx_st_void_p) - sizeof(void*); - default: - __Pyx_BufFmt_RaiseUnexpectedChar(ch); - return 0; - } -} -/* These are for computing the padding at the end of the struct to align - on the first member of the struct. This will probably the same as above, - but we don't have any guarantees. - */ -typedef struct { short x; char c; } __Pyx_pad_short; -typedef struct { int x; char c; } __Pyx_pad_int; -typedef struct { long x; char c; } __Pyx_pad_long; -typedef struct { float x; char c; } __Pyx_pad_float; -typedef struct { double x; char c; } __Pyx_pad_double; -typedef struct { long double x; char c; } __Pyx_pad_longdouble; -typedef struct { void *x; char c; } __Pyx_pad_void_p; -#ifdef HAVE_LONG_LONG -typedef struct { PY_LONG_LONG x; char c; } __Pyx_pad_longlong; -#endif -static size_t __Pyx_BufFmt_TypeCharToPadding(char ch, CYTHON_UNUSED int is_complex) { - switch (ch) { - case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; - case 'h': case 'H': return sizeof(__Pyx_pad_short) - sizeof(short); - case 'i': case 'I': return sizeof(__Pyx_pad_int) - sizeof(int); - case 'l': case 'L': return sizeof(__Pyx_pad_long) - sizeof(long); -#ifdef HAVE_LONG_LONG - case 'q': case 'Q': return sizeof(__Pyx_pad_longlong) - sizeof(PY_LONG_LONG); -#endif - case 'f': return sizeof(__Pyx_pad_float) - sizeof(float); - case 'd': return sizeof(__Pyx_pad_double) - sizeof(double); - case 'g': return sizeof(__Pyx_pad_longdouble) - sizeof(long double); - case 'P': case 'O': return sizeof(__Pyx_pad_void_p) - sizeof(void*); - default: - __Pyx_BufFmt_RaiseUnexpectedChar(ch); - return 0; - } -} -static char __Pyx_BufFmt_TypeCharToGroup(char ch, int is_complex) { - switch (ch) { - case 'c': - return 'H'; - case 'b': case 'h': case 'i': - case 'l': case 'q': case 's': case 'p': - return 'I'; - case 'B': case 'H': case 'I': case 'L': case 'Q': - return 'U'; - case 'f': case 'd': case 'g': - return (is_complex ? 'C' : 'R'); - case 'O': - return 'O'; - case 'P': - return 'P'; - default: { - __Pyx_BufFmt_RaiseUnexpectedChar(ch); - return 0; - } - } -} -static void __Pyx_BufFmt_RaiseExpected(__Pyx_BufFmt_Context* ctx) { - if (ctx->head == NULL || ctx->head->field == &ctx->root) { - const char* expected; - const char* quote; - if (ctx->head == NULL) { - expected = "end"; - quote = ""; - } else { - expected = ctx->head->field->type->name; - quote = "'"; - } - PyErr_Format(PyExc_ValueError, - "Buffer dtype mismatch, expected %s%s%s but got %s", - quote, expected, quote, - __Pyx_BufFmt_DescribeTypeChar(ctx->enc_type, ctx->is_complex)); - } else { - __Pyx_StructField* field = ctx->head->field; - __Pyx_StructField* parent = (ctx->head - 1)->field; - PyErr_Format(PyExc_ValueError, - "Buffer dtype mismatch, expected '%s' but got %s in '%s.%s'", - field->type->name, __Pyx_BufFmt_DescribeTypeChar(ctx->enc_type, ctx->is_complex), - parent->type->name, field->name); - } -} -static int __Pyx_BufFmt_ProcessTypeChunk(__Pyx_BufFmt_Context* ctx) { - char group; - size_t size, offset, arraysize = 1; - if (ctx->enc_type == 0) return 0; - if (ctx->head->field->type->arraysize[0]) { - int i, ndim = 0; - if (ctx->enc_type == 's' || ctx->enc_type == 'p') { - ctx->is_valid_array = ctx->head->field->type->ndim == 1; - ndim = 1; - if (ctx->enc_count != ctx->head->field->type->arraysize[0]) { - PyErr_Format(PyExc_ValueError, - "Expected a dimension of size %zu, got %zu", - ctx->head->field->type->arraysize[0], ctx->enc_count); - return -1; - } - } - if (!ctx->is_valid_array) { - PyErr_Format(PyExc_ValueError, "Expected %d dimensions, got %d", - ctx->head->field->type->ndim, ndim); - return -1; - } - for (i = 0; i < ctx->head->field->type->ndim; i++) { - arraysize *= ctx->head->field->type->arraysize[i]; - } - ctx->is_valid_array = 0; - ctx->enc_count = 1; - } - group = __Pyx_BufFmt_TypeCharToGroup(ctx->enc_type, ctx->is_complex); - do { - __Pyx_StructField* field = ctx->head->field; - __Pyx_TypeInfo* type = field->type; - if (ctx->enc_packmode == '@' || ctx->enc_packmode == '^') { - size = __Pyx_BufFmt_TypeCharToNativeSize(ctx->enc_type, ctx->is_complex); - } else { - size = __Pyx_BufFmt_TypeCharToStandardSize(ctx->enc_type, ctx->is_complex); - } - if (ctx->enc_packmode == '@') { - size_t align_at = __Pyx_BufFmt_TypeCharToAlignment(ctx->enc_type, ctx->is_complex); - size_t align_mod_offset; - if (align_at == 0) return -1; - align_mod_offset = ctx->fmt_offset % align_at; - if (align_mod_offset > 0) ctx->fmt_offset += align_at - align_mod_offset; - if (ctx->struct_alignment == 0) - ctx->struct_alignment = __Pyx_BufFmt_TypeCharToPadding(ctx->enc_type, - ctx->is_complex); - } - if (type->size != size || type->typegroup != group) { - if (type->typegroup == 'C' && type->fields != NULL) { - size_t parent_offset = ctx->head->parent_offset + field->offset; - ++ctx->head; - ctx->head->field = type->fields; - ctx->head->parent_offset = parent_offset; - continue; - } - if ((type->typegroup == 'H' || group == 'H') && type->size == size) { - } else { - __Pyx_BufFmt_RaiseExpected(ctx); - return -1; - } - } - offset = ctx->head->parent_offset + field->offset; - if (ctx->fmt_offset != offset) { - PyErr_Format(PyExc_ValueError, - "Buffer dtype mismatch; next field is at offset %" CYTHON_FORMAT_SSIZE_T "d but %" CYTHON_FORMAT_SSIZE_T "d expected", - (Py_ssize_t)ctx->fmt_offset, (Py_ssize_t)offset); - return -1; - } - ctx->fmt_offset += size; - if (arraysize) - ctx->fmt_offset += (arraysize - 1) * size; - --ctx->enc_count; /* Consume from buffer string */ - while (1) { - if (field == &ctx->root) { - ctx->head = NULL; - if (ctx->enc_count != 0) { - __Pyx_BufFmt_RaiseExpected(ctx); - return -1; - } - break; /* breaks both loops as ctx->enc_count == 0 */ - } - ctx->head->field = ++field; - if (field->type == NULL) { - --ctx->head; - field = ctx->head->field; - continue; - } else if (field->type->typegroup == 'S') { - size_t parent_offset = ctx->head->parent_offset + field->offset; - if (field->type->fields->type == NULL) continue; /* empty struct */ - field = field->type->fields; - ++ctx->head; - ctx->head->field = field; - ctx->head->parent_offset = parent_offset; - break; - } else { - break; - } - } - } while (ctx->enc_count); - ctx->enc_type = 0; - ctx->is_complex = 0; - return 0; -} -static CYTHON_INLINE PyObject * -__pyx_buffmt_parse_array(__Pyx_BufFmt_Context* ctx, const char** tsp) -{ - const char *ts = *tsp; - int i = 0, number; - int ndim = ctx->head->field->type->ndim; -; - ++ts; - if (ctx->new_count != 1) { - PyErr_SetString(PyExc_ValueError, - "Cannot handle repeated arrays in format string"); - return NULL; - } - if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; - while (*ts && *ts != ')') { - switch (*ts) { - case ' ': case '\f': case '\r': case '\n': case '\t': case '\v': continue; - default: break; /* not a 'break' in the loop */ - } - number = __Pyx_BufFmt_ExpectNumber(&ts); - if (number == -1) return NULL; - if (i < ndim && (size_t) number != ctx->head->field->type->arraysize[i]) - return PyErr_Format(PyExc_ValueError, - "Expected a dimension of size %zu, got %d", - ctx->head->field->type->arraysize[i], number); - if (*ts != ',' && *ts != ')') - return PyErr_Format(PyExc_ValueError, - "Expected a comma in format string, got '%c'", *ts); - if (*ts == ',') ts++; - i++; - } - if (i != ndim) - return PyErr_Format(PyExc_ValueError, "Expected %d dimension(s), got %d", - ctx->head->field->type->ndim, i); - if (!*ts) { - PyErr_SetString(PyExc_ValueError, - "Unexpected end of format string, expected ')'"); - return NULL; - } - ctx->is_valid_array = 1; - ctx->new_count = 1; - *tsp = ++ts; - return Py_None; -} -static const char* __Pyx_BufFmt_CheckString(__Pyx_BufFmt_Context* ctx, const char* ts) { - int got_Z = 0; - while (1) { - switch(*ts) { - case 0: - if (ctx->enc_type != 0 && ctx->head == NULL) { - __Pyx_BufFmt_RaiseExpected(ctx); - return NULL; - } - if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; - if (ctx->head != NULL) { - __Pyx_BufFmt_RaiseExpected(ctx); - return NULL; - } - return ts; - case ' ': - case '\r': - case '\n': - ++ts; - break; - case '<': - if (!__Pyx_IsLittleEndian()) { - PyErr_SetString(PyExc_ValueError, "Little-endian buffer not supported on big-endian compiler"); - return NULL; - } - ctx->new_packmode = '='; - ++ts; - break; - case '>': - case '!': - if (__Pyx_IsLittleEndian()) { - PyErr_SetString(PyExc_ValueError, "Big-endian buffer not supported on little-endian compiler"); - return NULL; - } - ctx->new_packmode = '='; - ++ts; - break; - case '=': - case '@': - case '^': - ctx->new_packmode = *ts++; - break; - case 'T': /* substruct */ - { - const char* ts_after_sub; - size_t i, struct_count = ctx->new_count; - size_t struct_alignment = ctx->struct_alignment; - ctx->new_count = 1; - ++ts; - if (*ts != '{') { - PyErr_SetString(PyExc_ValueError, "Buffer acquisition: Expected '{' after 'T'"); - return NULL; - } - if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; - ctx->enc_type = 0; /* Erase processed last struct element */ - ctx->enc_count = 0; - ctx->struct_alignment = 0; - ++ts; - ts_after_sub = ts; - for (i = 0; i != struct_count; ++i) { - ts_after_sub = __Pyx_BufFmt_CheckString(ctx, ts); - if (!ts_after_sub) return NULL; - } - ts = ts_after_sub; - if (struct_alignment) ctx->struct_alignment = struct_alignment; - } - break; - case '}': /* end of substruct; either repeat or move on */ - { - size_t alignment = ctx->struct_alignment; - ++ts; - if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; - ctx->enc_type = 0; /* Erase processed last struct element */ - if (alignment && ctx->fmt_offset % alignment) { - ctx->fmt_offset += alignment - (ctx->fmt_offset % alignment); - } - } - return ts; - case 'x': - if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; - ctx->fmt_offset += ctx->new_count; - ctx->new_count = 1; - ctx->enc_count = 0; - ctx->enc_type = 0; - ctx->enc_packmode = ctx->new_packmode; - ++ts; - break; - case 'Z': - got_Z = 1; - ++ts; - if (*ts != 'f' && *ts != 'd' && *ts != 'g') { - __Pyx_BufFmt_RaiseUnexpectedChar('Z'); - return NULL; - } - case 'c': case 'b': case 'B': case 'h': case 'H': case 'i': case 'I': - case 'l': case 'L': case 'q': case 'Q': - case 'f': case 'd': case 'g': - case 'O': case 'p': - if (ctx->enc_type == *ts && got_Z == ctx->is_complex && - ctx->enc_packmode == ctx->new_packmode) { - ctx->enc_count += ctx->new_count; - ctx->new_count = 1; - got_Z = 0; - ++ts; - break; - } - case 's': - if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; - ctx->enc_count = ctx->new_count; - ctx->enc_packmode = ctx->new_packmode; - ctx->enc_type = *ts; - ctx->is_complex = got_Z; - ++ts; - ctx->new_count = 1; - got_Z = 0; - break; - case ':': - ++ts; - while(*ts != ':') ++ts; - ++ts; - break; - case '(': - if (!__pyx_buffmt_parse_array(ctx, &ts)) return NULL; - break; - default: - { - int number = __Pyx_BufFmt_ExpectNumber(&ts); - if (number == -1) return NULL; - ctx->new_count = (size_t)number; - } - } - } -} -static CYTHON_INLINE void __Pyx_ZeroBuffer(Py_buffer* buf) { - buf->buf = NULL; - buf->obj = NULL; - buf->strides = __Pyx_zeros; - buf->shape = __Pyx_zeros; - buf->suboffsets = __Pyx_minusones; -} -static CYTHON_INLINE int __Pyx_GetBufferAndValidate( - Py_buffer* buf, PyObject* obj, __Pyx_TypeInfo* dtype, int flags, - int nd, int cast, __Pyx_BufFmt_StackElem* stack) -{ - if (obj == Py_None || obj == NULL) { - __Pyx_ZeroBuffer(buf); - return 0; - } - buf->buf = NULL; - if (__Pyx_GetBuffer(obj, buf, flags) == -1) goto fail; - if (buf->ndim != nd) { - PyErr_Format(PyExc_ValueError, - "Buffer has wrong number of dimensions (expected %d, got %d)", - nd, buf->ndim); - goto fail; - } - if (!cast) { - __Pyx_BufFmt_Context ctx; - __Pyx_BufFmt_Init(&ctx, stack, dtype); - if (!__Pyx_BufFmt_CheckString(&ctx, buf->format)) goto fail; - } - if ((unsigned)buf->itemsize != dtype->size) { - PyErr_Format(PyExc_ValueError, - "Item size of buffer (%" CYTHON_FORMAT_SSIZE_T "d byte%s) does not match size of '%s' (%" CYTHON_FORMAT_SSIZE_T "d byte%s)", - buf->itemsize, (buf->itemsize > 1) ? "s" : "", - dtype->name, (Py_ssize_t)dtype->size, (dtype->size > 1) ? "s" : ""); - goto fail; - } - if (buf->suboffsets == NULL) buf->suboffsets = __Pyx_minusones; - return 0; -fail:; - __Pyx_ZeroBuffer(buf); - return -1; -} -static CYTHON_INLINE void __Pyx_SafeReleaseBuffer(Py_buffer* info) { - if (info->buf == NULL) return; - if (info->suboffsets == __Pyx_minusones) info->suboffsets = NULL; - __Pyx_ReleaseBuffer(info); -} - -static int -__Pyx_init_memviewslice(struct __pyx_memoryview_obj *memview, - int ndim, - __Pyx_memviewslice *memviewslice, - int memview_is_new_reference) -{ - __Pyx_RefNannyDeclarations - int i, retval=-1; - Py_buffer *buf = &memview->view; - __Pyx_RefNannySetupContext("init_memviewslice", 0); - if (!buf) { - PyErr_SetString(PyExc_ValueError, - "buf is NULL."); - goto fail; - } else if (memviewslice->memview || memviewslice->data) { - PyErr_SetString(PyExc_ValueError, - "memviewslice is already initialized!"); - goto fail; - } - if (buf->strides) { - for (i = 0; i < ndim; i++) { - memviewslice->strides[i] = buf->strides[i]; - } - } else { - Py_ssize_t stride = buf->itemsize; - for (i = ndim - 1; i >= 0; i--) { - memviewslice->strides[i] = stride; - stride *= buf->shape[i]; - } - } - for (i = 0; i < ndim; i++) { - memviewslice->shape[i] = buf->shape[i]; - if (buf->suboffsets) { - memviewslice->suboffsets[i] = buf->suboffsets[i]; - } else { - memviewslice->suboffsets[i] = -1; - } - } - memviewslice->memview = memview; - memviewslice->data = (char *)buf->buf; - if (__pyx_add_acquisition_count(memview) == 0 && !memview_is_new_reference) { - Py_INCREF(memview); - } - retval = 0; - goto no_fail; -fail: - memviewslice->memview = 0; - memviewslice->data = 0; - retval = -1; -no_fail: - __Pyx_RefNannyFinishContext(); - return retval; -} -static CYTHON_INLINE void __pyx_fatalerror(const char *fmt, ...) { - va_list vargs; - char msg[200]; - va_start(vargs, fmt); -#ifdef HAVE_STDARG_PROTOTYPES - va_start(vargs, fmt); -#else - va_start(vargs); -#endif - vsnprintf(msg, 200, fmt, vargs); - Py_FatalError(msg); - va_end(vargs); -} -static CYTHON_INLINE int -__pyx_add_acquisition_count_locked(__pyx_atomic_int *acquisition_count, - PyThread_type_lock lock) -{ - int result; - PyThread_acquire_lock(lock, 1); - result = (*acquisition_count)++; - PyThread_release_lock(lock); - return result; -} -static CYTHON_INLINE int -__pyx_sub_acquisition_count_locked(__pyx_atomic_int *acquisition_count, - PyThread_type_lock lock) -{ - int result; - PyThread_acquire_lock(lock, 1); - result = (*acquisition_count)--; - PyThread_release_lock(lock); - return result; -} -static CYTHON_INLINE void -__Pyx_INC_MEMVIEW(__Pyx_memviewslice *memslice, int have_gil, int lineno) -{ - int first_time; - struct __pyx_memoryview_obj *memview = memslice->memview; - if (!memview || (PyObject *) memview == Py_None) - return; /* allow uninitialized memoryview assignment */ - if (__pyx_get_slice_count(memview) < 0) - __pyx_fatalerror("Acquisition count is %d (line %d)", - __pyx_get_slice_count(memview), lineno); - first_time = __pyx_add_acquisition_count(memview) == 0; - if (first_time) { - if (have_gil) { - Py_INCREF((PyObject *) memview); - } else { - PyGILState_STATE _gilstate = PyGILState_Ensure(); - Py_INCREF((PyObject *) memview); - PyGILState_Release(_gilstate); - } - } -} -static CYTHON_INLINE void __Pyx_XDEC_MEMVIEW(__Pyx_memviewslice *memslice, - int have_gil, int lineno) { - int last_time; - struct __pyx_memoryview_obj *memview = memslice->memview; - if (!memview ) { - return; - } else if ((PyObject *) memview == Py_None) { - memslice->memview = NULL; - return; - } - if (__pyx_get_slice_count(memview) <= 0) - __pyx_fatalerror("Acquisition count is %d (line %d)", - __pyx_get_slice_count(memview), lineno); - last_time = __pyx_sub_acquisition_count(memview) == 1; - memslice->data = NULL; - if (last_time) { - if (have_gil) { - Py_CLEAR(memslice->memview); - } else { - PyGILState_STATE _gilstate = PyGILState_Ensure(); - Py_CLEAR(memslice->memview); - PyGILState_Release(_gilstate); - } - } else { - memslice->memview = NULL; - } -} - -static CYTHON_INLINE void __Pyx_ErrRestore(PyObject *type, PyObject *value, PyObject *tb) { -#if CYTHON_COMPILING_IN_CPYTHON - PyObject *tmp_type, *tmp_value, *tmp_tb; - PyThreadState *tstate = PyThreadState_GET(); - tmp_type = tstate->curexc_type; - tmp_value = tstate->curexc_value; - tmp_tb = tstate->curexc_traceback; - tstate->curexc_type = type; - tstate->curexc_value = value; - tstate->curexc_traceback = tb; - Py_XDECREF(tmp_type); - Py_XDECREF(tmp_value); - Py_XDECREF(tmp_tb); -#else - PyErr_Restore(type, value, tb); -#endif -} -static CYTHON_INLINE void __Pyx_ErrFetch(PyObject **type, PyObject **value, PyObject **tb) { -#if CYTHON_COMPILING_IN_CPYTHON - PyThreadState *tstate = PyThreadState_GET(); - *type = tstate->curexc_type; - *value = tstate->curexc_value; - *tb = tstate->curexc_traceback; - tstate->curexc_type = 0; - tstate->curexc_value = 0; - tstate->curexc_traceback = 0; -#else - PyErr_Fetch(type, value, tb); -#endif -} - -static void __Pyx_RaiseArgumentTypeInvalid(const char* name, PyObject *obj, PyTypeObject *type) { - PyErr_Format(PyExc_TypeError, - "Argument '%.200s' has incorrect type (expected %.200s, got %.200s)", - name, type->tp_name, Py_TYPE(obj)->tp_name); -} -static CYTHON_INLINE int __Pyx_ArgTypeTest(PyObject *obj, PyTypeObject *type, int none_allowed, - const char *name, int exact) -{ - if (unlikely(!type)) { - PyErr_SetString(PyExc_SystemError, "Missing type object"); - return 0; - } - if (none_allowed && obj == Py_None) return 1; - else if (exact) { - if (likely(Py_TYPE(obj) == type)) return 1; - #if PY_MAJOR_VERSION == 2 - else if ((type == &PyBaseString_Type) && likely(__Pyx_PyBaseString_CheckExact(obj))) return 1; - #endif - } - else { - if (likely(PyObject_TypeCheck(obj, type))) return 1; - } - __Pyx_RaiseArgumentTypeInvalid(name, obj, type); - return 0; -} - -#if CYTHON_COMPILING_IN_CPYTHON -static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw) { - PyObject *result; - ternaryfunc call = func->ob_type->tp_call; - if (unlikely(!call)) - return PyObject_Call(func, arg, kw); -#if PY_VERSION_HEX >= 0x02060000 - if (unlikely(Py_EnterRecursiveCall((char*)" while calling a Python object"))) - return NULL; -#endif - result = (*call)(func, arg, kw); -#if PY_VERSION_HEX >= 0x02060000 - Py_LeaveRecursiveCall(); -#endif - if (unlikely(!result) && unlikely(!PyErr_Occurred())) { - PyErr_SetString( - PyExc_SystemError, - "NULL result without error in PyObject_Call"); - } - return result; -} -#endif - -#if PY_MAJOR_VERSION < 3 -static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, - CYTHON_UNUSED PyObject *cause) { - Py_XINCREF(type); - if (!value || value == Py_None) - value = NULL; - else - Py_INCREF(value); - if (!tb || tb == Py_None) - tb = NULL; - else { - Py_INCREF(tb); - if (!PyTraceBack_Check(tb)) { - PyErr_SetString(PyExc_TypeError, - "raise: arg 3 must be a traceback or None"); - goto raise_error; - } - } - #if PY_VERSION_HEX < 0x02050000 - if (PyClass_Check(type)) { - #else - if (PyType_Check(type)) { - #endif -#if CYTHON_COMPILING_IN_PYPY - if (!value) { - Py_INCREF(Py_None); - value = Py_None; - } -#endif - PyErr_NormalizeException(&type, &value, &tb); - } else { - if (value) { - PyErr_SetString(PyExc_TypeError, - "instance exception may not have a separate value"); - goto raise_error; - } - value = type; - #if PY_VERSION_HEX < 0x02050000 - if (PyInstance_Check(type)) { - type = (PyObject*) ((PyInstanceObject*)type)->in_class; - Py_INCREF(type); - } else { - type = 0; - PyErr_SetString(PyExc_TypeError, - "raise: exception must be an old-style class or instance"); - goto raise_error; - } - #else - type = (PyObject*) Py_TYPE(type); - Py_INCREF(type); - if (!PyType_IsSubtype((PyTypeObject *)type, (PyTypeObject *)PyExc_BaseException)) { - PyErr_SetString(PyExc_TypeError, - "raise: exception class must be a subclass of BaseException"); - goto raise_error; - } - #endif - } - __Pyx_ErrRestore(type, value, tb); - return; -raise_error: - Py_XDECREF(value); - Py_XDECREF(type); - Py_XDECREF(tb); - return; -} -#else /* Python 3+ */ -static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause) { - PyObject* owned_instance = NULL; - if (tb == Py_None) { - tb = 0; - } else if (tb && !PyTraceBack_Check(tb)) { - PyErr_SetString(PyExc_TypeError, - "raise: arg 3 must be a traceback or None"); - goto bad; - } - if (value == Py_None) - value = 0; - if (PyExceptionInstance_Check(type)) { - if (value) { - PyErr_SetString(PyExc_TypeError, - "instance exception may not have a separate value"); - goto bad; - } - value = type; - type = (PyObject*) Py_TYPE(value); - } else if (PyExceptionClass_Check(type)) { - PyObject *instance_class = NULL; - if (value && PyExceptionInstance_Check(value)) { - instance_class = (PyObject*) Py_TYPE(value); - if (instance_class != type) { - if (PyObject_IsSubclass(instance_class, type)) { - type = instance_class; - } else { - instance_class = NULL; - } - } - } - if (!instance_class) { - PyObject *args; - if (!value) - args = PyTuple_New(0); - else if (PyTuple_Check(value)) { - Py_INCREF(value); - args = value; - } else - args = PyTuple_Pack(1, value); - if (!args) - goto bad; - owned_instance = PyObject_Call(type, args, NULL); - Py_DECREF(args); - if (!owned_instance) - goto bad; - value = owned_instance; - if (!PyExceptionInstance_Check(value)) { - PyErr_Format(PyExc_TypeError, - "calling %R should have returned an instance of " - "BaseException, not %R", - type, Py_TYPE(value)); - goto bad; - } - } - } else { - PyErr_SetString(PyExc_TypeError, - "raise: exception class must be a subclass of BaseException"); - goto bad; - } -#if PY_VERSION_HEX >= 0x03030000 - if (cause) { -#else - if (cause && cause != Py_None) { -#endif - PyObject *fixed_cause; - if (cause == Py_None) { - fixed_cause = NULL; - } else if (PyExceptionClass_Check(cause)) { - fixed_cause = PyObject_CallObject(cause, NULL); - if (fixed_cause == NULL) - goto bad; - } else if (PyExceptionInstance_Check(cause)) { - fixed_cause = cause; - Py_INCREF(fixed_cause); - } else { - PyErr_SetString(PyExc_TypeError, - "exception causes must derive from " - "BaseException"); - goto bad; - } - PyException_SetCause(value, fixed_cause); - } - PyErr_SetObject(type, value); - if (tb) { - PyThreadState *tstate = PyThreadState_GET(); - PyObject* tmp_tb = tstate->curexc_traceback; - if (tb != tmp_tb) { - Py_INCREF(tb); - tstate->curexc_traceback = tb; - Py_XDECREF(tmp_tb); - } - } -bad: - Py_XDECREF(owned_instance); - return; -} -#endif - -static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected) { - PyErr_Format(PyExc_ValueError, - "too many values to unpack (expected %" CYTHON_FORMAT_SSIZE_T "d)", expected); -} - -static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index) { - PyErr_Format(PyExc_ValueError, - "need more than %" CYTHON_FORMAT_SSIZE_T "d value%.1s to unpack", - index, (index == 1) ? "" : "s"); -} - -static CYTHON_INLINE void __Pyx_RaiseNoneNotIterableError(void) { - PyErr_SetString(PyExc_TypeError, "'NoneType' object is not iterable"); -} - -static CYTHON_INLINE int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type) { - if (unlikely(!type)) { - PyErr_SetString(PyExc_SystemError, "Missing type object"); - return 0; - } - if (likely(PyObject_TypeCheck(obj, type))) - return 1; - PyErr_Format(PyExc_TypeError, "Cannot convert %.200s to %.200s", - Py_TYPE(obj)->tp_name, type->tp_name); - return 0; -} - -static void __Pyx_RaiseArgtupleInvalid( - const char* func_name, - int exact, - Py_ssize_t num_min, - Py_ssize_t num_max, - Py_ssize_t num_found) -{ - Py_ssize_t num_expected; - const char *more_or_less; - if (num_found < num_min) { - num_expected = num_min; - more_or_less = "at least"; - } else { - num_expected = num_max; - more_or_less = "at most"; - } - if (exact) { - more_or_less = "exactly"; - } - PyErr_Format(PyExc_TypeError, - "%.200s() takes %.8s %" CYTHON_FORMAT_SSIZE_T "d positional argument%.1s (%" CYTHON_FORMAT_SSIZE_T "d given)", - func_name, more_or_less, num_expected, - (num_expected == 1) ? "" : "s", num_found); -} - -static void __Pyx_RaiseDoubleKeywordsError( - const char* func_name, - PyObject* kw_name) -{ - PyErr_Format(PyExc_TypeError, - #if PY_MAJOR_VERSION >= 3 - "%s() got multiple values for keyword argument '%U'", func_name, kw_name); - #else - "%s() got multiple values for keyword argument '%s'", func_name, - PyString_AsString(kw_name)); - #endif -} - -static int __Pyx_ParseOptionalKeywords( - PyObject *kwds, - PyObject **argnames[], - PyObject *kwds2, - PyObject *values[], - Py_ssize_t num_pos_args, - const char* function_name) -{ - PyObject *key = 0, *value = 0; - Py_ssize_t pos = 0; - PyObject*** name; - PyObject*** first_kw_arg = argnames + num_pos_args; - while (PyDict_Next(kwds, &pos, &key, &value)) { - name = first_kw_arg; - while (*name && (**name != key)) name++; - if (*name) { - values[name-argnames] = value; - continue; - } - name = first_kw_arg; - #if PY_MAJOR_VERSION < 3 - if (likely(PyString_CheckExact(key)) || likely(PyString_Check(key))) { - while (*name) { - if ((CYTHON_COMPILING_IN_PYPY || PyString_GET_SIZE(**name) == PyString_GET_SIZE(key)) - && _PyString_Eq(**name, key)) { - values[name-argnames] = value; - break; - } - name++; - } - if (*name) continue; - else { - PyObject*** argname = argnames; - while (argname != first_kw_arg) { - if ((**argname == key) || ( - (CYTHON_COMPILING_IN_PYPY || PyString_GET_SIZE(**argname) == PyString_GET_SIZE(key)) - && _PyString_Eq(**argname, key))) { - goto arg_passed_twice; - } - argname++; - } - } - } else - #endif - if (likely(PyUnicode_Check(key))) { - while (*name) { - int cmp = (**name == key) ? 0 : - #if !CYTHON_COMPILING_IN_PYPY && PY_MAJOR_VERSION >= 3 - (PyUnicode_GET_SIZE(**name) != PyUnicode_GET_SIZE(key)) ? 1 : - #endif - PyUnicode_Compare(**name, key); - if (cmp < 0 && unlikely(PyErr_Occurred())) goto bad; - if (cmp == 0) { - values[name-argnames] = value; - break; - } - name++; - } - if (*name) continue; - else { - PyObject*** argname = argnames; - while (argname != first_kw_arg) { - int cmp = (**argname == key) ? 0 : - #if !CYTHON_COMPILING_IN_PYPY && PY_MAJOR_VERSION >= 3 - (PyUnicode_GET_SIZE(**argname) != PyUnicode_GET_SIZE(key)) ? 1 : - #endif - PyUnicode_Compare(**argname, key); - if (cmp < 0 && unlikely(PyErr_Occurred())) goto bad; - if (cmp == 0) goto arg_passed_twice; - argname++; - } - } - } else - goto invalid_keyword_type; - if (kwds2) { - if (unlikely(PyDict_SetItem(kwds2, key, value))) goto bad; - } else { - goto invalid_keyword; - } - } - return 0; -arg_passed_twice: - __Pyx_RaiseDoubleKeywordsError(function_name, key); - goto bad; -invalid_keyword_type: - PyErr_Format(PyExc_TypeError, - "%.200s() keywords must be strings", function_name); - goto bad; -invalid_keyword: - PyErr_Format(PyExc_TypeError, - #if PY_MAJOR_VERSION < 3 - "%.200s() got an unexpected keyword argument '%.200s'", - function_name, PyString_AsString(key)); - #else - "%s() got an unexpected keyword argument '%U'", - function_name, key); - #endif -bad: - return -1; -} - -static CYTHON_INLINE int __Pyx_PyBytes_Equals(PyObject* s1, PyObject* s2, int equals) { -#if CYTHON_COMPILING_IN_PYPY - return PyObject_RichCompareBool(s1, s2, equals); -#else - if (s1 == s2) { - return (equals == Py_EQ); - } else if (PyBytes_CheckExact(s1) & PyBytes_CheckExact(s2)) { - const char *ps1, *ps2; - Py_ssize_t length = PyBytes_GET_SIZE(s1); - if (length != PyBytes_GET_SIZE(s2)) - return (equals == Py_NE); - ps1 = PyBytes_AS_STRING(s1); - ps2 = PyBytes_AS_STRING(s2); - if (ps1[0] != ps2[0]) { - return (equals == Py_NE); - } else if (length == 1) { - return (equals == Py_EQ); - } else { - int result = memcmp(ps1, ps2, (size_t)length); - return (equals == Py_EQ) ? (result == 0) : (result != 0); - } - } else if ((s1 == Py_None) & PyBytes_CheckExact(s2)) { - return (equals == Py_NE); - } else if ((s2 == Py_None) & PyBytes_CheckExact(s1)) { - return (equals == Py_NE); - } else { - int result; - PyObject* py_result = PyObject_RichCompare(s1, s2, equals); - if (!py_result) - return -1; - result = __Pyx_PyObject_IsTrue(py_result); - Py_DECREF(py_result); - return result; - } -#endif -} - -static CYTHON_INLINE int __Pyx_PyUnicode_Equals(PyObject* s1, PyObject* s2, int equals) { -#if CYTHON_COMPILING_IN_PYPY - return PyObject_RichCompareBool(s1, s2, equals); -#else -#if PY_MAJOR_VERSION < 3 - PyObject* owned_ref = NULL; -#endif - int s1_is_unicode, s2_is_unicode; - if (s1 == s2) { - goto return_eq; - } - s1_is_unicode = PyUnicode_CheckExact(s1); - s2_is_unicode = PyUnicode_CheckExact(s2); -#if PY_MAJOR_VERSION < 3 - if ((s1_is_unicode & (!s2_is_unicode)) && PyString_CheckExact(s2)) { - owned_ref = PyUnicode_FromObject(s2); - if (unlikely(!owned_ref)) - return -1; - s2 = owned_ref; - s2_is_unicode = 1; - } else if ((s2_is_unicode & (!s1_is_unicode)) && PyString_CheckExact(s1)) { - owned_ref = PyUnicode_FromObject(s1); - if (unlikely(!owned_ref)) - return -1; - s1 = owned_ref; - s1_is_unicode = 1; - } else if (((!s2_is_unicode) & (!s1_is_unicode))) { - return __Pyx_PyBytes_Equals(s1, s2, equals); - } -#endif - if (s1_is_unicode & s2_is_unicode) { - Py_ssize_t length; - int kind; - void *data1, *data2; - #if CYTHON_PEP393_ENABLED - if (unlikely(PyUnicode_READY(s1) < 0) || unlikely(PyUnicode_READY(s2) < 0)) - return -1; - #endif - length = __Pyx_PyUnicode_GET_LENGTH(s1); - if (length != __Pyx_PyUnicode_GET_LENGTH(s2)) { - goto return_ne; - } - kind = __Pyx_PyUnicode_KIND(s1); - if (kind != __Pyx_PyUnicode_KIND(s2)) { - goto return_ne; - } - data1 = __Pyx_PyUnicode_DATA(s1); - data2 = __Pyx_PyUnicode_DATA(s2); - if (__Pyx_PyUnicode_READ(kind, data1, 0) != __Pyx_PyUnicode_READ(kind, data2, 0)) { - goto return_ne; - } else if (length == 1) { - goto return_eq; - } else { - int result = memcmp(data1, data2, (size_t)(length * kind)); - #if PY_MAJOR_VERSION < 3 - Py_XDECREF(owned_ref); - #endif - return (equals == Py_EQ) ? (result == 0) : (result != 0); - } - } else if ((s1 == Py_None) & s2_is_unicode) { - goto return_ne; - } else if ((s2 == Py_None) & s1_is_unicode) { - goto return_ne; - } else { - int result; - PyObject* py_result = PyObject_RichCompare(s1, s2, equals); - if (!py_result) - return -1; - result = __Pyx_PyObject_IsTrue(py_result); - Py_DECREF(py_result); - return result; - } -return_eq: - #if PY_MAJOR_VERSION < 3 - Py_XDECREF(owned_ref); - #endif - return (equals == Py_EQ); -return_ne: - #if PY_MAJOR_VERSION < 3 - Py_XDECREF(owned_ref); - #endif - return (equals == Py_NE); -#endif -} - -static CYTHON_INLINE Py_ssize_t __Pyx_div_Py_ssize_t(Py_ssize_t a, Py_ssize_t b) { - Py_ssize_t q = a / b; - Py_ssize_t r = a - q*b; - q -= ((r != 0) & ((r ^ b) < 0)); - return q; -} - -static CYTHON_INLINE PyObject *__Pyx_GetAttr(PyObject *o, PyObject *n) { -#if CYTHON_COMPILING_IN_CPYTHON -#if PY_MAJOR_VERSION >= 3 - if (likely(PyUnicode_Check(n))) -#else - if (likely(PyString_Check(n))) -#endif - return __Pyx_PyObject_GetAttrStr(o, n); -#endif - return PyObject_GetAttr(o, n); -} - -static CYTHON_INLINE PyObject* __Pyx_decode_c_string( - const char* cstring, Py_ssize_t start, Py_ssize_t stop, - const char* encoding, const char* errors, - PyObject* (*decode_func)(const char *s, Py_ssize_t size, const char *errors)) { - Py_ssize_t length; - if (unlikely((start < 0) | (stop < 0))) { - length = strlen(cstring); - if (start < 0) { - start += length; - if (start < 0) - start = 0; - } - if (stop < 0) - stop += length; - } - length = stop - start; - if (unlikely(length <= 0)) - return PyUnicode_FromUnicode(NULL, 0); - cstring += start; - if (decode_func) { - return decode_func(cstring, length, errors); - } else { - return PyUnicode_Decode(cstring, length, encoding, errors); - } -} - -static CYTHON_INLINE void __Pyx_ExceptionSave(PyObject **type, PyObject **value, PyObject **tb) { -#if CYTHON_COMPILING_IN_CPYTHON - PyThreadState *tstate = PyThreadState_GET(); - *type = tstate->exc_type; - *value = tstate->exc_value; - *tb = tstate->exc_traceback; - Py_XINCREF(*type); - Py_XINCREF(*value); - Py_XINCREF(*tb); -#else - PyErr_GetExcInfo(type, value, tb); -#endif -} -static void __Pyx_ExceptionReset(PyObject *type, PyObject *value, PyObject *tb) { -#if CYTHON_COMPILING_IN_CPYTHON - PyObject *tmp_type, *tmp_value, *tmp_tb; - PyThreadState *tstate = PyThreadState_GET(); - tmp_type = tstate->exc_type; - tmp_value = tstate->exc_value; - tmp_tb = tstate->exc_traceback; - tstate->exc_type = type; - tstate->exc_value = value; - tstate->exc_traceback = tb; - Py_XDECREF(tmp_type); - Py_XDECREF(tmp_value); - Py_XDECREF(tmp_tb); -#else - PyErr_SetExcInfo(type, value, tb); -#endif -} - -static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb) { - PyObject *local_type, *local_value, *local_tb; -#if CYTHON_COMPILING_IN_CPYTHON - PyObject *tmp_type, *tmp_value, *tmp_tb; - PyThreadState *tstate = PyThreadState_GET(); - local_type = tstate->curexc_type; - local_value = tstate->curexc_value; - local_tb = tstate->curexc_traceback; - tstate->curexc_type = 0; - tstate->curexc_value = 0; - tstate->curexc_traceback = 0; -#else - PyErr_Fetch(&local_type, &local_value, &local_tb); -#endif - PyErr_NormalizeException(&local_type, &local_value, &local_tb); -#if CYTHON_COMPILING_IN_CPYTHON - if (unlikely(tstate->curexc_type)) -#else - if (unlikely(PyErr_Occurred())) -#endif - goto bad; - #if PY_MAJOR_VERSION >= 3 - if (local_tb) { - if (unlikely(PyException_SetTraceback(local_value, local_tb) < 0)) - goto bad; - } - #endif - Py_XINCREF(local_tb); - Py_XINCREF(local_type); - Py_XINCREF(local_value); - *type = local_type; - *value = local_value; - *tb = local_tb; -#if CYTHON_COMPILING_IN_CPYTHON - tmp_type = tstate->exc_type; - tmp_value = tstate->exc_value; - tmp_tb = tstate->exc_traceback; - tstate->exc_type = local_type; - tstate->exc_value = local_value; - tstate->exc_traceback = local_tb; - Py_XDECREF(tmp_type); - Py_XDECREF(tmp_value); - Py_XDECREF(tmp_tb); -#else - PyErr_SetExcInfo(local_type, local_value, local_tb); -#endif - return 0; -bad: - *type = 0; - *value = 0; - *tb = 0; - Py_XDECREF(local_type); - Py_XDECREF(local_value); - Py_XDECREF(local_tb); - return -1; -} - -static CYTHON_INLINE void __Pyx_ExceptionSwap(PyObject **type, PyObject **value, PyObject **tb) { - PyObject *tmp_type, *tmp_value, *tmp_tb; -#if CYTHON_COMPILING_IN_CPYTHON - PyThreadState *tstate = PyThreadState_GET(); - tmp_type = tstate->exc_type; - tmp_value = tstate->exc_value; - tmp_tb = tstate->exc_traceback; - tstate->exc_type = *type; - tstate->exc_value = *value; - tstate->exc_traceback = *tb; -#else - PyErr_GetExcInfo(&tmp_type, &tmp_value, &tmp_tb); - PyErr_SetExcInfo(*type, *value, *tb); -#endif - *type = tmp_type; - *value = tmp_value; - *tb = tmp_tb; -} - -static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j) { - PyObject *r; - if (!j) return NULL; - r = PyObject_GetItem(o, j); - Py_DECREF(j); - return r; -} -static CYTHON_INLINE PyObject *__Pyx_GetItemInt_List_Fast(PyObject *o, Py_ssize_t i, - int wraparound, int boundscheck) { -#if CYTHON_COMPILING_IN_CPYTHON - if (wraparound & unlikely(i < 0)) i += PyList_GET_SIZE(o); - if ((!boundscheck) || likely((0 <= i) & (i < PyList_GET_SIZE(o)))) { - PyObject *r = PyList_GET_ITEM(o, i); - Py_INCREF(r); - return r; - } - return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); -#else - return PySequence_GetItem(o, i); -#endif -} -static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Tuple_Fast(PyObject *o, Py_ssize_t i, - int wraparound, int boundscheck) { -#if CYTHON_COMPILING_IN_CPYTHON - if (wraparound & unlikely(i < 0)) i += PyTuple_GET_SIZE(o); - if ((!boundscheck) || likely((0 <= i) & (i < PyTuple_GET_SIZE(o)))) { - PyObject *r = PyTuple_GET_ITEM(o, i); - Py_INCREF(r); - return r; - } - return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); -#else - return PySequence_GetItem(o, i); -#endif -} -static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Fast(PyObject *o, Py_ssize_t i, - int is_list, int wraparound, int boundscheck) { -#if CYTHON_COMPILING_IN_CPYTHON - if (is_list || PyList_CheckExact(o)) { - Py_ssize_t n = ((!wraparound) | likely(i >= 0)) ? i : i + PyList_GET_SIZE(o); - if ((!boundscheck) || (likely((n >= 0) & (n < PyList_GET_SIZE(o))))) { - PyObject *r = PyList_GET_ITEM(o, n); - Py_INCREF(r); - return r; - } - } - else if (PyTuple_CheckExact(o)) { - Py_ssize_t n = ((!wraparound) | likely(i >= 0)) ? i : i + PyTuple_GET_SIZE(o); - if ((!boundscheck) || likely((n >= 0) & (n < PyTuple_GET_SIZE(o)))) { - PyObject *r = PyTuple_GET_ITEM(o, n); - Py_INCREF(r); - return r; - } - } else { - PySequenceMethods *m = Py_TYPE(o)->tp_as_sequence; - if (likely(m && m->sq_item)) { - if (wraparound && unlikely(i < 0) && likely(m->sq_length)) { - Py_ssize_t l = m->sq_length(o); - if (likely(l >= 0)) { - i += l; - } else { - if (PyErr_ExceptionMatches(PyExc_OverflowError)) - PyErr_Clear(); - else - return NULL; - } - } - return m->sq_item(o, i); - } - } -#else - if (is_list || PySequence_Check(o)) { - return PySequence_GetItem(o, i); - } -#endif - return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); -} - -static CYTHON_INLINE void __Pyx_RaiseUnboundLocalError(const char *varname) { - PyErr_Format(PyExc_UnboundLocalError, "local variable '%s' referenced before assignment", varname); -} - -static CYTHON_INLINE long __Pyx_div_long(long a, long b) { - long q = a / b; - long r = a - q*b; - q -= ((r != 0) & ((r ^ b) < 0)); - return q; -} - -static void __Pyx_WriteUnraisable(const char *name, CYTHON_UNUSED int clineno, - CYTHON_UNUSED int lineno, CYTHON_UNUSED const char *filename, - int full_traceback) { - PyObject *old_exc, *old_val, *old_tb; - PyObject *ctx; - __Pyx_ErrFetch(&old_exc, &old_val, &old_tb); - if (full_traceback) { - Py_XINCREF(old_exc); - Py_XINCREF(old_val); - Py_XINCREF(old_tb); - __Pyx_ErrRestore(old_exc, old_val, old_tb); - PyErr_PrintEx(1); - } - #if PY_MAJOR_VERSION < 3 - ctx = PyString_FromString(name); - #else - ctx = PyUnicode_FromString(name); - #endif - __Pyx_ErrRestore(old_exc, old_val, old_tb); - if (!ctx) { - PyErr_WriteUnraisable(Py_None); - } else { - PyErr_WriteUnraisable(ctx); - Py_DECREF(ctx); - } -} - -static int __Pyx_SetVtable(PyObject *dict, void *vtable) { -#if PY_VERSION_HEX >= 0x02070000 && !(PY_MAJOR_VERSION==3&&PY_MINOR_VERSION==0) - PyObject *ob = PyCapsule_New(vtable, 0, 0); -#else - PyObject *ob = PyCObject_FromVoidPtr(vtable, 0); -#endif - if (!ob) - goto bad; - if (PyDict_SetItem(dict, __pyx_n_s_pyx_vtable, ob) < 0) - goto bad; - Py_DECREF(ob); - return 0; -bad: - Py_XDECREF(ob); - return -1; -} - -#if PY_MAJOR_VERSION < 3 -static int __Pyx_GetBuffer(PyObject *obj, Py_buffer *view, int flags) { - #if PY_VERSION_HEX >= 0x02060000 - if (PyObject_CheckBuffer(obj)) return PyObject_GetBuffer(obj, view, flags); - #endif - if (PyObject_TypeCheck(obj, __pyx_ptype_5numpy_ndarray)) return __pyx_pw_5numpy_7ndarray_1__getbuffer__(obj, view, flags); - if (PyObject_TypeCheck(obj, __pyx_array_type)) return __pyx_array_getbuffer(obj, view, flags); - if (PyObject_TypeCheck(obj, __pyx_memoryview_type)) return __pyx_memoryview_getbuffer(obj, view, flags); - #if PY_VERSION_HEX < 0x02060000 - if (obj->ob_type->tp_dict) { - PyObject *getbuffer_cobj = PyObject_GetItem( - obj->ob_type->tp_dict, __pyx_n_s_pyx_getbuffer); - if (getbuffer_cobj) { - getbufferproc func = (getbufferproc) PyCObject_AsVoidPtr(getbuffer_cobj); - Py_DECREF(getbuffer_cobj); - if (!func) - goto fail; - return func(obj, view, flags); - } else { - PyErr_Clear(); - } - } - #endif - PyErr_Format(PyExc_TypeError, "'%.200s' does not have the buffer interface", Py_TYPE(obj)->tp_name); -#if PY_VERSION_HEX < 0x02060000 -fail: -#endif - return -1; -} -static void __Pyx_ReleaseBuffer(Py_buffer *view) { - PyObject *obj = view->obj; - if (!obj) return; - #if PY_VERSION_HEX >= 0x02060000 - if (PyObject_CheckBuffer(obj)) { - PyBuffer_Release(view); - return; - } - #endif - if (PyObject_TypeCheck(obj, __pyx_ptype_5numpy_ndarray)) { __pyx_pw_5numpy_7ndarray_3__releasebuffer__(obj, view); return; } - #if PY_VERSION_HEX < 0x02060000 - if (obj->ob_type->tp_dict) { - PyObject *releasebuffer_cobj = PyObject_GetItem( - obj->ob_type->tp_dict, __pyx_n_s_pyx_releasebuffer); - if (releasebuffer_cobj) { - releasebufferproc func = (releasebufferproc) PyCObject_AsVoidPtr(releasebuffer_cobj); - Py_DECREF(releasebuffer_cobj); - if (!func) - goto fail; - func(obj, view); - return; - } else { - PyErr_Clear(); - } - } - #endif - goto nofail; -#if PY_VERSION_HEX < 0x02060000 -fail: -#endif - PyErr_WriteUnraisable(obj); -nofail: - Py_DECREF(obj); - view->obj = NULL; -} -#endif /* PY_MAJOR_VERSION < 3 */ - - - static CYTHON_INLINE PyObject* __Pyx_PyInt_From_unsigned_long(unsigned long value) { - const unsigned long neg_one = (unsigned long) -1, const_zero = 0; - const int is_unsigned = neg_one > const_zero; - if (is_unsigned) { - if (sizeof(unsigned long) < sizeof(long)) { - return PyInt_FromLong((long) value); - } else if (sizeof(unsigned long) <= sizeof(unsigned long)) { - return PyLong_FromUnsignedLong((unsigned long) value); - } else if (sizeof(unsigned long) <= sizeof(unsigned long long)) { - return PyLong_FromUnsignedLongLong((unsigned long long) value); - } - } else { - if (sizeof(unsigned long) <= sizeof(long)) { - return PyInt_FromLong((long) value); - } else if (sizeof(unsigned long) <= sizeof(long long)) { - return PyLong_FromLongLong((long long) value); - } - } - { - int one = 1; int little = (int)*(unsigned char *)&one; - unsigned char *bytes = (unsigned char *)&value; - return _PyLong_FromByteArray(bytes, sizeof(unsigned long), - little, !is_unsigned); - } -} - -#define __PYX_VERIFY_RETURN_INT(target_type, func_type, func) \ - { \ - func_type value = func(x); \ - if (sizeof(target_type) < sizeof(func_type)) { \ - if (unlikely(value != (func_type) (target_type) value)) { \ - func_type zero = 0; \ - PyErr_SetString(PyExc_OverflowError, \ - (is_unsigned && unlikely(value < zero)) ? \ - "can't convert negative value to " #target_type : \ - "value too large to convert to " #target_type); \ - return (target_type) -1; \ - } \ - } \ - return (target_type) value; \ - } - -#if CYTHON_COMPILING_IN_CPYTHON && PY_MAJOR_VERSION >= 3 - #if CYTHON_USE_PYLONG_INTERNALS - #include "longintrepr.h" - #endif -#endif -static CYTHON_INLINE unsigned long __Pyx_PyInt_As_unsigned_long(PyObject *x) { - const unsigned long neg_one = (unsigned long) -1, const_zero = 0; - const int is_unsigned = neg_one > const_zero; -#if PY_MAJOR_VERSION < 3 - if (likely(PyInt_Check(x))) { - if (sizeof(unsigned long) < sizeof(long)) { - __PYX_VERIFY_RETURN_INT(unsigned long, long, PyInt_AS_LONG) - } else { - long val = PyInt_AS_LONG(x); - if (is_unsigned && unlikely(val < 0)) { - PyErr_SetString(PyExc_OverflowError, - "can't convert negative value to unsigned long"); - return (unsigned long) -1; - } - return (unsigned long) val; - } - } else -#endif - if (likely(PyLong_Check(x))) { - if (is_unsigned) { -#if CYTHON_COMPILING_IN_CPYTHON && PY_MAJOR_VERSION >= 3 - #if CYTHON_USE_PYLONG_INTERNALS - if (sizeof(digit) <= sizeof(unsigned long)) { - switch (Py_SIZE(x)) { - case 0: return 0; - case 1: return (unsigned long) ((PyLongObject*)x)->ob_digit[0]; - } - } - #endif -#endif - if (unlikely(Py_SIZE(x) < 0)) { - PyErr_SetString(PyExc_OverflowError, - "can't convert negative value to unsigned long"); - return (unsigned long) -1; - } - if (sizeof(unsigned long) <= sizeof(unsigned long)) { - __PYX_VERIFY_RETURN_INT(unsigned long, unsigned long, PyLong_AsUnsignedLong) - } else if (sizeof(unsigned long) <= sizeof(unsigned long long)) { - __PYX_VERIFY_RETURN_INT(unsigned long, unsigned long long, PyLong_AsUnsignedLongLong) - } - } else { -#if CYTHON_COMPILING_IN_CPYTHON && PY_MAJOR_VERSION >= 3 - #if CYTHON_USE_PYLONG_INTERNALS - if (sizeof(digit) <= sizeof(unsigned long)) { - switch (Py_SIZE(x)) { - case 0: return 0; - case 1: return +(unsigned long) ((PyLongObject*)x)->ob_digit[0]; - case -1: return -(unsigned long) ((PyLongObject*)x)->ob_digit[0]; - } - } - #endif -#endif - if (sizeof(unsigned long) <= sizeof(long)) { - __PYX_VERIFY_RETURN_INT(unsigned long, long, PyLong_AsLong) - } else if (sizeof(unsigned long) <= sizeof(long long)) { - __PYX_VERIFY_RETURN_INT(unsigned long, long long, PyLong_AsLongLong) - } - } - { -#if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) - PyErr_SetString(PyExc_RuntimeError, - "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); -#else - unsigned long val; - PyObject *v = __Pyx_PyNumber_Int(x); - #if PY_MAJOR_VERSION < 3 - if (likely(v) && !PyLong_Check(v)) { - PyObject *tmp = v; - v = PyNumber_Long(tmp); - Py_DECREF(tmp); - } - #endif - if (likely(v)) { - int one = 1; int is_little = (int)*(unsigned char *)&one; - unsigned char *bytes = (unsigned char *)&val; - int ret = _PyLong_AsByteArray((PyLongObject *)v, - bytes, sizeof(val), - is_little, !is_unsigned); - Py_DECREF(v); - if (likely(!ret)) - return val; - } -#endif - return (unsigned long) -1; - } - } else { - unsigned long val; - PyObject *tmp = __Pyx_PyNumber_Int(x); - if (!tmp) return (unsigned long) -1; - val = __Pyx_PyInt_As_unsigned_long(tmp); - Py_DECREF(tmp); - return val; - } -} - -#if CYTHON_CCOMPLEX - #ifdef __cplusplus - static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float x, float y) { - return ::std::complex< float >(x, y); - } - #else - static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float x, float y) { - return x + y*(__pyx_t_float_complex)_Complex_I; - } - #endif -#else - static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float x, float y) { - __pyx_t_float_complex z; - z.real = x; - z.imag = y; - return z; - } -#endif - -#if CYTHON_CCOMPLEX -#else - static CYTHON_INLINE int __Pyx_c_eqf(__pyx_t_float_complex a, __pyx_t_float_complex b) { - return (a.real == b.real) && (a.imag == b.imag); - } - static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_sumf(__pyx_t_float_complex a, __pyx_t_float_complex b) { - __pyx_t_float_complex z; - z.real = a.real + b.real; - z.imag = a.imag + b.imag; - return z; - } - static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_difff(__pyx_t_float_complex a, __pyx_t_float_complex b) { - __pyx_t_float_complex z; - z.real = a.real - b.real; - z.imag = a.imag - b.imag; - return z; - } - static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_prodf(__pyx_t_float_complex a, __pyx_t_float_complex b) { - __pyx_t_float_complex z; - z.real = a.real * b.real - a.imag * b.imag; - z.imag = a.real * b.imag + a.imag * b.real; - return z; - } - static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_quotf(__pyx_t_float_complex a, __pyx_t_float_complex b) { - __pyx_t_float_complex z; - float denom = b.real * b.real + b.imag * b.imag; - z.real = (a.real * b.real + a.imag * b.imag) / denom; - z.imag = (a.imag * b.real - a.real * b.imag) / denom; - return z; - } - static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_negf(__pyx_t_float_complex a) { - __pyx_t_float_complex z; - z.real = -a.real; - z.imag = -a.imag; - return z; - } - static CYTHON_INLINE int __Pyx_c_is_zerof(__pyx_t_float_complex a) { - return (a.real == 0) && (a.imag == 0); - } - static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_conjf(__pyx_t_float_complex a) { - __pyx_t_float_complex z; - z.real = a.real; - z.imag = -a.imag; - return z; - } - #if 1 - static CYTHON_INLINE float __Pyx_c_absf(__pyx_t_float_complex z) { - #if !defined(HAVE_HYPOT) || defined(_MSC_VER) - return sqrtf(z.real*z.real + z.imag*z.imag); - #else - return hypotf(z.real, z.imag); - #endif - } - static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_powf(__pyx_t_float_complex a, __pyx_t_float_complex b) { - __pyx_t_float_complex z; - float r, lnr, theta, z_r, z_theta; - if (b.imag == 0 && b.real == (int)b.real) { - if (b.real < 0) { - float denom = a.real * a.real + a.imag * a.imag; - a.real = a.real / denom; - a.imag = -a.imag / denom; - b.real = -b.real; - } - switch ((int)b.real) { - case 0: - z.real = 1; - z.imag = 0; - return z; - case 1: - return a; - case 2: - z = __Pyx_c_prodf(a, a); - return __Pyx_c_prodf(a, a); - case 3: - z = __Pyx_c_prodf(a, a); - return __Pyx_c_prodf(z, a); - case 4: - z = __Pyx_c_prodf(a, a); - return __Pyx_c_prodf(z, z); - } - } - if (a.imag == 0) { - if (a.real == 0) { - return a; - } - r = a.real; - theta = 0; - } else { - r = __Pyx_c_absf(a); - theta = atan2f(a.imag, a.real); - } - lnr = logf(r); - z_r = expf(lnr * b.real - theta * b.imag); - z_theta = theta * b.real + lnr * b.imag; - z.real = z_r * cosf(z_theta); - z.imag = z_r * sinf(z_theta); - return z; - } - #endif -#endif - -#if CYTHON_CCOMPLEX - #ifdef __cplusplus - static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double x, double y) { - return ::std::complex< double >(x, y); - } - #else - static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double x, double y) { - return x + y*(__pyx_t_double_complex)_Complex_I; - } - #endif -#else - static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double x, double y) { - __pyx_t_double_complex z; - z.real = x; - z.imag = y; - return z; - } -#endif - -#if CYTHON_CCOMPLEX -#else - static CYTHON_INLINE int __Pyx_c_eq(__pyx_t_double_complex a, __pyx_t_double_complex b) { - return (a.real == b.real) && (a.imag == b.imag); - } - static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_sum(__pyx_t_double_complex a, __pyx_t_double_complex b) { - __pyx_t_double_complex z; - z.real = a.real + b.real; - z.imag = a.imag + b.imag; - return z; - } - static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_diff(__pyx_t_double_complex a, __pyx_t_double_complex b) { - __pyx_t_double_complex z; - z.real = a.real - b.real; - z.imag = a.imag - b.imag; - return z; - } - static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_prod(__pyx_t_double_complex a, __pyx_t_double_complex b) { - __pyx_t_double_complex z; - z.real = a.real * b.real - a.imag * b.imag; - z.imag = a.real * b.imag + a.imag * b.real; - return z; - } - static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_quot(__pyx_t_double_complex a, __pyx_t_double_complex b) { - __pyx_t_double_complex z; - double denom = b.real * b.real + b.imag * b.imag; - z.real = (a.real * b.real + a.imag * b.imag) / denom; - z.imag = (a.imag * b.real - a.real * b.imag) / denom; - return z; - } - static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_neg(__pyx_t_double_complex a) { - __pyx_t_double_complex z; - z.real = -a.real; - z.imag = -a.imag; - return z; - } - static CYTHON_INLINE int __Pyx_c_is_zero(__pyx_t_double_complex a) { - return (a.real == 0) && (a.imag == 0); - } - static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_conj(__pyx_t_double_complex a) { - __pyx_t_double_complex z; - z.real = a.real; - z.imag = -a.imag; - return z; - } - #if 1 - static CYTHON_INLINE double __Pyx_c_abs(__pyx_t_double_complex z) { - #if !defined(HAVE_HYPOT) || defined(_MSC_VER) - return sqrt(z.real*z.real + z.imag*z.imag); - #else - return hypot(z.real, z.imag); - #endif - } - static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_pow(__pyx_t_double_complex a, __pyx_t_double_complex b) { - __pyx_t_double_complex z; - double r, lnr, theta, z_r, z_theta; - if (b.imag == 0 && b.real == (int)b.real) { - if (b.real < 0) { - double denom = a.real * a.real + a.imag * a.imag; - a.real = a.real / denom; - a.imag = -a.imag / denom; - b.real = -b.real; - } - switch ((int)b.real) { - case 0: - z.real = 1; - z.imag = 0; - return z; - case 1: - return a; - case 2: - z = __Pyx_c_prod(a, a); - return __Pyx_c_prod(a, a); - case 3: - z = __Pyx_c_prod(a, a); - return __Pyx_c_prod(z, a); - case 4: - z = __Pyx_c_prod(a, a); - return __Pyx_c_prod(z, z); - } - } - if (a.imag == 0) { - if (a.real == 0) { - return a; - } - r = a.real; - theta = 0; - } else { - r = __Pyx_c_abs(a); - theta = atan2(a.imag, a.real); - } - lnr = log(r); - z_r = exp(lnr * b.real - theta * b.imag); - z_theta = theta * b.real + lnr * b.imag; - z.real = z_r * cos(z_theta); - z.imag = z_r * sin(z_theta); - return z; - } - #endif -#endif - -static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int(int value) { - const int neg_one = (int) -1, const_zero = 0; - const int is_unsigned = neg_one > const_zero; - if (is_unsigned) { - if (sizeof(int) < sizeof(long)) { - return PyInt_FromLong((long) value); - } else if (sizeof(int) <= sizeof(unsigned long)) { - return PyLong_FromUnsignedLong((unsigned long) value); - } else if (sizeof(int) <= sizeof(unsigned long long)) { - return PyLong_FromUnsignedLongLong((unsigned long long) value); - } - } else { - if (sizeof(int) <= sizeof(long)) { - return PyInt_FromLong((long) value); - } else if (sizeof(int) <= sizeof(long long)) { - return PyLong_FromLongLong((long long) value); - } - } - { - int one = 1; int little = (int)*(unsigned char *)&one; - unsigned char *bytes = (unsigned char *)&value; - return _PyLong_FromByteArray(bytes, sizeof(int), - little, !is_unsigned); - } -} - -#if CYTHON_COMPILING_IN_CPYTHON && PY_MAJOR_VERSION >= 3 - #if CYTHON_USE_PYLONG_INTERNALS - #include "longintrepr.h" - #endif -#endif -static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *x) { - const int neg_one = (int) -1, const_zero = 0; - const int is_unsigned = neg_one > const_zero; -#if PY_MAJOR_VERSION < 3 - if (likely(PyInt_Check(x))) { - if (sizeof(int) < sizeof(long)) { - __PYX_VERIFY_RETURN_INT(int, long, PyInt_AS_LONG) - } else { - long val = PyInt_AS_LONG(x); - if (is_unsigned && unlikely(val < 0)) { - PyErr_SetString(PyExc_OverflowError, - "can't convert negative value to int"); - return (int) -1; - } - return (int) val; - } - } else -#endif - if (likely(PyLong_Check(x))) { - if (is_unsigned) { -#if CYTHON_COMPILING_IN_CPYTHON && PY_MAJOR_VERSION >= 3 - #if CYTHON_USE_PYLONG_INTERNALS - if (sizeof(digit) <= sizeof(int)) { - switch (Py_SIZE(x)) { - case 0: return 0; - case 1: return (int) ((PyLongObject*)x)->ob_digit[0]; - } - } - #endif -#endif - if (unlikely(Py_SIZE(x) < 0)) { - PyErr_SetString(PyExc_OverflowError, - "can't convert negative value to int"); - return (int) -1; - } - if (sizeof(int) <= sizeof(unsigned long)) { - __PYX_VERIFY_RETURN_INT(int, unsigned long, PyLong_AsUnsignedLong) - } else if (sizeof(int) <= sizeof(unsigned long long)) { - __PYX_VERIFY_RETURN_INT(int, unsigned long long, PyLong_AsUnsignedLongLong) - } - } else { -#if CYTHON_COMPILING_IN_CPYTHON && PY_MAJOR_VERSION >= 3 - #if CYTHON_USE_PYLONG_INTERNALS - if (sizeof(digit) <= sizeof(int)) { - switch (Py_SIZE(x)) { - case 0: return 0; - case 1: return +(int) ((PyLongObject*)x)->ob_digit[0]; - case -1: return -(int) ((PyLongObject*)x)->ob_digit[0]; - } - } - #endif -#endif - if (sizeof(int) <= sizeof(long)) { - __PYX_VERIFY_RETURN_INT(int, long, PyLong_AsLong) - } else if (sizeof(int) <= sizeof(long long)) { - __PYX_VERIFY_RETURN_INT(int, long long, PyLong_AsLongLong) - } - } - { -#if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) - PyErr_SetString(PyExc_RuntimeError, - "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); -#else - int val; - PyObject *v = __Pyx_PyNumber_Int(x); - #if PY_MAJOR_VERSION < 3 - if (likely(v) && !PyLong_Check(v)) { - PyObject *tmp = v; - v = PyNumber_Long(tmp); - Py_DECREF(tmp); - } - #endif - if (likely(v)) { - int one = 1; int is_little = (int)*(unsigned char *)&one; - unsigned char *bytes = (unsigned char *)&val; - int ret = _PyLong_AsByteArray((PyLongObject *)v, - bytes, sizeof(val), - is_little, !is_unsigned); - Py_DECREF(v); - if (likely(!ret)) - return val; - } -#endif - return (int) -1; - } - } else { - int val; - PyObject *tmp = __Pyx_PyNumber_Int(x); - if (!tmp) return (int) -1; - val = __Pyx_PyInt_As_int(tmp); - Py_DECREF(tmp); - return val; - } -} - -static int -__pyx_memviewslice_is_contig(const __Pyx_memviewslice *mvs, - char order, int ndim) -{ - int i, index, step, start; - Py_ssize_t itemsize = mvs->memview->view.itemsize; - if (order == 'F') { - step = 1; - start = 0; - } else { - step = -1; - start = ndim - 1; - } - for (i = 0; i < ndim; i++) { - index = start + step * i; - if (mvs->suboffsets[index] >= 0 || mvs->strides[index] != itemsize) - return 0; - itemsize *= mvs->shape[index]; - } - return 1; -} - -static void -__pyx_get_array_memory_extents(__Pyx_memviewslice *slice, - void **out_start, void **out_end, - int ndim, size_t itemsize) -{ - char *start, *end; - int i; - start = end = slice->data; - for (i = 0; i < ndim; i++) { - Py_ssize_t stride = slice->strides[i]; - Py_ssize_t extent = slice->shape[i]; - if (extent == 0) { - *out_start = *out_end = start; - return; - } else { - if (stride > 0) - end += stride * (extent - 1); - else - start += stride * (extent - 1); - } - } - *out_start = start; - *out_end = end + itemsize; -} -static int -__pyx_slices_overlap(__Pyx_memviewslice *slice1, - __Pyx_memviewslice *slice2, - int ndim, size_t itemsize) -{ - void *start1, *end1, *start2, *end2; - __pyx_get_array_memory_extents(slice1, &start1, &end1, ndim, itemsize); - __pyx_get_array_memory_extents(slice2, &start2, &end2, ndim, itemsize); - return (start1 < end2) && (start2 < end1); -} - -static __Pyx_memviewslice -__pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, - const char *mode, int ndim, - size_t sizeof_dtype, int contig_flag, - int dtype_is_object) -{ - __Pyx_RefNannyDeclarations - int i; - __Pyx_memviewslice new_mvs = { 0, 0, { 0 }, { 0 }, { 0 } }; - struct __pyx_memoryview_obj *from_memview = from_mvs->memview; - Py_buffer *buf = &from_memview->view; - PyObject *shape_tuple = NULL; - PyObject *temp_int = NULL; - struct __pyx_array_obj *array_obj = NULL; - struct __pyx_memoryview_obj *memview_obj = NULL; - __Pyx_RefNannySetupContext("__pyx_memoryview_copy_new_contig", 0); - for (i = 0; i < ndim; i++) { - if (from_mvs->suboffsets[i] >= 0) { - PyErr_Format(PyExc_ValueError, "Cannot copy memoryview slice with " - "indirect dimensions (axis %d)", i); - goto fail; - } - } - shape_tuple = PyTuple_New(ndim); - if (unlikely(!shape_tuple)) { - goto fail; - } - __Pyx_GOTREF(shape_tuple); - for(i = 0; i < ndim; i++) { - temp_int = PyInt_FromSsize_t(from_mvs->shape[i]); - if(unlikely(!temp_int)) { - goto fail; - } else { - PyTuple_SET_ITEM(shape_tuple, i, temp_int); - temp_int = NULL; - } - } - array_obj = __pyx_array_new(shape_tuple, sizeof_dtype, buf->format, (char *) mode, NULL); - if (unlikely(!array_obj)) { - goto fail; - } - __Pyx_GOTREF(array_obj); - memview_obj = (struct __pyx_memoryview_obj *) __pyx_memoryview_new( - (PyObject *) array_obj, contig_flag, - dtype_is_object, - from_mvs->memview->typeinfo); - if (unlikely(!memview_obj)) - goto fail; - if (unlikely(__Pyx_init_memviewslice(memview_obj, ndim, &new_mvs, 1) < 0)) - goto fail; - if (unlikely(__pyx_memoryview_copy_contents(*from_mvs, new_mvs, ndim, ndim, - dtype_is_object) < 0)) - goto fail; - goto no_fail; -fail: - __Pyx_XDECREF(new_mvs.memview); - new_mvs.memview = NULL; - new_mvs.data = NULL; -no_fail: - __Pyx_XDECREF(shape_tuple); - __Pyx_XDECREF(temp_int); - __Pyx_XDECREF(array_obj); - __Pyx_RefNannyFinishContext(); - return new_mvs; -} - -static CYTHON_INLINE PyObject * -__pyx_capsule_create(void *p, CYTHON_UNUSED const char *sig) -{ - PyObject *cobj; -#if PY_VERSION_HEX >= 0x02070000 && !(PY_MAJOR_VERSION == 3 && PY_MINOR_VERSION == 0) - cobj = PyCapsule_New(p, sig, NULL); -#else - cobj = PyCObject_FromVoidPtr(p, NULL); -#endif - return cobj; -} - -static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level) { - PyObject *empty_list = 0; - PyObject *module = 0; - PyObject *global_dict = 0; - PyObject *empty_dict = 0; - PyObject *list; - #if PY_VERSION_HEX < 0x03030000 - PyObject *py_import; - py_import = __Pyx_PyObject_GetAttrStr(__pyx_b, __pyx_n_s_import); - if (!py_import) - goto bad; - #endif - if (from_list) - list = from_list; - else { - empty_list = PyList_New(0); - if (!empty_list) - goto bad; - list = empty_list; - } - global_dict = PyModule_GetDict(__pyx_m); - if (!global_dict) - goto bad; - empty_dict = PyDict_New(); - if (!empty_dict) - goto bad; - #if PY_VERSION_HEX >= 0x02050000 - { - #if PY_MAJOR_VERSION >= 3 - if (level == -1) { - if (strchr(__Pyx_MODULE_NAME, '.')) { - #if PY_VERSION_HEX < 0x03030000 - PyObject *py_level = PyInt_FromLong(1); - if (!py_level) - goto bad; - module = PyObject_CallFunctionObjArgs(py_import, - name, global_dict, empty_dict, list, py_level, NULL); - Py_DECREF(py_level); - #else - module = PyImport_ImportModuleLevelObject( - name, global_dict, empty_dict, list, 1); - #endif - if (!module) { - if (!PyErr_ExceptionMatches(PyExc_ImportError)) - goto bad; - PyErr_Clear(); - } - } - level = 0; /* try absolute import on failure */ - } - #endif - if (!module) { - #if PY_VERSION_HEX < 0x03030000 - PyObject *py_level = PyInt_FromLong(level); - if (!py_level) - goto bad; - module = PyObject_CallFunctionObjArgs(py_import, - name, global_dict, empty_dict, list, py_level, NULL); - Py_DECREF(py_level); - #else - module = PyImport_ImportModuleLevelObject( - name, global_dict, empty_dict, list, level); - #endif - } - } - #else - if (level>0) { - PyErr_SetString(PyExc_RuntimeError, "Relative import is not supported for Python <=2.4."); - goto bad; - } - module = PyObject_CallFunctionObjArgs(py_import, - name, global_dict, empty_dict, list, NULL); - #endif -bad: - #if PY_VERSION_HEX < 0x03030000 - Py_XDECREF(py_import); - #endif - Py_XDECREF(empty_list); - Py_XDECREF(empty_dict); - return module; -} - -static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value) { - const long neg_one = (long) -1, const_zero = 0; - const int is_unsigned = neg_one > const_zero; - if (is_unsigned) { - if (sizeof(long) < sizeof(long)) { - return PyInt_FromLong((long) value); - } else if (sizeof(long) <= sizeof(unsigned long)) { - return PyLong_FromUnsignedLong((unsigned long) value); - } else if (sizeof(long) <= sizeof(unsigned long long)) { - return PyLong_FromUnsignedLongLong((unsigned long long) value); - } - } else { - if (sizeof(long) <= sizeof(long)) { - return PyInt_FromLong((long) value); - } else if (sizeof(long) <= sizeof(long long)) { - return PyLong_FromLongLong((long long) value); - } - } - { - int one = 1; int little = (int)*(unsigned char *)&one; - unsigned char *bytes = (unsigned char *)&value; - return _PyLong_FromByteArray(bytes, sizeof(long), - little, !is_unsigned); - } -} - -#if CYTHON_COMPILING_IN_CPYTHON && PY_MAJOR_VERSION >= 3 - #if CYTHON_USE_PYLONG_INTERNALS - #include "longintrepr.h" - #endif -#endif -static CYTHON_INLINE char __Pyx_PyInt_As_char(PyObject *x) { - const char neg_one = (char) -1, const_zero = 0; - const int is_unsigned = neg_one > const_zero; -#if PY_MAJOR_VERSION < 3 - if (likely(PyInt_Check(x))) { - if (sizeof(char) < sizeof(long)) { - __PYX_VERIFY_RETURN_INT(char, long, PyInt_AS_LONG) - } else { - long val = PyInt_AS_LONG(x); - if (is_unsigned && unlikely(val < 0)) { - PyErr_SetString(PyExc_OverflowError, - "can't convert negative value to char"); - return (char) -1; - } - return (char) val; - } - } else -#endif - if (likely(PyLong_Check(x))) { - if (is_unsigned) { -#if CYTHON_COMPILING_IN_CPYTHON && PY_MAJOR_VERSION >= 3 - #if CYTHON_USE_PYLONG_INTERNALS - if (sizeof(digit) <= sizeof(char)) { - switch (Py_SIZE(x)) { - case 0: return 0; - case 1: return (char) ((PyLongObject*)x)->ob_digit[0]; - } - } - #endif -#endif - if (unlikely(Py_SIZE(x) < 0)) { - PyErr_SetString(PyExc_OverflowError, - "can't convert negative value to char"); - return (char) -1; - } - if (sizeof(char) <= sizeof(unsigned long)) { - __PYX_VERIFY_RETURN_INT(char, unsigned long, PyLong_AsUnsignedLong) - } else if (sizeof(char) <= sizeof(unsigned long long)) { - __PYX_VERIFY_RETURN_INT(char, unsigned long long, PyLong_AsUnsignedLongLong) - } - } else { -#if CYTHON_COMPILING_IN_CPYTHON && PY_MAJOR_VERSION >= 3 - #if CYTHON_USE_PYLONG_INTERNALS - if (sizeof(digit) <= sizeof(char)) { - switch (Py_SIZE(x)) { - case 0: return 0; - case 1: return +(char) ((PyLongObject*)x)->ob_digit[0]; - case -1: return -(char) ((PyLongObject*)x)->ob_digit[0]; - } - } - #endif -#endif - if (sizeof(char) <= sizeof(long)) { - __PYX_VERIFY_RETURN_INT(char, long, PyLong_AsLong) - } else if (sizeof(char) <= sizeof(long long)) { - __PYX_VERIFY_RETURN_INT(char, long long, PyLong_AsLongLong) - } - } - { -#if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) - PyErr_SetString(PyExc_RuntimeError, - "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); -#else - char val; - PyObject *v = __Pyx_PyNumber_Int(x); - #if PY_MAJOR_VERSION < 3 - if (likely(v) && !PyLong_Check(v)) { - PyObject *tmp = v; - v = PyNumber_Long(tmp); - Py_DECREF(tmp); - } - #endif - if (likely(v)) { - int one = 1; int is_little = (int)*(unsigned char *)&one; - unsigned char *bytes = (unsigned char *)&val; - int ret = _PyLong_AsByteArray((PyLongObject *)v, - bytes, sizeof(val), - is_little, !is_unsigned); - Py_DECREF(v); - if (likely(!ret)) - return val; - } -#endif - return (char) -1; - } - } else { - char val; - PyObject *tmp = __Pyx_PyNumber_Int(x); - if (!tmp) return (char) -1; - val = __Pyx_PyInt_As_char(tmp); - Py_DECREF(tmp); - return val; - } -} - -#if CYTHON_COMPILING_IN_CPYTHON && PY_MAJOR_VERSION >= 3 - #if CYTHON_USE_PYLONG_INTERNALS - #include "longintrepr.h" - #endif -#endif -static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *x) { - const long neg_one = (long) -1, const_zero = 0; - const int is_unsigned = neg_one > const_zero; -#if PY_MAJOR_VERSION < 3 - if (likely(PyInt_Check(x))) { - if (sizeof(long) < sizeof(long)) { - __PYX_VERIFY_RETURN_INT(long, long, PyInt_AS_LONG) - } else { - long val = PyInt_AS_LONG(x); - if (is_unsigned && unlikely(val < 0)) { - PyErr_SetString(PyExc_OverflowError, - "can't convert negative value to long"); - return (long) -1; - } - return (long) val; - } - } else -#endif - if (likely(PyLong_Check(x))) { - if (is_unsigned) { -#if CYTHON_COMPILING_IN_CPYTHON && PY_MAJOR_VERSION >= 3 - #if CYTHON_USE_PYLONG_INTERNALS - if (sizeof(digit) <= sizeof(long)) { - switch (Py_SIZE(x)) { - case 0: return 0; - case 1: return (long) ((PyLongObject*)x)->ob_digit[0]; - } - } - #endif -#endif - if (unlikely(Py_SIZE(x) < 0)) { - PyErr_SetString(PyExc_OverflowError, - "can't convert negative value to long"); - return (long) -1; - } - if (sizeof(long) <= sizeof(unsigned long)) { - __PYX_VERIFY_RETURN_INT(long, unsigned long, PyLong_AsUnsignedLong) - } else if (sizeof(long) <= sizeof(unsigned long long)) { - __PYX_VERIFY_RETURN_INT(long, unsigned long long, PyLong_AsUnsignedLongLong) - } - } else { -#if CYTHON_COMPILING_IN_CPYTHON && PY_MAJOR_VERSION >= 3 - #if CYTHON_USE_PYLONG_INTERNALS - if (sizeof(digit) <= sizeof(long)) { - switch (Py_SIZE(x)) { - case 0: return 0; - case 1: return +(long) ((PyLongObject*)x)->ob_digit[0]; - case -1: return -(long) ((PyLongObject*)x)->ob_digit[0]; - } - } - #endif -#endif - if (sizeof(long) <= sizeof(long)) { - __PYX_VERIFY_RETURN_INT(long, long, PyLong_AsLong) - } else if (sizeof(long) <= sizeof(long long)) { - __PYX_VERIFY_RETURN_INT(long, long long, PyLong_AsLongLong) - } - } - { -#if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) - PyErr_SetString(PyExc_RuntimeError, - "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); -#else - long val; - PyObject *v = __Pyx_PyNumber_Int(x); - #if PY_MAJOR_VERSION < 3 - if (likely(v) && !PyLong_Check(v)) { - PyObject *tmp = v; - v = PyNumber_Long(tmp); - Py_DECREF(tmp); - } - #endif - if (likely(v)) { - int one = 1; int is_little = (int)*(unsigned char *)&one; - unsigned char *bytes = (unsigned char *)&val; - int ret = _PyLong_AsByteArray((PyLongObject *)v, - bytes, sizeof(val), - is_little, !is_unsigned); - Py_DECREF(v); - if (likely(!ret)) - return val; - } -#endif - return (long) -1; - } - } else { - long val; - PyObject *tmp = __Pyx_PyNumber_Int(x); - if (!tmp) return (long) -1; - val = __Pyx_PyInt_As_long(tmp); - Py_DECREF(tmp); - return val; - } -} - -static int -__pyx_typeinfo_cmp(__Pyx_TypeInfo *a, __Pyx_TypeInfo *b) -{ - int i; - if (!a || !b) - return 0; - if (a == b) - return 1; - if (a->size != b->size || a->typegroup != b->typegroup || - a->is_unsigned != b->is_unsigned || a->ndim != b->ndim) { - if (a->typegroup == 'H' || b->typegroup == 'H') { - return a->size == b->size; - } else { - return 0; - } - } - if (a->ndim) { - for (i = 0; i < a->ndim; i++) - if (a->arraysize[i] != b->arraysize[i]) - return 0; - } - if (a->typegroup == 'S') { - if (a->flags != b->flags) - return 0; - if (a->fields || b->fields) { - if (!(a->fields && b->fields)) - return 0; - for (i = 0; a->fields[i].type && b->fields[i].type; i++) { - __Pyx_StructField *field_a = a->fields + i; - __Pyx_StructField *field_b = b->fields + i; - if (field_a->offset != field_b->offset || - !__pyx_typeinfo_cmp(field_a->type, field_b->type)) - return 0; - } - return !a->fields[i].type && !b->fields[i].type; - } - } - return 1; -} - -static int -__pyx_check_strides(Py_buffer *buf, int dim, int ndim, int spec) -{ - if (buf->shape[dim] <= 1) - return 1; - if (buf->strides) { - if (spec & __Pyx_MEMVIEW_CONTIG) { - if (spec & (__Pyx_MEMVIEW_PTR|__Pyx_MEMVIEW_FULL)) { - if (buf->strides[dim] != sizeof(void *)) { - PyErr_Format(PyExc_ValueError, - "Buffer is not indirectly contiguous " - "in dimension %d.", dim); - goto fail; - } - } else if (buf->strides[dim] != buf->itemsize) { - PyErr_SetString(PyExc_ValueError, - "Buffer and memoryview are not contiguous " - "in the same dimension."); - goto fail; - } - } - if (spec & __Pyx_MEMVIEW_FOLLOW) { - Py_ssize_t stride = buf->strides[dim]; - if (stride < 0) - stride = -stride; - if (stride < buf->itemsize) { - PyErr_SetString(PyExc_ValueError, - "Buffer and memoryview are not contiguous " - "in the same dimension."); - goto fail; - } - } - } else { - if (spec & __Pyx_MEMVIEW_CONTIG && dim != ndim - 1) { - PyErr_Format(PyExc_ValueError, - "C-contiguous buffer is not contiguous in " - "dimension %d", dim); - goto fail; - } else if (spec & (__Pyx_MEMVIEW_PTR)) { - PyErr_Format(PyExc_ValueError, - "C-contiguous buffer is not indirect in " - "dimension %d", dim); - goto fail; - } else if (buf->suboffsets) { - PyErr_SetString(PyExc_ValueError, - "Buffer exposes suboffsets but no strides"); - goto fail; - } - } - return 1; -fail: - return 0; -} -static int -__pyx_check_suboffsets(Py_buffer *buf, int dim, CYTHON_UNUSED int ndim, int spec) -{ - if (spec & __Pyx_MEMVIEW_DIRECT) { - if (buf->suboffsets && buf->suboffsets[dim] >= 0) { - PyErr_Format(PyExc_ValueError, - "Buffer not compatible with direct access " - "in dimension %d.", dim); - goto fail; - } - } - if (spec & __Pyx_MEMVIEW_PTR) { - if (!buf->suboffsets || (buf->suboffsets && buf->suboffsets[dim] < 0)) { - PyErr_Format(PyExc_ValueError, - "Buffer is not indirectly accessible " - "in dimension %d.", dim); - goto fail; - } - } - return 1; -fail: - return 0; -} -static int -__pyx_verify_contig(Py_buffer *buf, int ndim, int c_or_f_flag) -{ - int i; - if (c_or_f_flag & __Pyx_IS_F_CONTIG) { - Py_ssize_t stride = 1; - for (i = 0; i < ndim; i++) { - if (stride * buf->itemsize != buf->strides[i] && - buf->shape[i] > 1) - { - PyErr_SetString(PyExc_ValueError, - "Buffer not fortran contiguous."); - goto fail; - } - stride = stride * buf->shape[i]; - } - } else if (c_or_f_flag & __Pyx_IS_C_CONTIG) { - Py_ssize_t stride = 1; - for (i = ndim - 1; i >- 1; i--) { - if (stride * buf->itemsize != buf->strides[i] && - buf->shape[i] > 1) { - PyErr_SetString(PyExc_ValueError, - "Buffer not C contiguous."); - goto fail; - } - stride = stride * buf->shape[i]; - } - } - return 1; -fail: - return 0; -} -static int __Pyx_ValidateAndInit_memviewslice( - int *axes_specs, - int c_or_f_flag, - int buf_flags, - int ndim, - __Pyx_TypeInfo *dtype, - __Pyx_BufFmt_StackElem stack[], - __Pyx_memviewslice *memviewslice, - PyObject *original_obj) -{ - struct __pyx_memoryview_obj *memview, *new_memview; - __Pyx_RefNannyDeclarations - Py_buffer *buf; - int i, spec = 0, retval = -1; - __Pyx_BufFmt_Context ctx; - int from_memoryview = __pyx_memoryview_check(original_obj); - __Pyx_RefNannySetupContext("ValidateAndInit_memviewslice", 0); - if (from_memoryview && __pyx_typeinfo_cmp(dtype, ((struct __pyx_memoryview_obj *) - original_obj)->typeinfo)) { - memview = (struct __pyx_memoryview_obj *) original_obj; - new_memview = NULL; - } else { - memview = (struct __pyx_memoryview_obj *) __pyx_memoryview_new( - original_obj, buf_flags, 0, dtype); - new_memview = memview; - if (unlikely(!memview)) - goto fail; - } - buf = &memview->view; - if (buf->ndim != ndim) { - PyErr_Format(PyExc_ValueError, - "Buffer has wrong number of dimensions (expected %d, got %d)", - ndim, buf->ndim); - goto fail; - } - if (new_memview) { - __Pyx_BufFmt_Init(&ctx, stack, dtype); - if (!__Pyx_BufFmt_CheckString(&ctx, buf->format)) goto fail; - } - if ((unsigned) buf->itemsize != dtype->size) { - PyErr_Format(PyExc_ValueError, - "Item size of buffer (%" CYTHON_FORMAT_SSIZE_T "u byte%s) " - "does not match size of '%s' (%" CYTHON_FORMAT_SSIZE_T "u byte%s)", - buf->itemsize, - (buf->itemsize > 1) ? "s" : "", - dtype->name, - dtype->size, - (dtype->size > 1) ? "s" : ""); - goto fail; - } - for (i = 0; i < ndim; i++) { - spec = axes_specs[i]; - if (!__pyx_check_strides(buf, i, ndim, spec)) - goto fail; - if (!__pyx_check_suboffsets(buf, i, ndim, spec)) - goto fail; - } - if (buf->strides && !__pyx_verify_contig(buf, ndim, c_or_f_flag)) - goto fail; - if (unlikely(__Pyx_init_memviewslice(memview, ndim, memviewslice, - new_memview != NULL) == -1)) { - goto fail; - } - retval = 0; - goto no_fail; -fail: - Py_XDECREF(new_memview); - retval = -1; -no_fail: - __Pyx_RefNannyFinishContext(); - return retval; -} - -static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_ds_long(PyObject *obj) { - __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; - __Pyx_BufFmt_StackElem stack[1]; - int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED) }; - int retcode; - if (obj == Py_None) { - result.memview = (struct __pyx_memoryview_obj *) Py_None; - return result; - } - retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, 0, - PyBUF_RECORDS, 1, - &__Pyx_TypeInfo_long, stack, - &result, obj); - if (unlikely(retcode == -1)) - goto __pyx_fail; - return result; -__pyx_fail: - result.memview = NULL; - result.data = NULL; - return result; -} - -static int __Pyx_check_binary_version(void) { - char ctversion[4], rtversion[4]; - PyOS_snprintf(ctversion, 4, "%d.%d", PY_MAJOR_VERSION, PY_MINOR_VERSION); - PyOS_snprintf(rtversion, 4, "%s", Py_GetVersion()); - if (ctversion[0] != rtversion[0] || ctversion[2] != rtversion[2]) { - char message[200]; - PyOS_snprintf(message, sizeof(message), - "compiletime version %s of module '%.100s' " - "does not match runtime version %s", - ctversion, __Pyx_MODULE_NAME, rtversion); - #if PY_VERSION_HEX < 0x02050000 - return PyErr_Warn(NULL, message); - #else - return PyErr_WarnEx(NULL, message, 1); - #endif - } - return 0; -} - -#ifndef __PYX_HAVE_RT_ImportModule -#define __PYX_HAVE_RT_ImportModule -static PyObject *__Pyx_ImportModule(const char *name) { - PyObject *py_name = 0; - PyObject *py_module = 0; - py_name = __Pyx_PyIdentifier_FromString(name); - if (!py_name) - goto bad; - py_module = PyImport_Import(py_name); - Py_DECREF(py_name); - return py_module; -bad: - Py_XDECREF(py_name); - return 0; -} -#endif - -#ifndef __PYX_HAVE_RT_ImportType -#define __PYX_HAVE_RT_ImportType -static PyTypeObject *__Pyx_ImportType(const char *module_name, const char *class_name, - size_t size, int strict) -{ - PyObject *py_module = 0; - PyObject *result = 0; - PyObject *py_name = 0; - char warning[200]; - Py_ssize_t basicsize; -#ifdef Py_LIMITED_API - PyObject *py_basicsize; -#endif - py_module = __Pyx_ImportModule(module_name); - if (!py_module) - goto bad; - py_name = __Pyx_PyIdentifier_FromString(class_name); - if (!py_name) - goto bad; - result = PyObject_GetAttr(py_module, py_name); - Py_DECREF(py_name); - py_name = 0; - Py_DECREF(py_module); - py_module = 0; - if (!result) - goto bad; - if (!PyType_Check(result)) { - PyErr_Format(PyExc_TypeError, - "%.200s.%.200s is not a type object", - module_name, class_name); - goto bad; - } -#ifndef Py_LIMITED_API - basicsize = ((PyTypeObject *)result)->tp_basicsize; -#else - py_basicsize = PyObject_GetAttrString(result, "__basicsize__"); - if (!py_basicsize) - goto bad; - basicsize = PyLong_AsSsize_t(py_basicsize); - Py_DECREF(py_basicsize); - py_basicsize = 0; - if (basicsize == (Py_ssize_t)-1 && PyErr_Occurred()) - goto bad; -#endif - if (!strict && (size_t)basicsize > size) { - PyOS_snprintf(warning, sizeof(warning), - "%s.%s size changed, may indicate binary incompatibility", - module_name, class_name); - #if PY_VERSION_HEX < 0x02050000 - if (PyErr_Warn(NULL, warning) < 0) goto bad; - #else - if (PyErr_WarnEx(NULL, warning, 0) < 0) goto bad; - #endif - } - else if ((size_t)basicsize != size) { - PyErr_Format(PyExc_ValueError, - "%.200s.%.200s has the wrong size, try recompiling", - module_name, class_name); - goto bad; - } - return (PyTypeObject *)result; -bad: - Py_XDECREF(py_module); - Py_XDECREF(result); - return NULL; -} -#endif - -static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line) { - int start = 0, mid = 0, end = count - 1; - if (end >= 0 && code_line > entries[end].code_line) { - return count; - } - while (start < end) { - mid = (start + end) / 2; - if (code_line < entries[mid].code_line) { - end = mid; - } else if (code_line > entries[mid].code_line) { - start = mid + 1; - } else { - return mid; - } - } - if (code_line <= entries[mid].code_line) { - return mid; - } else { - return mid + 1; - } -} -static PyCodeObject *__pyx_find_code_object(int code_line) { - PyCodeObject* code_object; - int pos; - if (unlikely(!code_line) || unlikely(!__pyx_code_cache.entries)) { - return NULL; - } - pos = __pyx_bisect_code_objects(__pyx_code_cache.entries, __pyx_code_cache.count, code_line); - if (unlikely(pos >= __pyx_code_cache.count) || unlikely(__pyx_code_cache.entries[pos].code_line != code_line)) { - return NULL; - } - code_object = __pyx_code_cache.entries[pos].code_object; - Py_INCREF(code_object); - return code_object; -} -static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object) { - int pos, i; - __Pyx_CodeObjectCacheEntry* entries = __pyx_code_cache.entries; - if (unlikely(!code_line)) { - return; - } - if (unlikely(!entries)) { - entries = (__Pyx_CodeObjectCacheEntry*)PyMem_Malloc(64*sizeof(__Pyx_CodeObjectCacheEntry)); - if (likely(entries)) { - __pyx_code_cache.entries = entries; - __pyx_code_cache.max_count = 64; - __pyx_code_cache.count = 1; - entries[0].code_line = code_line; - entries[0].code_object = code_object; - Py_INCREF(code_object); - } - return; - } - pos = __pyx_bisect_code_objects(__pyx_code_cache.entries, __pyx_code_cache.count, code_line); - if ((pos < __pyx_code_cache.count) && unlikely(__pyx_code_cache.entries[pos].code_line == code_line)) { - PyCodeObject* tmp = entries[pos].code_object; - entries[pos].code_object = code_object; - Py_DECREF(tmp); - return; - } - if (__pyx_code_cache.count == __pyx_code_cache.max_count) { - int new_max = __pyx_code_cache.max_count + 64; - entries = (__Pyx_CodeObjectCacheEntry*)PyMem_Realloc( - __pyx_code_cache.entries, (size_t)new_max*sizeof(__Pyx_CodeObjectCacheEntry)); - if (unlikely(!entries)) { - return; - } - __pyx_code_cache.entries = entries; - __pyx_code_cache.max_count = new_max; - } - for (i=__pyx_code_cache.count; i>pos; i--) { - entries[i] = entries[i-1]; - } - entries[pos].code_line = code_line; - entries[pos].code_object = code_object; - __pyx_code_cache.count++; - Py_INCREF(code_object); -} - -#include "compile.h" -#include "frameobject.h" -#include "traceback.h" -static PyCodeObject* __Pyx_CreateCodeObjectForTraceback( - const char *funcname, int c_line, - int py_line, const char *filename) { - PyCodeObject *py_code = 0; - PyObject *py_srcfile = 0; - PyObject *py_funcname = 0; - #if PY_MAJOR_VERSION < 3 - py_srcfile = PyString_FromString(filename); - #else - py_srcfile = PyUnicode_FromString(filename); - #endif - if (!py_srcfile) goto bad; - if (c_line) { - #if PY_MAJOR_VERSION < 3 - py_funcname = PyString_FromFormat( "%s (%s:%d)", funcname, __pyx_cfilenm, c_line); - #else - py_funcname = PyUnicode_FromFormat( "%s (%s:%d)", funcname, __pyx_cfilenm, c_line); - #endif - } - else { - #if PY_MAJOR_VERSION < 3 - py_funcname = PyString_FromString(funcname); - #else - py_funcname = PyUnicode_FromString(funcname); - #endif - } - if (!py_funcname) goto bad; - py_code = __Pyx_PyCode_New( - 0, /*int argcount,*/ - 0, /*int kwonlyargcount,*/ - 0, /*int nlocals,*/ - 0, /*int stacksize,*/ - 0, /*int flags,*/ - __pyx_empty_bytes, /*PyObject *code,*/ - __pyx_empty_tuple, /*PyObject *consts,*/ - __pyx_empty_tuple, /*PyObject *names,*/ - __pyx_empty_tuple, /*PyObject *varnames,*/ - __pyx_empty_tuple, /*PyObject *freevars,*/ - __pyx_empty_tuple, /*PyObject *cellvars,*/ - py_srcfile, /*PyObject *filename,*/ - py_funcname, /*PyObject *name,*/ - py_line, /*int firstlineno,*/ - __pyx_empty_bytes /*PyObject *lnotab*/ - ); - Py_DECREF(py_srcfile); - Py_DECREF(py_funcname); - return py_code; -bad: - Py_XDECREF(py_srcfile); - Py_XDECREF(py_funcname); - return NULL; -} -static void __Pyx_AddTraceback(const char *funcname, int c_line, - int py_line, const char *filename) { - PyCodeObject *py_code = 0; - PyObject *py_globals = 0; - PyFrameObject *py_frame = 0; - py_code = __pyx_find_code_object(c_line ? c_line : py_line); - if (!py_code) { - py_code = __Pyx_CreateCodeObjectForTraceback( - funcname, c_line, py_line, filename); - if (!py_code) goto bad; - __pyx_insert_code_object(c_line ? c_line : py_line, py_code); - } - py_globals = PyModule_GetDict(__pyx_m); - if (!py_globals) goto bad; - py_frame = PyFrame_New( - PyThreadState_GET(), /*PyThreadState *tstate,*/ - py_code, /*PyCodeObject *code,*/ - py_globals, /*PyObject *globals,*/ - 0 /*PyObject *locals*/ - ); - if (!py_frame) goto bad; - py_frame->f_lineno = py_line; - PyTraceBack_Here(py_frame); -bad: - Py_XDECREF(py_code); - Py_XDECREF(py_frame); -} - -static int __Pyx_InitStrings(__Pyx_StringTabEntry *t) { - while (t->p) { - #if PY_MAJOR_VERSION < 3 - if (t->is_unicode) { - *t->p = PyUnicode_DecodeUTF8(t->s, t->n - 1, NULL); - } else if (t->intern) { - *t->p = PyString_InternFromString(t->s); - } else { - *t->p = PyString_FromStringAndSize(t->s, t->n - 1); - } - #else /* Python 3+ has unicode identifiers */ - if (t->is_unicode | t->is_str) { - if (t->intern) { - *t->p = PyUnicode_InternFromString(t->s); - } else if (t->encoding) { - *t->p = PyUnicode_Decode(t->s, t->n - 1, t->encoding, NULL); - } else { - *t->p = PyUnicode_FromStringAndSize(t->s, t->n - 1); - } - } else { - *t->p = PyBytes_FromStringAndSize(t->s, t->n - 1); - } - #endif - if (!*t->p) - return -1; - ++t; - } - return 0; -} - -static CYTHON_INLINE PyObject* __Pyx_PyUnicode_FromString(const char* c_str) { - return __Pyx_PyUnicode_FromStringAndSize(c_str, (Py_ssize_t)strlen(c_str)); -} -static CYTHON_INLINE char* __Pyx_PyObject_AsString(PyObject* o) { - Py_ssize_t ignore; - return __Pyx_PyObject_AsStringAndSize(o, &ignore); -} -static CYTHON_INLINE char* __Pyx_PyObject_AsStringAndSize(PyObject* o, Py_ssize_t *length) { -#if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT - if ( -#if PY_MAJOR_VERSION < 3 && __PYX_DEFAULT_STRING_ENCODING_IS_ASCII - __Pyx_sys_getdefaultencoding_not_ascii && -#endif - PyUnicode_Check(o)) { -#if PY_VERSION_HEX < 0x03030000 - char* defenc_c; - PyObject* defenc = _PyUnicode_AsDefaultEncodedString(o, NULL); - if (!defenc) return NULL; - defenc_c = PyBytes_AS_STRING(defenc); -#if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII - { - char* end = defenc_c + PyBytes_GET_SIZE(defenc); - char* c; - for (c = defenc_c; c < end; c++) { - if ((unsigned char) (*c) >= 128) { - PyUnicode_AsASCIIString(o); - return NULL; - } - } - } -#endif /*__PYX_DEFAULT_STRING_ENCODING_IS_ASCII*/ - *length = PyBytes_GET_SIZE(defenc); - return defenc_c; -#else /* PY_VERSION_HEX < 0x03030000 */ - if (PyUnicode_READY(o) == -1) return NULL; -#if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII - if (PyUnicode_IS_ASCII(o)) { - *length = PyUnicode_GET_LENGTH(o); - return PyUnicode_AsUTF8(o); - } else { - PyUnicode_AsASCIIString(o); - return NULL; - } -#else /* __PYX_DEFAULT_STRING_ENCODING_IS_ASCII */ - return PyUnicode_AsUTF8AndSize(o, length); -#endif /* __PYX_DEFAULT_STRING_ENCODING_IS_ASCII */ -#endif /* PY_VERSION_HEX < 0x03030000 */ - } else -#endif /* __PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT */ -#if !CYTHON_COMPILING_IN_PYPY -#if PY_VERSION_HEX >= 0x02060000 - if (PyByteArray_Check(o)) { - *length = PyByteArray_GET_SIZE(o); - return PyByteArray_AS_STRING(o); - } else -#endif -#endif - { - char* result; - int r = PyBytes_AsStringAndSize(o, &result, length); - if (unlikely(r < 0)) { - return NULL; - } else { - return result; - } - } -} -static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject* x) { - int is_true = x == Py_True; - if (is_true | (x == Py_False) | (x == Py_None)) return is_true; - else return PyObject_IsTrue(x); -} -static CYTHON_INLINE PyObject* __Pyx_PyNumber_Int(PyObject* x) { - PyNumberMethods *m; - const char *name = NULL; - PyObject *res = NULL; -#if PY_MAJOR_VERSION < 3 - if (PyInt_Check(x) || PyLong_Check(x)) -#else - if (PyLong_Check(x)) -#endif - return Py_INCREF(x), x; - m = Py_TYPE(x)->tp_as_number; -#if PY_MAJOR_VERSION < 3 - if (m && m->nb_int) { - name = "int"; - res = PyNumber_Int(x); - } - else if (m && m->nb_long) { - name = "long"; - res = PyNumber_Long(x); - } -#else - if (m && m->nb_int) { - name = "int"; - res = PyNumber_Long(x); - } -#endif - if (res) { -#if PY_MAJOR_VERSION < 3 - if (!PyInt_Check(res) && !PyLong_Check(res)) { -#else - if (!PyLong_Check(res)) { -#endif - PyErr_Format(PyExc_TypeError, - "__%.4s__ returned non-%.4s (type %.200s)", - name, name, Py_TYPE(res)->tp_name); - Py_DECREF(res); - return NULL; - } - } - else if (!PyErr_Occurred()) { - PyErr_SetString(PyExc_TypeError, - "an integer is required"); - } - return res; -} -#if CYTHON_COMPILING_IN_CPYTHON && PY_MAJOR_VERSION >= 3 - #if CYTHON_USE_PYLONG_INTERNALS - #include "longintrepr.h" - #endif -#endif -static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject* b) { - Py_ssize_t ival; - PyObject *x; -#if PY_MAJOR_VERSION < 3 - if (likely(PyInt_CheckExact(b))) - return PyInt_AS_LONG(b); -#endif - if (likely(PyLong_CheckExact(b))) { - #if CYTHON_COMPILING_IN_CPYTHON && PY_MAJOR_VERSION >= 3 - #if CYTHON_USE_PYLONG_INTERNALS - switch (Py_SIZE(b)) { - case -1: return -(sdigit)((PyLongObject*)b)->ob_digit[0]; - case 0: return 0; - case 1: return ((PyLongObject*)b)->ob_digit[0]; - } - #endif - #endif - #if PY_VERSION_HEX < 0x02060000 - return PyInt_AsSsize_t(b); - #else - return PyLong_AsSsize_t(b); - #endif - } - x = PyNumber_Index(b); - if (!x) return -1; - ival = PyInt_AsSsize_t(x); - Py_DECREF(x); - return ival; -} -static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t ival) { -#if PY_VERSION_HEX < 0x02050000 - if (ival <= LONG_MAX) - return PyInt_FromLong((long)ival); - else { - unsigned char *bytes = (unsigned char *) &ival; - int one = 1; int little = (int)*(unsigned char*)&one; - return _PyLong_FromByteArray(bytes, sizeof(size_t), little, 0); - } -#else - return PyInt_FromSize_t(ival); -#endif -} - - -#endif /* Py_PYTHON_H */ diff --git a/tutorials/cython_bubblesort_nomagic.pyx b/tutorials/cython_bubblesort_nomagic.pyx deleted file mode 100644 index 0d35766..0000000 --- a/tutorials/cython_bubblesort_nomagic.pyx +++ /dev/null @@ -1,21 +0,0 @@ - -cimport numpy as np -cimport cython -@cython.boundscheck(False) -@cython.wraparound(False) -cpdef cython_bubblesort_nomagic(np.ndarray[long, ndim=1] inp_ary): - """ The Cython implementation of Bubblesort with NumPy memoryview.""" - cdef unsigned long length, i, swapped, ele, temp - cdef long[:] np_ary = inp_ary - length = np_ary.shape[0] - swapped = 1 - for i in xrange(0, length): - if swapped: - swapped = 0 - for ele in xrange(0, length-i-1): - if np_ary[ele] > np_ary[ele + 1]: - temp = np_ary[ele + 1] - np_ary[ele + 1] = np_ary[ele] - np_ary[ele] = temp - swapped = 1 - return inp_ary \ No newline at end of file diff --git a/tutorials/example.csv b/tutorials/example.csv deleted file mode 100644 index 65329b8..0000000 --- a/tutorials/example.csv +++ /dev/null @@ -1,3 +0,0 @@ -1,2,3,4 -5,6,,8 -10,11,12, \ No newline at end of file diff --git a/tutorials/hello_world.py b/tutorials/hello_world.py deleted file mode 100644 index 498b2df..0000000 --- a/tutorials/hello_world.py +++ /dev/null @@ -1,3 +0,0 @@ -def hello_world(): - """This is a hello world example function.""" - print('Hello, World!') \ No newline at end of file diff --git a/tutorials/setup.py b/tutorials/setup.py deleted file mode 100644 index c92789a..0000000 --- a/tutorials/setup.py +++ /dev/null @@ -1,14 +0,0 @@ - -import numpy as np -from distutils.core import setup -from distutils.extension import Extension -from Cython.Distutils import build_ext - -setup( - cmdclass = {'build_ext': build_ext}, - ext_modules = [ - Extension("cython_bubblesort_nomagic", - ["cython_bubblesort_nomagic.pyx"], - include_dirs=[np.get_include()]) - ] -) \ No newline at end of file diff --git a/tutorials/standardized_data.pkl b/tutorials/standardized_data.pkl deleted file mode 100644 index b81fb23611e60d8c1b95cd9bd42f541a726a2887..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 20263 zcmbV!c{o*H`@ShtQYwX#Bqd3cOvO5;6qVAXG%AH8B87@dqJ%V3BvLYzGAkC!JkRqy z9J6yA$2|Oe-nVCcugiOV{`vW%b?tNZIjghxTF-Mo_kBOxiT$({i_`^+8&@suWG`I1 zZY+EChPjRD`Rmuu+wq>gZhYaIg|*G~8y9SNtyuqi7O%y{|GsO*rpxlsid}=%$cp2U z)jWMGPAOeh-P^hgT&%eMo_f*7&eE9IiravVg@xskq7{!Wi!SRUD_(u8`BJ*<2CTEM z?y}-LaNvN>%$TZ@!QFW zhABLvn%gaF&_$gi(p9F-C{#??4i#i09%E0>&En12-TvQ)$aQmenqMkwSb!xO=KBhb&{3z}^cNam>FjymcuP!a zSZ{pulFOTi(Bu6LVy7=gl`Z5vE)>}FTC(2N@Y6yR0=m63x!RDdgzaw#D&l>&0F_a>AgQj`E5WRKe z(2)FEh6;yy_t4^I5ZoV8&wk58Aw%d_!fpHg>#6ARhP`W)(_0Xa{XEA&*Ge=Rf1-Cu zK^dCbdvM0Ku>{|I&HUsVU4}ONcrviYtqT3-Gw5p zQdaSIb)z1!8j-ks2KLQvh)K^orO_2c{dk&EQ~k?9j7IHWM3LdQM; zZGLcbh1{7?^tQr#UaD#U&Xx#!tJOPzy!tO)5j#?hURd97_|DgkRXk3`oQkf;%-Dh% z_P8NzeMah0es(=sZ}zVgb}IVh;F+8E=X+kxC+nK3*y4JUs}w&la$hUK*GGO&t@ihv zg0vwd)-$cU)w&4VwQ?6aUt}O1$uJ~ws0mMM{@L^?qz%ejc8aiCRBW94qCa(CH{3*2ObX_P`#GXie|*BkMEF7A@js0uAeATU?N??gnh5% zd(ilq!K*SCno;B?7UaZHjUPv--s!tlg5dY8I`>)f$H+T!-HthoUQT)2OXf*f{nIPs zPBpo1aDRMw&Q~Sa4I=vbN?Yb=Bhp$?5gqb$1fBcDC^_8JfOFHIsNLRNiL^?09hAp( z-1A5z{c+kfSqC4KT8=yG4nOM34(bF#B)U6q)npq z)uu5g*Y=~UT;YkkuhpS-veWUyPNQhE+PYUXhh`KgFMdR5{}2)tVt@GkMLKHI3&k)^ri^JT<)Z%Pt=;?gpP>zW~%q%F_d2G`dmKo_z zxbE^CH+rUdD@cu?voTBdnwX5E`a?g0em|~8oM$fxj?qI%9Oc%2V<{5UMdD6%kVx-_ z165?7THPpL87Q2D&g$y1roXMlJ9D*pm7eya`|DD>cD)@y-odYTUNIWOyUb-XJ39T7 z^CbO$;^^y)JCTpw^YP~E9|bnAt;ec~9(Q9r+Q|KBm7Ray>TERjPx(OU*6+iH;a$I& zt_)n}2-IfM*X6_-tTGLVbIZY7BmA^6IS{xdg=A>`BFk$Z-`J5=cPz;?a`~{?#2SEwOdP{ zH{)l{(ZXEM$1$vftbTuio(|TOSd(+n^&U)|`m!4@b+1IVV>#(!yBPTFNwavfMO1v` znWQc?J`bCOXEUlNy0FqzbL8i?V3L0%MA+0)B*%~qzof<{+aVmLudw7hm_2Jv~3v&2R%#i$35osc4=Q56b^FOGI6f@AF zCiAI_hqK5&h4mI>khmx{Wf%n&HaB&;(2*x=CzrzNHZ1j3VR;D;4e8z;{%~+b5ZR}C zr@wh_&!Llby(TA~)sZ=jxVy)=%?4{RUqjWr`5m<+zOBC#XmzZr2kF*g{%$mabawpK zkymGu`@`mVq5IaBRwXrB+yjyDXxb=ZNU5#- z?p=aUn2x{x*gTA2y#*W@t>UH*lYKfo(Jt|kgN~ND<#^@BrC^vRb5D6oh;}nN>|I8e z*;$W9YAS;5C%tebe?@Vn*BE+kw)ZRjbqEsI)h)kiIEqYvkL+EOmWZsreu_8S)P+LT z!>bo8??*{*DN5t?VH_sCzbfWP7l!qAL2#ktMTf8(()4DhDL}3zVj;uE2 zyf%&74_RF{E(6A8=@|0dFSBzuY#%k@Mfob4-W~E&f5ufe2AX69Fh0CQw{C*h@;_#a6rpxQ87~*xa zv{A)b*+wk%Q@@Vmb0L>Yy5 zMzKTAxA4aHK76J<>drBzZseh&lk7XqO@Z}B@`4&y|JR^0+^jHMdQgRiXO2AV6z2J&p?OtkAe`(|z=;{F+!+6Z6H`TYQSZHM!tC+hkDpaHVOVc~uW!4&z4YqPINl$&rgC&; zI@a5HIO%svGivg0T$T2x1&?yYo-MVh#(?7??f`!C@rb)wcaM$}8u!G;MULQgJ501H zJ*x4Tv0GwoB^|}9=yBy}zs5gJDok$nQ?cOwlbwoxs_@97PiI}1RbXuaL8*;fx^eS7 zmoqyn7`X7as;RERG?HKZDnhm(11;#^92I`3AH5gO)z+P15*(lK(MZj8R}KDbe)^Dg zQY*pNPj*QtxzK31$lsxDu}l|^m3O-!n3968Xz)^-<(hGfzpuUibT?*ScKPkhkr6Tv z;6%s^%HPd5sP}|oJ-PPV%0WZeC1CxPT~0&D^@?T(YcL)E@jB{!iavzl+P zrwr!n$B&Y{;2+wx|3@ed@7v2ljZ~&0$P0ku0ar~%{xi=wj=k_jz_fn?OAM$rU8t@@ zP?rQZzcAK2l8?%GPX6{PVPcCE&j>$O27VN!S9^@N6U)1rCr>ES5ab`5(S%e6Pd>>D z5O*?%u7xe(9!zmjw%acXgDh)kXn7H3OTy7=UvPgAaxdNxw3E0ERM0U z@V|C{OE3D7$^Lb9SsHrAwaa0p3j;M~997wHshz|f$Uj+y>(f$WhVaQ>-(NR&jT5}n zthG;mhQAFbM&>2|8L7qUkFq;k1jliOD7Uc6wPCy|$daZ=FS*}TfSpSfqH>f;LMWuq=oFCy}!yOe3BcmS8>jb8om(> z`E~e?qO$-6I37X)OE3raFq3O-zs7QK`UXcWZSW z-P17ODu@RS;aLmOo>biY=RllId^?(_@s74LdJw@r74A6`lyZ0+B|A4i1t zdeDP6sH<)GdZ2;q)7%nOr*6I9_+`=aqi0zM@l~IQhU&~Qv|e6W;gMkr)=c=kQ0ZP5 zmKCemsHR23eg|a&@{)S6pa%22?&1-We}w3(zfCP@#>M+T3W@&th;DN%s_Ius#87Vo z-f?!`v@SrIM);7lmVu3N=bKRAj9BKSZ%hn%u0i+eohjXR!XrUm*ywF2rsL9&ufE!$ z62f2-d=2p$@{hOB(vihstpvvdP6QkR>%f*hWUWwEGuc0U%La5E*e4Om3-{*h(%xra z!}{gHb!z1Z;`Mdcl{@SAF2?&Bi*Otf`(7a+FP8e#ejDJhrIq^Wt!^WM0l63?!gOI zd;199DRd8SSB>sKXG-iw?^^pH$lLTtxhrZn2T*z3v-?gG)kxXGf7wU10c3o$?&ZpD z&6w`Cp!MDR0dz^tQ}@y=KL-4pr1ijb&f-k8CW_hqX0Vs!AE>vx4}O@&_lnV;(=MMH zj2P%}?xK#5TWDx>erVjK@=>IEQu1qe)5~v0UvW!Z&%DfxAq;$##s&SwyR>W3;jt%Axt0tOyaPPNg5qw^KK4co z_XpM+#GTF)JNX5(D3tQP@~1iTCIJArDdREZoa;VpS0cf634Y$yC1 z_gOWK^?{`b?$2)Z-pHOrf^;u(zti+BrU9}xZz4YN~7z3Ja5s0e(X^;3VT398~i_Md{J*gSrZG5%NebBN+bKX@>(jA z7}j{f_O25Fe$!zdl5aQtgQTkz_R0m!qX6!OcrATg*28_4*DXGq8x`i*hj-NfdVj}b z3~SMMuaNR&rG&X$EBXC79hcSpj9L*tga9X=^9`B0#5#dTqK!=!n#AKC_w+q+4$au= z`sSaNySuS`;fg=rSI2PWE)8Gj$P5he8uG%t5>0({q8kIR40RUdIpF!A&N`q|Bbhwh zfh{Z))Fi}T@>&NeJOKJV4(fd+I;?66c|Mm`p}yQ^^9#%$DH zY}9i-qlVO{n>-!wpWV!n0(Cv`y$}yz|CGGH*w~}oj+2H>u5?NllYHuXGfj456Af{% z5V&_Mq8CA30(pCrvd-xz0}KS~4dSTJ`NC7tzWu19Uf9XktrGz+2K8xcZAawQ+z!0f zz?go&YXZefo0ZTrJCNt=H7m0^XxQsff9sdX9(1^85tsP8ChV|OI@on*DW0(Aur<}} zA@Klo48A1(Ta#^FWF83%vwb@3!C2;=@~>a-s!-EsJ|2O*91QCk@@f1Ij?UM-wb)gy zB5Ku6#{ck0Qt^dsOH=BQm05F`-t7VGdq8MgX2t-9eX6)AdHV;a5rRjVqQkVR*WHBY zgL>gO`|0xK+eR_)2fGC~-;jShjvatT3CfhDQXriN;GtZvt&+0_5u7_4vANstHo#JMDJ$-A!ID&bAM`~W2p>wNsnCKXA z-A;DXT%%ZP5d0p{G1S@8%ffagBj8;?&${w+Piy{yaRhjjHbPTW(P7}ZybD}6;Q6T1 z?5);6Q^-7T#tkdRTB@-3kkCH!PjswV**LZ5=oH$2)@xBSqYV{AUT4!X7{P%wXWNS( zYYBdX{L_7j7A$?TA441k-hb;mcFQxA9>T-M?cV6T`bh;2z{i|;dZRI{>#Eui2l!FYH52a48?jiJjqd9BMQ|?-M8Ll_Yr-aQLP5#Vd6 zw?{asVV}VQ^MCZRO$XWToUxlE{EpNP`Ouu9DHN&g-ZFD`45O~*n*AE1B#u6} zkT5m-(?@V3=vf&8Pk!zDSxa<`PL5Z;%#YLfoG62ng+54lvCQ7ZwcF2@<2sh0Or}E* zrp0O4_?#=o!2279Hw*vTQGr%GUVb(I2$kqrP}c+Q1)d!4Pvy}3;j*3GWF5dfp#MBG zbiiiH!|2V99^SFxQuJb}EN3Fu1Ok54z>4$6t69Db`0E4fFNbx`^0&bEKIWIAJhZ4q zcKes!)>Y^teB!eAHU=vDViD-uzqHCizwT>8ihV(KA+M&1KKI8m^L=J}H(Go9ZG2A< zmDHzf_k?zb$aWGu>Ji?0&&GZn>8QVxUBEU@bmyD|MdckjR3zASBEzbn3qkz@>i~3G z-!o(F0jDRh(ur%w-*=ahdK>WQnqw(%0}o}+#$%rS=f>#-R{7=Zfgwin>9cxx+^u3w zz77n0;(?Wl7hcBpAddTw7flV&G1bzeFO}Mh*XU#{MeA89(H?$T&l6j5@;>3)0#cx)lSqI^4?@6Jkr>%E#8^WN3gU| z`z5Zy9$c}*P5I2zY%H_YG&_O6gWw(D-{86#bf5WZ7%_&q8b#%o2@hc4DFE--ic|Af z1!p471(wflNzgEDaK5MYxk)U~`tar5WgU3A@1Dk>tL}I#=@`q-mkfN#WGV*8JN>Vu%3gZ$&J9I)1JCKEf;R;_=rrvkspIN{&f)I$6eVz2l- z7rN1q<&D+S52PkBE##bO06h-_PYym5z=_Mp?LV9H(h=kZzz2XwQWoc`EJ>c+YC zDXatF{lOOi*A4j5htuqO3J!F_hk))3_a|bsTRrT42L|1F`Q7OH)YMMAVd&bKz|=tu zadZdwWo@cbC-EP^JdhVc`rD8D+$u+M^C!IyeX1gP8|vTzDQA`tzdqutsee^7!XNqz z!9KkglbS4--GdDx(y19kSxD4u=CZz81MzLZb(>+(4)@qrATIT9Yxa-7BXxb3P)akm z-E2Mb=Gr~nF0gYdEZ7E`|?_xhd=bQ#iIg{{Zg-@lD7}NcylaE9Lz~j_Znx8939- z?1|Yj7K-Hcm;3y)3(%ChsKg(k*}VOicR8Y0!KHAl1cAN)^&IetpwB&vpVceG%kYgv zzR`eY4hrDWxjbLU^|o6wvVCabOlxYF8Yj#=;v#8TPL7+^ z#3uwe1nRjz4c|1g#Y<4uRMm(5y;J1(K)ePWy^MXKuAAK;uHKO@Ipj7<_+E%RF+ZqL zt&i9!z*B$^#qpM+u187%0^Vis?w1vP;bX{P$+<7J9PMb$``(2+mrdgcGcmi4<{82# zF3h1CmVWF0u-!|AAIAA)ra>j3ySGyfaQmbOO`KCw&C=cjYR5Q2RQI$+E5*aJmktq6P@pl3;k z^dxR7`Guf91swx$73ebUi>rJZVh0I+gZ<-U=44TtS&Bf%@bYV78{S1l$38EWiR~Lg z;CBIj2jUy(+u#>dZ7VxjFFb(WiEZ(!C}}6xEp_;)(UH$1D32wV=`qzzbadaNmrnhx zXhPmvVTrb>bW|CWxI3kQPIx}pr+%`OiS^vggza`wC zWebj436)L|9_fu;(6_2tf8*B}+Si^}qv-D4RPnKhN(8WDUL~deWD#bWhh2(5Gq3| zPN(@di!w>QAin9>wqW%tw3bIiyY?mn+bpTEc{j}@`U2$b(uAw^ZmY%#4v95a8#HT4id`1==6#X66r7NDc9vBf(^F6r}N4d9$ zc5i3m2L~-3}D{uOP7i+&hlanCdKQ`e`4SdfTwtS z+TVavkDcPA&X+f&G>G}>{l7J>8KlkveF1nE;HyB_1by3(Z#wU3Tq%;T_W0i~S6;1dG<6yn>*T^cTt;b{o+9O&DiV=TgsyKkqD5WfrHDySD=9`GMP z+yQ(Ie3hug@=tOCE!gR5?%+UHA7*gYXPII5?g#eO!yO284Dbo98x+kmR~;n&(XXL5n)8>_iGB)k z6xOxlFAiI?8&k+q{Mou|r)PDqzk0oZq^_DfM+*Xd66W85zaVo=uPCxy&W zI_}o8sGRU+OWBnn;yPqY0BiszN&` zeEax!DpEhMJhHo_6IT@oxGO7mlKKbqg}LjkbYt5X#Kh>h13bE#|A0jw07{A)BAS zq+zJDpzi~4uNA+I)j}f^R+Im9vMe&0ZDSG8w_5y98;kruZ7fSn=DVrW1X)niG>&U*#b1Uo{P65k z2NVj`+VC~*OU`RXxhTSiB1#1}4iaGnh*Z~-Z%Ga8J-8(@{#4qcaZ)IuY*ef=D@=ef z281Hhwmg=fa>Hb!0T3^@xi(X{x)p&D3xGHfoZ`k6-=^-&64Kw5bUsA)kiw#E$4{dQ z?IAq(My77gkuhz{CIToJmmtA|Uv3ql$7~=4U<8d0(8vYC7Z@giZ~`DPHm^|o z`YsO2SkOBki{K{G=m3Q|5KaL_e244LG^6}@zuYtXYlx8^_9V{8kyC8 zc(tv!1g&}gPea9b0>I$@fPnxEhLCuHum$4<5OtSc%yT&7T#VWM=e>4u|AC}pc9~o3 z?n9}0uF2Iw4G0Y3a|xPgi9_3OT$>e2{sKLbZ8%`DU^5}Q%bz`JWI4h@fqB4~`Eyxe z^??_)_>{k(l)FPO0s;*JJH*jyd!LV?v+EENuRUew8=ISL2#i=jGypLS@eS7XE>8Ui z&Sypt6n>|^+ZL>%HW9$T_FMX)167^~gjOKX%()uRq}KnRp%oJE+7nv6D#|^`TD$St znj6hTSW&j_-x24`MuEh;Osz^OB)Jq@=)V>h`80~kq;~~1JZGUmVGcwC5ceR21E2)L z2?Qx<42XO&%zAtyjTkebp$~`?Fc3h32jfx#=l#1MTUv;r71mqu%5mpaSqxHGY&Er} z<(`N^(4YuJ-2=(c+h-QCP|ol!&GtBPN z+EHRyspPDf9GFN%-)subN1Vte#xhHO+aLQ}XB*T066*Wcvfn)6H9-n80D3>|8^j0d zSSb(>*tVEdW_z^Z(`O%ZtY~N^*NxSCMVn+?GX{VR1_Cg&g2BVNH`UOxtq?D2RIpCj z)Q+GL67CQDo~!Zy2t}_*K7}|MX6g0A`}`D^_{lipl z!buk@)7D7j;_%f&cgoJOQo!&v7l1(=H4nz(!3tv-3^){)ZH=Mb!^C+0l|zYt$BAjY zZfV2C<@$pd3K(OPkN1N*OY!=qa|x_xW*g@IHl{&5fV>Uy4U91WT+_yGyH;K5z&SNp zy)VCTQ25o#d^8TQrsS8l3U=+BAo;X6*}63BK*6lxdJ6R-Bv zChKD-TAbwFtjdUzR-F)X{>>Umra)Xj$;A67#jMdzKQS&9$=;XK78-m zs#)S63@dQmz!354Pq&jBlR=C=+V7%nYi}9A6Eb%tohC++dd|wEh?PwI`lo#g+Nc7~-L1ECIupRkdY(7Xo%6fi^pK?8)~t$;^Q&QEYrVE=%Tu{0~; z{O?tt@mj6qVT0gil(u1m&Qwz`f;b8Va}>2c@{>RthJp+V=F7)7@qgRUK^kw5DJ+S8 z{O&s{iBI9a5!FHpGHARtuzh`VZ2L3<<192_L!JXX3WOl!AMU}tXOzW5gct_nEHorR z{((YPFzeZOJ7YEqtZUDs)%F5kTCn8_>ywV#I#6eyhCb0({I5dr{=vpyRmuA2SqB1AV3b%1xk;0}cn z5GS{swzFo{%{EB=HJ&R>1ohj+=i+E}$AEd9bkaziExX}is$3s2NP)2o3UkOmu-;&w zf|2nlYqD_M?HmL+5ePy5Pj2ni$z}LU(Jy7bBQv;OMAX-feHd9&O=@cR_2_h6}Bz&D(Ix~aM2b_x8JgJ978^Z2N(n@-z~iQqyvLs2=xybFN9jQFjFI%F*FW>k^ZN7_u2U= zJp@;2zt~pMQaEd@_}fqc^&B*&fpB~-t2xIf{}0Iv(6|BX4I1FI9^_w`Ue}3OwNte> ziw$DxL2Dm5p$f$5dP4pF`95N7hP(|1-IEbU)d36Jh;a#oR@gtDmt6Kvn2w^A=@VS~ zK~orrRMfa1EQSM_?U9EwD(oXG|ezgaiQx>R_l(!GI&6$i7qQNfT*&g7^ma2l5X* zU;-K{zz_j^$cA7+fz3fvL@WsV@I ze*%{qdQ})qVK6o`=|4^<*z!_TczNHd>2OmTtQcz}GMNbC&bx)?w4=k^6u?y=cmQDw z>tJ&9W*^mQ1SS7Derw927kBNq)r+2OFo!(%{GRry?QbTK;r=&!mwfq!AihEV@zj{; zqRu|p1M0c2%AP$7pXL%m5b_TgXR{0Fhk0fiP`|jT;PXBf3J8W^AYk8BrH8}VQ$Q#J zfncef4a?2ZJz~d4wq%CfAK% z|9}Ap8ik;-6Y4oIDgZGIjVQoZfsq~>Dga;4jiVqKqAO>&+447$Mid~_O@rCLtt@CG zdCs-fPU?Z(IC)?O@JP{xi_X%F(+H6Yc@E-Ruq{)6U(g>6MnH2Ocr z3&6d=BNZkV_e-*m5F&5GQ}91Ma7;3}GqB%9=H<2y9GfFT?j zxvZAjSP2qhc-cS1@N#`Cq5nMJ=%JOc$$uYcWU6Q-^4|vlm1I3JGxZG_Lm`7q9X9ghEPgwM?#=bk_JefWRD>vNCiz7F5_Z|A}L|Mt1L z@56a>Ux#Cu2ae(Vxg)$kcZAQw2=Bw^;rRb|gzx>gaqc{DJa>fo;d|yD&wU*}59h)0 z-1FwX565#y`25`0=N?QxAEW3gV*8v{%wTsh4cUI7(Nf@!3gKW2[More information](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/ipython_magic/watermark.ipynb) about the `watermark` magic command extension." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Things in Pandas I Wish I'd Had Known Earlier" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is just a small but growing collection of pandas snippets that I find occasionally and particularly useful -- consider it as my personal notebook. Suggestions, tips, and contributions are very, very welcome!" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Sections" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- [Loading Some Example Data](#Loading-Some-Example-Data)\n", + "- [Renaming Columns](#Renaming-Columns)\n", + "- [Applying Computations Rows-wise](#Applying-Computations-Rows-wise)\n", + "- [Missing Values aka NaNs](#Missing-Values-aka-NaNs)\n", + " - [Selecting NaN Rows](#Selecting-NaN-Rows)\n", + " - [Dropping NaN Rows](#Dropping-NaN-Rows)\n", + "- [Appending Rows to a DataFrame](#Appending-Rows-to-a-DataFrame)\n", + "- [Sorting and Reindexing DataFrames](#Sorting-and-Reindexing-DataFrames)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Loading Some Example Data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to section overview](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "I am heavily into sports prediction (via a machine learning approach) these days. So, let us use a (very) small subset of the soccer data that I am just working with." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import pandas as pd\n", + "\n", + "df = pd.read_csv('https://raw.githubusercontent.com/rasbt/python_reference/master/Data/some_soccer_data.csv')\n", + "df" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PLAYERSALARYGPGASOTPPGP
0 Sergio Ag\u00fcero\\n Forward \u2014 Manchester City $19.2m 16 14 3 34 13.12 209.98
1 Eden Hazard\\n Midfield \u2014 Chelsea $18.9m 21 8 4 17 13.05 274.04
2 Alexis S\u00e1nchez\\n Forward \u2014 Arsenal $17.6mNaN 12 7 29 11.19 223.86
3 Yaya Tour\u00e9\\n Midfield \u2014 Manchester City $16.6m 18 7 1 19 10.99 197.91
4 \u00c1ngel Di Mar\u00eda\\n Midfield \u2014 Manchester United $15.0m 13 3NaN 13 10.17 132.23
5 Santiago Cazorla\\n Midfield \u2014 Arsenal $14.8m 20 4NaN 20 9.97 NaN
6 David Silva\\n Midfield \u2014 Manchester City $14.3m 15 6 2 11 10.35 155.26
7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea $14.0m 20 2 14 10 10.47 209.49
8 Saido Berahino\\n Forward \u2014 West Brom $13.8m 21 9 0 20 7.02 147.43
9 Steven Gerrard\\n Midfield \u2014 Liverpool $13.8m 20 5 1 11 7.50 150.01
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 2, + "text": [ + " PLAYER SALARY GP G A SOT \\\n", + "0 Sergio Ag\u00fcero\\n Forward \u2014 Manchester City $19.2m 16 14 3 34 \n", + "1 Eden Hazard\\n Midfield \u2014 Chelsea $18.9m 21 8 4 17 \n", + "2 Alexis S\u00e1nchez\\n Forward \u2014 Arsenal $17.6m NaN 12 7 29 \n", + "3 Yaya Tour\u00e9\\n Midfield \u2014 Manchester City $16.6m 18 7 1 19 \n", + "4 \u00c1ngel Di Mar\u00eda\\n Midfield \u2014 Manchester United $15.0m 13 3 NaN 13 \n", + "5 Santiago Cazorla\\n Midfield \u2014 Arsenal $14.8m 20 4 NaN 20 \n", + "6 David Silva\\n Midfield \u2014 Manchester City $14.3m 15 6 2 11 \n", + "7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea $14.0m 20 2 14 10 \n", + "8 Saido Berahino\\n Forward \u2014 West Brom $13.8m 21 9 0 20 \n", + "9 Steven Gerrard\\n Midfield \u2014 Liverpool $13.8m 20 5 1 11 \n", + "\n", + " PPG P \n", + "0 13.12 209.98 \n", + "1 13.05 274.04 \n", + "2 11.19 223.86 \n", + "3 10.99 197.91 \n", + "4 10.17 132.23 \n", + "5 9.97 NaN \n", + "6 10.35 155.26 \n", + "7 10.47 209.49 \n", + "8 7.02 147.43 \n", + "9 7.50 150.01 " + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Renaming Columns" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to section overview](#Sections)]" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Converting column names to lowercase\n", + "\n", + "df.columns = [c.lower() for c in df.columns]\n", + "df.tail()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygpgasotppgp
5 Santiago Cazorla\\n Midfield \u2014 Arsenal $14.8m 20 4NaN 20 9.97 NaN
6 David Silva\\n Midfield \u2014 Manchester City $14.3m 15 6 2 11 10.35 155.26
7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea $14.0m 20 2 14 10 10.47 209.49
8 Saido Berahino\\n Forward \u2014 West Brom $13.8m 21 9 0 20 7.02 147.43
9 Steven Gerrard\\n Midfield \u2014 Liverpool $13.8m 20 5 1 11 7.50 150.01
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 3, + "text": [ + " player salary gp g a sot ppg \\\n", + "5 Santiago Cazorla\\n Midfield \u2014 Arsenal $14.8m 20 4 NaN 20 9.97 \n", + "6 David Silva\\n Midfield \u2014 Manchester City $14.3m 15 6 2 11 10.35 \n", + "7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea $14.0m 20 2 14 10 10.47 \n", + "8 Saido Berahino\\n Forward \u2014 West Brom $13.8m 21 9 0 20 7.02 \n", + "9 Steven Gerrard\\n Midfield \u2014 Liverpool $13.8m 20 5 1 11 7.50 \n", + "\n", + " p \n", + "5 NaN \n", + "6 155.26 \n", + "7 209.49 \n", + "8 147.43 \n", + "9 150.01 " + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Renaming particular columns\n", + "\n", + "df = df.rename(columns={'p': 'points', \n", + " 'gp': 'games',\n", + " 'sot': 'shots_on_target',\n", + " 'g': 'goals',\n", + " 'ppg': 'points_per_game',\n", + " 'a': 'assists',})\n", + "\n", + "df.tail()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepoints
5 Santiago Cazorla\\n Midfield \u2014 Arsenal $14.8m 20 4NaN 20 9.97 NaN
6 David Silva\\n Midfield \u2014 Manchester City $14.3m 15 6 2 11 10.35 155.26
7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea $14.0m 20 2 14 10 10.47 209.49
8 Saido Berahino\\n Forward \u2014 West Brom $13.8m 21 9 0 20 7.02 147.43
9 Steven Gerrard\\n Midfield \u2014 Liverpool $13.8m 20 5 1 11 7.50 150.01
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 4, + "text": [ + " player salary games goals assists \\\n", + "5 Santiago Cazorla\\n Midfield \u2014 Arsenal $14.8m 20 4 NaN \n", + "6 David Silva\\n Midfield \u2014 Manchester City $14.3m 15 6 2 \n", + "7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea $14.0m 20 2 14 \n", + "8 Saido Berahino\\n Forward \u2014 West Brom $13.8m 21 9 0 \n", + "9 Steven Gerrard\\n Midfield \u2014 Liverpool $13.8m 20 5 1 \n", + "\n", + " shots_on_target points_per_game points \n", + "5 20 9.97 NaN \n", + "6 11 10.35 155.26 \n", + "7 10 10.47 209.49 \n", + "8 20 7.02 147.43 \n", + "9 11 7.50 150.01 " + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Applying Computations Rows-wise" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to section overview](#Sections)]" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Create a new column\n", + "df['team'] = pd.Series('', index=df.index)\n", + "df.tail(3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointsteam
7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea $14.0m 20 2 14 10 10.47 209.49
8 Saido Berahino\\n Forward \u2014 West Brom $13.8m 21 9 0 20 7.02 147.43
9 Steven Gerrard\\n Midfield \u2014 Liverpool $13.8m 20 5 1 11 7.50 150.01
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 5, + "text": [ + " player salary games goals assists \\\n", + "7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea $14.0m 20 2 14 \n", + "8 Saido Berahino\\n Forward \u2014 West Brom $13.8m 21 9 0 \n", + "9 Steven Gerrard\\n Midfield \u2014 Liverpool $13.8m 20 5 1 \n", + "\n", + " shots_on_target points_per_game points team \n", + "7 10 10.47 209.49 \n", + "8 20 7.02 147.43 \n", + "9 11 7.50 150.01 " + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# process salary column\n", + "\n", + "df['salary'] = df['salary'].apply(lambda x: x.strip('$m'))\n", + "df.tail()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointsteam
5 Santiago Cazorla\\n Midfield \u2014 Arsenal 14.8 20 4NaN 20 9.97 NaN
6 David Silva\\n Midfield \u2014 Manchester City 14.3 15 6 2 11 10.35 155.26
7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea 14.0 20 2 14 10 10.47 209.49
8 Saido Berahino\\n Forward \u2014 West Brom 13.8 21 9 0 20 7.02 147.43
9 Steven Gerrard\\n Midfield \u2014 Liverpool 13.8 20 5 1 11 7.50 150.01
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 6, + "text": [ + " player salary games goals assists \\\n", + "5 Santiago Cazorla\\n Midfield \u2014 Arsenal 14.8 20 4 NaN \n", + "6 David Silva\\n Midfield \u2014 Manchester City 14.3 15 6 2 \n", + "7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea 14.0 20 2 14 \n", + "8 Saido Berahino\\n Forward \u2014 West Brom 13.8 21 9 0 \n", + "9 Steven Gerrard\\n Midfield \u2014 Liverpool 13.8 20 5 1 \n", + "\n", + " shots_on_target points_per_game points team \n", + "5 20 9.97 NaN \n", + "6 11 10.35 155.26 \n", + "7 10 10.47 209.49 \n", + "8 20 7.02 147.43 \n", + "9 11 7.50 150.01 " + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# process `player` column\n", + "\n", + "def process_player_col(text):\n", + " name, rest = text.split('\\n')\n", + " position, team = rest.split(' \u2014 ')\n", + " return name, position, team\n", + "\n", + "for idx,row in df.iterrows():\n", + " name, position, team = process_player_col(row['player'])\n", + " df.ix[idx, 'player'], df.ix[idx, 'position'], df.ix[idx, 'team'] = name, position, team\n", + " \n", + "df.tail()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointsteamposition
5 Santiago Cazorla 14.8 20 4NaN 20 9.97 NaN Arsenal Midfield
6 David Silva 14.3 15 6 2 11 10.35 155.26 Manchester City Midfield
7 Cesc F\u00e0bregas 14.0 20 2 14 10 10.47 209.49 Chelsea Midfield
8 Saido Berahino 13.8 21 9 0 20 7.02 147.43 West Brom Forward
9 Steven Gerrard 13.8 20 5 1 11 7.50 150.01 Liverpool Midfield
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 7, + "text": [ + " player salary games goals assists shots_on_target \\\n", + "5 Santiago Cazorla 14.8 20 4 NaN 20 \n", + "6 David Silva 14.3 15 6 2 11 \n", + "7 Cesc F\u00e0bregas 14.0 20 2 14 10 \n", + "8 Saido Berahino 13.8 21 9 0 20 \n", + "9 Steven Gerrard 13.8 20 5 1 11 \n", + "\n", + " points_per_game points team position \n", + "5 9.97 NaN Arsenal Midfield \n", + "6 10.35 155.26 Manchester City Midfield \n", + "7 10.47 209.49 Chelsea Midfield \n", + "8 7.02 147.43 West Brom Forward \n", + "9 7.50 150.01 Liverpool Midfield " + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Missing Values aka NaNs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to section overview](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Selecting NaN Rows" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to section overview](#Sections)]" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Selecting all rows that have NaNs in the `assists` column\n", + "df[~df['assists'].notnull()]" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointsteamposition
4 \u00c1ngel Di Mar\u00eda 15.0 13 3NaN 13 10.17 132.23 Manchester United Midfield
5 Santiago Cazorla 14.8 20 4NaN 20 9.97 NaN Arsenal Midfield
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 8, + "text": [ + " player salary games goals assists shots_on_target \\\n", + "4 \u00c1ngel Di Mar\u00eda 15.0 13 3 NaN 13 \n", + "5 Santiago Cazorla 14.8 20 4 NaN 20 \n", + "\n", + " points_per_game points team position \n", + "4 10.17 132.23 Manchester United Midfield \n", + "5 9.97 NaN Arsenal Midfield " + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Dropping NaN Rows" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to section overview](#Sections)]" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Dropping all rows that have NaNs in the `assists` column\n", + "\n", + "df[df['assists'].notnull()]" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointsteamposition
0 Sergio Ag\u00fcero 19.2 16 14 3 34 13.12 209.98 Manchester City Forward
1 Eden Hazard 18.9 21 8 4 17 13.05 274.04 Chelsea Midfield
2 Alexis S\u00e1nchez 17.6NaN 12 7 29 11.19 223.86 Arsenal Forward
3 Yaya Tour\u00e9 16.6 18 7 1 19 10.99 197.91 Manchester City Midfield
6 David Silva 14.3 15 6 2 11 10.35 155.26 Manchester City Midfield
7 Cesc F\u00e0bregas 14.0 20 2 14 10 10.47 209.49 Chelsea Midfield
8 Saido Berahino 13.8 21 9 0 20 7.02 147.43 West Brom Forward
9 Steven Gerrard 13.8 20 5 1 11 7.50 150.01 Liverpool Midfield
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 9, + "text": [ + " player salary games goals assists shots_on_target \\\n", + "0 Sergio Ag\u00fcero 19.2 16 14 3 34 \n", + "1 Eden Hazard 18.9 21 8 4 17 \n", + "2 Alexis S\u00e1nchez 17.6 NaN 12 7 29 \n", + "3 Yaya Tour\u00e9 16.6 18 7 1 19 \n", + "6 David Silva 14.3 15 6 2 11 \n", + "7 Cesc F\u00e0bregas 14.0 20 2 14 10 \n", + "8 Saido Berahino 13.8 21 9 0 20 \n", + "9 Steven Gerrard 13.8 20 5 1 11 \n", + "\n", + " points_per_game points team position \n", + "0 13.12 209.98 Manchester City Forward \n", + "1 13.05 274.04 Chelsea Midfield \n", + "2 11.19 223.86 Arsenal Forward \n", + "3 10.99 197.91 Manchester City Midfield \n", + "6 10.35 155.26 Manchester City Midfield \n", + "7 10.47 209.49 Chelsea Midfield \n", + "8 7.02 147.43 West Brom Forward \n", + "9 7.50 150.01 Liverpool Midfield " + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Appending Rows to a DataFrame" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to section overview](#Sections)]" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Adding an \"empty\" row to the DataFrame\n", + "\n", + "df = df.append(pd.Series(\n", + " [None]*len(df.columns), # Fill cells with NaNs\n", + " index=df.columns), \n", + " ignore_index=True)\n", + "\n", + "df.tail()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointsteamposition
6 David Silva 14.3 15 6 2 11 10.35 155.26 Manchester City Midfield
7 Cesc F\u00e0bregas 14.0 20 2 14 10 10.47 209.49 Chelsea Midfield
8 Saido Berahino 13.8 21 9 0 20 7.02 147.43 West Brom Forward
9 Steven Gerrard 13.8 20 5 1 11 7.50 150.01 Liverpool Midfield
10 NaN NaNNaNNaNNaNNaN NaN NaN NaN NaN
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 10, + "text": [ + " player salary games goals assists shots_on_target \\\n", + "6 David Silva 14.3 15 6 2 11 \n", + "7 Cesc F\u00e0bregas 14.0 20 2 14 10 \n", + "8 Saido Berahino 13.8 21 9 0 20 \n", + "9 Steven Gerrard 13.8 20 5 1 11 \n", + "10 NaN NaN NaN NaN NaN NaN \n", + "\n", + " points_per_game points team position \n", + "6 10.35 155.26 Manchester City Midfield \n", + "7 10.47 209.49 Chelsea Midfield \n", + "8 7.02 147.43 West Brom Forward \n", + "9 7.50 150.01 Liverpool Midfield \n", + "10 NaN NaN NaN NaN " + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Filling cells with data\n", + "\n", + "df.loc[df.index[-1], 'player'] = 'New Player'\n", + "df.loc[df.index[-1], 'salary'] = 12.3\n", + "df.tail()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointsteamposition
6 David Silva 14.3 15 6 2 11 10.35 155.26 Manchester City Midfield
7 Cesc F\u00e0bregas 14.0 20 2 14 10 10.47 209.49 Chelsea Midfield
8 Saido Berahino 13.8 21 9 0 20 7.02 147.43 West Brom Forward
9 Steven Gerrard 13.8 20 5 1 11 7.50 150.01 Liverpool Midfield
10 New Player 12.3NaNNaNNaNNaN NaN NaN NaN NaN
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 11, + "text": [ + " player salary games goals assists shots_on_target \\\n", + "6 David Silva 14.3 15 6 2 11 \n", + "7 Cesc F\u00e0bregas 14.0 20 2 14 10 \n", + "8 Saido Berahino 13.8 21 9 0 20 \n", + "9 Steven Gerrard 13.8 20 5 1 11 \n", + "10 New Player 12.3 NaN NaN NaN NaN \n", + "\n", + " points_per_game points team position \n", + "6 10.35 155.26 Manchester City Midfield \n", + "7 10.47 209.49 Chelsea Midfield \n", + "8 7.02 147.43 West Brom Forward \n", + "9 7.50 150.01 Liverpool Midfield \n", + "10 NaN NaN NaN NaN " + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Sorting and Reindexing DataFrames" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to section overview](#Sections)]" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Sorting the DataFrame by a certain column (from highest to lowest)\n", + "\n", + "df = df.sort('goals', ascending=False)\n", + "df.head()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointsteamposition
0 Sergio Ag\u00fcero 19.2 16 14 3 34 13.12 209.98 Manchester City Forward
2 Alexis S\u00e1nchez 17.6NaN 12 7 29 11.19 223.86 Arsenal Forward
8 Saido Berahino 13.8 21 9 0 20 7.02 147.43 West Brom Forward
1 Eden Hazard 18.9 21 8 4 17 13.05 274.04 Chelsea Midfield
3 Yaya Tour\u00e9 16.6 18 7 1 19 10.99 197.91 Manchester City Midfield
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 12, + "text": [ + " player salary games goals assists shots_on_target \\\n", + "0 Sergio Ag\u00fcero 19.2 16 14 3 34 \n", + "2 Alexis S\u00e1nchez 17.6 NaN 12 7 29 \n", + "8 Saido Berahino 13.8 21 9 0 20 \n", + "1 Eden Hazard 18.9 21 8 4 17 \n", + "3 Yaya Tour\u00e9 16.6 18 7 1 19 \n", + "\n", + " points_per_game points team position \n", + "0 13.12 209.98 Manchester City Forward \n", + "2 11.19 223.86 Arsenal Forward \n", + "8 7.02 147.43 West Brom Forward \n", + "1 13.05 274.04 Chelsea Midfield \n", + "3 10.99 197.91 Manchester City Midfield " + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Reindexing the DataFrame after sorting\n", + "\n", + "df.index = range(1,len(df.index)+1)\n", + "df.head()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointsteamposition
1 Sergio Ag\u00fcero 19.2 16 14 3 34 13.12 209.98 Manchester City Forward
2 Alexis S\u00e1nchez 17.6NaN 12 7 29 11.19 223.86 Arsenal Forward
3 Saido Berahino 13.8 21 9 0 20 7.02 147.43 West Brom Forward
4 Eden Hazard 18.9 21 8 4 17 13.05 274.04 Chelsea Midfield
5 Yaya Tour\u00e9 16.6 18 7 1 19 10.99 197.91 Manchester City Midfield
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 13, + "text": [ + " player salary games goals assists shots_on_target \\\n", + "1 Sergio Ag\u00fcero 19.2 16 14 3 34 \n", + "2 Alexis S\u00e1nchez 17.6 NaN 12 7 29 \n", + "3 Saido Berahino 13.8 21 9 0 20 \n", + "4 Eden Hazard 18.9 21 8 4 17 \n", + "5 Yaya Tour\u00e9 16.6 18 7 1 19 \n", + "\n", + " points_per_game points team position \n", + "1 13.12 209.98 Manchester City Forward \n", + "2 11.19 223.86 Arsenal Forward \n", + "3 7.02 147.43 West Brom Forward \n", + "4 13.05 274.04 Chelsea Midfield \n", + "5 10.99 197.91 Manchester City Midfield " + ] + } + ], + "prompt_number": 13 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/tutorials/training_set.csv b/tutorials/training_set.csv deleted file mode 100644 index 80c551d..0000000 --- a/tutorials/training_set.csv +++ /dev/null @@ -1,124 +0,0 @@ -1.000000000000000000e+00,9.643797661038555624e-01,-4.458250028745581739e-01,3.254520589443019585e-01,-1.623345832137024658e+00,8.000025927956255778e-01,2.399975129984130984e+00,1.699709801272862641e+00,-2.136629015502882756e-01,4.166076721866525667e-01,9.174729085534980566e-01,1.903010272312230799e-01,8.547495436698466786e-01,1.323289114254158960e+00 -2.000000000000000000e+00,7.786340516010937796e-01,-9.035357195200717229e-01,-1.515608858441348072e+00,-3.379378935355480951e-01,-3.926462513438215840e-01,-3.630256560063624960e-01,-3.675394816997145098e-01,-2.136629015502882756e-01,-1.670269030162930157e+00,-5.258153290285596526e-01,1.167232156863844406e+00,-2.879883907243386276e-01,-3.851648430538042178e-01 -2.000000000000000000e+00,-1.202653569761693353e+00,-7.050221522523687778e-02,-5.950783997485230570e-01,6.261180604155592855e-01,-1.024048580594117075e+00,4.130981602831020894e-01,5.441704584830628910e-01,2.016066876697071852e-01,-5.353009990605254176e-01,-9.876675650548181196e-01,-4.757883793364734437e-01,8.833179920297012933e-01,-1.153969123842387701e+00 -2.000000000000000000e+00,-8.311621407561718966e-01,-1.013386291514995152e+00,-6.318996180962351827e-01,-1.658590888517895781e-02,-8.837369518718292127e-01,1.810121029604138121e+00,1.021227985322888498e+00,-1.293363833522276796e+00,4.166076721866525667e-01,-2.371576815121479997e-01,1.122826196425997791e+00,2.976648006526816381e-01,-1.025835077044290333e+00 -1.000000000000000000e+00,1.261572909308273926e+00,-7.965642955814736248e-02,1.025055207550848779e+00,-4.664786873956953128e-01,1.501560736407065111e+00,4.130981602831020894e-01,3.957525612440059848e-01,-2.967168193942874566e-01,-7.183603589157521174e-01,2.929553157992404247e-02,4.123308294204554025e-01,1.311844717427521179e+00,1.643624231249402046e+00 -1.000000000000000000e+00,8.529323374021988702e-01,-6.746803611973148929e-01,1.356446172680266793e+00,1.108146037391112948e+00,9.844444918418605861e-02,1.033997213314673536e+00,1.180247160936163553e+00,-4.628246550822858185e-01,1.350210407448307448e+00,3.179531790963357474e-01,9.896083151124585031e-01,6.911721377384434650e-02,1.613116124868902768e+00 -1.000000000000000000e+00,2.461630033598449785e-01,3.231290010899045551e-01,1.982406884591387586e+00,6.261180604155592855e-01,1.291093293323633207e+00,7.235476867988874794e-01,5.865755719799363721e-01,3.677145233577055472e-01,3.250779922590392168e-01,-2.948892110154302526e-01,3.235189085447624513e-01,3.833701457322456485e-01,-6.482972605856110460e-02 -1.000000000000000000e+00,7.414849087005422890e-01,7.899939320683285748e-01,8.409491158122843757e-01,-1.237723450556581950e+00,1.150781664601345344e+00,5.683229235409951174e-01,9.470190367033598511e-01,-1.459471669210274936e+00,3.218301649067650816e-02,5.149996600426331311e-02,-3.172877495800926345e-02,9.975917854691199738e-01,2.707594441269316476e-01 -2.000000000000000000e+00,-6.577994738869272773e-01,-4.641334315403787270e-01,-1.294681548355069767e+00,4.654420680903747498e-01,-1.024048580594117075e+00,-2.078008927484694124e-01,-2.297228628348761681e-01,-2.136629015502882756e-01,-2.973238312487311297e-01,-9.077316011271964191e-01,3.235189085447624513e-01,1.297560493247593483e+00,-2.570307962557069614e-01 -1.000000000000000000e+00,1.212040718774203052e+00,-5.099045032049300818e-01,-4.477935263576708902e-01,-9.806418628362864043e-01,-2.523346226215336663e-01,4.907105419120482703e-01,2.049295505080760971e-01,-7.119864086142828619e-01,6.179729680274015369e-01,-1.261355093904512337e-01,3.235189085447624513e-01,1.326128941607448208e+00,8.504134653564191515e-01 -1.000000000000000000e+00,5.433561465642633426e-01,-3.908997168770964592e-01,2.886308405965897217e-01,4.654420680903747498e-01,2.828863482304210669e-02,5.683229235409951174e-01,8.940126448322682773e-01,-7.119864086142828619e-01,3.983017362011299078e-01,5.149996600426331311e-02,3.235189085447624513e-01,1.154718251448320965e+00,4.995702419806767325e-01 -1.000000000000000000e+00,1.472084719078069925e+00,-4.824418602061992800e-01,3.622732772920158051e-01,-1.109182656696434011e+00,1.922495622573928697e+00,7.235476867988874794e-01,9.788228718260151284e-01,-5.458785729262844999e-01,1.185456983578603740e+00,2.913078577871283104e-01,3.235189085447624513e-01,1.797508339545049960e+00,9.419377844979172076e-01 -3.000000000000000000e+00,4.442917654961238694e-01,1.531485293034060557e+00,5.463793690305801531e-01,1.268822029716297539e+00,1.686002635453300036e-01,-8.286999457800412472e-01,-1.470072432618422242e+00,6.999301947337017715e-01,-4.254653831473897974e-01,1.028495080675194684e+00,-1.186283746342016387e+00,-1.573568566917797229e+00,-1.906756648781209040e-02 -1.000000000000000000e+00,1.447318623811035598e+00,1.650490079361894180e+00,3.990944956397280419e-01,-4.872110735021632777e-02,8.000025927956255778e-01,8.011600684278343820e-01,5.441704584830628910e-01,-3.797707372382866375e-01,-7.183603589157521174e-01,1.136723823924137428e-01,-4.313824188986269959e-01,9.547391129293382184e-01,9.876999440686662357e-01 -2.000000000000000000e+00,-1.586528046400733860e+00,4.055169300860972381e-01,2.166512976329951989e+00,3.047660757651901586e-01,2.387560779064739624e-01,-9.063123274089878167e-01,-1.131088007184745114e-01,2.111846798081686405e+00,-1.084479078626205073e+00,-5.258153290285596526e-01,1.167232156863844406e+00,-2.308514940046293151e-01,-4.553334877289527127e-01 -1.000000000000000000e+00,6.424205276324028713e-01,-4.824418602061992800e-01,-7.958134288054057037e-02,-9.163714659062127676e-01,1.220937478962489164e+00,1.266834358201512911e+00,1.222652274433037034e+00,-4.755506586228989974e-02,1.276986663506216813e+00,5.089113151456540196e-01,-7.613473539585573213e-02,1.026160233828974588e+00,1.182189122244349522e-01 -2.000000000000000000e+00,-8.311621407561718966e-01,-1.187316363840290157e+00,-3.577597085913275077e+00,-2.715942579948279700e+00,-8.135811375106852816e-01,-5.492953719158341075e-01,-1.660895443354352574e+00,-5.458785729262844999e-01,-2.237753045714132583e+00,-1.347379402729115494e+00,3.679248689826089547e-01,-1.202178738239686906e+00,-7.207540132392969978e-01 -3.000000000000000000e+00,-2.243928067138180049e-01,-8.119935761909689020e-01,-4.276012453282835440e-02,-3.379378935355480951e-01,1.571716550768208931e+00,-1.278851759227930707e+00,-9.400085139075050611e-01,-1.127255997834278656e+00,-1.285844374466954321e+00,-3.925887224825236888e-01,-9.198479837149375893e-01,-1.959242619775834804e+00,-3.851648430538042178e-01 -1.000000000000000000e+00,1.657830433580831819e+00,1.238550434380931708e+00,-1.900449979236804865e-01,-9.806418628362864043e-01,1.686002635453300036e-01,1.422059121459405828e+00,1.095436933942416813e+00,-6.289324907702836809e-01,1.002397623723377151e+00,-3.731777169309376946e-02,3.235189085447624513e-01,1.111865578908538543e+00,9.419377844979172076e-01 -1.000000000000000000e+00,1.434935576177516214e+00,-4.366707885416478696e-01,4.359157139874418885e-01,-1.237723450556581950e+00,8.701584071567695089e-01,1.453104074110984412e+00,1.328665058175220626e+00,-4.755506586228989974e-02,5.996670320418788780e-01,7.842463020074620372e-01,3.679248689826089547e-01,2.690963522928269680e-01,2.116499880147141965e+00 -1.000000000000000000e+00,1.558766052512692291e+00,-2.902033592150836117e-01,1.430088609375692821e+00,3.047660757651901586e-01,1.431404922045921069e+00,7.235476867988874794e-01,1.063633098819761980e+00,-1.306089837062890946e-01,5.996670320418788780e-01,5.399975233397292795e-01,4.567367898583018504e-01,-1.658813130571964653e-02,1.597862071678653129e+00 -3.000000000000000000e+00,4.803424122356605291e-02,1.522331078701150142e+00,1.045247488580237777e-01,7.867940527407438767e-01,9.403142215179134400e-01,-1.434076522485823846e+00,-7.915906166684484324e-01,-4.755506586228989974e-02,-9.197256547565014762e-01,1.961081326497447597e+00,-1.763561232034019932e+00,-1.902105723056125575e+00,-6.292296940977989417e-01 -2.000000000000000000e+00,-8.311621407561718966e-01,-9.401525768517128290e-01,8.409491158122843757e-01,-3.058026950705107216e-01,-1.120229938992457902e-01,1.336935864188945888e-01,5.441704584830628910e-01,2.016066876697071852e-01,8.010323278826282367e-01,-1.705443782391301843e-01,9.896083151124585031e-01,-5.165359776031759331e-01,-2.387259324274073613e-01 -2.000000000000000000e+00,-1.338867093730384150e+00,-1.050003148846635925e+00,-1.164025612282544170e-01,6.261180604155592855e-01,9.844444918418605861e-02,1.623851313694666398e+00,3.505261397927611402e-03,-1.791687340586271437e+00,1.387708050515384234e-02,-7.878276552357639240e-01,1.014891063555301426e-01,6.690546293307916281e-01,3.958426802869789984e-01 -2.000000000000000000e+00,-4.968198546511998770e-01,-8.028393618580585978e-01,-1.147396674964217711e+00,-7.235602751159908586e-01,2.828863482304210669e-02,-4.872054666126768852e-01,-7.703880599200116919e-01,1.530469373173693137e+00,-1.871634326003678961e+00,3.401576135206750284e-01,5.708314591768366697e-02,-1.530715894378015252e+00,-9.343107579027923881e-01 -3.000000000000000000e+00,8.281662421351645431e-01,3.124318586960447952e+00,4.359157139874418885e-01,4.654420680903747498e-01,-3.224904369826776529e-01,-1.014969661689512970e+00,-1.618490329857479315e+00,1.447415455329694067e+00,-1.066173142640682414e+00,1.206130556069909820e+00,-1.452719508969094742e+00,-1.316452531679105586e+00,-4.957567286831143089e-02 -1.000000000000000000e+00,3.565119359004889632e-02,-6.746803611973148929e-01,-8.528269281825133774e-01,-1.141317855161470884e+00,-1.120229938992457902e-01,1.026486337673159777e-01,5.335691801088447983e-01,-5.458785729262844999e-01,-4.986891270894800443e-01,-5.702241978772382147e-01,9.452023546746119997e-01,4.054876541398967638e-02,8.046513057856702344e-01 -1.000000000000000000e+00,3.204612891609501246e-01,-4.732876458732889757e-01,-7.055420547916613216e-01,-6.592898781859172219e-01,-3.926462513438215840e-01,1.026486337673159777e-01,5.651165326901914226e-02,-6.289324907702836809e-01,-5.353009990605254176e-01,-4.592020257555414764e-01,2.347069876690695278e-01,1.548225588534083430e-01,1.613116124868902768e+00 -2.000000000000000000e+00,-1.289334903196315496e+00,1.092083005054367728e+00,-1.221039111659643739e+00,-1.658590888517895781e-02,-8.837369518718292127e-01,-5.182504192642555241e-01,-5.265586573129897863e-01,2.016066876697071852e-01,4.166076721866525667e-01,-1.644918824015262793e+00,-1.649466562715481699e-01,5.547808358913729476e-01,-5.865183451650999302e-01 -2.000000000000000000e+00,-3.977554735830604038e-01,-4.458250028745581739e-01,-1.900449979236804865e-01,1.108146037391112948e+00,-1.094204394955261117e+00,-1.480643951463191721e+00,-3.993433168223695651e-01,1.115199783953697343e+00,-2.273479146589149624e-02,-7.478596732719532403e-01,-3.869764584607804925e-01,-3.451252874440479679e-01,-8.183799536568948652e-01 -2.000000000000000000e+00,-1.239802712662246842e+00,1.888499652017560981e+00,1.781671855534498472e-01,9.474700450659284678e-01,-1.374827652399836841e+00,-3.630256560063624960e-01,-4.099445951965879353e-01,6.168762768897025905e-01,-5.353009990605254176e-01,-1.058721755212703952e+00,-7.866301024013981902e-01,-1.308619247451383028e-01,-5.377053749563008855e-01 -3.000000000000000000e+00,-8.435451883896890601e-01,1.458251578370778345e+00,1.781671855534498472e-01,6.261180604155592855e-01,-8.135811375106852816e-01,-5.257612949057706431e-02,-1.289850700256710558e+00,1.281307619641695705e+00,-1.102785014611727732e+00,1.183926121645570539e+00,-1.807967192471865880e+00,-1.545000118557942503e+00,-7.207540132392969978e-01 -3.000000000000000000e+00,-1.041673950525968007e+00,7.259144317379564448e-01,-4.276012453282835440e-02,-1.658590888517895781e-02,-2.523346226215336663e-01,-1.682436143698452291e+00,-1.745705670348099314e+00,4.507684412017047282e-01,-1.670269030162930157e+00,2.291354413989782624e-01,-1.363907588093401735e+00,-1.187894514059759654e+00,-7.512621196197962758e-01 -1.000000000000000000e+00,1.013911956637924217e+00,-8.119935761909689020e-01,-2.268662162713926955e-01,-9.806418628362864043e-01,-1.120229938992457902e-01,1.002952260663094952e+00,1.074234377193980183e+00,-1.044202079990279364e+00,3.799958002156071935e-01,9.929679855962517676e-01,1.903010272312230799e-01,1.268992044887738979e+00,8.809215717369185406e-01 -3.000000000000000000e+00,1.470986222917055053e-01,1.220242005715111100e+00,-6.687208364439490849e-01,6.261180604155592855e-01,1.686002635453300036e-01,-1.294374235553719998e+00,-1.682098000102789204e+00,6.999301947337017715e-01,-6.268306789881387120e-01,-4.369975913312021953e-01,-1.630343350720480533e+00,-1.402157876758669541e+00,2.249972845561826473e-01 -3.000000000000000000e+00,1.038678051904960764e+00,2.565911512652921278e+00,-3.741510896622448068e-01,3.047660757651901586e-01,-1.374827652399836841e+00,-2.101543004494763167e+00,-1.904724845961374369e+00,4.507684412017047282e-01,-1.761798710090543230e+00,-3.731777169309376946e-02,-1.719155271596173540e+00,-1.902105723056125575e+00,-1.041089130234540194e+00 -3.000000000000000000e+00,-1.377114732791957230e-01,5.245217164139306387e-01,1.356446172680266793e+00,6.261180604155592855e-01,-2.523346226215336663e-01,-1.232284330250562832e+00,-1.735104391973880889e+00,1.530469373173693137e+00,-1.633657158191884617e+00,-1.705443782391301843e-01,-8.754420232770911969e-01,-5.022517534232482372e-01,-4.766891621953022184e-01 -3.000000000000000000e+00,1.608298243046760945e+00,-5.099045032049300818e-01,1.356446172680266793e+00,1.911525999017035904e+00,-1.120229938992457902e-01,7.235476867988874794e-01,-8.764008436621949505e-01,1.530469373173693137e+00,1.936000358985032754e+00,3.559800605049880495e+00,-1.763561232034019932e+00,-1.002199599720704493e+00,-2.936405239123061617e-01 -2.000000000000000000e+00,-1.190270522128176189e+00,-8.303020048567895106e-01,-1.164025612282544170e-01,1.461633220506519448e+00,-2.076385796011276152e+00,-2.078008927484694124e-01,-5.795650491840813601e-01,6.168762768897025905e-01,-4.803831911039578295e-01,-1.440638027311340608e+00,4.567367898583018504e-01,7.833284227702103086e-01,-4.004188962440538568e-01 -1.000000000000000000e+00,-1.377114732791957230e-01,1.430788935372047321e+00,1.172340080941700835e+00,-1.451267027453261582e-01,1.686002635453300036e-01,1.181711100931056302e-01,2.897397775018228927e-01,-7.950403264582820428e-01,6.179729680274015369e-01,-2.149532470878087187e-01,2.791129481069160034e-01,1.226139372347957224e+00,4.194864627318659750e-02 -1.000000000000000000e+00,1.335871195109376908e+00,-6.929887898631355014e-01,-4.276012453282835440e-02,-7.235602751159908586e-01,-3.224904369826776529e-01,-2.078008927484694124e-01,3.109423342502596332e-01,-7.119864086142828619e-01,-1.325704073790270887e-01,7.091097155584770960e-03,9.007963942367656074e-01,2.262436797530446575e-01,1.597862071678653129e+00 -2.000000000000000000e+00,-8.311621407561718966e-01,-9.767694341833539351e-01,-1.515608858441348072e+00,1.762252819050429686e-01,-1.515139281122124704e+00,-3.475031796805735373e-01,-1.449126358411293447e-01,-6.289324907702836809e-01,-1.102785014611727732e+00,-1.350172831601871848e-01,6.787665920475342007e-01,1.169002475628247995e+00,-7.512621196197962758e-01 -1.000000000000000000e+00,1.645447385947312435e+00,-2.627407162163527543e-01,6.200218057260061810e-01,-7.235602751159908586e-01,9.403142215179134400e-01,2.353407701006763553e+00,1.434677841917403995e+00,-8.780942443022812238e-01,9.840916877378549366e-01,1.250539424918588161e+00,-4.757883793364734437e-01,1.126149803088466239e+00,2.208024199288639799e+00 -2.000000000000000000e+00,-1.091206141060036661e+00,-5.739840035353018788e-01,-7.958134288054057037e-02,1.204551632786224014e+00,-6.732695087883974194e-01,-8.597448984316198306e-01,-4.735522654418980459e-01,6.999301947337017715e-01,-1.508763433645497753e-01,-1.125335058485722017e+00,1.611291761242308995e+00,-5.736728743228852734e-01,-7.970242791905453039e-01 -2.000000000000000000e+00,-1.016907855258931459e+00,-8.669188621884306167e-01,-1.441966421745921823e+00,-1.658590888517895781e-02,-5.329578800661094462e-01,4.055872846415876226e-02,-1.025075223442559191e-01,3.677145233577055472e-01,8.010323278826282367e-01,-1.014312886364025168e+00,-4.757883793364734437e-01,5.119281633515913033e-01,-1.355322625953683247e+00 -2.000000000000000000e+00,-1.289334903196315496e+00,-6.655261468644046996e-01,3.254520589443019585e-01,9.474700450659284678e-01,-9.538927662329731438e-01,-1.371986617182666679e+00,-9.400085139075050611e-01,1.281307619641695705e+00,-2.273479146589149624e-02,-6.146330667259169989e-01,3.679248689826089547e-01,-1.658813130571964653e-02,-9.343107579027923881e-01 -2.000000000000000000e+00,-8.311621407561718966e-01,-5.556755748694814923e-01,-1.164025612282544170e-01,1.750850006691851313e+00,-8.135811375106852816e-01,-1.767559400968908290e-01,3.321448909986963183e-01,4.507684412017047282e-01,4.715254801432201548e-01,-1.271884325686361672e+00,-3.425704980229340446e-01,1.691067830333353450e-01,-1.263798306812185190e+00 -1.000000000000000000e+00,1.311105099842342581e+00,-1.986612158859807908e-01,2.518096222488758751e-01,-8.085630581525254934e-02,2.387560779064739624e-01,6.459353051699413539e-01,8.304049745869581667e-01,-2.136629015502882756e-01,1.350210407448307448e+00,5.399975233397292795e-01,4.567367898583018504e-01,1.262541104935536729e-01,9.266837313076675686e-01 -1.000000000000000000e+00,1.088509832301457966e-02,-4.275165742087375653e-01,-8.528269281825133774e-01,-6.592898781859172219e-01,5.193793353510497424e-01,1.033997213314673536e+00,9.152152015807050178e-01,-5.458785729262844999e-01,7.095026479550144982e-01,2.485464469505626467e-02,-3.869764584607804925e-01,9.833075612891929440e-01,3.927918696489290373e-01 -1.000000000000000000e+00,9.767628137373727260e-01,-5.373671462036609947e-01,9.882339892031365425e-01,-5.950194812558435853e-01,-3.926462513438215840e-01,1.802610153962628525e-01,9.046139232064869251e-01,-1.044202079990279364e+00,1.185456983578603740e+00,2.735443102476567967e-01,1.211638117301690798e+00,1.011876009649047559e+00,1.552099912107903990e+00 -2.000000000000000000e+00,-7.692469025885839695e-01,-5.739840035353018788e-01,-5.214359630530969181e-01,1.108146037391112948e+00,5.895351497121936735e-01,-5.182504192642555241e-01,-4.950113047316438697e-02,-4.755506586228989974e-02,-5.934666343693642543e-02,-1.298529646995568942e+00,4.123308294204554025e-01,4.262228182720272929e-01,-1.254645874898035585e+00 -2.000000000000000000e+00,-3.977554735830604038e-01,-3.908997168770964592e-01,-4.846147447053830715e-01,-8.085630581525254934e-02,-9.538927662329731438e-01,-2.078008927484694124e-01,4.169551179924426698e-01,-7.119864086142828619e-01,2.335483123314258669e-01,-4.814064601798809795e-01,8.563904337989191040e-01,6.833388535107193240e-01,-1.288967494576097328e-01 -1.000000000000000000e+00,1.422552528543999051e+00,-5.922924322011223763e-01,5.463793690305801531e-01,-8.199658705111018131e-01,5.895351497121936735e-01,1.499671503088352065e+00,1.901134090383011177e+00,-2.136629015502882756e-01,3.983017362011299078e-01,1.650219244556696330e+00,1.167232156863844406e+00,2.262436797530446575e-01,2.818186326898626692e+00 -1.000000000000000000e+00,8.776984326692331972e-01,-4.641334315403787270e-01,2.886308405965897217e-01,-9.806418628362864043e-01,-7.434253231495413505e-01,4.130981602831020894e-01,6.607845205994645754e-01,-4.628246550822858185e-01,3.067720562735165579e-01,2.735443102476567967e-01,8.119844733610726006e-01,3.405174731924633380e-01,1.719894497200650463e+00 -3.000000000000000000e+00,9.891458613708897785e-01,1.723723794025176392e+00,1.781671855534498472e-01,1.440900834400055952e-01,-7.434253231495413505e-01,-8.286999457800412472e-01,-1.385262205624675502e+00,1.115199783953697343e+00,-1.508763433645497753e-01,1.787886737987600450e+00,-1.763561232034019932e+00,-1.459294773478378771e+00,-8.427864387612943320e-01 -1.000000000000000000e+00,1.459701671444552762e+00,-4.915960745391095288e-01,-1.164025612282544170e-01,-8.842362674411753387e-01,1.291093293323633207e+00,1.344446739830459592e+00,9.152152015807050178e-01,-7.119864086142828619e-01,7.095026479550144982e-01,6.199334872673507579e-01,-1.205406958337021939e-01,9.261706645694836038e-01,6.521107738831735112e-01 -3.000000000000000000e+00,5.681222418312976696e-01,8.083023607341491834e-01,1.061876425898562681e+00,1.590174014366666722e+00,1.641872365129352973e+00,-1.449598998811613138e+00,-6.007676059325179896e-01,-1.044202079990279364e+00,-7.183603589157521174e-01,1.605810375708017768e+00,-1.674749311158327147e+00,-1.944958395595907552e+00,-7.817702260002956649e-01 -1.000000000000000000e+00,1.088509832301457966e-02,-4.641334315403787270e-01,-1.073754238268791683e+00,-2.137509007577615083e+00,-5.329578800661094462e-01,5.993678761925737009e-01,1.201449717684600405e+00,-1.459471669210274936e+00,2.320425014681008591e+00,9.840862118265162328e-01,6.787665920475342007e-01,3.548016973723909784e-01,1.201256688732161626e+00 -1.000000000000000000e+00,1.088509832301457966e-02,-1.711985728872501555e-01,3.271149526761342852e+00,1.911525999017035904e+00,1.712028179490496793e+00,4.596655892604696314e-01,5.759742936057181684e-01,1.032145866109698051e+00,5.081373521142654726e-01,-6.235148404956527557e-01,7.231725524853797049e-01,7.690441985902832789e-01,2.249972845561826473e-01 -3.000000000000000000e+00,1.594816699252226688e-01,2.703224727646575509e+00,-4.276012453282835440e-02,9.474700450659284678e-01,-4.628020657049655151e-01,-9.218348037347771085e-01,-1.597287773109042464e+00,2.194900715925685919e+00,-1.691822793500724342e-01,1.294948293767267167e+00,-1.630343350720480533e+00,-1.687842360357215910e+00,-9.533783243906045202e-02 -2.000000000000000000e+00,-5.463520451852706961e-01,-8.211477905238792063e-01,-1.589251295136774100e+00,-1.772619012103635316e-01,-8.135811375106852816e-01,-1.371986617182666679e+00,-8.233944517911032657e-01,-4.628246550822858185e-01,-5.353009990605254176e-01,-1.125335058485722017e+00,3.235189085447624513e-01,1.548225588534083430e-01,-5.926199664411997414e-01 -3.000000000000000000e+00,-2.863080448814038226e-01,6.681099976841710364e-02,2.518096222488758751e-01,1.590174014366666722e+00,-1.120229938992457902e-01,-1.837660906956345430e+00,-1.109628967894998430e+00,-6.289324907702836809e-01,-1.487209670307703568e+00,3.179531790963357474e-01,-1.363907588093401735e+00,-1.859253050516343597e+00,-5.987215877172996636e-01 -1.000000000000000000e+00,2.461630033598449785e-01,1.595564793364432354e+00,-1.532237795759666399e-01,-4.986138858607326307e-01,2.387560779064739624e-01,4.751880655862593117e-01,5.229679017346261505e-01,-2.136629015502882756e-01,3.218301649067650816e-02,-2.771256634759587389e-01,-6.534122210878593462e-01,4.833597149917366331e-01,-2.326243111513074946e-01 -1.000000000000000000e+00,1.966308128257741317e-01,-4.183623598758273165e-01,-7.055420547916613216e-01,-2.523131389158058457e+00,2.828863482304210669e-02,4.907105419120482703e-01,6.607845205994645754e-01,-7.119864086142828619e-01,-6.634425509591841408e-01,-2.682438897062232042e-01,3.679248689826089547e-01,1.054728682188829314e+00,8.961756249271681796e-01 -2.000000000000000000e+00,1.013911956637924217e+00,-6.655261468644046996e-01,1.245982517637126863e+00,1.911525999017035904e+00,-9.538927662329731438e-01,9.563848316857274101e-01,7.667973043416480561e-01,-1.127255997834278656e+00,4.166076721866525667e-01,-7.123325781930102130e-01,1.744509642555848394e+00,7.119073018705739386e-01,-1.056343183424789833e+00 -1.000000000000000000e+00,8.653153850357160337e-01,-5.190587175378403861e-01,-3.005086529668187789e-01,-8.521010689761391310e-01,1.291093293323633207e+00,4.130981602831020894e-01,8.092024178385215372e-01,-1.127255997834278656e+00,-4.104072745141375961e-02,3.845664823693535350e-01,-2.093526167093946455e-01,7.690441985902832789e-01,9.266837313076675686e-01 -3.000000000000000000e+00,-4.225215688500969513e-01,1.201933577049290491e+00,1.045247488580237777e-01,7.867940527407438767e-01,4.492235209899058113e-01,-9.839247090379342753e-01,-9.930149057785968569e-01,-1.459471669210274936e+00,-1.468903734322180910e+00,7.091097155584770960e-03,-8.310360628392446936e-01,-1.959242619775834804e+00,-4.766891621953022184e-01 -2.000000000000000000e+00,-1.512229760599628881e+00,-4.732876458732889757e-01,-1.662893731832200128e+00,1.440900834400055952e-01,-9.538927662329731438e-01,2.578733970252090058e-01,-5.265586573129897863e-01,2.016066876697071852e-01,-4.071594471618671385e-01,-1.298529646995568942e+00,-1.205406958337021939e-01,-3.165568390841932978e-01,-1.041089130234540194e+00 -2.000000000000000000e+00,-1.512229760599628881e+00,-7.021430041960458057e-01,-1.257860330007356753e+00,5.618476634854857599e-01,-9.538927662329731438e-01,-5.492953719158341075e-01,-5.689637708098629343e-01,-3.797707372382866375e-01,-2.057941513211177798e-01,-1.347379402729115494e+00,-7.613473539585573213e-02,9.547391129293382184e-01,-7.970242791905453039e-01 -1.000000000000000000e+00,1.657830433580831819e+00,-3.359744308796348000e-01,1.781671855534498472e-01,-2.266049801437763023e+00,1.686002635453300036e-01,1.499671503088352065e+00,1.593697017530679050e+00,-4.628246550822858185e-01,2.411954694608621441e+00,1.117312818372552252e+00,1.034014275550305006e+00,4.833597149917366331e-01,2.412428512037985584e+00 -1.000000000000000000e+00,1.670213481214348983e+00,-3.359744308796348000e-01,4.359157139874418885e-01,-1.430534641346803193e+00,-2.523346226215336663e-01,2.578733970252090058e-01,4.063538396182245771e-01,-3.797707372382866375e-01,6.179729680274015369e-01,1.181132692772815240e-01,2.347069876690695278e-01,1.311844717427521179e+00,1.628370178059152407e+00 -2.000000000000000000e+00,-1.289334903196315496e+00,-1.205624792506110765e+00,-1.221039111659643739e+00,-1.658590888517895781e-02,-9.538927662329731438e-01,1.336935864188945888e-01,1.307206018885473664e-01,-3.797707372382866375e-01,-3.888535111763444796e-01,-1.103130624061382736e+00,1.833321563431540291e+00,6.547704051508645984e-01,-1.459050187647381147e+00 -1.000000000000000000e+00,4.319087178626067614e-01,-4.275165742087375653e-01,1.061876425898562681e+00,-9.485066643712489753e-01,-4.628020657049655151e-01,8.011600684278343820e-01,8.516075313353949072e-01,-4.755506586228989974e-02,-3.522416392052991063e-01,-8.172664054177269932e-02,-2.093526167093946455e-01,7.976126469501378935e-01,1.338543167444408599e+00 -2.000000000000000000e+00,-2.490490523647506116e+00,-6.655261468644046996e-01,-4.846147447053830715e-01,7.867940527407438767e-01,-1.024048580594117075e+00,1.957834917220518112e-01,3.530909652058243642e-02,1.447415455329694067e+00,6.728907759839690694e-01,-1.369583837153454997e+00,3.298718257880472571e+00,2.976648006526816381e-01,-1.065495615338939661e+00 -3.000000000000000000e+00,1.348254242742896292e+00,1.705415365359355340e+00,1.503731046071119071e+00,1.750850006691851313e+00,-2.523346226215336663e-01,-4.406380376353093431e-01,-1.459471154244204039e+00,1.779631126705690791e+00,-5.353009990605254176e-01,1.872263588800089806e+00,-1.585937390282634141e+00,-1.516431670198087778e+00,-5.987215877172996636e-01 -2.000000000000000000e+00,-9.302265218243114253e-01,-5.739840035353018788e-01,-4.477935263576708902e-01,4.333068696253373764e-01,2.387560779064739624e-01,-1.915273288585291667e+00,-1.183837916514526967e+00,2.016066876697071852e-01,-3.339357032197764474e-01,-8.588818453936499786e-01,-2.715209613223796836e-01,-1.202178738239686906e+00,3.470297100781800093e-01 -1.000000000000000000e+00,7.291018610670251254e-01,-3.908997168770964592e-01,1.356446172680266793e+00,-5.950194812558435853e-01,8.701584071567695089e-01,8.011600684278343820e-01,8.198036962127400740e-01,-3.797707372382866375e-01,-3.339357032197764474e-01,1.028495080675194684e+00,1.389261959053076589e+00,3.119490248326086679e-01,1.689386390820151185e+00 -1.000000000000000000e+00,8.281662421351645431e-01,-3.451286452125450488e-01,1.045247488580237777e-01,-7.878306720460643842e-01,9.844444918418605861e-02,4.286206366088910480e-01,7.879998610900847966e-01,-6.289324907702836809e-01,8.710082444724451256e-02,-5.258153290285596526e-01,6.343606316096876974e-01,1.911782132984468419e+00,8.504134653564191515e-01 -1.000000000000000000e+00,8.405492897686817066e-01,-7.387598615276869118e-01,6.200218057260061810e-01,-7.556954735810281765e-01,5.895351497121936735e-01,1.654896266346244982e+00,1.625500852653333883e+00,-1.293363833522276796e+00,7.278085839405374902e-01,8.064507364318013183e-01,-3.425704980229340446e-01,2.976648006526816381e-01,1.613116124868902768e+00 -2.000000000000000000e+00,-1.710358522735907716e+00,-3.268202165467247178e-01,-1.515608858441348072e+00,-9.806418628362864043e-01,-1.821788082603897352e-01,-1.123626995970037790e+00,-6.007676059325179896e-01,-4.755506586228989974e-02,-9.014197187709788173e-01,-5.258153290285596526e-01,1.167232156863844406e+00,-7.450835644820126280e-01,-1.001428591939890866e+00 -2.000000000000000000e+00,-1.078823093426519497e+00,-7.204514328618663033e-01,7.304854607691444457e-01,-1.658590888517895781e-02,3.089118922676178935e-01,-6.889976588479378439e-01,-4.099445951965879353e-01,8.660380304217001335e-01,-1.121090950597250391e+00,-9.032907142423284297e-01,2.144163286496465481e+00,-6.165255468626669177e-01,-1.224137768517536085e+00 -2.000000000000000000e+00,-1.029290902892448623e+00,-9.584610055175334375e-01,-2.141569570352468865e+00,-7.235602751159908586e-01,3.606235167241383266e+00,-7.510875641510947887e-01,-9.082046787848500058e-01,-1.708633422742272145e+00,1.569881639274579577e+00,-9.476995830910072138e-01,1.389261959053076589e+00,5.833492842512276733e-01,-1.166935069054099855e-01 -3.000000000000000000e+00,-3.358402354154746416e-01,1.400447144316993575e-01,-1.900449979236804865e-01,1.440900834400055952e-01,-9.538927662329731438e-01,-1.465121475137402429e+00,-1.724503113599662463e+00,1.115199783953697343e+00,-1.835022454032633643e+00,2.183125226652152140e+00,-1.763561232034019932e+00,-1.473578997658306244e+00,-8.732945451417937210e-01 -3.000000000000000000e+00,-1.996267114467815129e-01,6.892975744063156718e-01,2.518096222488758751e-01,3.047660757651901586e-01,3.089118922676178935e-01,-1.604823762069505833e+00,-9.718123490301601164e-01,-8.780942443022812238e-01,-1.487209670307703568e+00,1.847265725502997280e-01,-1.008659904590630596e+00,-1.773547705436779864e+00,-6.902459068587976088e-01 -2.000000000000000000e+00,-1.388099694402193489e-02,-1.223933221171931374e+00,-2.288854443743320921e+00,-9.806418628362864043e-01,-9.538927662329731438e-01,-5.958628008932020936e-01,-1.131088007184745114e-01,-8.780942443022812238e-01,-3.339357032197764474e-01,-1.705443782391301843e-01,9.896083151124585031e-01,-2.594199423644839575e-01,-1.111257774909688578e+00 -1.000000000000000000e+00,5.805052894648148332e-01,-4.000539312100067635e-01,1.172340080941700835e+00,-1.658590888517895781e-02,7.298467784344815357e-01,2.503625213836980362e-02,4.169551179924426698e-01,-4.628246550822858185e-01,-1.874882153355951209e-01,-3.481798536338447381e-01,5.899546711718413050e-01,2.976648006526816381e-01,1.033462103639415153e+00 -2.000000000000000000e+00,-1.759890713269978590e+00,-2.261238588847116482e-01,-1.900449979236804865e-01,-3.379378935355480951e-01,-1.120229938992457902e-01,1.065042165966252119e+00,1.307206018885473664e-01,-1.459471669210274936e+00,-5.353009990605254176e-01,-7.700641076962924103e-01,8.563904337989191040e-01,4.262228182720272929e-01,-1.254645874898035585e+00 -2.000000000000000000e+00,-3.358402354154746416e-01,1.092083005054367728e+00,-1.294681548355069767e+00,-9.806418628362864043e-01,-1.374827652399836841e+00,-1.092582043318459428e+00,-9.400085139075050611e-01,6.999301947337017715e-01,-1.487209670307703568e+00,-7.034508044232744561e-01,-1.186283746342016387e+00,-7.736520128418672426e-01,-1.172273987670687356e+00 -2.000000000000000000e+00,-9.302265218243114253e-01,-7.570682901935074094e-01,-1.294681548355069767e+00,-9.806418628362864043e-01,-1.024048580594117075e+00,3.354857786541551867e-01,3.851512828697878366e-01,-4.628246550822858185e-01,2.335483123314258669e-01,-9.254951486666679328e-01,1.167232156863844406e+00,1.119698863136266570e-01,-1.001428591939890866e+00 -2.000000000000000000e+00,-8.683112836567233872e-01,1.949700004291610167e-01,4.727369323351540698e-01,6.261180604155592855e-01,-1.120229938992457902e-01,3.510082549799448670e-01,-2.829857372472768459e-02,-4.755506586228989974e-02,-6.085247430026160531e-01,-9.699040175153467169e-01,-7.422241419635517978e-01,1.026160233828974588e+00,-9.709204855593915884e-01 -2.000000000000000000e+00,-4.349046164836141148e-01,-6.472177181985840910e-01,-2.636874346191065421e-01,5.297124650204483309e-01,-1.374827652399836841e+00,-1.480643951463191721e+00,-7.173816680489198960e-01,1.945738962393688265e+00,-4.104072745141375961e-02,-8.588818453936499786e-01,-3.172877495800926345e-02,-8.593573579214313085e-01,-7.970242791905453039e-01 -2.000000000000000000e+00,-1.450314522432043063e+00,1.897653866350470953e+00,2.149884039011636938e-01,6.261180604155592855e-01,-1.234516023677548979e+00,8.166825447536233407e-01,9.470190367033598511e-01,-1.127255997834278656e+00,2.320425014681008591e+00,-9.699040175153467169e-01,-9.642539441527840927e-01,1.397550062507085133e+00,-1.147867502566287889e+00 -2.000000000000000000e+00,-9.302265218243114253e-01,8.540734323987003718e-01,-4.477935263576708902e-01,-3.379378935355480951e-01,-8.135811375106852816e-01,8.011600684278343820e-01,9.046139232064869251e-01,8.660380304217001335e-01,2.137365654825782002e+00,-1.191948361758740083e+00,2.010945405182926304e+00,2.405279039329723256e-01,-1.068546425976989456e+00 -2.000000000000000000e+00,-7.692469025885839695e-01,2.865121437582633934e-01,-2.268662162713926955e-01,9.474700450659284678e-01,-6.732695087883974194e-01,-1.014969661689512970e+00,-3.145330898286227694e-01,2.610170305145681713e+00,-4.071594471618671385e-01,-1.014312886364025168e+00,-4.757883793364734437e-01,9.118864403895559079e-01,-1.346170194039533419e+00 -3.000000000000000000e+00,-5.463520451852706961e-01,2.041242147620710989e-01,-4.846147447053830715e-01,-1.772619012103635316e-01,-3.926462513438215840e-01,-1.108104519644248498e+00,-1.565483937986387186e+00,2.361008551613684059e+00,-1.285844374466954321e+00,9.396773429778373377e-01,-1.053065865028476988e+00,-1.545000118557942503e+00,-1.868621515805584665e-01 -3.000000000000000000e+00,8.529323374021988702e-01,1.943424938015023029e+00,-2.636874346191065421e-01,1.108146037391112948e+00,-8.135811375106852816e-01,-1.635868714721084416e+00,-1.766908227096535944e+00,1.447415455329694067e+00,-9.014197187709788173e-01,7.265147725041797289e-01,-8.310360628392446936e-01,-1.302168307499178113e+00,-7.207540132392969978e-01 -3.000000000000000000e+00,8.034001468681281066e-01,9.364613613948926663e-01,7.673066791168583478e-01,3.047660757651901586e-01,5.193793353510497424e-01,-7.821325168026733721e-01,-1.671496721728570778e+00,1.281307619641695705e+00,-1.542127478264271323e+00,3.978891430239572813e-01,-3.172877495800926345e-02,-1.202178738239686906e+00,-2.326243111513074946e-01 -3.000000000000000000e+00,2.833121462603964691e-01,1.870191223351740817e+00,-2.636874346191065421e-01,3.047660757651901586e-01,1.431404922045921069e+00,-1.154671948621616373e+00,-1.533680102863732353e+00,6.999301947337017715e-01,-5.353009990605254176e-01,2.316352277286876760e+00,-1.674749311158327147e+00,-1.573568566917797229e+00,2.402513377464323419e-01 -1.000000000000000000e+00,1.459701671444552762e+00,1.604719007697342770e+00,6.568430240737184178e-01,-1.880427419857320093e+00,1.992651436935072740e+00,1.033997213314673536e+00,9.576203150775784989e-01,-1.210309915678277504e+00,8.010323278826282367e-01,5.149996600426331311e-02,-3.425704980229340446e-01,1.240423596527884254e+00,1.144053989268725355e-02 -2.000000000000000000e+00,-1.487463665332594553e+00,-1.233087435504841345e+00,9.145915525077105146e-01,-3.379378935355480951e-01,-3.926462513438215840e-01,-2.078008927484694124e-01,7.771421001745584811e-02,-1.044202079990279364e+00,1.295292599491739916e+00,-8.588818453936499786e-01,-7.866301024013981902e-01,5.976335084311552581e-01,-7.207540132392969978e-01 -1.000000000000000000e+00,1.470986222917055053e-01,1.125820714329683059e-01,1.245982517637126863e+00,-1.451267027453261582e-01,9.844444918418605861e-02,7.235476867988874794e-01,1.169645882561945571e+00,-3.797707372382866375e-01,2.137365654825782002e+00,3.090714053265997685e-01,2.791129481069160034e-01,7.261915260505009684e-01,1.308035061063909321e+00 -1.000000000000000000e+00,6.424205276324028713e-01,-4.641334315403787270e-01,4.727369323351540698e-01,4.654420680903747498e-01,1.150781664601345344e+00,9.719073080115163688e-01,6.819870773479013160e-01,-1.210309915678277504e+00,1.478351959346966504e+00,5.622019577640684496e-01,5.708314591768366697e-02,5.262123875315183330e-01,1.109732369590663570e+00 -1.000000000000000000e+00,1.112976337706063523e+00,-4.641334315403787270e-01,-2.268662162713926955e-01,-5.307490843257700597e-01,5.895351497121936735e-01,8.477274974052019241e-01,1.487684233788495680e+00,-2.136629015502882756e-01,8.010323278826282367e-01,1.739036982254054120e+00,6.787665920475342007e-01,6.262019567910099838e-01,1.536845858917654351e+00 -2.000000000000000000e+00,3.699934796950187232e-01,-1.187316363840290157e+00,1.045247488580237777e-01,-6.592898781859172219e-01,7.298467784344815357e-01,3.044408260025766033e-01,-8.870021220364133763e-01,1.696577208861691499e+00,-2.237753045714132583e+00,-8.055912027752354376e-01,2.347069876690695278e-01,-1.045052272260486470e+00,-1.906756648781209040e-02 -3.000000000000000000e+00,6.671866228994370873e-01,3.139747867569944728e-01,1.319624954332552891e+00,1.750850006691851313e+00,3.790677066287618246e-01,-1.216761853924773540e+00,-1.374660927250457298e+00,3.677145233577055472e-01,-1.874882153355951209e-01,1.632455697017225260e+00,-1.008659904590630596e+00,-1.230747186599541632e+00,-1.906756648781209040e-02 -2.000000000000000000e+00,-8.806943312902405507e-01,-1.141545292175738746e+00,-1.405145203398208809e+00,-1.366264244416729001e+00,2.553897951824224410e+00,-6.734751825221485522e-01,-3.039318114544043992e-01,3.549885198170882328e-02,2.045835974898168264e+00,-7.034508044232744561e-01,4.123308294204554025e-01,-5.022517534232482372e-01,-1.906756648781209040e-02 -3.000000000000000000e+00,1.385403385643447782e+00,2.498952864266222873e-01,5.463793690305801531e-01,3.047660757651901586e-01,-6.031136944272533773e-01,-1.014969661689512970e+00,-1.523078824489514149e+00,7.829841125777009525e-01,-7.366662949012747763e-01,2.094307933043483505e+00,-1.541531429844787748e+00,-1.359305204218887564e+00,-2.936405239123061617e-01 -3.000000000000000000e+00,2.337799557263278150e-01,9.730782187265337724e-01,-1.900449979236804865e-01,-1.772619012103635316e-01,-1.120229938992457902e-01,-8.286999457800412472e-01,-1.385262205624675502e+00,2.194900715925685919e+00,4.166076721866525667e-01,2.458460657602648869e+00,-1.807967192471865880e+00,-1.644989687817433932e+00,-2.478783643415571614e-01 -2.000000000000000000e+00,-6.454164262534102248e-01,1.766615717633404636e-01,-5.950783997485230570e-01,6.261180604155592855e-01,-8.135811375106852816e-01,3.354857786541551867e-01,1.413218802627659587e-01,-7.119864086142828619e-01,-7.732781668723200941e-01,-1.325174968304776213e+00,-2.981645375850875967e-01,1.691067830333353450e-01,-1.315662087659034141e+00 -1.000000000000000000e+00,7.910170992346109431e-01,-3.725912882112759061e-01,1.045247488580237777e-01,-5.950194812558435853e-01,3.089118922676178935e-01,1.336935864188945888e-01,5.865755719799363721e-01,6.168762768897025905e-01,5.996670320418788780e-01,-5.080517814890882500e-01,1.167232156863844406e+00,2.976648006526816381e-01,7.131269866441721783e-01 -2.000000000000000000e+00,-6.341318747809056300e-02,-5.190587175378403861e-01,9.882339892031365425e-01,3.518285922268881372e+00,2.764365394907656093e+00,1.499671503088352065e+00,7.986011394643033334e-01,-1.127255997834278656e+00,5.813610960563562191e-01,-7.256552388476137372e-01,1.522479840366615989e+00,1.197570923988102498e+00,6.978729334539224283e-01 -1.000000000000000000e+00,1.063444147171994869e+00,-5.099045032049300818e-01,-7.791844914870873495e-01,-9.806418628362864043e-01,9.844444918418605861e-02,1.189221976572566675e+00,1.328665058175220626e+00,-1.127255997834278656e+00,9.108679437957641900e-01,4.955886544910502733e-01,-2.537585771472410934e-01,9.547391129293382184e-01,6.978729334539224283e-01 -3.000000000000000000e+00,1.594816699252226688e-01,3.231290010899045551e-01,1.413459672057376104e-01,3.047660757651901586e-01,1.431404922045921069e+00,-1.061537090666880845e+00,-1.544281381237950557e+00,1.530469373173693137e+00,-3.339357032197764474e-01,1.916672457648769035e+00,-1.630343350720480533e+00,-1.487863221838233274e+00,2.555053909366820086e-01 -2.000000000000000000e+00,-2.019934713573843243e+00,-1.370400650498495576e+00,6.200218057260061810e-01,6.261180604155592855e-01,-8.135811375106852816e-01,2.268284443736304223e-01,-1.343113574669112242e-01,6.168762768897025905e-01,-3.705475751908218207e-01,-8.455591847390462323e-01,5.899546711718413050e-01,-5.022517534232482372e-01,-9.831237281115913218e-01 -2.000000000000000000e+00,-1.524612808233146044e+00,-1.071190725568779978e-01,1.503731046071119071e+00,7.867940527407438767e-01,2.413586323101936326e+00,-1.139149472295827081e+00,-1.215641751637182022e+00,-1.708633422742272145e+00,-1.508763433645497753e-01,-1.103130624061382736e+00,-7.613473539585573213e-02,-5.736728743228852734e-01,-4.004188962440538568e-01 -1.000000000000000000e+00,3.080782415274307406e-01,-2.444322875505322012e-01,1.282803735984840765e+00,-7.235602751159908586e-01,1.686002635453300036e-01,1.033997213314673536e+00,1.159044604187726923e+00,-2.967168193942874566e-01,3.218301649067650816e-02,4.511797856423717668e-01,4.567367898583018504e-01,2.548121281128993276e-01,1.567353965298153851e+00 -2.000000000000000000e+00,1.088509832301457966e-02,3.261631801954101739e+00,-7.423632731393751127e-01,7.867940527407438767e-01,-9.538927662329731438e-01,4.441431129346806728e-01,5.441704584830628910e-01,-3.797707372382866375e-01,6.728907759839690694e-01,-1.058721755212703952e+00,-1.053065865028476988e+00,6.262019567910099838e-01,-1.147867502566287889e+00 -2.000000000000000000e+00,-9.797587123583800794e-01,-4.641334315403787270e-01,-7.791844914870873495e-01,-1.658590888517895781e-02,-1.374827652399836841e+00,-1.061537090666880845e+00,-1.131088007184745114e-01,2.016066876697071852e-01,-2.273479146589149624e-02,-7.034508044232744561e-01,1.458950667933766043e-01,7.261915260505009684e-01,-7.512621196197962758e-01 -2.000000000000000000e+00,1.088509832301457966e-02,1.485714221369509147e+00,-4.276012453282835440e-02,1.108146037391112948e+00,-1.024048580594117075e+00,-1.061537090666880845e+00,-5.795650491840813601e-01,2.194900715925685919e+00,-4.104072745141375961e-02,-8.172664054177269932e-02,-5.646003002121663394e-01,-9.307784788210682336e-01,-7.360080664295466368e-01 -1.000000000000000000e+00,9.767628137373727260e-01,-6.106008608669429849e-01,1.061876425898562681e+00,3.047660757651901586e-01,1.080625850240201302e+00,9.563848316857274101e-01,1.339266336549438607e+00,4.507684412017047282e-01,1.420186324038125170e-01,7.176329987344437500e-01,7.231725524853797049e-01,-1.308619247451383028e-01,1.140240475971162848e+00 -2.000000000000000000e+00,-8.311621407561718966e-01,-1.068311577512456534e+00,-8.528269281825133774e-01,-1.772619012103635316e-01,-8.135811375106852816e-01,1.841165982255716704e+00,1.710311079647080845e+00,-8.780942443022812238e-01,5.630551600708334492e-01,-2.149532470878087187e-01,3.235189085447624513e-01,1.548225588534083430e-01,-2.936405239123061617e-01 -2.000000000000000000e+00,8.518338412411752270e-02,-1.123236863509918138e+00,-2.325675662091033935e+00,-1.301993847486655476e+00,-1.515139281122124704e+00,1.002952260663094952e+00,1.106038212316635461e+00,-7.119864086142828619e-01,1.167151047593080859e+00,1.403177037016207773e-01,6.787665920475342007e-01,7.404757502304285532e-01,-7.756686047241958537e-01 -2.000000000000000000e+00,-7.568638549550668060e-01,-6.472177181985840910e-01,-1.532237795759666399e-01,7.867940527407438767e-01,-9.538927662329731438e-01,6.304128288441523953e-01,1.074234377193980183e+00,3.677145233577055472e-01,2.335483123314258669e-01,-4.636429126404094658e-01,-1.230689706779862780e+00,2.548121281128993276e-01,-1.233290200431685912e+00 -2.000000000000000000e+00,-1.772273760903495754e+00,-8.119935761909689020e-01,1.356446172680266793e+00,3.047660757651901586e-01,-3.926462513438215840e-01,6.304128288441523953e-01,8.304049745869581667e-01,-4.628246550822858185e-01,1.551575703289057140e+00,-1.036517320788364671e+00,-3.172877495800926345e-02,8.547495436698466786e-01,-2.326243111513074946e-01 diff --git a/tutorials/wine_data.csv b/tutorials/wine_data.csv deleted file mode 100644 index a0b3962..0000000 --- a/tutorials/wine_data.csv +++ /dev/null @@ -1,178 +0,0 @@ -1,14.23,1.71,2.43,15.6,127,2.8,3.06,.28,2.29,5.64,1.04,3.92,1065 -1,13.2,1.78,2.14,11.2,100,2.65,2.76,.26,1.28,4.38,1.05,3.4,1050 -1,13.16,2.36,2.67,18.6,101,2.8,3.24,.3,2.81,5.68,1.03,3.17,1185 -1,14.37,1.95,2.5,16.8,113,3.85,3.49,.24,2.18,7.8,.86,3.45,1480 -1,13.24,2.59,2.87,21,118,2.8,2.69,.39,1.82,4.32,1.04,2.93,735 -1,14.2,1.76,2.45,15.2,112,3.27,3.39,.34,1.97,6.75,1.05,2.85,1450 -1,14.39,1.87,2.45,14.6,96,2.5,2.52,.3,1.98,5.25,1.02,3.58,1290 -1,14.06,2.15,2.61,17.6,121,2.6,2.51,.31,1.25,5.05,1.06,3.58,1295 -1,14.83,1.64,2.17,14,97,2.8,2.98,.29,1.98,5.2,1.08,2.85,1045 -1,13.86,1.35,2.27,16,98,2.98,3.15,.22,1.85,7.22,1.01,3.55,1045 -1,14.1,2.16,2.3,18,105,2.95,3.32,.22,2.38,5.75,1.25,3.17,1510 -1,14.12,1.48,2.32,16.8,95,2.2,2.43,.26,1.57,5,1.17,2.82,1280 -1,13.75,1.73,2.41,16,89,2.6,2.76,.29,1.81,5.6,1.15,2.9,1320 -1,14.75,1.73,2.39,11.4,91,3.1,3.69,.43,2.81,5.4,1.25,2.73,1150 -1,14.38,1.87,2.38,12,102,3.3,3.64,.29,2.96,7.5,1.2,3,1547 -1,13.63,1.81,2.7,17.2,112,2.85,2.91,.3,1.46,7.3,1.28,2.88,1310 -1,14.3,1.92,2.72,20,120,2.8,3.14,.33,1.97,6.2,1.07,2.65,1280 -1,13.83,1.57,2.62,20,115,2.95,3.4,.4,1.72,6.6,1.13,2.57,1130 -1,14.19,1.59,2.48,16.5,108,3.3,3.93,.32,1.86,8.7,1.23,2.82,1680 -1,13.64,3.1,2.56,15.2,116,2.7,3.03,.17,1.66,5.1,.96,3.36,845 -1,14.06,1.63,2.28,16,126,3,3.17,.24,2.1,5.65,1.09,3.71,780 -1,12.93,3.8,2.65,18.6,102,2.41,2.41,.25,1.98,4.5,1.03,3.52,770 -1,13.71,1.86,2.36,16.6,101,2.61,2.88,.27,1.69,3.8,1.11,4,1035 -1,12.85,1.6,2.52,17.8,95,2.48,2.37,.26,1.46,3.93,1.09,3.63,1015 -1,13.5,1.81,2.61,20,96,2.53,2.61,.28,1.66,3.52,1.12,3.82,845 -1,13.05,2.05,3.22,25,124,2.63,2.68,.47,1.92,3.58,1.13,3.2,830 -1,13.39,1.77,2.62,16.1,93,2.85,2.94,.34,1.45,4.8,.92,3.22,1195 -1,13.3,1.72,2.14,17,94,2.4,2.19,.27,1.35,3.95,1.02,2.77,1285 -1,13.87,1.9,2.8,19.4,107,2.95,2.97,.37,1.76,4.5,1.25,3.4,915 -1,14.02,1.68,2.21,16,96,2.65,2.33,.26,1.98,4.7,1.04,3.59,1035 -1,13.73,1.5,2.7,22.5,101,3,3.25,.29,2.38,5.7,1.19,2.71,1285 -1,13.58,1.66,2.36,19.1,106,2.86,3.19,.22,1.95,6.9,1.09,2.88,1515 -1,13.68,1.83,2.36,17.2,104,2.42,2.69,.42,1.97,3.84,1.23,2.87,990 -1,13.76,1.53,2.7,19.5,132,2.95,2.74,.5,1.35,5.4,1.25,3,1235 -1,13.51,1.8,2.65,19,110,2.35,2.53,.29,1.54,4.2,1.1,2.87,1095 -1,13.48,1.81,2.41,20.5,100,2.7,2.98,.26,1.86,5.1,1.04,3.47,920 -1,13.28,1.64,2.84,15.5,110,2.6,2.68,.34,1.36,4.6,1.09,2.78,880 -1,13.05,1.65,2.55,18,98,2.45,2.43,.29,1.44,4.25,1.12,2.51,1105 -1,13.07,1.5,2.1,15.5,98,2.4,2.64,.28,1.37,3.7,1.18,2.69,1020 -1,14.22,3.99,2.51,13.2,128,3,3.04,.2,2.08,5.1,.89,3.53,760 -1,13.56,1.71,2.31,16.2,117,3.15,3.29,.34,2.34,6.13,.95,3.38,795 -1,13.41,3.84,2.12,18.8,90,2.45,2.68,.27,1.48,4.28,.91,3,1035 -1,13.88,1.89,2.59,15,101,3.25,3.56,.17,1.7,5.43,.88,3.56,1095 -1,13.24,3.98,2.29,17.5,103,2.64,2.63,.32,1.66,4.36,.82,3,680 -1,13.05,1.77,2.1,17,107,3,3,.28,2.03,5.04,.88,3.35,885 -1,14.21,4.04,2.44,18.9,111,2.85,2.65,.3,1.25,5.24,.87,3.33,1080 -1,14.38,3.59,2.28,16,102,3.25,3.17,.27,2.19,4.9,1.04,3.44,1065 -1,13.9,1.68,2.12,16,101,3.1,3.39,.21,2.14,6.1,.91,3.33,985 -1,14.1,2.02,2.4,18.8,103,2.75,2.92,.32,2.38,6.2,1.07,2.75,1060 -1,13.94,1.73,2.27,17.4,108,2.88,3.54,.32,2.08,8.90,1.12,3.1,1260 -1,13.05,1.73,2.04,12.4,92,2.72,3.27,.17,2.91,7.2,1.12,2.91,1150 -1,13.83,1.65,2.6,17.2,94,2.45,2.99,.22,2.29,5.6,1.24,3.37,1265 -1,13.82,1.75,2.42,14,111,3.88,3.74,.32,1.87,7.05,1.01,3.26,1190 -1,13.77,1.9,2.68,17.1,115,3,2.79,.39,1.68,6.3,1.13,2.93,1375 -1,13.74,1.67,2.25,16.4,118,2.6,2.9,.21,1.62,5.85,.92,3.2,1060 -1,13.56,1.73,2.46,20.5,116,2.96,2.78,.2,2.45,6.25,.98,3.03,1120 -1,14.22,1.7,2.3,16.3,118,3.2,3,.26,2.03,6.38,.94,3.31,970 -1,13.29,1.97,2.68,16.8,102,3,3.23,.31,1.66,6,1.07,2.84,1270 -1,13.72,1.43,2.5,16.7,108,3.4,3.67,.19,2.04,6.8,.89,2.87,1285 -2,12.37,.94,1.36,10.6,88,1.98,.57,.28,.42,1.95,1.05,1.82,520 -2,12.33,1.1,2.28,16,101,2.05,1.09,.63,.41,3.27,1.25,1.67,680 -2,12.64,1.36,2.02,16.8,100,2.02,1.41,.53,.62,5.75,.98,1.59,450 -2,13.67,1.25,1.92,18,94,2.1,1.79,.32,.73,3.8,1.23,2.46,630 -2,12.37,1.13,2.16,19,87,3.5,3.1,.19,1.87,4.45,1.22,2.87,420 -2,12.17,1.45,2.53,19,104,1.89,1.75,.45,1.03,2.95,1.45,2.23,355 -2,12.37,1.21,2.56,18.1,98,2.42,2.65,.37,2.08,4.6,1.19,2.3,678 -2,13.11,1.01,1.7,15,78,2.98,3.18,.26,2.28,5.3,1.12,3.18,502 -2,12.37,1.17,1.92,19.6,78,2.11,2,.27,1.04,4.68,1.12,3.48,510 -2,13.34,.94,2.36,17,110,2.53,1.3,.55,.42,3.17,1.02,1.93,750 -2,12.21,1.19,1.75,16.8,151,1.85,1.28,.14,2.5,2.85,1.28,3.07,718 -2,12.29,1.61,2.21,20.4,103,1.1,1.02,.37,1.46,3.05,.906,1.82,870 -2,13.86,1.51,2.67,25,86,2.95,2.86,.21,1.87,3.38,1.36,3.16,410 -2,13.49,1.66,2.24,24,87,1.88,1.84,.27,1.03,3.74,.98,2.78,472 -2,12.99,1.67,2.6,30,139,3.3,2.89,.21,1.96,3.35,1.31,3.5,985 -2,11.96,1.09,2.3,21,101,3.38,2.14,.13,1.65,3.21,.99,3.13,886 -2,11.66,1.88,1.92,16,97,1.61,1.57,.34,1.15,3.8,1.23,2.14,428 -2,13.03,.9,1.71,16,86,1.95,2.03,.24,1.46,4.6,1.19,2.48,392 -2,11.84,2.89,2.23,18,112,1.72,1.32,.43,.95,2.65,.96,2.52,500 -2,12.33,.99,1.95,14.8,136,1.9,1.85,.35,2.76,3.4,1.06,2.31,750 -2,12.7,3.87,2.4,23,101,2.83,2.55,.43,1.95,2.57,1.19,3.13,463 -2,12,.92,2,19,86,2.42,2.26,.3,1.43,2.5,1.38,3.12,278 -2,12.72,1.81,2.2,18.8,86,2.2,2.53,.26,1.77,3.9,1.16,3.14,714 -2,12.08,1.13,2.51,24,78,2,1.58,.4,1.4,2.2,1.31,2.72,630 -2,13.05,3.86,2.32,22.5,85,1.65,1.59,.61,1.62,4.8,.84,2.01,515 -2,11.84,.89,2.58,18,94,2.2,2.21,.22,2.35,3.05,.79,3.08,520 -2,12.67,.98,2.24,18,99,2.2,1.94,.3,1.46,2.62,1.23,3.16,450 -2,12.16,1.61,2.31,22.8,90,1.78,1.69,.43,1.56,2.45,1.33,2.26,495 -2,11.65,1.67,2.62,26,88,1.92,1.61,.4,1.34,2.6,1.36,3.21,562 -2,11.64,2.06,2.46,21.6,84,1.95,1.69,.48,1.35,2.8,1,2.75,680 -2,12.08,1.33,2.3,23.6,70,2.2,1.59,.42,1.38,1.74,1.07,3.21,625 -2,12.08,1.83,2.32,18.5,81,1.6,1.5,.52,1.64,2.4,1.08,2.27,480 -2,12,1.51,2.42,22,86,1.45,1.25,.5,1.63,3.6,1.05,2.65,450 -2,12.69,1.53,2.26,20.7,80,1.38,1.46,.58,1.62,3.05,.96,2.06,495 -2,12.29,2.83,2.22,18,88,2.45,2.25,.25,1.99,2.15,1.15,3.3,290 -2,11.62,1.99,2.28,18,98,3.02,2.26,.17,1.35,3.25,1.16,2.96,345 -2,12.47,1.52,2.2,19,162,2.5,2.27,.32,3.28,2.6,1.16,2.63,937 -2,11.81,2.12,2.74,21.5,134,1.6,.99,.14,1.56,2.5,.95,2.26,625 -2,12.29,1.41,1.98,16,85,2.55,2.5,.29,1.77,2.9,1.23,2.74,428 -2,12.37,1.07,2.1,18.5,88,3.52,3.75,.24,1.95,4.5,1.04,2.77,660 -2,12.29,3.17,2.21,18,88,2.85,2.99,.45,2.81,2.3,1.42,2.83,406 -2,12.08,2.08,1.7,17.5,97,2.23,2.17,.26,1.4,3.3,1.27,2.96,710 -2,12.6,1.34,1.9,18.5,88,1.45,1.36,.29,1.35,2.45,1.04,2.77,562 -2,12.34,2.45,2.46,21,98,2.56,2.11,.34,1.31,2.8,.8,3.38,438 -2,11.82,1.72,1.88,19.5,86,2.5,1.64,.37,1.42,2.06,.94,2.44,415 -2,12.51,1.73,1.98,20.5,85,2.2,1.92,.32,1.48,2.94,1.04,3.57,672 -2,12.42,2.55,2.27,22,90,1.68,1.84,.66,1.42,2.7,.86,3.3,315 -2,12.25,1.73,2.12,19,80,1.65,2.03,.37,1.63,3.4,1,3.17,510 -2,12.72,1.75,2.28,22.5,84,1.38,1.76,.48,1.63,3.3,.88,2.42,488 -2,12.22,1.29,1.94,19,92,2.36,2.04,.39,2.08,2.7,.86,3.02,312 -2,11.61,1.35,2.7,20,94,2.74,2.92,.29,2.49,2.65,.96,3.26,680 -2,11.46,3.74,1.82,19.5,107,3.18,2.58,.24,3.58,2.9,.75,2.81,562 -2,12.52,2.43,2.17,21,88,2.55,2.27,.26,1.22,2,.9,2.78,325 -2,11.76,2.68,2.92,20,103,1.75,2.03,.6,1.05,3.8,1.23,2.5,607 -2,11.41,.74,2.5,21,88,2.48,2.01,.42,1.44,3.08,1.1,2.31,434 -2,12.08,1.39,2.5,22.5,84,2.56,2.29,.43,1.04,2.9,.93,3.19,385 -2,11.03,1.51,2.2,21.5,85,2.46,2.17,.52,2.01,1.9,1.71,2.87,407 -2,11.82,1.47,1.99,20.8,86,1.98,1.6,.3,1.53,1.95,.95,3.33,495 -2,12.42,1.61,2.19,22.5,108,2,2.09,.34,1.61,2.06,1.06,2.96,345 -2,12.77,3.43,1.98,16,80,1.63,1.25,.43,.83,3.4,.7,2.12,372 -2,12,3.43,2,19,87,2,1.64,.37,1.87,1.28,.93,3.05,564 -2,11.45,2.4,2.42,20,96,2.9,2.79,.32,1.83,3.25,.8,3.39,625 -2,11.56,2.05,3.23,28.5,119,3.18,5.08,.47,1.87,6,.93,3.69,465 -2,12.42,4.43,2.73,26.5,102,2.2,2.13,.43,1.71,2.08,.92,3.12,365 -2,13.05,5.8,2.13,21.5,86,2.62,2.65,.3,2.01,2.6,.73,3.1,380 -2,11.87,4.31,2.39,21,82,2.86,3.03,.21,2.91,2.8,.75,3.64,380 -2,12.07,2.16,2.17,21,85,2.6,2.65,.37,1.35,2.76,.86,3.28,378 -2,12.43,1.53,2.29,21.5,86,2.74,3.15,.39,1.77,3.94,.69,2.84,352 -2,11.79,2.13,2.78,28.5,92,2.13,2.24,.58,1.76,3,.97,2.44,466 -2,12.37,1.63,2.3,24.5,88,2.22,2.45,.4,1.9,2.12,.89,2.78,342 -2,12.04,4.3,2.38,22,80,2.1,1.75,.42,1.35,2.6,.79,2.57,580 -3,12.86,1.35,2.32,18,122,1.51,1.25,.21,.94,4.1,.76,1.29,630 -3,12.88,2.99,2.4,20,104,1.3,1.22,.24,.83,5.4,.74,1.42,530 -3,12.81,2.31,2.4,24,98,1.15,1.09,.27,.83,5.7,.66,1.36,560 -3,12.7,3.55,2.36,21.5,106,1.7,1.2,.17,.84,5,.78,1.29,600 -3,12.51,1.24,2.25,17.5,85,2,.58,.6,1.25,5.45,.75,1.51,650 -3,12.6,2.46,2.2,18.5,94,1.62,.66,.63,.94,7.1,.73,1.58,695 -3,12.25,4.72,2.54,21,89,1.38,.47,.53,.8,3.85,.75,1.27,720 -3,12.53,5.51,2.64,25,96,1.79,.6,.63,1.1,5,.82,1.69,515 -3,13.49,3.59,2.19,19.5,88,1.62,.48,.58,.88,5.7,.81,1.82,580 -3,12.84,2.96,2.61,24,101,2.32,.6,.53,.81,4.92,.89,2.15,590 -3,12.93,2.81,2.7,21,96,1.54,.5,.53,.75,4.6,.77,2.31,600 -3,13.36,2.56,2.35,20,89,1.4,.5,.37,.64,5.6,.7,2.47,780 -3,13.52,3.17,2.72,23.5,97,1.55,.52,.5,.55,4.35,.89,2.06,520 -3,13.62,4.95,2.35,20,92,2,.8,.47,1.02,4.4,.91,2.05,550 -3,12.25,3.88,2.2,18.5,112,1.38,.78,.29,1.14,8.21,.65,2,855 -3,13.16,3.57,2.15,21,102,1.5,.55,.43,1.3,4,.6,1.68,830 -3,13.88,5.04,2.23,20,80,.98,.34,.4,.68,4.9,.58,1.33,415 -3,12.87,4.61,2.48,21.5,86,1.7,.65,.47,.86,7.65,.54,1.86,625 -3,13.32,3.24,2.38,21.5,92,1.93,.76,.45,1.25,8.42,.55,1.62,650 -3,13.08,3.9,2.36,21.5,113,1.41,1.39,.34,1.14,9.40,.57,1.33,550 -3,13.5,3.12,2.62,24,123,1.4,1.57,.22,1.25,8.60,.59,1.3,500 -3,12.79,2.67,2.48,22,112,1.48,1.36,.24,1.26,10.8,.48,1.47,480 -3,13.11,1.9,2.75,25.5,116,2.2,1.28,.26,1.56,7.1,.61,1.33,425 -3,13.23,3.3,2.28,18.5,98,1.8,.83,.61,1.87,10.52,.56,1.51,675 -3,12.58,1.29,2.1,20,103,1.48,.58,.53,1.4,7.6,.58,1.55,640 -3,13.17,5.19,2.32,22,93,1.74,.63,.61,1.55,7.9,.6,1.48,725 -3,13.84,4.12,2.38,19.5,89,1.8,.83,.48,1.56,9.01,.57,1.64,480 -3,12.45,3.03,2.64,27,97,1.9,.58,.63,1.14,7.5,.67,1.73,880 -3,14.34,1.68,2.7,25,98,2.8,1.31,.53,2.7,13,.57,1.96,660 -3,13.48,1.67,2.64,22.5,89,2.6,1.1,.52,2.29,11.75,.57,1.78,620 -3,12.36,3.83,2.38,21,88,2.3,.92,.5,1.04,7.65,.56,1.58,520 -3,13.69,3.26,2.54,20,107,1.83,.56,.5,.8,5.88,.96,1.82,680 -3,12.85,3.27,2.58,22,106,1.65,.6,.6,.96,5.58,.87,2.11,570 -3,12.96,3.45,2.35,18.5,106,1.39,.7,.4,.94,5.28,.68,1.75,675 -3,13.78,2.76,2.3,22,90,1.35,.68,.41,1.03,9.58,.7,1.68,615 -3,13.73,4.36,2.26,22.5,88,1.28,.47,.52,1.15,6.62,.78,1.75,520 -3,13.45,3.7,2.6,23,111,1.7,.92,.43,1.46,10.68,.85,1.56,695 -3,12.82,3.37,2.3,19.5,88,1.48,.66,.4,.97,10.26,.72,1.75,685 -3,13.58,2.58,2.69,24.5,105,1.55,.84,.39,1.54,8.66,.74,1.8,750 -3,13.4,4.6,2.86,25,112,1.98,.96,.27,1.11,8.5,.67,1.92,630 -3,12.2,3.03,2.32,19,96,1.25,.49,.4,.73,5.5,.66,1.83,510 -3,12.77,2.39,2.28,19.5,86,1.39,.51,.48,.64,9.899999,.57,1.63,470 -3,14.16,2.51,2.48,20,91,1.68,.7,.44,1.24,9.7,.62,1.71,660 -3,13.71,5.65,2.45,20.5,95,1.68,.61,.52,1.06,7.7,.64,1.74,740 -3,13.4,3.91,2.48,23,102,1.8,.75,.43,1.41,7.3,.7,1.56,750 -3,13.27,4.28,2.26,20,120,1.59,.69,.43,1.35,10.2,.59,1.56,835 -3,13.17,2.59,2.37,20,120,1.65,.68,.53,1.46,9.3,.6,1.62,840 -3,14.13,4.1,2.74,24.5,96,2.05,.76,.56,1.35,9.2,.61,1.6,560 From 3fccde15b115edf37b3d6034ba5d10f4d325b2dd Mon Sep 17 00:00:00 2001 From: rasbt Date: Sat, 24 Jan 2015 00:17:53 -0500 Subject: [PATCH 41/83] comments --- tutorials/things_in_pandas.ipynb | 9 +++++---- 1 file changed, 5 insertions(+), 4 deletions(-) diff --git a/tutorials/things_in_pandas.ipynb b/tutorials/things_in_pandas.ipynb index b70b3d9..db9d0b4 100644 --- a/tutorials/things_in_pandas.ipynb +++ b/tutorials/things_in_pandas.ipynb @@ -1,7 +1,7 @@ { "metadata": { "name": "", - "signature": "sha256:5455ed1ab796c2d7a01bee46d8f4d18de1bbc93ba0257248aff18e7b73a05e0a" + "signature": "sha256:01adffebfb99d8e7a86af443b9d14ca7695efc917465ea85868cc42681d6e96b" }, "nbformat": 3, "nbformat_minor": 0, @@ -576,7 +576,8 @@ "cell_type": "code", "collapsed": false, "input": [ - "# Create a new column\n", + "# Creating a new column\n", + "\n", "df['team'] = pd.Series('', index=df.index)\n", "df.tail(3)" ], @@ -664,7 +665,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "# process salary column\n", + "# Processing `salary` column\n", "\n", "df['salary'] = df['salary'].apply(lambda x: x.strip('$m'))\n", "df.tail()" @@ -781,7 +782,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "# process `player` column\n", + "# Processing `player` column\n", "\n", "def process_player_col(text):\n", " name, rest = text.split('\\n')\n", From bd089d2b1eb545a8fdc6cadedd36e5b54121ea92 Mon Sep 17 00:00:00 2001 From: rasbt Date: Sat, 24 Jan 2015 00:20:58 -0500 Subject: [PATCH 42/83] comments --- pandas_sum_tricks.ipynb | 450 ---------------------------------------- 1 file changed, 450 deletions(-) delete mode 100644 pandas_sum_tricks.ipynb diff --git a/pandas_sum_tricks.ipynb b/pandas_sum_tricks.ipynb deleted file mode 100644 index ccf454e..0000000 --- a/pandas_sum_tricks.ipynb +++ /dev/null @@ -1,450 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:8222de4af96dc6569eddec8d75df6855e8bac273e12e8739fffc42aafd712ba2" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%load_ext watermark \n", - "%watermark -d -v -a 'Sebastian Raschka' -p numpy,pandas" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Sebastian Raschka 23/12/2014 \n", - "\n", - "CPython 3.4.2\n", - "IPython 2.3.1\n", - "\n", - "numpy 1.9.1\n", - "pandas 0.15.2\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "4 Simple Tricks To Speed up the Sum Calculation in Pandas" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "I wanted to improve the performance of some passages in my code a little bit and found that some simple tweaks can speed up the `pandas` section significantly. I thought that it might be one useful thing to share -- and no Cython or just-in-time compilation is required! " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In my case, I had a large dataframe where I wanted to calculate the sum of specific columns for different combinations of rows (approx. 100,000,000 of them, that's why I was looking for ways to speed it up). Anyway, below is a simple toy DataFrame to explore the `.sum()` method a little bit." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import pandas as pd\n", - "import numpy as np\n", - "\n", - "df = pd.DataFrame()\n", - "\n", - "for col in ('a', 'b', 'c', 'd'):\n", - " df[col] = pd.Series(range(1000), index=range(1000))" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 2 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "df.tail()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
abcd
995 995 995 995 995
996 996 996 996 996
997 997 997 997 997
998 998 998 998 998
999 999 999 999 999
\n", - "
" - ], - "metadata": {}, - "output_type": "pyout", - "prompt_number": 3, - "text": [ - " a b c d\n", - "995 995 995 995 995\n", - "996 996 996 996 996\n", - "997 997 997 997 997\n", - "998 998 998 998 998\n", - "999 999 999 999 999" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's assume we are interested in calculating the sum of column `a`, `c`, and `d`, which would look like this:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "df.loc[:, ['a', 'c', 'd']].sum(axis=0)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "pyout", - "prompt_number": 4, - "text": [ - "a 499500\n", - "c 499500\n", - "d 499500\n", - "dtype: int64" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, the `.loc` method is probably the most \"costliest\" one for this kind of operation. Since we are only intersted in the resulting numbers (i.e., the column sums), there is no need to make a copy of the array. Anyway, let's use the method above as a reference for comparison:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# 1\n", - "%timeit -n 1000 -r 5 df.loc[:, ['a', 'c', 'd']].sum(axis=0)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "1000 loops, best of 5: 1.28 ms per loop\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Although this is a rather small DataFrame (1000 x 4), let's see by how much we can speed it up using a different slicing method:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# 2\n", - "%timeit -n 1000 -r 5 df[['a', 'c', 'd']].sum(axis=0)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "1000 loops, best of 5: 1.03 ms per loop\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, let us use the Numpy representation of the `NDFrame` via the `.values` attribue:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# 3\n", - "%timeit -n 1000 -r 5 df[['a', 'c', 'd']].values.sum(axis=0)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "1000 loops, best of 5: 721 \u00b5s per loop\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "While the speed improvements in #2 and #3 were not really a surprise, the next \"trick\" surprised me a little bit. Here, we are calculating the sum of each column separately rather than slicing the array." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "[df[col].values.sum(axis=0) for col in ('a', 'c', 'd')]" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "pyout", - "prompt_number": 8, - "text": [ - "[499500, 499500, 499500]" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# 4\n", - "%timeit -n 1000 -r 5 [df[col].values.sum(axis=0) for col in ('a', 'c', 'd')]" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "1000 loops, best of 5: 64.8 \u00b5s per loop\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this case, this is an almost 10x improvement!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "One more thing: Let's try the Einstein summation convention [`einsum`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.einsum.html)." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from numpy import einsum\n", - "[einsum('i->', df[col].values) for col in ('a', 'c', 'd')]" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "pyout", - "prompt_number": 10, - "text": [ - "[499500, 499500, 499500]" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# 5\n", - "%timeit -n 1000 -r 5 [einsum('i->', df[col].values) for col in ('a', 'c', 'd')]" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "1000 loops, best of 5: 57.2 \u00b5s per loop\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Conclusion:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Using some simple tricks, the column sum calculation improved from 1280 to 57.2 \u00b5s per loop (approx. 22x faster!)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - } - ], - "metadata": {} - } - ] -} \ No newline at end of file From f681bd6e5d418d6d6d90e3141dd164db05a665e8 Mon Sep 17 00:00:00 2001 From: rasbt Date: Sat, 24 Jan 2015 11:02:44 -0500 Subject: [PATCH 43/83] added comments --- README.md | 1 - tutorials/things_in_pandas.ipynb | 372 +++++++++++++++++++++++++------ 2 files changed, 299 insertions(+), 74 deletions(-) diff --git a/README.md b/README.md index 2ec57f6..8b1340d 100644 --- a/README.md +++ b/README.md @@ -220,4 +220,3 @@ - [scikit-learn](http://scikit-learn.org/stable/) - A powerful machine learning library for Python and tools for efficient data mining and analysis. - diff --git a/tutorials/things_in_pandas.ipynb b/tutorials/things_in_pandas.ipynb index db9d0b4..a5d8a1e 100644 --- a/tutorials/things_in_pandas.ipynb +++ b/tutorials/things_in_pandas.ipynb @@ -1,7 +1,7 @@ { "metadata": { "name": "", - "signature": "sha256:01adffebfb99d8e7a86af443b9d14ca7695efc917465ea85868cc42681d6e96b" + "signature": "sha256:1ba931b3466a0506e031f8b9bdffcb2ba39138b42f3676b74376988bf095be97" }, "nbformat": 3, "nbformat_minor": 0, @@ -88,6 +88,7 @@ "- [Missing Values aka NaNs](#Missing-Values-aka-NaNs)\n", " - [Selecting NaN Rows](#Selecting-NaN-Rows)\n", " - [Dropping NaN Rows](#Dropping-NaN-Rows)\n", + " - [Filling NaN Rows](#Filling-NaN-Rows)\n", "- [Appending Rows to a DataFrame](#Appending-Rows-to-a-DataFrame)\n", "- [Sorting and Reindexing DataFrames](#Sorting-and-Reindexing-DataFrames)" ] @@ -328,6 +329,10 @@ "# Converting column names to lowercase\n", "\n", "df.columns = [c.lower() for c in df.columns]\n", + "\n", + "# or\n", + "# df.rename(columns=lambda x : x.lower())\n", + "\n", "df.tail()" ], "language": "python", @@ -576,10 +581,10 @@ "cell_type": "code", "collapsed": false, "input": [ - "# Creating a new column\n", + "# Processing `salary` column\n", "\n", - "df['team'] = pd.Series('', index=df.index)\n", - "df.tail(3)" + "df['salary'] = df['salary'].apply(lambda x: x.strip('$m'))\n", + "df.tail()" ], "language": "python", "metadata": {}, @@ -599,45 +604,63 @@ "
shots_on_targetpoints_per_gamepointsteam
5 Santiago Cazorla\\n Midfield \u2014 Arsenal 14.8 20 4NaN 20 9.97 NaN
6 David Silva\\n Midfield \u2014 Manchester City 14.3 15 6 2 11 10.35 155.26
7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea $14.0m Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea 14.0 20 2 14 10 10.47 209.49
8 Saido Berahino\\n Forward \u2014 West Brom $13.8m Saido Berahino\\n Forward \u2014 West Brom 13.8 21 9 0 20 7.02 147.43
9 Steven Gerrard\\n Midfield \u2014 Liverpool $13.8m Steven Gerrard\\n Midfield \u2014 Liverpool 13.8 20 5 1 11 7.50 150.01
\n", @@ -647,15 +670,19 @@ "output_type": "pyout", "prompt_number": 5, "text": [ - " player salary games goals assists \\\n", - "7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea $14.0m 20 2 14 \n", - "8 Saido Berahino\\n Forward \u2014 West Brom $13.8m 21 9 0 \n", - "9 Steven Gerrard\\n Midfield \u2014 Liverpool $13.8m 20 5 1 \n", + " player salary games goals assists \\\n", + "5 Santiago Cazorla\\n Midfield \u2014 Arsenal 14.8 20 4 NaN \n", + "6 David Silva\\n Midfield \u2014 Manchester City 14.3 15 6 2 \n", + "7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea 14.0 20 2 14 \n", + "8 Saido Berahino\\n Forward \u2014 West Brom 13.8 21 9 0 \n", + "9 Steven Gerrard\\n Midfield \u2014 Liverpool 13.8 20 5 1 \n", "\n", - " shots_on_target points_per_game points team \n", - "7 10 10.47 209.49 \n", - "8 20 7.02 147.43 \n", - "9 11 7.50 150.01 " + " shots_on_target points_per_game points \n", + "5 20 9.97 NaN \n", + "6 11 10.35 155.26 \n", + "7 10 10.47 209.49 \n", + "8 20 7.02 147.43 \n", + "9 11 7.50 150.01 " ] } ], @@ -665,10 +692,14 @@ "cell_type": "code", "collapsed": false, "input": [ - "# Processing `salary` column\n", + "# Creating a new column\n", "\n", - "df['salary'] = df['salary'].apply(lambda x: x.strip('$m'))\n", - "df.tail()" + "df['team'] = pd.Series('', index=df.index)\n", + "\n", + "# or\n", + "# df.insert(loc=9, column='team', value='') \n", + "\n", + "df.tail(3)" ], "language": "python", "metadata": {}, @@ -693,32 +724,8 @@ " \n", " \n", " \n", - " 5\n", - " Santiago Cazorla\\n Midfield \u2014 Arsenal\n", - " 14.8\n", - " 20\n", - " 4\n", - " NaN\n", - " 20\n", - " 9.97\n", - " NaN\n", - " \n", - " \n", - " \n", - " 6\n", - " David Silva\\n Midfield \u2014 Manchester City\n", - " 14.3\n", - " 15\n", - " 6\n", - " 2\n", - " 11\n", - " 10.35\n", - " 155.26\n", - " \n", - " \n", - " \n", " 7\n", - " Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea\n", + " Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea\n", " 14.0\n", " 20\n", " 2\n", @@ -730,7 +737,7 @@ " \n", " \n", " 8\n", - " Saido Berahino\\n Forward \u2014 West Brom\n", + " Saido Berahino\\n Forward \u2014 West Brom\n", " 13.8\n", " 21\n", " 9\n", @@ -742,7 +749,7 @@ " \n", " \n", " 9\n", - " Steven Gerrard\\n Midfield \u2014 Liverpool\n", + " Steven Gerrard\\n Midfield \u2014 Liverpool\n", " 13.8\n", " 20\n", " 5\n", @@ -760,16 +767,12 @@ "output_type": "pyout", "prompt_number": 6, "text": [ - " player salary games goals assists \\\n", - "5 Santiago Cazorla\\n Midfield \u2014 Arsenal 14.8 20 4 NaN \n", - "6 David Silva\\n Midfield \u2014 Manchester City 14.3 15 6 2 \n", - "7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea 14.0 20 2 14 \n", - "8 Saido Berahino\\n Forward \u2014 West Brom 13.8 21 9 0 \n", - "9 Steven Gerrard\\n Midfield \u2014 Liverpool 13.8 20 5 1 \n", + " player salary games goals assists \\\n", + "7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea 14.0 20 2 14 \n", + "8 Saido Berahino\\n Forward \u2014 West Brom 13.8 21 9 0 \n", + "9 Steven Gerrard\\n Midfield \u2014 Liverpool 13.8 20 5 1 \n", "\n", " shots_on_target points_per_game points team \n", - "5 20 9.97 NaN \n", - "6 11 10.35 155.26 \n", "7 10 10.47 209.49 \n", "8 20 7.02 147.43 \n", "9 11 7.50 150.01 " @@ -1229,6 +1232,227 @@ "
" ] }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Filling NaN Rows" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to section overview](#Sections)]" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Filling NaN cells with default value 0\n", + "\n", + "df = df.fillna(value=0)\n", + "df" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointsteamposition
0 Sergio Ag\u00fcero 19.2 16 14 3 34 13.12 209.98 Manchester City Forward
1 Eden Hazard 18.9 21 8 4 17 13.05 274.04 Chelsea Midfield
2 Alexis S\u00e1nchez 17.6 0 12 7 29 11.19 223.86 Arsenal Forward
3 Yaya Tour\u00e9 16.6 18 7 1 19 10.99 197.91 Manchester City Midfield
4 \u00c1ngel Di Mar\u00eda 15.0 13 3 0 13 10.17 132.23 Manchester United Midfield
5 Santiago Cazorla 14.8 20 4 0 20 9.97 0.00 Arsenal Midfield
6 David Silva 14.3 15 6 2 11 10.35 155.26 Manchester City Midfield
7 Cesc F\u00e0bregas 14.0 20 2 14 10 10.47 209.49 Chelsea Midfield
8 Saido Berahino 13.8 21 9 0 20 7.02 147.43 West Brom Forward
9 Steven Gerrard 13.8 20 5 1 11 7.50 150.01 Liverpool Midfield
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 10, + "text": [ + " player salary games goals assists shots_on_target \\\n", + "0 Sergio Ag\u00fcero 19.2 16 14 3 34 \n", + "1 Eden Hazard 18.9 21 8 4 17 \n", + "2 Alexis S\u00e1nchez 17.6 0 12 7 29 \n", + "3 Yaya Tour\u00e9 16.6 18 7 1 19 \n", + "4 \u00c1ngel Di Mar\u00eda 15.0 13 3 0 13 \n", + "5 Santiago Cazorla 14.8 20 4 0 20 \n", + "6 David Silva 14.3 15 6 2 11 \n", + "7 Cesc F\u00e0bregas 14.0 20 2 14 10 \n", + "8 Saido Berahino 13.8 21 9 0 20 \n", + "9 Steven Gerrard 13.8 20 5 1 11 \n", + "\n", + " points_per_game points team position \n", + "0 13.12 209.98 Manchester City Forward \n", + "1 13.05 274.04 Chelsea Midfield \n", + "2 11.19 223.86 Arsenal Forward \n", + "3 10.99 197.91 Manchester City Midfield \n", + "4 10.17 132.23 Manchester United Midfield \n", + "5 9.97 0.00 Arsenal Midfield \n", + "6 10.35 155.26 Manchester City Midfield \n", + "7 10.47 209.49 Chelsea Midfield \n", + "8 7.02 147.43 West Brom Forward \n", + "9 7.50 150.01 Liverpool Midfield " + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, { "cell_type": "heading", "level": 1, @@ -1250,8 +1474,10 @@ "input": [ "# Adding an \"empty\" row to the DataFrame\n", "\n", + "import numpy as np\n", + "\n", "df = df.append(pd.Series(\n", - " [None]*len(df.columns), # Fill cells with NaNs\n", + " [np.nan]*len(df.columns), # Fill cells with NaNs\n", " index=df.columns), \n", " ignore_index=True)\n", "\n", @@ -1351,7 +1577,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 10, + "prompt_number": 11, "text": [ " player salary games goals assists shots_on_target \\\n", "6 David Silva 14.3 15 6 2 11 \n", @@ -1369,7 +1595,7 @@ ] } ], - "prompt_number": 10 + "prompt_number": 11 }, { "cell_type": "code", @@ -1475,7 +1701,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 11, + "prompt_number": 12, "text": [ " player salary games goals assists shots_on_target \\\n", "6 David Silva 14.3 15 6 2 11 \n", @@ -1493,7 +1719,7 @@ ] } ], - "prompt_number": 11 + "prompt_number": 12 }, { "cell_type": "markdown", @@ -1567,7 +1793,7 @@ " 2\n", " Alexis S\u00e1nchez\n", " 17.6\n", - " NaN\n", + " 0\n", " 12\n", " 7\n", " 29\n", @@ -1621,11 +1847,11 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 12, + "prompt_number": 13, "text": [ " player salary games goals assists shots_on_target \\\n", "0 Sergio Ag\u00fcero 19.2 16 14 3 34 \n", - "2 Alexis S\u00e1nchez 17.6 NaN 12 7 29 \n", + "2 Alexis S\u00e1nchez 17.6 0 12 7 29 \n", "8 Saido Berahino 13.8 21 9 0 20 \n", "1 Eden Hazard 18.9 21 8 4 17 \n", "3 Yaya Tour\u00e9 16.6 18 7 1 19 \n", @@ -1639,7 +1865,7 @@ ] } ], - "prompt_number": 12 + "prompt_number": 13 }, { "cell_type": "code", @@ -1690,7 +1916,7 @@ " 2\n", " Alexis S\u00e1nchez\n", " 17.6\n", - " NaN\n", + " 0\n", " 12\n", " 7\n", " 29\n", @@ -1744,11 +1970,11 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 13, + "prompt_number": 14, "text": [ " player salary games goals assists shots_on_target \\\n", "1 Sergio Ag\u00fcero 19.2 16 14 3 34 \n", - "2 Alexis S\u00e1nchez 17.6 NaN 12 7 29 \n", + "2 Alexis S\u00e1nchez 17.6 0 12 7 29 \n", "3 Saido Berahino 13.8 21 9 0 20 \n", "4 Eden Hazard 18.9 21 8 4 17 \n", "5 Yaya Tour\u00e9 16.6 18 7 1 19 \n", @@ -1762,7 +1988,7 @@ ] } ], - "prompt_number": 13 + "prompt_number": 14 } ], "metadata": {} From c68623a5aa90af29edc7c4e1315298edb5b54c86 Mon Sep 17 00:00:00 2001 From: rasbt Date: Sat, 24 Jan 2015 15:18:17 -0500 Subject: [PATCH 44/83] Updating Columns update --- tutorials/things_in_pandas.ipynb | 831 ++++++++++++++++++++++--------- 1 file changed, 591 insertions(+), 240 deletions(-) diff --git a/tutorials/things_in_pandas.ipynb b/tutorials/things_in_pandas.ipynb index a5d8a1e..972f395 100644 --- a/tutorials/things_in_pandas.ipynb +++ b/tutorials/things_in_pandas.ipynb @@ -1,7 +1,7 @@ { "metadata": { "name": "", - "signature": "sha256:1ba931b3466a0506e031f8b9bdffcb2ba39138b42f3676b74376988bf095be97" + "signature": "sha256:d1e515a46e85e308d5673229e5a6f87c3db1d616a30cee44a09e0af3e088e19c" }, "nbformat": 3, "nbformat_minor": 0, @@ -84,13 +84,18 @@ "source": [ "- [Loading Some Example Data](#Loading-Some-Example-Data)\n", "- [Renaming Columns](#Renaming-Columns)\n", + " - [Converting Column Names to Lowercase](#Converting-Column-Names-to-Lowercase)\n", + " - [Renaming Particular Columns](#Renaming-Particular-Columns)\n", "- [Applying Computations Rows-wise](#Applying-Computations-Rows-wise)\n", + " - [Changing Values in a Column](#Changing-Values-in-a-Column)\n", + " - [Adding a New Column](#Adding-a-New-Column)\n", "- [Missing Values aka NaNs](#Missing-Values-aka-NaNs)\n", " - [Selecting NaN Rows](#Selecting-NaN-Rows)\n", - " - [Dropping NaN Rows](#Dropping-NaN-Rows)\n", + " - [Selecting non-NaN Rows](#Selecting-non-NaN-Rows)\n", " - [Filling NaN Rows](#Filling-NaN-Rows)\n", "- [Appending Rows to a DataFrame](#Appending-Rows-to-a-DataFrame)\n", - "- [Sorting and Reindexing DataFrames](#Sorting-and-Reindexing-DataFrames)" + "- [Sorting and Reindexing DataFrames](#Sorting-and-Reindexing-DataFrames)\n", + "- [Updating Columns](#Updating-Columns)" ] }, { @@ -322,6 +327,22 @@ "[[back to section overview](#Sections)]" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Converting Column Names to Lowercase" + ] + }, { "cell_type": "code", "collapsed": false, @@ -333,7 +354,7 @@ "# or\n", "# df.rename(columns=lambda x : x.lower())\n", "\n", - "df.tail()" + "df.tail(3)" ], "language": "python", "metadata": {}, @@ -357,30 +378,8 @@ " \n", " \n", " \n", - " 5\n", - " Santiago Cazorla\\n Midfield \u2014 Arsenal\n", - " $14.8m\n", - " 20\n", - " 4\n", - " NaN\n", - " 20\n", - " 9.97\n", - " NaN\n", - " \n", - " \n", - " 6\n", - " David Silva\\n Midfield \u2014 Manchester City\n", - " $14.3m\n", - " 15\n", - " 6\n", - " 2\n", - " 11\n", - " 10.35\n", - " 155.26\n", - " \n", - " \n", " 7\n", - " Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea\n", + " Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea\n", " $14.0m\n", " 20\n", " 2\n", @@ -391,7 +390,7 @@ " \n", " \n", " 8\n", - " Saido Berahino\\n Forward \u2014 West Brom\n", + " Saido Berahino\\n Forward \u2014 West Brom\n", " $13.8m\n", " 21\n", " 9\n", @@ -402,7 +401,7 @@ " \n", " \n", " 9\n", - " Steven Gerrard\\n Midfield \u2014 Liverpool\n", + " Steven Gerrard\\n Midfield \u2014 Liverpool\n", " $13.8m\n", " 20\n", " 5\n", @@ -419,16 +418,12 @@ "output_type": "pyout", "prompt_number": 3, "text": [ - " player salary gp g a sot ppg \\\n", - "5 Santiago Cazorla\\n Midfield \u2014 Arsenal $14.8m 20 4 NaN 20 9.97 \n", - "6 David Silva\\n Midfield \u2014 Manchester City $14.3m 15 6 2 11 10.35 \n", - "7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea $14.0m 20 2 14 10 10.47 \n", - "8 Saido Berahino\\n Forward \u2014 West Brom $13.8m 21 9 0 20 7.02 \n", - "9 Steven Gerrard\\n Midfield \u2014 Liverpool $13.8m 20 5 1 11 7.50 \n", + " player salary gp g a sot ppg \\\n", + "7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea $14.0m 20 2 14 10 10.47 \n", + "8 Saido Berahino\\n Forward \u2014 West Brom $13.8m 21 9 0 20 7.02 \n", + "9 Steven Gerrard\\n Midfield \u2014 Liverpool $13.8m 20 5 1 11 7.50 \n", "\n", " p \n", - "5 NaN \n", - "6 155.26 \n", "7 209.49 \n", "8 147.43 \n", "9 150.01 " @@ -437,12 +432,26 @@ ], "prompt_number": 3 }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Renaming Particular Columns" + ] + }, { "cell_type": "code", "collapsed": false, "input": [ - "# Renaming particular columns\n", - "\n", "df = df.rename(columns={'p': 'points', \n", " 'gp': 'games',\n", " 'sot': 'shots_on_target',\n", @@ -450,7 +459,7 @@ " 'ppg': 'points_per_game',\n", " 'a': 'assists',})\n", "\n", - "df.tail()" + "df.tail(3)" ], "language": "python", "metadata": {}, @@ -474,30 +483,8 @@ " \n", " \n", " \n", - " 5\n", - " Santiago Cazorla\\n Midfield \u2014 Arsenal\n", - " $14.8m\n", - " 20\n", - " 4\n", - " NaN\n", - " 20\n", - " 9.97\n", - " NaN\n", - " \n", - " \n", - " 6\n", - " David Silva\\n Midfield \u2014 Manchester City\n", - " $14.3m\n", - " 15\n", - " 6\n", - " 2\n", - " 11\n", - " 10.35\n", - " 155.26\n", - " \n", - " \n", " 7\n", - " Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea\n", + " Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea\n", " $14.0m\n", " 20\n", " 2\n", @@ -508,7 +495,7 @@ " \n", " \n", " 8\n", - " Saido Berahino\\n Forward \u2014 West Brom\n", + " Saido Berahino\\n Forward \u2014 West Brom\n", " $13.8m\n", " 21\n", " 9\n", @@ -519,7 +506,7 @@ " \n", " \n", " 9\n", - " Steven Gerrard\\n Midfield \u2014 Liverpool\n", + " Steven Gerrard\\n Midfield \u2014 Liverpool\n", " $13.8m\n", " 20\n", " 5\n", @@ -536,16 +523,12 @@ "output_type": "pyout", "prompt_number": 4, "text": [ - " player salary games goals assists \\\n", - "5 Santiago Cazorla\\n Midfield \u2014 Arsenal $14.8m 20 4 NaN \n", - "6 David Silva\\n Midfield \u2014 Manchester City $14.3m 15 6 2 \n", - "7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea $14.0m 20 2 14 \n", - "8 Saido Berahino\\n Forward \u2014 West Brom $13.8m 21 9 0 \n", - "9 Steven Gerrard\\n Midfield \u2014 Liverpool $13.8m 20 5 1 \n", + " player salary games goals assists \\\n", + "7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea $14.0m 20 2 14 \n", + "8 Saido Berahino\\n Forward \u2014 West Brom $13.8m 21 9 0 \n", + "9 Steven Gerrard\\n Midfield \u2014 Liverpool $13.8m 20 5 1 \n", "\n", " shots_on_target points_per_game points \n", - "5 20 9.97 NaN \n", - "6 11 10.35 155.26 \n", "7 10 10.47 209.49 \n", "8 20 7.02 147.43 \n", "9 11 7.50 150.01 " @@ -577,6 +560,22 @@ "[[back to section overview](#Sections)]" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Changing Values in a Column" + ] + }, { "cell_type": "code", "collapsed": false, @@ -688,12 +687,26 @@ ], "prompt_number": 5 }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Adding a New Column" + ] + }, { "cell_type": "code", "collapsed": false, "input": [ - "# Creating a new column\n", - "\n", "df['team'] = pd.Series('', index=df.index)\n", "\n", "# or\n", @@ -794,9 +807,10 @@ "\n", "for idx,row in df.iterrows():\n", " name, position, team = process_player_col(row['player'])\n", + "\n", " df.ix[idx, 'player'], df.ix[idx, 'position'], df.ix[idx, 'team'] = name, position, team\n", " \n", - "df.tail()" + "df.tail(3)" ], "language": "python", "metadata": {}, @@ -822,34 +836,8 @@ " \n", " \n", " \n", - " 5\n", - " Santiago Cazorla\n", - " 14.8\n", - " 20\n", - " 4\n", - " NaN\n", - " 20\n", - " 9.97\n", - " NaN\n", - " Arsenal\n", - " Midfield\n", - " \n", - " \n", - " 6\n", - " David Silva\n", - " 14.3\n", - " 15\n", - " 6\n", - " 2\n", - " 11\n", - " 10.35\n", - " 155.26\n", - " Manchester City\n", - " Midfield\n", - " \n", - " \n", " 7\n", - " Cesc F\u00e0bregas\n", + " Cesc F\u00e0bregas\n", " 14.0\n", " 20\n", " 2\n", @@ -857,12 +845,12 @@ " 10\n", " 10.47\n", " 209.49\n", - " Chelsea\n", + " Chelsea\n", " Midfield\n", " \n", " \n", " 8\n", - " Saido Berahino\n", + " Saido Berahino\n", " 13.8\n", " 21\n", " 9\n", @@ -870,12 +858,12 @@ " 20\n", " 7.02\n", " 147.43\n", - " West Brom\n", + " West Brom\n", " Forward\n", " \n", " \n", " 9\n", - " Steven Gerrard\n", + " Steven Gerrard\n", " 13.8\n", " 20\n", " 5\n", @@ -883,7 +871,7 @@ " 11\n", " 7.50\n", " 150.01\n", - " Liverpool\n", + " Liverpool\n", " Midfield\n", " \n", " \n", @@ -894,19 +882,15 @@ "output_type": "pyout", "prompt_number": 7, "text": [ - " player salary games goals assists shots_on_target \\\n", - "5 Santiago Cazorla 14.8 20 4 NaN 20 \n", - "6 David Silva 14.3 15 6 2 11 \n", - "7 Cesc F\u00e0bregas 14.0 20 2 14 10 \n", - "8 Saido Berahino 13.8 21 9 0 20 \n", - "9 Steven Gerrard 13.8 20 5 1 11 \n", + " player salary games goals assists shots_on_target \\\n", + "7 Cesc F\u00e0bregas 14.0 20 2 14 10 \n", + "8 Saido Berahino 13.8 21 9 0 20 \n", + "9 Steven Gerrard 13.8 20 5 1 11 \n", "\n", - " points_per_game points team position \n", - "5 9.97 NaN Arsenal Midfield \n", - "6 10.35 155.26 Manchester City Midfield \n", - "7 10.47 209.49 Chelsea Midfield \n", - "8 7.02 147.43 West Brom Forward \n", - "9 7.50 150.01 Liverpool Midfield " + " points_per_game points team position \n", + "7 10.47 209.49 Chelsea Midfield \n", + "8 7.02 147.43 West Brom Forward \n", + "9 7.50 150.01 Liverpool Midfield " ] } ], @@ -945,25 +929,19 @@ }, { "cell_type": "heading", - "level": 2, + "level": 3, "metadata": {}, "source": [ "Selecting NaN Rows" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to section overview](#Sections)]" - ] - }, { "cell_type": "code", "collapsed": false, "input": [ "# Selecting all rows that have NaNs in the `assists` column\n", - "df[~df['assists'].notnull()]" + "\n", + "df[df['assists'].isnull()]" ], "language": "python", "metadata": {}, @@ -1044,25 +1022,16 @@ }, { "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Dropping NaN Rows" - ] - }, - { - "cell_type": "markdown", + "level": 3, "metadata": {}, "source": [ - "[[back to section overview](#Sections)]" + "Selecting non-NaN Rows" ] }, { "cell_type": "code", "collapsed": false, "input": [ - "# Dropping all rows that have NaNs in the `assists` column\n", - "\n", "df[df['assists'].notnull()]" ], "language": "python", @@ -1234,19 +1203,12 @@ }, { "cell_type": "heading", - "level": 2, + "level": 3, "metadata": {}, "source": [ "Filling NaN Rows" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to section overview](#Sections)]" - ] - }, { "cell_type": "code", "collapsed": false, @@ -1481,7 +1443,7 @@ " index=df.columns), \n", " ignore_index=True)\n", "\n", - "df.tail()" + "df.tail(3)" ], "language": "python", "metadata": {}, @@ -1507,32 +1469,6 @@ " \n", " \n", " \n", - " 6 \n", - " David Silva\n", - " 14.3\n", - " 15\n", - " 6\n", - " 2\n", - " 11\n", - " 10.35\n", - " 155.26\n", - " Manchester City\n", - " Midfield\n", - " \n", - " \n", - " 7 \n", - " Cesc F\u00e0bregas\n", - " 14.0\n", - " 20\n", - " 2\n", - " 14\n", - " 10\n", - " 10.47\n", - " 209.49\n", - " Chelsea\n", - " Midfield\n", - " \n", - " \n", " 8 \n", " Saido Berahino\n", " 13.8\n", @@ -1540,9 +1476,9 @@ " 9\n", " 0\n", " 20\n", - " 7.02\n", + " 7.02\n", " 147.43\n", - " West Brom\n", + " West Brom\n", " Forward\n", " \n", " \n", @@ -1553,9 +1489,9 @@ " 5\n", " 1\n", " 11\n", - " 7.50\n", + " 7.50\n", " 150.01\n", - " Liverpool\n", + " Liverpool\n", " Midfield\n", " \n", " \n", @@ -1566,9 +1502,9 @@ " NaN\n", " NaN\n", " NaN\n", - " NaN\n", + " NaN\n", " NaN\n", - " NaN\n", + " NaN\n", " NaN\n", " \n", " \n", @@ -1580,18 +1516,14 @@ "prompt_number": 11, "text": [ " player salary games goals assists shots_on_target \\\n", - "6 David Silva 14.3 15 6 2 11 \n", - "7 Cesc F\u00e0bregas 14.0 20 2 14 10 \n", "8 Saido Berahino 13.8 21 9 0 20 \n", "9 Steven Gerrard 13.8 20 5 1 11 \n", "10 NaN NaN NaN NaN NaN NaN \n", "\n", - " points_per_game points team position \n", - "6 10.35 155.26 Manchester City Midfield \n", - "7 10.47 209.49 Chelsea Midfield \n", - "8 7.02 147.43 West Brom Forward \n", - "9 7.50 150.01 Liverpool Midfield \n", - "10 NaN NaN NaN NaN " + " points_per_game points team position \n", + "8 7.02 147.43 West Brom Forward \n", + "9 7.50 150.01 Liverpool Midfield \n", + "10 NaN NaN NaN NaN " ] } ], @@ -1605,7 +1537,7 @@ "\n", "df.loc[df.index[-1], 'player'] = 'New Player'\n", "df.loc[df.index[-1], 'salary'] = 12.3\n", - "df.tail()" + "df.tail(3)" ], "language": "python", "metadata": {}, @@ -1631,43 +1563,17 @@ " \n", " \n", " \n", - " 6 \n", - " David Silva\n", - " 14.3\n", - " 15\n", - " 6\n", - " 2\n", - " 11\n", - " 10.35\n", - " 155.26\n", - " Manchester City\n", - " Midfield\n", - " \n", - " \n", - " 7 \n", - " Cesc F\u00e0bregas\n", - " 14.0\n", - " 20\n", - " 2\n", - " 14\n", - " 10\n", - " 10.47\n", - " 209.49\n", - " Chelsea\n", - " Midfield\n", - " \n", - " \n", - " 8 \n", - " Saido Berahino\n", - " 13.8\n", - " 21\n", - " 9\n", - " 0\n", - " 20\n", - " 7.02\n", - " 147.43\n", - " West Brom\n", - " Forward\n", + " 8 \n", + " Saido Berahino\n", + " 13.8\n", + " 21\n", + " 9\n", + " 0\n", + " 20\n", + " 7.02\n", + " 147.43\n", + " West Brom\n", + " Forward\n", " \n", " \n", " 9 \n", @@ -1677,9 +1583,9 @@ " 5\n", " 1\n", " 11\n", - " 7.50\n", + " 7.50\n", " 150.01\n", - " Liverpool\n", + " Liverpool\n", " Midfield\n", " \n", " \n", @@ -1690,9 +1596,9 @@ " NaN\n", " NaN\n", " NaN\n", - " NaN\n", + " NaN\n", " NaN\n", - " NaN\n", + " NaN\n", " NaN\n", " \n", " \n", @@ -1704,18 +1610,14 @@ "prompt_number": 12, "text": [ " player salary games goals assists shots_on_target \\\n", - "6 David Silva 14.3 15 6 2 11 \n", - "7 Cesc F\u00e0bregas 14.0 20 2 14 10 \n", "8 Saido Berahino 13.8 21 9 0 20 \n", "9 Steven Gerrard 13.8 20 5 1 11 \n", "10 New Player 12.3 NaN NaN NaN NaN \n", "\n", - " points_per_game points team position \n", - "6 10.35 155.26 Manchester City Midfield \n", - "7 10.47 209.49 Chelsea Midfield \n", - "8 7.02 147.43 West Brom Forward \n", - "9 7.50 150.01 Liverpool Midfield \n", - "10 NaN NaN NaN NaN " + " points_per_game points team position \n", + "8 7.02 147.43 West Brom Forward \n", + "9 7.50 150.01 Liverpool Midfield \n", + "10 NaN NaN NaN NaN " ] } ], @@ -1871,7 +1773,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "# Reindexing the DataFrame after sorting\n", + "# Optional reindexing of the DataFrame after sorting\n", "\n", "df.index = range(1,len(df.index)+1)\n", "df.head()" @@ -1989,6 +1891,455 @@ } ], "prompt_number": 14 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Updating Columns" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to section overview](#Sections)]" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Creating a dummy DataFrame with changes in the `salary` column\n", + "\n", + "df_2 = df.copy()\n", + "df_2.loc[0:2, 'salary'] = [20.0, 15.0]\n", + "df_2.head(3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointsteamposition
1 Sergio Ag\u00fcero 20 16 14 3 34 13.12 209.98 Manchester City Forward
2 Alexis S\u00e1nchez 15 0 12 7 29 11.19 223.86 Arsenal Forward
3 Saido Berahino 13.8 21 9 0 20 7.02 147.43 West Brom Forward
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 15, + "text": [ + " player salary games goals assists shots_on_target \\\n", + "1 Sergio Ag\u00fcero 20 16 14 3 34 \n", + "2 Alexis S\u00e1nchez 15 0 12 7 29 \n", + "3 Saido Berahino 13.8 21 9 0 20 \n", + "\n", + " points_per_game points team position \n", + "1 13.12 209.98 Manchester City Forward \n", + "2 11.19 223.86 Arsenal Forward \n", + "3 7.02 147.43 West Brom Forward " + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Temporarily use the `player` columns as indices to \n", + "# apply the update functions\n", + "\n", + "df.set_index('player', inplace=True)\n", + "df_2.set_index('player', inplace=True)\n", + "df.head(3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
salarygamesgoalsassistsshots_on_targetpoints_per_gamepointsteamposition
player
Sergio Ag\u00fcero 19.2 16 14 3 34 13.12 209.98 Manchester City Forward
Alexis S\u00e1nchez 17.6 0 12 7 29 11.19 223.86 Arsenal Forward
Saido Berahino 13.8 21 9 0 20 7.02 147.43 West Brom Forward
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 16, + "text": [ + " salary games goals assists shots_on_target \\\n", + "player \n", + "Sergio Ag\u00fcero 19.2 16 14 3 34 \n", + "Alexis S\u00e1nchez 17.6 0 12 7 29 \n", + "Saido Berahino 13.8 21 9 0 20 \n", + "\n", + " points_per_game points team position \n", + "player \n", + "Sergio Ag\u00fcero 13.12 209.98 Manchester City Forward \n", + "Alexis S\u00e1nchez 11.19 223.86 Arsenal Forward \n", + "Saido Berahino 7.02 147.43 West Brom Forward " + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Update the `salary` column\n", + "df.update(other=df_2['salary'], overwrite=True)\n", + "df.head(3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
salarygamesgoalsassistsshots_on_targetpoints_per_gamepointsteamposition
player
Sergio Ag\u00fcero 20 16 14 3 34 13.12 209.98 Manchester City Forward
Alexis S\u00e1nchez 15 0 12 7 29 11.19 223.86 Arsenal Forward
Saido Berahino 13.8 21 9 0 20 7.02 147.43 West Brom Forward
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 17, + "text": [ + " salary games goals assists shots_on_target \\\n", + "player \n", + "Sergio Ag\u00fcero 20 16 14 3 34 \n", + "Alexis S\u00e1nchez 15 0 12 7 29 \n", + "Saido Berahino 13.8 21 9 0 20 \n", + "\n", + " points_per_game points team position \n", + "player \n", + "Sergio Ag\u00fcero 13.12 209.98 Manchester City Forward \n", + "Alexis S\u00e1nchez 11.19 223.86 Arsenal Forward \n", + "Saido Berahino 7.02 147.43 West Brom Forward " + ] + } + ], + "prompt_number": 17 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Reset the indices\n", + "df.reset_index(inplace=True)\n", + "df.head(3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointsteamposition
0 Sergio Ag\u00fcero 20 16 14 3 34 13.12 209.98 Manchester City Forward
1 Alexis S\u00e1nchez 15 0 12 7 29 11.19 223.86 Arsenal Forward
2 Saido Berahino 13.8 21 9 0 20 7.02 147.43 West Brom Forward
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 18, + "text": [ + " player salary games goals assists shots_on_target \\\n", + "0 Sergio Ag\u00fcero 20 16 14 3 34 \n", + "1 Alexis S\u00e1nchez 15 0 12 7 29 \n", + "2 Saido Berahino 13.8 21 9 0 20 \n", + "\n", + " points_per_game points team position \n", + "0 13.12 209.98 Manchester City Forward \n", + "1 11.19 223.86 Arsenal Forward \n", + "2 7.02 147.43 West Brom Forward " + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 18 } ], "metadata": {} From 598bde5c8a2579a5b9b2624688a3fcc9fa99ee11 Mon Sep 17 00:00:00 2001 From: rasbt Date: Sat, 24 Jan 2015 15:41:36 -0500 Subject: [PATCH 45/83] insert fix --- tutorials/things_in_pandas.ipynb | 260 ++++++++++++++++--------------- 1 file changed, 132 insertions(+), 128 deletions(-) diff --git a/tutorials/things_in_pandas.ipynb b/tutorials/things_in_pandas.ipynb index 972f395..9fdc9e7 100644 --- a/tutorials/things_in_pandas.ipynb +++ b/tutorials/things_in_pandas.ipynb @@ -1,7 +1,7 @@ { "metadata": { "name": "", - "signature": "sha256:d1e515a46e85e308d5673229e5a6f87c3db1d616a30cee44a09e0af3e088e19c" + "signature": "sha256:3075a6608bb9a788ad29d1daaeb2421c2db561abd63a3ce811c1fe8e6e482d9f" }, "nbformat": 3, "nbformat_minor": 0, @@ -710,7 +710,7 @@ "df['team'] = pd.Series('', index=df.index)\n", "\n", "# or\n", - "# df.insert(loc=9, column='team', value='') \n", + "df.insert(loc=8, column='position', value='') \n", "\n", "df.tail(3)" ], @@ -732,6 +732,7 @@ " shots_on_target\n", " points_per_game\n", " points\n", + " position\n", " team\n", " \n", " \n", @@ -747,6 +748,7 @@ " 10.47\n", " 209.49\n", " \n", + " \n", " \n", " \n", " 8\n", @@ -759,6 +761,7 @@ " 7.02\n", " 147.43\n", " \n", + " \n", " \n", " \n", " 9\n", @@ -771,6 +774,7 @@ " 7.50\n", " 150.01\n", " \n", + " \n", " \n", " \n", "\n", @@ -785,10 +789,10 @@ "8 Saido Berahino\\n Forward \u2014 West Brom 13.8 21 9 0 \n", "9 Steven Gerrard\\n Midfield \u2014 Liverpool 13.8 20 5 1 \n", "\n", - " shots_on_target points_per_game points team \n", - "7 10 10.47 209.49 \n", - "8 20 7.02 147.43 \n", - "9 11 7.50 150.01 " + " shots_on_target points_per_game points position team \n", + "7 10 10.47 209.49 \n", + "8 20 7.02 147.43 \n", + "9 11 7.50 150.01 " ] } ], @@ -830,8 +834,8 @@ " shots_on_target\n", " points_per_game\n", " points\n", - " team\n", " position\n", + " team\n", " \n", " \n", " \n", @@ -845,8 +849,8 @@ " 10\n", " 10.47\n", " 209.49\n", - " Chelsea\n", " Midfield\n", + " Chelsea\n", " \n", " \n", " 8\n", @@ -858,8 +862,8 @@ " 20\n", " 7.02\n", " 147.43\n", - " West Brom\n", " Forward\n", + " West Brom\n", " \n", " \n", " 9\n", @@ -871,8 +875,8 @@ " 11\n", " 7.50\n", " 150.01\n", - " Liverpool\n", " Midfield\n", + " Liverpool\n", " \n", " \n", "\n", @@ -887,10 +891,10 @@ "8 Saido Berahino 13.8 21 9 0 20 \n", "9 Steven Gerrard 13.8 20 5 1 11 \n", "\n", - " points_per_game points team position \n", - "7 10.47 209.49 Chelsea Midfield \n", - "8 7.02 147.43 West Brom Forward \n", - "9 7.50 150.01 Liverpool Midfield " + " points_per_game points position team \n", + "7 10.47 209.49 Midfield Chelsea \n", + "8 7.02 147.43 Forward West Brom \n", + "9 7.50 150.01 Midfield Liverpool " ] } ], @@ -961,8 +965,8 @@ " shots_on_target\n", " points_per_game\n", " points\n", - " team\n", " position\n", + " team\n", " \n", " \n", " \n", @@ -976,8 +980,8 @@ " 13\n", " 10.17\n", " 132.23\n", - " Manchester United\n", " Midfield\n", + " Manchester United\n", " \n", " \n", " 5\n", @@ -989,8 +993,8 @@ " 20\n", " 9.97\n", " NaN\n", - " Arsenal\n", " Midfield\n", + " Arsenal\n", " \n", " \n", "\n", @@ -1004,9 +1008,9 @@ "4 \u00c1ngel Di Mar\u00eda 15.0 13 3 NaN 13 \n", "5 Santiago Cazorla 14.8 20 4 NaN 20 \n", "\n", - " points_per_game points team position \n", - "4 10.17 132.23 Manchester United Midfield \n", - "5 9.97 NaN Arsenal Midfield " + " points_per_game points position team \n", + "4 10.17 132.23 Midfield Manchester United \n", + "5 9.97 NaN Midfield Arsenal " ] } ], @@ -1052,8 +1056,8 @@ " shots_on_target\n", " points_per_game\n", " points\n", - " team\n", " position\n", + " team\n", " \n", " \n", " \n", @@ -1067,8 +1071,8 @@ " 34\n", " 13.12\n", " 209.98\n", - " Manchester City\n", " Forward\n", + " Manchester City\n", " \n", " \n", " 1\n", @@ -1080,8 +1084,8 @@ " 17\n", " 13.05\n", " 274.04\n", - " Chelsea\n", " Midfield\n", + " Chelsea\n", " \n", " \n", " 2\n", @@ -1093,8 +1097,8 @@ " 29\n", " 11.19\n", " 223.86\n", - " Arsenal\n", " Forward\n", + " Arsenal\n", " \n", " \n", " 3\n", @@ -1106,8 +1110,8 @@ " 19\n", " 10.99\n", " 197.91\n", - " Manchester City\n", " Midfield\n", + " Manchester City\n", " \n", " \n", " 6\n", @@ -1119,8 +1123,8 @@ " 11\n", " 10.35\n", " 155.26\n", - " Manchester City\n", " Midfield\n", + " Manchester City\n", " \n", " \n", " 7\n", @@ -1132,8 +1136,8 @@ " 10\n", " 10.47\n", " 209.49\n", - " Chelsea\n", " Midfield\n", + " Chelsea\n", " \n", " \n", " 8\n", @@ -1145,8 +1149,8 @@ " 20\n", " 7.02\n", " 147.43\n", - " West Brom\n", " Forward\n", + " West Brom\n", " \n", " \n", " 9\n", @@ -1158,8 +1162,8 @@ " 11\n", " 7.50\n", " 150.01\n", - " Liverpool\n", " Midfield\n", + " Liverpool\n", " \n", " \n", "\n", @@ -1179,15 +1183,15 @@ "8 Saido Berahino 13.8 21 9 0 20 \n", "9 Steven Gerrard 13.8 20 5 1 11 \n", "\n", - " points_per_game points team position \n", - "0 13.12 209.98 Manchester City Forward \n", - "1 13.05 274.04 Chelsea Midfield \n", - "2 11.19 223.86 Arsenal Forward \n", - "3 10.99 197.91 Manchester City Midfield \n", - "6 10.35 155.26 Manchester City Midfield \n", - "7 10.47 209.49 Chelsea Midfield \n", - "8 7.02 147.43 West Brom Forward \n", - "9 7.50 150.01 Liverpool Midfield " + " points_per_game points position team \n", + "0 13.12 209.98 Forward Manchester City \n", + "1 13.05 274.04 Midfield Chelsea \n", + "2 11.19 223.86 Forward Arsenal \n", + "3 10.99 197.91 Midfield Manchester City \n", + "6 10.35 155.26 Midfield Manchester City \n", + "7 10.47 209.49 Midfield Chelsea \n", + "8 7.02 147.43 Forward West Brom \n", + "9 7.50 150.01 Midfield Liverpool " ] } ], @@ -1236,8 +1240,8 @@ " shots_on_target\n", " points_per_game\n", " points\n", - " team\n", " position\n", + " team\n", " \n", " \n", " \n", @@ -1251,8 +1255,8 @@ " 34\n", " 13.12\n", " 209.98\n", - " Manchester City\n", " Forward\n", + " Manchester City\n", " \n", " \n", " 1\n", @@ -1264,8 +1268,8 @@ " 17\n", " 13.05\n", " 274.04\n", - " Chelsea\n", " Midfield\n", + " Chelsea\n", " \n", " \n", " 2\n", @@ -1277,8 +1281,8 @@ " 29\n", " 11.19\n", " 223.86\n", - " Arsenal\n", " Forward\n", + " Arsenal\n", " \n", " \n", " 3\n", @@ -1290,8 +1294,8 @@ " 19\n", " 10.99\n", " 197.91\n", - " Manchester City\n", " Midfield\n", + " Manchester City\n", " \n", " \n", " 4\n", @@ -1303,8 +1307,8 @@ " 13\n", " 10.17\n", " 132.23\n", - " Manchester United\n", " Midfield\n", + " Manchester United\n", " \n", " \n", " 5\n", @@ -1316,8 +1320,8 @@ " 20\n", " 9.97\n", " 0.00\n", - " Arsenal\n", " Midfield\n", + " Arsenal\n", " \n", " \n", " 6\n", @@ -1329,8 +1333,8 @@ " 11\n", " 10.35\n", " 155.26\n", - " Manchester City\n", " Midfield\n", + " Manchester City\n", " \n", " \n", " 7\n", @@ -1342,8 +1346,8 @@ " 10\n", " 10.47\n", " 209.49\n", - " Chelsea\n", " Midfield\n", + " Chelsea\n", " \n", " \n", " 8\n", @@ -1355,8 +1359,8 @@ " 20\n", " 7.02\n", " 147.43\n", - " West Brom\n", " Forward\n", + " West Brom\n", " \n", " \n", " 9\n", @@ -1368,8 +1372,8 @@ " 11\n", " 7.50\n", " 150.01\n", - " Liverpool\n", " Midfield\n", + " Liverpool\n", " \n", " \n", "\n", @@ -1391,17 +1395,17 @@ "8 Saido Berahino 13.8 21 9 0 20 \n", "9 Steven Gerrard 13.8 20 5 1 11 \n", "\n", - " points_per_game points team position \n", - "0 13.12 209.98 Manchester City Forward \n", - "1 13.05 274.04 Chelsea Midfield \n", - "2 11.19 223.86 Arsenal Forward \n", - "3 10.99 197.91 Manchester City Midfield \n", - "4 10.17 132.23 Manchester United Midfield \n", - "5 9.97 0.00 Arsenal Midfield \n", - "6 10.35 155.26 Manchester City Midfield \n", - "7 10.47 209.49 Chelsea Midfield \n", - "8 7.02 147.43 West Brom Forward \n", - "9 7.50 150.01 Liverpool Midfield " + " points_per_game points position team \n", + "0 13.12 209.98 Forward Manchester City \n", + "1 13.05 274.04 Midfield Chelsea \n", + "2 11.19 223.86 Forward Arsenal \n", + "3 10.99 197.91 Midfield Manchester City \n", + "4 10.17 132.23 Midfield Manchester United \n", + "5 9.97 0.00 Midfield Arsenal \n", + "6 10.35 155.26 Midfield Manchester City \n", + "7 10.47 209.49 Midfield Chelsea \n", + "8 7.02 147.43 Forward West Brom \n", + "9 7.50 150.01 Midfield Liverpool " ] } ], @@ -1463,8 +1467,8 @@ " shots_on_target\n", " points_per_game\n", " points\n", - " team\n", " position\n", + " team\n", " \n", " \n", " \n", @@ -1478,8 +1482,8 @@ " 20\n", " 7.02\n", " 147.43\n", - " West Brom\n", " Forward\n", + " West Brom\n", " \n", " \n", " 9 \n", @@ -1491,8 +1495,8 @@ " 11\n", " 7.50\n", " 150.01\n", - " Liverpool\n", " Midfield\n", + " Liverpool\n", " \n", " \n", " 10\n", @@ -1520,9 +1524,9 @@ "9 Steven Gerrard 13.8 20 5 1 11 \n", "10 NaN NaN NaN NaN NaN NaN \n", "\n", - " points_per_game points team position \n", - "8 7.02 147.43 West Brom Forward \n", - "9 7.50 150.01 Liverpool Midfield \n", + " points_per_game points position team \n", + "8 7.02 147.43 Forward West Brom \n", + "9 7.50 150.01 Midfield Liverpool \n", "10 NaN NaN NaN NaN " ] } @@ -1557,8 +1561,8 @@ " shots_on_target\n", " points_per_game\n", " points\n", - " team\n", " position\n", + " team\n", " \n", " \n", " \n", @@ -1572,8 +1576,8 @@ " 20\n", " 7.02\n", " 147.43\n", - " West Brom\n", " Forward\n", + " West Brom\n", " \n", " \n", " 9 \n", @@ -1585,8 +1589,8 @@ " 11\n", " 7.50\n", " 150.01\n", - " Liverpool\n", " Midfield\n", + " Liverpool\n", " \n", " \n", " 10\n", @@ -1614,9 +1618,9 @@ "9 Steven Gerrard 13.8 20 5 1 11 \n", "10 New Player 12.3 NaN NaN NaN NaN \n", "\n", - " points_per_game points team position \n", - "8 7.02 147.43 West Brom Forward \n", - "9 7.50 150.01 Liverpool Midfield \n", + " points_per_game points position team \n", + "8 7.02 147.43 Forward West Brom \n", + "9 7.50 150.01 Midfield Liverpool \n", "10 NaN NaN NaN NaN " ] } @@ -1673,8 +1677,8 @@ " shots_on_target\n", " points_per_game\n", " points\n", - " team\n", " position\n", + " team\n", " \n", " \n", " \n", @@ -1688,8 +1692,8 @@ " 34\n", " 13.12\n", " 209.98\n", - " Manchester City\n", " Forward\n", + " Manchester City\n", " \n", " \n", " 2\n", @@ -1701,8 +1705,8 @@ " 29\n", " 11.19\n", " 223.86\n", - " Arsenal\n", " Forward\n", + " Arsenal\n", " \n", " \n", " 8\n", @@ -1714,8 +1718,8 @@ " 20\n", " 7.02\n", " 147.43\n", - " West Brom\n", " Forward\n", + " West Brom\n", " \n", " \n", " 1\n", @@ -1727,8 +1731,8 @@ " 17\n", " 13.05\n", " 274.04\n", - " Chelsea\n", " Midfield\n", + " Chelsea\n", " \n", " \n", " 3\n", @@ -1740,8 +1744,8 @@ " 19\n", " 10.99\n", " 197.91\n", - " Manchester City\n", " Midfield\n", + " Manchester City\n", " \n", " \n", "\n", @@ -1758,12 +1762,12 @@ "1 Eden Hazard 18.9 21 8 4 17 \n", "3 Yaya Tour\u00e9 16.6 18 7 1 19 \n", "\n", - " points_per_game points team position \n", - "0 13.12 209.98 Manchester City Forward \n", - "2 11.19 223.86 Arsenal Forward \n", - "8 7.02 147.43 West Brom Forward \n", - "1 13.05 274.04 Chelsea Midfield \n", - "3 10.99 197.91 Manchester City Midfield " + " points_per_game points position team \n", + "0 13.12 209.98 Forward Manchester City \n", + "2 11.19 223.86 Forward Arsenal \n", + "8 7.02 147.43 Forward West Brom \n", + "1 13.05 274.04 Midfield Chelsea \n", + "3 10.99 197.91 Midfield Manchester City " ] } ], @@ -1796,8 +1800,8 @@ " shots_on_target\n", " points_per_game\n", " points\n", - " team\n", " position\n", + " team\n", " \n", " \n", " \n", @@ -1811,8 +1815,8 @@ " 34\n", " 13.12\n", " 209.98\n", - " Manchester City\n", " Forward\n", + " Manchester City\n", " \n", " \n", " 2\n", @@ -1824,8 +1828,8 @@ " 29\n", " 11.19\n", " 223.86\n", - " Arsenal\n", " Forward\n", + " Arsenal\n", " \n", " \n", " 3\n", @@ -1837,8 +1841,8 @@ " 20\n", " 7.02\n", " 147.43\n", - " West Brom\n", " Forward\n", + " West Brom\n", " \n", " \n", " 4\n", @@ -1850,8 +1854,8 @@ " 17\n", " 13.05\n", " 274.04\n", - " Chelsea\n", " Midfield\n", + " Chelsea\n", " \n", " \n", " 5\n", @@ -1863,8 +1867,8 @@ " 19\n", " 10.99\n", " 197.91\n", - " Manchester City\n", " Midfield\n", + " Manchester City\n", " \n", " \n", "\n", @@ -1881,12 +1885,12 @@ "4 Eden Hazard 18.9 21 8 4 17 \n", "5 Yaya Tour\u00e9 16.6 18 7 1 19 \n", "\n", - " points_per_game points team position \n", - "1 13.12 209.98 Manchester City Forward \n", - "2 11.19 223.86 Arsenal Forward \n", - "3 7.02 147.43 West Brom Forward \n", - "4 13.05 274.04 Chelsea Midfield \n", - "5 10.99 197.91 Manchester City Midfield " + " points_per_game points position team \n", + "1 13.12 209.98 Forward Manchester City \n", + "2 11.19 223.86 Forward Arsenal \n", + "3 7.02 147.43 Forward West Brom \n", + "4 13.05 274.04 Midfield Chelsea \n", + "5 10.99 197.91 Midfield Manchester City " ] } ], @@ -1943,8 +1947,8 @@ " shots_on_target\n", " points_per_game\n", " points\n", - " team\n", " position\n", + " team\n", " \n", " \n", " \n", @@ -1958,8 +1962,8 @@ " 34\n", " 13.12\n", " 209.98\n", - " Manchester City\n", " Forward\n", + " Manchester City\n", " \n", " \n", " 2\n", @@ -1971,8 +1975,8 @@ " 29\n", " 11.19\n", " 223.86\n", - " Arsenal\n", " Forward\n", + " Arsenal\n", " \n", " \n", " 3\n", @@ -1984,8 +1988,8 @@ " 20\n", " 7.02\n", " 147.43\n", - " West Brom\n", " Forward\n", + " West Brom\n", " \n", " \n", "\n", @@ -2000,10 +2004,10 @@ "2 Alexis S\u00e1nchez 15 0 12 7 29 \n", "3 Saido Berahino 13.8 21 9 0 20 \n", "\n", - " points_per_game points team position \n", - "1 13.12 209.98 Manchester City Forward \n", - "2 11.19 223.86 Arsenal Forward \n", - "3 7.02 147.43 West Brom Forward " + " points_per_game points position team \n", + "1 13.12 209.98 Forward Manchester City \n", + "2 11.19 223.86 Forward Arsenal \n", + "3 7.02 147.43 Forward West Brom " ] } ], @@ -2045,8 +2049,8 @@ " shots_on_target\n", " points_per_game\n", " points\n", - " team\n", " position\n", + " team\n", " \n", " \n", " player\n", @@ -2071,8 +2075,8 @@ " 34\n", " 13.12\n", " 209.98\n", - " Manchester City\n", " Forward\n", + " Manchester City\n", " \n", " \n", " Alexis S\u00e1nchez\n", @@ -2083,8 +2087,8 @@ " 29\n", " 11.19\n", " 223.86\n", - " Arsenal\n", " Forward\n", + " Arsenal\n", " \n", " \n", " Saido Berahino\n", @@ -2095,8 +2099,8 @@ " 20\n", " 7.02\n", " 147.43\n", - " West Brom\n", " Forward\n", + " West Brom\n", " \n", " \n", "\n", @@ -2112,11 +2116,11 @@ "Alexis S\u00e1nchez 17.6 0 12 7 29 \n", "Saido Berahino 13.8 21 9 0 20 \n", "\n", - " points_per_game points team position \n", + " points_per_game points position team \n", "player \n", - "Sergio Ag\u00fcero 13.12 209.98 Manchester City Forward \n", - "Alexis S\u00e1nchez 11.19 223.86 Arsenal Forward \n", - "Saido Berahino 7.02 147.43 West Brom Forward " + "Sergio Ag\u00fcero 13.12 209.98 Forward Manchester City \n", + "Alexis S\u00e1nchez 11.19 223.86 Forward Arsenal \n", + "Saido Berahino 7.02 147.43 Forward West Brom " ] } ], @@ -2155,8 +2159,8 @@ " shots_on_target\n", " points_per_game\n", " points\n", - " team\n", " position\n", + " team\n", " \n", " \n", " player\n", @@ -2181,8 +2185,8 @@ " 34\n", " 13.12\n", " 209.98\n", - " Manchester City\n", " Forward\n", + " Manchester City\n", " \n", " \n", " Alexis S\u00e1nchez\n", @@ -2193,8 +2197,8 @@ " 29\n", " 11.19\n", " 223.86\n", - " Arsenal\n", " Forward\n", + " Arsenal\n", " \n", " \n", " Saido Berahino\n", @@ -2205,8 +2209,8 @@ " 20\n", " 7.02\n", " 147.43\n", - " West Brom\n", " Forward\n", + " West Brom\n", " \n", " \n", "\n", @@ -2222,11 +2226,11 @@ "Alexis S\u00e1nchez 15 0 12 7 29 \n", "Saido Berahino 13.8 21 9 0 20 \n", "\n", - " points_per_game points team position \n", + " points_per_game points position team \n", "player \n", - "Sergio Ag\u00fcero 13.12 209.98 Manchester City Forward \n", - "Alexis S\u00e1nchez 11.19 223.86 Arsenal Forward \n", - "Saido Berahino 7.02 147.43 West Brom Forward " + "Sergio Ag\u00fcero 13.12 209.98 Forward Manchester City \n", + "Alexis S\u00e1nchez 11.19 223.86 Forward Arsenal \n", + "Saido Berahino 7.02 147.43 Forward West Brom " ] } ], @@ -2266,8 +2270,8 @@ " shots_on_target\n", " points_per_game\n", " points\n", - " team\n", " position\n", + " team\n", " \n", " \n", " \n", @@ -2281,8 +2285,8 @@ " 34\n", " 13.12\n", " 209.98\n", - " Manchester City\n", " Forward\n", + " Manchester City\n", " \n", " \n", " 1\n", @@ -2294,8 +2298,8 @@ " 29\n", " 11.19\n", " 223.86\n", - " Arsenal\n", " Forward\n", + " Arsenal\n", " \n", " \n", " 2\n", @@ -2307,8 +2311,8 @@ " 20\n", " 7.02\n", " 147.43\n", - " West Brom\n", " Forward\n", + " West Brom\n", " \n", " \n", "\n", @@ -2323,10 +2327,10 @@ "1 Alexis S\u00e1nchez 15 0 12 7 29 \n", "2 Saido Berahino 13.8 21 9 0 20 \n", "\n", - " points_per_game points team position \n", - "0 13.12 209.98 Manchester City Forward \n", - "1 11.19 223.86 Arsenal Forward \n", - "2 7.02 147.43 West Brom Forward " + " points_per_game points position team \n", + "0 13.12 209.98 Forward Manchester City \n", + "1 11.19 223.86 Forward Arsenal \n", + "2 7.02 147.43 Forward West Brom " ] } ], From 1e6c7444ef0bdd0d7aa298b0b37a1e80b9ac7be8 Mon Sep 17 00:00:00 2001 From: rasbt Date: Sat, 24 Jan 2015 20:21:07 -0500 Subject: [PATCH 46/83] updated row-wise ops --- tutorials/things_in_pandas.ipynb | 238 +++++++++++++++---------------- 1 file changed, 117 insertions(+), 121 deletions(-) diff --git a/tutorials/things_in_pandas.ipynb b/tutorials/things_in_pandas.ipynb index 9fdc9e7..44f3acf 100644 --- a/tutorials/things_in_pandas.ipynb +++ b/tutorials/things_in_pandas.ipynb @@ -1,7 +1,7 @@ { "metadata": { "name": "", - "signature": "sha256:3075a6608bb9a788ad29d1daaeb2421c2db561abd63a3ce811c1fe8e6e482d9f" + "signature": "sha256:ae8818183bc1fe6a58845005b18b12c4458686fa307a82a46857775364df6506" }, "nbformat": 3, "nbformat_minor": 0, @@ -807,12 +807,17 @@ "def process_player_col(text):\n", " name, rest = text.split('\\n')\n", " position, team = rest.split(' \u2014 ')\n", - " return name, position, team\n", + " return pd.Series([name, position, team])\n", "\n", - "for idx,row in df.iterrows():\n", - " name, position, team = process_player_col(row['player'])\n", + "df[['player', 'team', 'position']] = df.player.apply(process_player_col)\n", "\n", - " df.ix[idx, 'player'], df.ix[idx, 'position'], df.ix[idx, 'team'] = name, position, team\n", + "# modified after tip from reddit.com/user/hharison\n", + "#\n", + "# Alternative (inferior) approach:\n", + "#\n", + "#for idx,row in df.iterrows():\n", + "# name, position, team = process_player_col(row['player'])\n", + "# df.ix[idx, 'player'], df.ix[idx, 'position'], df.ix[idx, 'team'] = name, position, team\n", " \n", "df.tail(3)" ], @@ -849,8 +854,8 @@ " 10\n", " 10.47\n", " 209.49\n", - " Midfield\n", " Chelsea\n", + " Midfield\n", " \n", " \n", " 8\n", @@ -862,8 +867,8 @@ " 20\n", " 7.02\n", " 147.43\n", - " Forward\n", " West Brom\n", + " Forward\n", " \n", " \n", " 9\n", @@ -875,8 +880,8 @@ " 11\n", " 7.50\n", " 150.01\n", - " Midfield\n", " Liverpool\n", + " Midfield\n", " \n", " \n", "\n", @@ -892,9 +897,9 @@ "9 Steven Gerrard 13.8 20 5 1 11 \n", "\n", " points_per_game points position team \n", - "7 10.47 209.49 Midfield Chelsea \n", - "8 7.02 147.43 Forward West Brom \n", - "9 7.50 150.01 Midfield Liverpool " + "7 10.47 209.49 Chelsea Midfield \n", + "8 7.02 147.43 West Brom Forward \n", + "9 7.50 150.01 Liverpool Midfield " ] } ], @@ -980,8 +985,8 @@ " 13\n", " 10.17\n", " 132.23\n", - " Midfield\n", " Manchester United\n", + " Midfield\n", " \n", " \n", " 5\n", @@ -993,8 +998,8 @@ " 20\n", " 9.97\n", " NaN\n", - " Midfield\n", " Arsenal\n", + " Midfield\n", " \n", " \n", "\n", @@ -1008,9 +1013,9 @@ "4 \u00c1ngel Di Mar\u00eda 15.0 13 3 NaN 13 \n", "5 Santiago Cazorla 14.8 20 4 NaN 20 \n", "\n", - " points_per_game points position team \n", - "4 10.17 132.23 Midfield Manchester United \n", - "5 9.97 NaN Midfield Arsenal " + " points_per_game points position team \n", + "4 10.17 132.23 Manchester United Midfield \n", + "5 9.97 NaN Arsenal Midfield " ] } ], @@ -1071,8 +1076,8 @@ " 34\n", " 13.12\n", " 209.98\n", - " Forward\n", " Manchester City\n", + " Forward\n", " \n", " \n", " 1\n", @@ -1084,8 +1089,8 @@ " 17\n", " 13.05\n", " 274.04\n", - " Midfield\n", " Chelsea\n", + " Midfield\n", " \n", " \n", " 2\n", @@ -1097,8 +1102,8 @@ " 29\n", " 11.19\n", " 223.86\n", - " Forward\n", " Arsenal\n", + " Forward\n", " \n", " \n", " 3\n", @@ -1110,8 +1115,8 @@ " 19\n", " 10.99\n", " 197.91\n", - " Midfield\n", " Manchester City\n", + " Midfield\n", " \n", " \n", " 6\n", @@ -1123,8 +1128,8 @@ " 11\n", " 10.35\n", " 155.26\n", - " Midfield\n", " Manchester City\n", + " Midfield\n", " \n", " \n", " 7\n", @@ -1136,8 +1141,8 @@ " 10\n", " 10.47\n", " 209.49\n", - " Midfield\n", " Chelsea\n", + " Midfield\n", " \n", " \n", " 8\n", @@ -1149,8 +1154,8 @@ " 20\n", " 7.02\n", " 147.43\n", - " Forward\n", " West Brom\n", + " Forward\n", " \n", " \n", " 9\n", @@ -1162,8 +1167,8 @@ " 11\n", " 7.50\n", " 150.01\n", - " Midfield\n", " Liverpool\n", + " Midfield\n", " \n", " \n", "\n", @@ -1183,15 +1188,15 @@ "8 Saido Berahino 13.8 21 9 0 20 \n", "9 Steven Gerrard 13.8 20 5 1 11 \n", "\n", - " points_per_game points position team \n", - "0 13.12 209.98 Forward Manchester City \n", - "1 13.05 274.04 Midfield Chelsea \n", - "2 11.19 223.86 Forward Arsenal \n", - "3 10.99 197.91 Midfield Manchester City \n", - "6 10.35 155.26 Midfield Manchester City \n", - "7 10.47 209.49 Midfield Chelsea \n", - "8 7.02 147.43 Forward West Brom \n", - "9 7.50 150.01 Midfield Liverpool " + " points_per_game points position team \n", + "0 13.12 209.98 Manchester City Forward \n", + "1 13.05 274.04 Chelsea Midfield \n", + "2 11.19 223.86 Arsenal Forward \n", + "3 10.99 197.91 Manchester City Midfield \n", + "6 10.35 155.26 Manchester City Midfield \n", + "7 10.47 209.49 Chelsea Midfield \n", + "8 7.02 147.43 West Brom Forward \n", + "9 7.50 150.01 Liverpool Midfield " ] } ], @@ -1255,8 +1260,8 @@ " 34\n", " 13.12\n", " 209.98\n", - " Forward\n", " Manchester City\n", + " Forward\n", " \n", " \n", " 1\n", @@ -1268,8 +1273,8 @@ " 17\n", " 13.05\n", " 274.04\n", - " Midfield\n", " Chelsea\n", + " Midfield\n", " \n", " \n", " 2\n", @@ -1281,8 +1286,8 @@ " 29\n", " 11.19\n", " 223.86\n", - " Forward\n", " Arsenal\n", + " Forward\n", " \n", " \n", " 3\n", @@ -1294,8 +1299,8 @@ " 19\n", " 10.99\n", " 197.91\n", - " Midfield\n", " Manchester City\n", + " Midfield\n", " \n", " \n", " 4\n", @@ -1307,8 +1312,8 @@ " 13\n", " 10.17\n", " 132.23\n", - " Midfield\n", " Manchester United\n", + " Midfield\n", " \n", " \n", " 5\n", @@ -1320,8 +1325,8 @@ " 20\n", " 9.97\n", " 0.00\n", - " Midfield\n", " Arsenal\n", + " Midfield\n", " \n", " \n", " 6\n", @@ -1333,8 +1338,8 @@ " 11\n", " 10.35\n", " 155.26\n", - " Midfield\n", " Manchester City\n", + " Midfield\n", " \n", " \n", " 7\n", @@ -1346,8 +1351,8 @@ " 10\n", " 10.47\n", " 209.49\n", - " Midfield\n", " Chelsea\n", + " Midfield\n", " \n", " \n", " 8\n", @@ -1359,8 +1364,8 @@ " 20\n", " 7.02\n", " 147.43\n", - " Forward\n", " West Brom\n", + " Forward\n", " \n", " \n", " 9\n", @@ -1372,8 +1377,8 @@ " 11\n", " 7.50\n", " 150.01\n", - " Midfield\n", " Liverpool\n", + " Midfield\n", " \n", " \n", "\n", @@ -1395,17 +1400,17 @@ "8 Saido Berahino 13.8 21 9 0 20 \n", "9 Steven Gerrard 13.8 20 5 1 11 \n", "\n", - " points_per_game points position team \n", - "0 13.12 209.98 Forward Manchester City \n", - "1 13.05 274.04 Midfield Chelsea \n", - "2 11.19 223.86 Forward Arsenal \n", - "3 10.99 197.91 Midfield Manchester City \n", - "4 10.17 132.23 Midfield Manchester United \n", - "5 9.97 0.00 Midfield Arsenal \n", - "6 10.35 155.26 Midfield Manchester City \n", - "7 10.47 209.49 Midfield Chelsea \n", - "8 7.02 147.43 Forward West Brom \n", - "9 7.50 150.01 Midfield Liverpool " + " points_per_game points position team \n", + "0 13.12 209.98 Manchester City Forward \n", + "1 13.05 274.04 Chelsea Midfield \n", + "2 11.19 223.86 Arsenal Forward \n", + "3 10.99 197.91 Manchester City Midfield \n", + "4 10.17 132.23 Manchester United Midfield \n", + "5 9.97 0.00 Arsenal Midfield \n", + "6 10.35 155.26 Manchester City Midfield \n", + "7 10.47 209.49 Chelsea Midfield \n", + "8 7.02 147.43 West Brom Forward \n", + "9 7.50 150.01 Liverpool Midfield " ] } ], @@ -1482,8 +1487,8 @@ " 20\n", " 7.02\n", " 147.43\n", - " Forward\n", " West Brom\n", + " Forward\n", " \n", " \n", " 9 \n", @@ -1495,8 +1500,8 @@ " 11\n", " 7.50\n", " 150.01\n", - " Midfield\n", " Liverpool\n", + " Midfield\n", " \n", " \n", " 10\n", @@ -1525,8 +1530,8 @@ "10 NaN NaN NaN NaN NaN NaN \n", "\n", " points_per_game points position team \n", - "8 7.02 147.43 Forward West Brom \n", - "9 7.50 150.01 Midfield Liverpool \n", + "8 7.02 147.43 West Brom Forward \n", + "9 7.50 150.01 Liverpool Midfield \n", "10 NaN NaN NaN NaN " ] } @@ -1576,8 +1581,8 @@ " 20\n", " 7.02\n", " 147.43\n", - " Forward\n", " West Brom\n", + " Forward\n", " \n", " \n", " 9 \n", @@ -1589,8 +1594,8 @@ " 11\n", " 7.50\n", " 150.01\n", - " Midfield\n", " Liverpool\n", + " Midfield\n", " \n", " \n", " 10\n", @@ -1619,8 +1624,8 @@ "10 New Player 12.3 NaN NaN NaN NaN \n", "\n", " points_per_game points position team \n", - "8 7.02 147.43 Forward West Brom \n", - "9 7.50 150.01 Midfield Liverpool \n", + "8 7.02 147.43 West Brom Forward \n", + "9 7.50 150.01 Liverpool Midfield \n", "10 NaN NaN NaN NaN " ] } @@ -1692,8 +1697,8 @@ " 34\n", " 13.12\n", " 209.98\n", - " Forward\n", " Manchester City\n", + " Forward\n", " \n", " \n", " 2\n", @@ -1705,8 +1710,8 @@ " 29\n", " 11.19\n", " 223.86\n", - " Forward\n", " Arsenal\n", + " Forward\n", " \n", " \n", " 8\n", @@ -1718,8 +1723,8 @@ " 20\n", " 7.02\n", " 147.43\n", - " Forward\n", " West Brom\n", + " Forward\n", " \n", " \n", " 1\n", @@ -1731,8 +1736,8 @@ " 17\n", " 13.05\n", " 274.04\n", - " Midfield\n", " Chelsea\n", + " Midfield\n", " \n", " \n", " 3\n", @@ -1744,8 +1749,8 @@ " 19\n", " 10.99\n", " 197.91\n", - " Midfield\n", " Manchester City\n", + " Midfield\n", " \n", " \n", "\n", @@ -1762,12 +1767,12 @@ "1 Eden Hazard 18.9 21 8 4 17 \n", "3 Yaya Tour\u00e9 16.6 18 7 1 19 \n", "\n", - " points_per_game points position team \n", - "0 13.12 209.98 Forward Manchester City \n", - "2 11.19 223.86 Forward Arsenal \n", - "8 7.02 147.43 Forward West Brom \n", - "1 13.05 274.04 Midfield Chelsea \n", - "3 10.99 197.91 Midfield Manchester City " + " points_per_game points position team \n", + "0 13.12 209.98 Manchester City Forward \n", + "2 11.19 223.86 Arsenal Forward \n", + "8 7.02 147.43 West Brom Forward \n", + "1 13.05 274.04 Chelsea Midfield \n", + "3 10.99 197.91 Manchester City Midfield " ] } ], @@ -1815,8 +1820,8 @@ " 34\n", " 13.12\n", " 209.98\n", - " Forward\n", " Manchester City\n", + " Forward\n", " \n", " \n", " 2\n", @@ -1828,8 +1833,8 @@ " 29\n", " 11.19\n", " 223.86\n", - " Forward\n", " Arsenal\n", + " Forward\n", " \n", " \n", " 3\n", @@ -1841,8 +1846,8 @@ " 20\n", " 7.02\n", " 147.43\n", - " Forward\n", " West Brom\n", + " Forward\n", " \n", " \n", " 4\n", @@ -1854,8 +1859,8 @@ " 17\n", " 13.05\n", " 274.04\n", - " Midfield\n", " Chelsea\n", + " Midfield\n", " \n", " \n", " 5\n", @@ -1867,8 +1872,8 @@ " 19\n", " 10.99\n", " 197.91\n", - " Midfield\n", " Manchester City\n", + " Midfield\n", " \n", " \n", "\n", @@ -1885,12 +1890,12 @@ "4 Eden Hazard 18.9 21 8 4 17 \n", "5 Yaya Tour\u00e9 16.6 18 7 1 19 \n", "\n", - " points_per_game points position team \n", - "1 13.12 209.98 Forward Manchester City \n", - "2 11.19 223.86 Forward Arsenal \n", - "3 7.02 147.43 Forward West Brom \n", - "4 13.05 274.04 Midfield Chelsea \n", - "5 10.99 197.91 Midfield Manchester City " + " points_per_game points position team \n", + "1 13.12 209.98 Manchester City Forward \n", + "2 11.19 223.86 Arsenal Forward \n", + "3 7.02 147.43 West Brom Forward \n", + "4 13.05 274.04 Chelsea Midfield \n", + "5 10.99 197.91 Manchester City Midfield " ] } ], @@ -1962,8 +1967,8 @@ " 34\n", " 13.12\n", " 209.98\n", - " Forward\n", " Manchester City\n", + " Forward\n", " \n", " \n", " 2\n", @@ -1975,8 +1980,8 @@ " 29\n", " 11.19\n", " 223.86\n", - " Forward\n", " Arsenal\n", + " Forward\n", " \n", " \n", " 3\n", @@ -1988,8 +1993,8 @@ " 20\n", " 7.02\n", " 147.43\n", - " Forward\n", " West Brom\n", + " Forward\n", " \n", " \n", "\n", @@ -2004,10 +2009,10 @@ "2 Alexis S\u00e1nchez 15 0 12 7 29 \n", "3 Saido Berahino 13.8 21 9 0 20 \n", "\n", - " points_per_game points position team \n", - "1 13.12 209.98 Forward Manchester City \n", - "2 11.19 223.86 Forward Arsenal \n", - "3 7.02 147.43 Forward West Brom " + " points_per_game points position team \n", + "1 13.12 209.98 Manchester City Forward \n", + "2 11.19 223.86 Arsenal Forward \n", + "3 7.02 147.43 West Brom Forward " ] } ], @@ -2075,8 +2080,8 @@ " 34\n", " 13.12\n", " 209.98\n", - " Forward\n", " Manchester City\n", + " Forward\n", " \n", " \n", " Alexis S\u00e1nchez\n", @@ -2087,8 +2092,8 @@ " 29\n", " 11.19\n", " 223.86\n", - " Forward\n", " Arsenal\n", + " Forward\n", " \n", " \n", " Saido Berahino\n", @@ -2099,8 +2104,8 @@ " 20\n", " 7.02\n", " 147.43\n", - " Forward\n", " West Brom\n", + " Forward\n", " \n", " \n", "\n", @@ -2116,11 +2121,11 @@ "Alexis S\u00e1nchez 17.6 0 12 7 29 \n", "Saido Berahino 13.8 21 9 0 20 \n", "\n", - " points_per_game points position team \n", + " points_per_game points position team \n", "player \n", - "Sergio Ag\u00fcero 13.12 209.98 Forward Manchester City \n", - "Alexis S\u00e1nchez 11.19 223.86 Forward Arsenal \n", - "Saido Berahino 7.02 147.43 Forward West Brom " + "Sergio Ag\u00fcero 13.12 209.98 Manchester City Forward \n", + "Alexis S\u00e1nchez 11.19 223.86 Arsenal Forward \n", + "Saido Berahino 7.02 147.43 West Brom Forward " ] } ], @@ -2185,8 +2190,8 @@ " 34\n", " 13.12\n", " 209.98\n", - " Forward\n", " Manchester City\n", + " Forward\n", " \n", " \n", " Alexis S\u00e1nchez\n", @@ -2197,8 +2202,8 @@ " 29\n", " 11.19\n", " 223.86\n", - " Forward\n", " Arsenal\n", + " Forward\n", " \n", " \n", " Saido Berahino\n", @@ -2209,8 +2214,8 @@ " 20\n", " 7.02\n", " 147.43\n", - " Forward\n", " West Brom\n", + " Forward\n", " \n", " \n", "\n", @@ -2226,11 +2231,11 @@ "Alexis S\u00e1nchez 15 0 12 7 29 \n", "Saido Berahino 13.8 21 9 0 20 \n", "\n", - " points_per_game points position team \n", + " points_per_game points position team \n", "player \n", - "Sergio Ag\u00fcero 13.12 209.98 Forward Manchester City \n", - "Alexis S\u00e1nchez 11.19 223.86 Forward Arsenal \n", - "Saido Berahino 7.02 147.43 Forward West Brom " + "Sergio Ag\u00fcero 13.12 209.98 Manchester City Forward \n", + "Alexis S\u00e1nchez 11.19 223.86 Arsenal Forward \n", + "Saido Berahino 7.02 147.43 West Brom Forward " ] } ], @@ -2285,8 +2290,8 @@ " 34\n", " 13.12\n", " 209.98\n", - " Forward\n", " Manchester City\n", + " Forward\n", " \n", " \n", " 1\n", @@ -2298,8 +2303,8 @@ " 29\n", " 11.19\n", " 223.86\n", - " Forward\n", " Arsenal\n", + " Forward\n", " \n", " \n", " 2\n", @@ -2311,8 +2316,8 @@ " 20\n", " 7.02\n", " 147.43\n", - " Forward\n", " West Brom\n", + " Forward\n", " \n", " \n", "\n", @@ -2327,23 +2332,14 @@ "1 Alexis S\u00e1nchez 15 0 12 7 29 \n", "2 Saido Berahino 13.8 21 9 0 20 \n", "\n", - " points_per_game points position team \n", - "0 13.12 209.98 Forward Manchester City \n", - "1 11.19 223.86 Forward Arsenal \n", - "2 7.02 147.43 Forward West Brom " + " points_per_game points position team \n", + "0 13.12 209.98 Manchester City Forward \n", + "1 11.19 223.86 Arsenal Forward \n", + "2 7.02 147.43 West Brom Forward " ] } ], "prompt_number": 18 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 18 } ], "metadata": {} From 632aef1bc4de0dede77a9c451a35980db39f2f18 Mon Sep 17 00:00:00 2001 From: rasbt Date: Sat, 24 Jan 2015 22:25:57 -0500 Subject: [PATCH 47/83] Chaining Conditions - Using Bitwise Operators --- tutorials/things_in_pandas.ipynb | 481 ++++++++++++++++++++++--------- 1 file changed, 337 insertions(+), 144 deletions(-) diff --git a/tutorials/things_in_pandas.ipynb b/tutorials/things_in_pandas.ipynb index 44f3acf..bb71a69 100644 --- a/tutorials/things_in_pandas.ipynb +++ b/tutorials/things_in_pandas.ipynb @@ -1,7 +1,7 @@ { "metadata": { "name": "", - "signature": "sha256:ae8818183bc1fe6a58845005b18b12c4458686fa307a82a46857775364df6506" + "signature": "sha256:cf7223086a74b13d1ae2228a4c8545c401765a90cdb3eca418f18138a4afdaab" }, "nbformat": 3, "nbformat_minor": 0, @@ -95,7 +95,8 @@ " - [Filling NaN Rows](#Filling-NaN-Rows)\n", "- [Appending Rows to a DataFrame](#Appending-Rows-to-a-DataFrame)\n", "- [Sorting and Reindexing DataFrames](#Sorting-and-Reindexing-DataFrames)\n", - "- [Updating Columns](#Updating-Columns)" + "- [Updating Columns](#Updating-Columns)\n", + "- [Chaining Conditions - Using Bitwise Operators](#Chaining-Conditions---Using-Bitwise-Operators)" ] }, { @@ -806,8 +807,8 @@ "\n", "def process_player_col(text):\n", " name, rest = text.split('\\n')\n", - " position, team = rest.split(' \u2014 ')\n", - " return pd.Series([name, position, team])\n", + " position, team = [x.strip() for x in rest.split(' \u2014 ')]\n", + " return pd.Series([name, team, position])\n", "\n", "df[['player', 'team', 'position']] = df.player.apply(process_player_col)\n", "\n", @@ -854,8 +855,8 @@ " 10\n", " 10.47\n", " 209.49\n", + " Midfield\n", " Chelsea\n", - " Midfield\n", " \n", " \n", " 8\n", @@ -867,8 +868,8 @@ " 20\n", " 7.02\n", " 147.43\n", + " Forward\n", " West Brom\n", - " Forward\n", " \n", " \n", " 9\n", @@ -880,8 +881,8 @@ " 11\n", " 7.50\n", " 150.01\n", + " Midfield\n", " Liverpool\n", - " Midfield\n", " \n", " \n", "\n", @@ -889,21 +890,21 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 7, + "prompt_number": 8, "text": [ " player salary games goals assists shots_on_target \\\n", "7 Cesc F\u00e0bregas 14.0 20 2 14 10 \n", "8 Saido Berahino 13.8 21 9 0 20 \n", "9 Steven Gerrard 13.8 20 5 1 11 \n", "\n", - " points_per_game points position team \n", - "7 10.47 209.49 Chelsea Midfield \n", - "8 7.02 147.43 West Brom Forward \n", - "9 7.50 150.01 Liverpool Midfield " + " points_per_game points position team \n", + "7 10.47 209.49 Midfield Chelsea \n", + "8 7.02 147.43 Forward West Brom \n", + "9 7.50 150.01 Midfield Liverpool " ] } ], - "prompt_number": 7 + "prompt_number": 8 }, { "cell_type": "markdown", @@ -985,8 +986,8 @@ " 13\n", " 10.17\n", " 132.23\n", + " Midfield\n", " Manchester United\n", - " Midfield\n", " \n", " \n", " 5\n", @@ -998,8 +999,8 @@ " 20\n", " 9.97\n", " NaN\n", + " Midfield\n", " Arsenal\n", - " Midfield\n", " \n", " \n", "\n", @@ -1007,19 +1008,19 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 8, + "prompt_number": 9, "text": [ " player salary games goals assists shots_on_target \\\n", "4 \u00c1ngel Di Mar\u00eda 15.0 13 3 NaN 13 \n", "5 Santiago Cazorla 14.8 20 4 NaN 20 \n", "\n", - " points_per_game points position team \n", - "4 10.17 132.23 Manchester United Midfield \n", - "5 9.97 NaN Arsenal Midfield " + " points_per_game points position team \n", + "4 10.17 132.23 Midfield Manchester United \n", + "5 9.97 NaN Midfield Arsenal " ] } ], - "prompt_number": 8 + "prompt_number": 9 }, { "cell_type": "markdown", @@ -1076,8 +1077,8 @@ " 34\n", " 13.12\n", " 209.98\n", + " Forward\n", " Manchester City\n", - " Forward\n", " \n", " \n", " 1\n", @@ -1089,8 +1090,8 @@ " 17\n", " 13.05\n", " 274.04\n", + " Midfield\n", " Chelsea\n", - " Midfield\n", " \n", " \n", " 2\n", @@ -1102,8 +1103,8 @@ " 29\n", " 11.19\n", " 223.86\n", + " Forward\n", " Arsenal\n", - " Forward\n", " \n", " \n", " 3\n", @@ -1115,8 +1116,8 @@ " 19\n", " 10.99\n", " 197.91\n", + " Midfield\n", " Manchester City\n", - " Midfield\n", " \n", " \n", " 6\n", @@ -1128,8 +1129,8 @@ " 11\n", " 10.35\n", " 155.26\n", + " Midfield\n", " Manchester City\n", - " Midfield\n", " \n", " \n", " 7\n", @@ -1141,8 +1142,8 @@ " 10\n", " 10.47\n", " 209.49\n", + " Midfield\n", " Chelsea\n", - " Midfield\n", " \n", " \n", " 8\n", @@ -1154,8 +1155,8 @@ " 20\n", " 7.02\n", " 147.43\n", + " Forward\n", " West Brom\n", - " Forward\n", " \n", " \n", " 9\n", @@ -1167,8 +1168,8 @@ " 11\n", " 7.50\n", " 150.01\n", + " Midfield\n", " Liverpool\n", - " Midfield\n", " \n", " \n", "\n", @@ -1176,7 +1177,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 9, + "prompt_number": 10, "text": [ " player salary games goals assists shots_on_target \\\n", "0 Sergio Ag\u00fcero 19.2 16 14 3 34 \n", @@ -1188,19 +1189,19 @@ "8 Saido Berahino 13.8 21 9 0 20 \n", "9 Steven Gerrard 13.8 20 5 1 11 \n", "\n", - " points_per_game points position team \n", - "0 13.12 209.98 Manchester City Forward \n", - "1 13.05 274.04 Chelsea Midfield \n", - "2 11.19 223.86 Arsenal Forward \n", - "3 10.99 197.91 Manchester City Midfield \n", - "6 10.35 155.26 Manchester City Midfield \n", - "7 10.47 209.49 Chelsea Midfield \n", - "8 7.02 147.43 West Brom Forward \n", - "9 7.50 150.01 Liverpool Midfield " + " points_per_game points position team \n", + "0 13.12 209.98 Forward Manchester City \n", + "1 13.05 274.04 Midfield Chelsea \n", + "2 11.19 223.86 Forward Arsenal \n", + "3 10.99 197.91 Midfield Manchester City \n", + "6 10.35 155.26 Midfield Manchester City \n", + "7 10.47 209.49 Midfield Chelsea \n", + "8 7.02 147.43 Forward West Brom \n", + "9 7.50 150.01 Midfield Liverpool " ] } ], - "prompt_number": 9 + "prompt_number": 10 }, { "cell_type": "markdown", @@ -1260,8 +1261,8 @@ " 34\n", " 13.12\n", " 209.98\n", + " Forward\n", " Manchester City\n", - " Forward\n", " \n", " \n", " 1\n", @@ -1273,8 +1274,8 @@ " 17\n", " 13.05\n", " 274.04\n", + " Midfield\n", " Chelsea\n", - " Midfield\n", " \n", " \n", " 2\n", @@ -1286,8 +1287,8 @@ " 29\n", " 11.19\n", " 223.86\n", + " Forward\n", " Arsenal\n", - " Forward\n", " \n", " \n", " 3\n", @@ -1299,8 +1300,8 @@ " 19\n", " 10.99\n", " 197.91\n", + " Midfield\n", " Manchester City\n", - " Midfield\n", " \n", " \n", " 4\n", @@ -1312,8 +1313,8 @@ " 13\n", " 10.17\n", " 132.23\n", + " Midfield\n", " Manchester United\n", - " Midfield\n", " \n", " \n", " 5\n", @@ -1325,8 +1326,8 @@ " 20\n", " 9.97\n", " 0.00\n", + " Midfield\n", " Arsenal\n", - " Midfield\n", " \n", " \n", " 6\n", @@ -1338,8 +1339,8 @@ " 11\n", " 10.35\n", " 155.26\n", + " Midfield\n", " Manchester City\n", - " Midfield\n", " \n", " \n", " 7\n", @@ -1351,8 +1352,8 @@ " 10\n", " 10.47\n", " 209.49\n", + " Midfield\n", " Chelsea\n", - " Midfield\n", " \n", " \n", " 8\n", @@ -1364,8 +1365,8 @@ " 20\n", " 7.02\n", " 147.43\n", + " Forward\n", " West Brom\n", - " Forward\n", " \n", " \n", " 9\n", @@ -1377,8 +1378,8 @@ " 11\n", " 7.50\n", " 150.01\n", + " Midfield\n", " Liverpool\n", - " Midfield\n", " \n", " \n", "\n", @@ -1386,7 +1387,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 10, + "prompt_number": 11, "text": [ " player salary games goals assists shots_on_target \\\n", "0 Sergio Ag\u00fcero 19.2 16 14 3 34 \n", @@ -1400,21 +1401,21 @@ "8 Saido Berahino 13.8 21 9 0 20 \n", "9 Steven Gerrard 13.8 20 5 1 11 \n", "\n", - " points_per_game points position team \n", - "0 13.12 209.98 Manchester City Forward \n", - "1 13.05 274.04 Chelsea Midfield \n", - "2 11.19 223.86 Arsenal Forward \n", - "3 10.99 197.91 Manchester City Midfield \n", - "4 10.17 132.23 Manchester United Midfield \n", - "5 9.97 0.00 Arsenal Midfield \n", - "6 10.35 155.26 Manchester City Midfield \n", - "7 10.47 209.49 Chelsea Midfield \n", - "8 7.02 147.43 West Brom Forward \n", - "9 7.50 150.01 Liverpool Midfield " + " points_per_game points position team \n", + "0 13.12 209.98 Forward Manchester City \n", + "1 13.05 274.04 Midfield Chelsea \n", + "2 11.19 223.86 Forward Arsenal \n", + "3 10.99 197.91 Midfield Manchester City \n", + "4 10.17 132.23 Midfield Manchester United \n", + "5 9.97 0.00 Midfield Arsenal \n", + "6 10.35 155.26 Midfield Manchester City \n", + "7 10.47 209.49 Midfield Chelsea \n", + "8 7.02 147.43 Forward West Brom \n", + "9 7.50 150.01 Midfield Liverpool " ] } ], - "prompt_number": 10 + "prompt_number": 11 }, { "cell_type": "markdown", @@ -1487,8 +1488,8 @@ " 20\n", " 7.02\n", " 147.43\n", + " Forward\n", " West Brom\n", - " Forward\n", " \n", " \n", " 9 \n", @@ -1500,8 +1501,8 @@ " 11\n", " 7.50\n", " 150.01\n", + " Midfield\n", " Liverpool\n", - " Midfield\n", " \n", " \n", " 10\n", @@ -1513,7 +1514,7 @@ " NaN\n", " NaN\n", " NaN\n", - " NaN\n", + " NaN\n", " NaN\n", " \n", " \n", @@ -1522,21 +1523,21 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 11, + "prompt_number": 12, "text": [ " player salary games goals assists shots_on_target \\\n", "8 Saido Berahino 13.8 21 9 0 20 \n", "9 Steven Gerrard 13.8 20 5 1 11 \n", "10 NaN NaN NaN NaN NaN NaN \n", "\n", - " points_per_game points position team \n", - "8 7.02 147.43 West Brom Forward \n", - "9 7.50 150.01 Liverpool Midfield \n", - "10 NaN NaN NaN NaN " + " points_per_game points position team \n", + "8 7.02 147.43 Forward West Brom \n", + "9 7.50 150.01 Midfield Liverpool \n", + "10 NaN NaN NaN NaN " ] } ], - "prompt_number": 11 + "prompt_number": 12 }, { "cell_type": "code", @@ -1581,8 +1582,8 @@ " 20\n", " 7.02\n", " 147.43\n", + " Forward\n", " West Brom\n", - " Forward\n", " \n", " \n", " 9 \n", @@ -1594,8 +1595,8 @@ " 11\n", " 7.50\n", " 150.01\n", + " Midfield\n", " Liverpool\n", - " Midfield\n", " \n", " \n", " 10\n", @@ -1607,7 +1608,7 @@ " NaN\n", " NaN\n", " NaN\n", - " NaN\n", + " NaN\n", " NaN\n", " \n", " \n", @@ -1616,21 +1617,21 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 12, + "prompt_number": 13, "text": [ " player salary games goals assists shots_on_target \\\n", "8 Saido Berahino 13.8 21 9 0 20 \n", "9 Steven Gerrard 13.8 20 5 1 11 \n", "10 New Player 12.3 NaN NaN NaN NaN \n", "\n", - " points_per_game points position team \n", - "8 7.02 147.43 West Brom Forward \n", - "9 7.50 150.01 Liverpool Midfield \n", - "10 NaN NaN NaN NaN " + " points_per_game points position team \n", + "8 7.02 147.43 Forward West Brom \n", + "9 7.50 150.01 Midfield Liverpool \n", + "10 NaN NaN NaN NaN " ] } ], - "prompt_number": 12 + "prompt_number": 13 }, { "cell_type": "markdown", @@ -1697,8 +1698,8 @@ " 34\n", " 13.12\n", " 209.98\n", + " Forward\n", " Manchester City\n", - " Forward\n", " \n", " \n", " 2\n", @@ -1710,8 +1711,8 @@ " 29\n", " 11.19\n", " 223.86\n", + " Forward\n", " Arsenal\n", - " Forward\n", " \n", " \n", " 8\n", @@ -1723,8 +1724,8 @@ " 20\n", " 7.02\n", " 147.43\n", + " Forward\n", " West Brom\n", - " Forward\n", " \n", " \n", " 1\n", @@ -1736,8 +1737,8 @@ " 17\n", " 13.05\n", " 274.04\n", + " Midfield\n", " Chelsea\n", - " Midfield\n", " \n", " \n", " 3\n", @@ -1749,8 +1750,8 @@ " 19\n", " 10.99\n", " 197.91\n", + " Midfield\n", " Manchester City\n", - " Midfield\n", " \n", " \n", "\n", @@ -1758,7 +1759,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 13, + "prompt_number": 14, "text": [ " player salary games goals assists shots_on_target \\\n", "0 Sergio Ag\u00fcero 19.2 16 14 3 34 \n", @@ -1767,16 +1768,16 @@ "1 Eden Hazard 18.9 21 8 4 17 \n", "3 Yaya Tour\u00e9 16.6 18 7 1 19 \n", "\n", - " points_per_game points position team \n", - "0 13.12 209.98 Manchester City Forward \n", - "2 11.19 223.86 Arsenal Forward \n", - "8 7.02 147.43 West Brom Forward \n", - "1 13.05 274.04 Chelsea Midfield \n", - "3 10.99 197.91 Manchester City Midfield " + " points_per_game points position team \n", + "0 13.12 209.98 Forward Manchester City \n", + "2 11.19 223.86 Forward Arsenal \n", + "8 7.02 147.43 Forward West Brom \n", + "1 13.05 274.04 Midfield Chelsea \n", + "3 10.99 197.91 Midfield Manchester City " ] } ], - "prompt_number": 13 + "prompt_number": 14 }, { "cell_type": "code", @@ -1820,8 +1821,8 @@ " 34\n", " 13.12\n", " 209.98\n", + " Forward\n", " Manchester City\n", - " Forward\n", " \n", " \n", " 2\n", @@ -1833,8 +1834,8 @@ " 29\n", " 11.19\n", " 223.86\n", + " Forward\n", " Arsenal\n", - " Forward\n", " \n", " \n", " 3\n", @@ -1846,8 +1847,8 @@ " 20\n", " 7.02\n", " 147.43\n", + " Forward\n", " West Brom\n", - " Forward\n", " \n", " \n", " 4\n", @@ -1859,8 +1860,8 @@ " 17\n", " 13.05\n", " 274.04\n", + " Midfield\n", " Chelsea\n", - " Midfield\n", " \n", " \n", " 5\n", @@ -1872,8 +1873,8 @@ " 19\n", " 10.99\n", " 197.91\n", + " Midfield\n", " Manchester City\n", - " Midfield\n", " \n", " \n", "\n", @@ -1881,7 +1882,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 14, + "prompt_number": 15, "text": [ " player salary games goals assists shots_on_target \\\n", "1 Sergio Ag\u00fcero 19.2 16 14 3 34 \n", @@ -1890,16 +1891,16 @@ "4 Eden Hazard 18.9 21 8 4 17 \n", "5 Yaya Tour\u00e9 16.6 18 7 1 19 \n", "\n", - " points_per_game points position team \n", - "1 13.12 209.98 Manchester City Forward \n", - "2 11.19 223.86 Arsenal Forward \n", - "3 7.02 147.43 West Brom Forward \n", - "4 13.05 274.04 Chelsea Midfield \n", - "5 10.99 197.91 Manchester City Midfield " + " points_per_game points position team \n", + "1 13.12 209.98 Forward Manchester City \n", + "2 11.19 223.86 Forward Arsenal \n", + "3 7.02 147.43 Forward West Brom \n", + "4 13.05 274.04 Midfield Chelsea \n", + "5 10.99 197.91 Midfield Manchester City " ] } ], - "prompt_number": 14 + "prompt_number": 15 }, { "cell_type": "markdown", @@ -1967,8 +1968,8 @@ " 34\n", " 13.12\n", " 209.98\n", + " Forward\n", " Manchester City\n", - " Forward\n", " \n", " \n", " 2\n", @@ -1980,8 +1981,8 @@ " 29\n", " 11.19\n", " 223.86\n", + " Forward\n", " Arsenal\n", - " Forward\n", " \n", " \n", " 3\n", @@ -1993,8 +1994,8 @@ " 20\n", " 7.02\n", " 147.43\n", + " Forward\n", " West Brom\n", - " Forward\n", " \n", " \n", "\n", @@ -2002,21 +2003,21 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 15, + "prompt_number": 16, "text": [ " player salary games goals assists shots_on_target \\\n", "1 Sergio Ag\u00fcero 20 16 14 3 34 \n", "2 Alexis S\u00e1nchez 15 0 12 7 29 \n", "3 Saido Berahino 13.8 21 9 0 20 \n", "\n", - " points_per_game points position team \n", - "1 13.12 209.98 Manchester City Forward \n", - "2 11.19 223.86 Arsenal Forward \n", - "3 7.02 147.43 West Brom Forward " + " points_per_game points position team \n", + "1 13.12 209.98 Forward Manchester City \n", + "2 11.19 223.86 Forward Arsenal \n", + "3 7.02 147.43 Forward West Brom " ] } ], - "prompt_number": 15 + "prompt_number": 16 }, { "cell_type": "markdown", @@ -2080,8 +2081,8 @@ " 34\n", " 13.12\n", " 209.98\n", + " Forward\n", " Manchester City\n", - " Forward\n", " \n", " \n", " Alexis S\u00e1nchez\n", @@ -2092,8 +2093,8 @@ " 29\n", " 11.19\n", " 223.86\n", + " Forward\n", " Arsenal\n", - " Forward\n", " \n", " \n", " Saido Berahino\n", @@ -2104,8 +2105,8 @@ " 20\n", " 7.02\n", " 147.43\n", + " Forward\n", " West Brom\n", - " Forward\n", " \n", " \n", "\n", @@ -2113,7 +2114,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 16, + "prompt_number": 17, "text": [ " salary games goals assists shots_on_target \\\n", "player \n", @@ -2121,15 +2122,15 @@ "Alexis S\u00e1nchez 17.6 0 12 7 29 \n", "Saido Berahino 13.8 21 9 0 20 \n", "\n", - " points_per_game points position team \n", - "player \n", - "Sergio Ag\u00fcero 13.12 209.98 Manchester City Forward \n", - "Alexis S\u00e1nchez 11.19 223.86 Arsenal Forward \n", - "Saido Berahino 7.02 147.43 West Brom Forward " + " points_per_game points position team \n", + "player \n", + "Sergio Ag\u00fcero 13.12 209.98 Forward Manchester City \n", + "Alexis S\u00e1nchez 11.19 223.86 Forward Arsenal \n", + "Saido Berahino 7.02 147.43 Forward West Brom " ] } ], - "prompt_number": 16 + "prompt_number": 17 }, { "cell_type": "markdown", @@ -2190,8 +2191,8 @@ " 34\n", " 13.12\n", " 209.98\n", + " Forward\n", " Manchester City\n", - " Forward\n", " \n", " \n", " Alexis S\u00e1nchez\n", @@ -2202,8 +2203,8 @@ " 29\n", " 11.19\n", " 223.86\n", + " Forward\n", " Arsenal\n", - " Forward\n", " \n", " \n", " Saido Berahino\n", @@ -2214,8 +2215,8 @@ " 20\n", " 7.02\n", " 147.43\n", + " Forward\n", " West Brom\n", - " Forward\n", " \n", " \n", "\n", @@ -2223,7 +2224,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 17, + "prompt_number": 18, "text": [ " salary games goals assists shots_on_target \\\n", "player \n", @@ -2231,15 +2232,15 @@ "Alexis S\u00e1nchez 15 0 12 7 29 \n", "Saido Berahino 13.8 21 9 0 20 \n", "\n", - " points_per_game points position team \n", - "player \n", - "Sergio Ag\u00fcero 13.12 209.98 Manchester City Forward \n", - "Alexis S\u00e1nchez 11.19 223.86 Arsenal Forward \n", - "Saido Berahino 7.02 147.43 West Brom Forward " + " points_per_game points position team \n", + "player \n", + "Sergio Ag\u00fcero 13.12 209.98 Forward Manchester City \n", + "Alexis S\u00e1nchez 11.19 223.86 Forward Arsenal \n", + "Saido Berahino 7.02 147.43 Forward West Brom " ] } ], - "prompt_number": 17 + "prompt_number": 18 }, { "cell_type": "markdown", @@ -2290,8 +2291,8 @@ " 34\n", " 13.12\n", " 209.98\n", + " Forward\n", " Manchester City\n", - " Forward\n", " \n", " \n", " 1\n", @@ -2303,8 +2304,8 @@ " 29\n", " 11.19\n", " 223.86\n", + " Forward\n", " Arsenal\n", - " Forward\n", " \n", " \n", " 2\n", @@ -2316,8 +2317,8 @@ " 20\n", " 7.02\n", " 147.43\n", + " Forward\n", " West Brom\n", - " Forward\n", " \n", " \n", "\n", @@ -2325,21 +2326,213 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 18, + "prompt_number": 19, "text": [ " player salary games goals assists shots_on_target \\\n", "0 Sergio Ag\u00fcero 20 16 14 3 34 \n", "1 Alexis S\u00e1nchez 15 0 12 7 29 \n", "2 Saido Berahino 13.8 21 9 0 20 \n", "\n", - " points_per_game points position team \n", - "0 13.12 209.98 Manchester City Forward \n", - "1 11.19 223.86 Arsenal Forward \n", - "2 7.02 147.43 West Brom Forward " + " points_per_game points position team \n", + "0 13.12 209.98 Forward Manchester City \n", + "1 11.19 223.86 Forward Arsenal \n", + "2 7.02 147.43 Forward West Brom " ] } ], - "prompt_number": 18 + "prompt_number": 19 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chaining Conditions - Using Bitwise Operators" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to section overview](#Sections)]" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Selecting only those players that either playing for Arsenal or Chelsea\n", + "\n", + "df[ (df['team'] == 'Arsenal') | (df['team'] == 'Chelsea') ]" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
1 Alexis S\u00e1nchez 15 0 12 7 29 11.19 223.86 Forward Arsenal
3 Eden Hazard 18.9 21 8 4 17 13.05 274.04 Midfield Chelsea
7 Santiago Cazorla 14.8 20 4 0 20 9.97 0.00 Midfield Arsenal
9 Cesc F\u00e0bregas 14.0 20 2 14 10 10.47 209.49 Midfield Chelsea
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 20, + "text": [ + " player salary games goals assists shots_on_target \\\n", + "1 Alexis S\u00e1nchez 15 0 12 7 29 \n", + "3 Eden Hazard 18.9 21 8 4 17 \n", + "7 Santiago Cazorla 14.8 20 4 0 20 \n", + "9 Cesc F\u00e0bregas 14.0 20 2 14 10 \n", + "\n", + " points_per_game points position team \n", + "1 11.19 223.86 Forward Arsenal \n", + "3 13.05 274.04 Midfield Chelsea \n", + "7 9.97 0.00 Midfield Arsenal \n", + "9 10.47 209.49 Midfield Chelsea " + ] + } + ], + "prompt_number": 20 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Selecting forwards from Arsenal only\n", + "\n", + "df[ (df['team'] == 'Arsenal') & (df['position'] == 'Forward') ]" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
1 Alexis S\u00e1nchez 15 0 12 7 29 11.19 223.86 Forward Arsenal
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 22, + "text": [ + " player salary games goals assists shots_on_target \\\n", + "1 Alexis S\u00e1nchez 15 0 12 7 29 \n", + "\n", + " points_per_game points position team \n", + "1 11.19 223.86 Forward Arsenal " + ] + } + ], + "prompt_number": 22 } ], "metadata": {} From d2039a7868da12be7665d5349162d64af7ab4126 Mon Sep 17 00:00:00 2001 From: rasbt Date: Sun, 25 Jan 2015 00:10:54 -0500 Subject: [PATCH 48/83] inplace ops update --- tutorials/things_in_pandas.ipynb | 64 ++++++++++++++++---------------- 1 file changed, 32 insertions(+), 32 deletions(-) diff --git a/tutorials/things_in_pandas.ipynb b/tutorials/things_in_pandas.ipynb index bb71a69..7afa576 100644 --- a/tutorials/things_in_pandas.ipynb +++ b/tutorials/things_in_pandas.ipynb @@ -1,7 +1,7 @@ { "metadata": { "name": "", - "signature": "sha256:cf7223086a74b13d1ae2228a4c8545c401765a90cdb3eca418f18138a4afdaab" + "signature": "sha256:2c7029e546d20c06eaa707f59d5b067689bf8827b87cc32f4fae7b55cde6e0f2" }, "nbformat": 3, "nbformat_minor": 0, @@ -29,7 +29,7 @@ "output_type": "stream", "stream": "stdout", "text": [ - "Sebastian Raschka 24/01/2015 \n", + "Sebastian Raschka 25/01/2015 \n", "\n", "CPython 3.4.2\n", "IPython 2.3.1\n", @@ -890,7 +890,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 8, + "prompt_number": 7, "text": [ " player salary games goals assists shots_on_target \\\n", "7 Cesc F\u00e0bregas 14.0 20 2 14 10 \n", @@ -904,7 +904,7 @@ ] } ], - "prompt_number": 8 + "prompt_number": 7 }, { "cell_type": "markdown", @@ -1008,7 +1008,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 9, + "prompt_number": 8, "text": [ " player salary games goals assists shots_on_target \\\n", "4 \u00c1ngel Di Mar\u00eda 15.0 13 3 NaN 13 \n", @@ -1020,7 +1020,7 @@ ] } ], - "prompt_number": 9 + "prompt_number": 8 }, { "cell_type": "markdown", @@ -1177,7 +1177,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 10, + "prompt_number": 9, "text": [ " player salary games goals assists shots_on_target \\\n", "0 Sergio Ag\u00fcero 19.2 16 14 3 34 \n", @@ -1201,7 +1201,7 @@ ] } ], - "prompt_number": 10 + "prompt_number": 9 }, { "cell_type": "markdown", @@ -1225,7 +1225,7 @@ "input": [ "# Filling NaN cells with default value 0\n", "\n", - "df = df.fillna(value=0)\n", + "df.fillna(value=0, inplace=True)\n", "df" ], "language": "python", @@ -1387,7 +1387,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 11, + "prompt_number": 10, "text": [ " player salary games goals assists shots_on_target \\\n", "0 Sergio Ag\u00fcero 19.2 16 14 3 34 \n", @@ -1415,7 +1415,7 @@ ] } ], - "prompt_number": 11 + "prompt_number": 10 }, { "cell_type": "markdown", @@ -1523,7 +1523,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 12, + "prompt_number": 11, "text": [ " player salary games goals assists shots_on_target \\\n", "8 Saido Berahino 13.8 21 9 0 20 \n", @@ -1537,7 +1537,7 @@ ] } ], - "prompt_number": 12 + "prompt_number": 11 }, { "cell_type": "code", @@ -1617,7 +1617,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 13, + "prompt_number": 12, "text": [ " player salary games goals assists shots_on_target \\\n", "8 Saido Berahino 13.8 21 9 0 20 \n", @@ -1631,7 +1631,7 @@ ] } ], - "prompt_number": 13 + "prompt_number": 12 }, { "cell_type": "markdown", @@ -1662,7 +1662,7 @@ "input": [ "# Sorting the DataFrame by a certain column (from highest to lowest)\n", "\n", - "df = df.sort('goals', ascending=False)\n", + "df.sort('goals', ascending=False, inplace=True)\n", "df.head()" ], "language": "python", @@ -1759,7 +1759,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 14, + "prompt_number": 13, "text": [ " player salary games goals assists shots_on_target \\\n", "0 Sergio Ag\u00fcero 19.2 16 14 3 34 \n", @@ -1777,7 +1777,7 @@ ] } ], - "prompt_number": 14 + "prompt_number": 13 }, { "cell_type": "code", @@ -1882,7 +1882,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 15, + "prompt_number": 14, "text": [ " player salary games goals assists shots_on_target \\\n", "1 Sergio Ag\u00fcero 19.2 16 14 3 34 \n", @@ -1900,7 +1900,7 @@ ] } ], - "prompt_number": 15 + "prompt_number": 14 }, { "cell_type": "markdown", @@ -2003,7 +2003,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 16, + "prompt_number": 15, "text": [ " player salary games goals assists shots_on_target \\\n", "1 Sergio Ag\u00fcero 20 16 14 3 34 \n", @@ -2017,7 +2017,7 @@ ] } ], - "prompt_number": 16 + "prompt_number": 15 }, { "cell_type": "markdown", @@ -2114,7 +2114,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 17, + "prompt_number": 16, "text": [ " salary games goals assists shots_on_target \\\n", "player \n", @@ -2130,7 +2130,7 @@ ] } ], - "prompt_number": 17 + "prompt_number": 16 }, { "cell_type": "markdown", @@ -2224,7 +2224,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 18, + "prompt_number": 17, "text": [ " salary games goals assists shots_on_target \\\n", "player \n", @@ -2240,7 +2240,7 @@ ] } ], - "prompt_number": 18 + "prompt_number": 17 }, { "cell_type": "markdown", @@ -2326,7 +2326,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 19, + "prompt_number": 18, "text": [ " player salary games goals assists shots_on_target \\\n", "0 Sergio Ag\u00fcero 20 16 14 3 34 \n", @@ -2340,7 +2340,7 @@ ] } ], - "prompt_number": 19 + "prompt_number": 18 }, { "cell_type": "markdown", @@ -2454,7 +2454,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 20, + "prompt_number": 19, "text": [ " player salary games goals assists shots_on_target \\\n", "1 Alexis S\u00e1nchez 15 0 12 7 29 \n", @@ -2470,7 +2470,7 @@ ] } ], - "prompt_number": 20 + "prompt_number": 19 }, { "cell_type": "code", @@ -2522,7 +2522,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 22, + "prompt_number": 20, "text": [ " player salary games goals assists shots_on_target \\\n", "1 Alexis S\u00e1nchez 15 0 12 7 29 \n", @@ -2532,7 +2532,7 @@ ] } ], - "prompt_number": 22 + "prompt_number": 20 } ], "metadata": {} From 367d8f99352d4ed142ea5436bd9f85b5759d3328 Mon Sep 17 00:00:00 2001 From: rasbt Date: Wed, 28 Jan 2015 13:26:03 -0500 Subject: [PATCH 49/83] counting nan rows --- tutorials/things_in_pandas.ipynb | 40 +++++++++++++++++++++++++++++++- 1 file changed, 39 insertions(+), 1 deletion(-) diff --git a/tutorials/things_in_pandas.ipynb b/tutorials/things_in_pandas.ipynb index 7afa576..fd8a7f9 100644 --- a/tutorials/things_in_pandas.ipynb +++ b/tutorials/things_in_pandas.ipynb @@ -29,7 +29,7 @@ "output_type": "stream", "stream": "stdout", "text": [ - "Sebastian Raschka 25/01/2015 \n", + "Sebastian Raschka 28/01/2015 \n", "\n", "CPython 3.4.2\n", "IPython 2.3.1\n", @@ -90,6 +90,7 @@ " - [Changing Values in a Column](#Changing-Values-in-a-Column)\n", " - [Adding a New Column](#Adding-a-New-Column)\n", "- [Missing Values aka NaNs](#Missing-Values-aka-NaNs)\n", + " - [Counting Rows with NaNs](#Counting-Rows-with-NaNs)\n", " - [Selecting NaN Rows](#Selecting-NaN-Rows)\n", " - [Selecting non-NaN Rows](#Selecting-non-NaN-Rows)\n", " - [Filling NaN Rows](#Filling-NaN-Rows)\n", @@ -937,6 +938,43 @@ "
" ] }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Counting Rows with NaNs" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "nans = df.shape[0] - df.dropna().shape[0]\n", + "\n", + "print('%d rows have missing values' % nans)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "3 rows have missing values\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, { "cell_type": "heading", "level": 3, From 7cfec1ddc02143fbd61e56badda686ac5f11dac7 Mon Sep 17 00:00:00 2001 From: rasbt Date: Wed, 28 Jan 2015 22:22:37 -0500 Subject: [PATCH 50/83] Applying Functions to Multiple Columns --- tutorials/things_in_pandas.ipynb | 742 +++++++++++++++++-------------- 1 file changed, 403 insertions(+), 339 deletions(-) diff --git a/tutorials/things_in_pandas.ipynb b/tutorials/things_in_pandas.ipynb index fd8a7f9..87c09bb 100644 --- a/tutorials/things_in_pandas.ipynb +++ b/tutorials/things_in_pandas.ipynb @@ -1,7 +1,7 @@ { "metadata": { "name": "", - "signature": "sha256:2c7029e546d20c06eaa707f59d5b067689bf8827b87cc32f4fae7b55cde6e0f2" + "signature": "sha256:c69dee8958d58e899a12b80810cc37f7abd7a90f9b76135251a76499ed8aeb2a" }, "nbformat": 3, "nbformat_minor": 0, @@ -89,6 +89,7 @@ "- [Applying Computations Rows-wise](#Applying-Computations-Rows-wise)\n", " - [Changing Values in a Column](#Changing-Values-in-a-Column)\n", " - [Adding a New Column](#Adding-a-New-Column)\n", + " - [Applying Functions to Multiple Columns](#Applying-Functions-to-Multiple-Columns)\n", "- [Missing Values aka NaNs](#Missing-Values-aka-NaNs)\n", " - [Counting Rows with NaNs](#Counting-Rows-with-NaNs)\n", " - [Selecting NaN Rows](#Selecting-NaN-Rows)\n", @@ -915,6 +916,144 @@ "
" ] }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Applying Functions to Multiple Columns" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "cols = ['player', 'position', 'team']\n", + "df[cols] = df[cols].applymap(lambda x: x.lower())\n", + "df.head()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
0 sergio ag\u00fcero 19.2 16 14 3 34 13.12 209.98 forward manchester city
1 eden hazard 18.9 21 8 4 17 13.05 274.04 midfield chelsea
2 alexis s\u00e1nchez 17.6NaN 12 7 29 11.19 223.86 forward arsenal
3 yaya tour\u00e9 16.6 18 7 1 19 10.99 197.91 midfield manchester city
4 \u00e1ngel di mar\u00eda 15.0 13 3NaN 13 10.17 132.23 midfield manchester united
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 8, + "text": [ + " player salary games goals assists shots_on_target \\\n", + "0 sergio ag\u00fcero 19.2 16 14 3 34 \n", + "1 eden hazard 18.9 21 8 4 17 \n", + "2 alexis s\u00e1nchez 17.6 NaN 12 7 29 \n", + "3 yaya tour\u00e9 16.6 18 7 1 19 \n", + "4 \u00e1ngel di mar\u00eda 15.0 13 3 NaN 13 \n", + "\n", + " points_per_game points position team \n", + "0 13.12 209.98 forward manchester city \n", + "1 13.05 274.04 midfield chelsea \n", + "2 11.19 223.86 forward arsenal \n", + "3 10.99 197.91 midfield manchester city \n", + "4 10.17 132.23 midfield manchester united " + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, { "cell_type": "heading", "level": 1, @@ -965,7 +1104,7 @@ ] } ], - "prompt_number": 8 + "prompt_number": 9 }, { "cell_type": "markdown", @@ -1016,7 +1155,7 @@ " \n", " \n", " 4\n", - " \u00c1ngel Di Mar\u00eda\n", + " \u00e1ngel di mar\u00eda\n", " 15.0\n", " 13\n", " 3\n", @@ -1024,12 +1163,12 @@ " 13\n", " 10.17\n", " 132.23\n", - " Midfield\n", - " Manchester United\n", + " midfield\n", + " manchester united\n", " \n", " \n", " 5\n", - " Santiago Cazorla\n", + " santiago cazorla\n", " 14.8\n", " 20\n", " 4\n", @@ -1037,8 +1176,8 @@ " 20\n", " 9.97\n", " NaN\n", - " Midfield\n", - " Arsenal\n", + " midfield\n", + " arsenal\n", " \n", " \n", "\n", @@ -1046,19 +1185,19 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 8, + "prompt_number": 10, "text": [ " player salary games goals assists shots_on_target \\\n", - "4 \u00c1ngel Di Mar\u00eda 15.0 13 3 NaN 13 \n", - "5 Santiago Cazorla 14.8 20 4 NaN 20 \n", + "4 \u00e1ngel di mar\u00eda 15.0 13 3 NaN 13 \n", + "5 santiago cazorla 14.8 20 4 NaN 20 \n", "\n", " points_per_game points position team \n", - "4 10.17 132.23 Midfield Manchester United \n", - "5 9.97 NaN Midfield Arsenal " + "4 10.17 132.23 midfield manchester united \n", + "5 9.97 NaN midfield arsenal " ] } ], - "prompt_number": 8 + "prompt_number": 10 }, { "cell_type": "markdown", @@ -1107,7 +1246,7 @@ " \n", " \n", " 0\n", - " Sergio Ag\u00fcero\n", + " sergio ag\u00fcero\n", " 19.2\n", " 16\n", " 14\n", @@ -1115,12 +1254,12 @@ " 34\n", " 13.12\n", " 209.98\n", - " Forward\n", - " Manchester City\n", + " forward\n", + " manchester city\n", " \n", " \n", " 1\n", - " Eden Hazard\n", + " eden hazard\n", " 18.9\n", " 21\n", " 8\n", @@ -1128,12 +1267,12 @@ " 17\n", " 13.05\n", " 274.04\n", - " Midfield\n", - " Chelsea\n", + " midfield\n", + " chelsea\n", " \n", " \n", " 2\n", - " Alexis S\u00e1nchez\n", + " alexis s\u00e1nchez\n", " 17.6\n", " NaN\n", " 12\n", @@ -1141,12 +1280,12 @@ " 29\n", " 11.19\n", " 223.86\n", - " Forward\n", - " Arsenal\n", + " forward\n", + " arsenal\n", " \n", " \n", " 3\n", - " Yaya Tour\u00e9\n", + " yaya tour\u00e9\n", " 16.6\n", " 18\n", " 7\n", @@ -1154,12 +1293,12 @@ " 19\n", " 10.99\n", " 197.91\n", - " Midfield\n", - " Manchester City\n", + " midfield\n", + " manchester city\n", " \n", " \n", " 6\n", - " David Silva\n", + " david silva\n", " 14.3\n", " 15\n", " 6\n", @@ -1167,12 +1306,12 @@ " 11\n", " 10.35\n", " 155.26\n", - " Midfield\n", - " Manchester City\n", + " midfield\n", + " manchester city\n", " \n", " \n", " 7\n", - " Cesc F\u00e0bregas\n", + " cesc f\u00e0bregas\n", " 14.0\n", " 20\n", " 2\n", @@ -1180,12 +1319,12 @@ " 10\n", " 10.47\n", " 209.49\n", - " Midfield\n", - " Chelsea\n", + " midfield\n", + " chelsea\n", " \n", " \n", " 8\n", - " Saido Berahino\n", + " saido berahino\n", " 13.8\n", " 21\n", " 9\n", @@ -1193,12 +1332,12 @@ " 20\n", " 7.02\n", " 147.43\n", - " Forward\n", - " West Brom\n", + " forward\n", + " west brom\n", " \n", " \n", " 9\n", - " Steven Gerrard\n", + " steven gerrard\n", " 13.8\n", " 20\n", " 5\n", @@ -1206,8 +1345,8 @@ " 11\n", " 7.50\n", " 150.01\n", - " Midfield\n", - " Liverpool\n", + " midfield\n", + " liverpool\n", " \n", " \n", "\n", @@ -1215,31 +1354,31 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 9, + "prompt_number": 11, "text": [ " player salary games goals assists shots_on_target \\\n", - "0 Sergio Ag\u00fcero 19.2 16 14 3 34 \n", - "1 Eden Hazard 18.9 21 8 4 17 \n", - "2 Alexis S\u00e1nchez 17.6 NaN 12 7 29 \n", - "3 Yaya Tour\u00e9 16.6 18 7 1 19 \n", - "6 David Silva 14.3 15 6 2 11 \n", - "7 Cesc F\u00e0bregas 14.0 20 2 14 10 \n", - "8 Saido Berahino 13.8 21 9 0 20 \n", - "9 Steven Gerrard 13.8 20 5 1 11 \n", + "0 sergio ag\u00fcero 19.2 16 14 3 34 \n", + "1 eden hazard 18.9 21 8 4 17 \n", + "2 alexis s\u00e1nchez 17.6 NaN 12 7 29 \n", + "3 yaya tour\u00e9 16.6 18 7 1 19 \n", + "6 david silva 14.3 15 6 2 11 \n", + "7 cesc f\u00e0bregas 14.0 20 2 14 10 \n", + "8 saido berahino 13.8 21 9 0 20 \n", + "9 steven gerrard 13.8 20 5 1 11 \n", "\n", " points_per_game points position team \n", - "0 13.12 209.98 Forward Manchester City \n", - "1 13.05 274.04 Midfield Chelsea \n", - "2 11.19 223.86 Forward Arsenal \n", - "3 10.99 197.91 Midfield Manchester City \n", - "6 10.35 155.26 Midfield Manchester City \n", - "7 10.47 209.49 Midfield Chelsea \n", - "8 7.02 147.43 Forward West Brom \n", - "9 7.50 150.01 Midfield Liverpool " + "0 13.12 209.98 forward manchester city \n", + "1 13.05 274.04 midfield chelsea \n", + "2 11.19 223.86 forward arsenal \n", + "3 10.99 197.91 midfield manchester city \n", + "6 10.35 155.26 midfield manchester city \n", + "7 10.47 209.49 midfield chelsea \n", + "8 7.02 147.43 forward west brom \n", + "9 7.50 150.01 midfield liverpool " ] } ], - "prompt_number": 9 + "prompt_number": 11 }, { "cell_type": "markdown", @@ -1291,7 +1430,7 @@ " \n", " \n", " 0\n", - " Sergio Ag\u00fcero\n", + " sergio ag\u00fcero\n", " 19.2\n", " 16\n", " 14\n", @@ -1299,12 +1438,12 @@ " 34\n", " 13.12\n", " 209.98\n", - " Forward\n", - " Manchester City\n", + " forward\n", + " manchester city\n", " \n", " \n", " 1\n", - " Eden Hazard\n", + " eden hazard\n", " 18.9\n", " 21\n", " 8\n", @@ -1312,12 +1451,12 @@ " 17\n", " 13.05\n", " 274.04\n", - " Midfield\n", - " Chelsea\n", + " midfield\n", + " chelsea\n", " \n", " \n", " 2\n", - " Alexis S\u00e1nchez\n", + " alexis s\u00e1nchez\n", " 17.6\n", " 0\n", " 12\n", @@ -1325,12 +1464,12 @@ " 29\n", " 11.19\n", " 223.86\n", - " Forward\n", - " Arsenal\n", + " forward\n", + " arsenal\n", " \n", " \n", " 3\n", - " Yaya Tour\u00e9\n", + " yaya tour\u00e9\n", " 16.6\n", " 18\n", " 7\n", @@ -1338,12 +1477,12 @@ " 19\n", " 10.99\n", " 197.91\n", - " Midfield\n", - " Manchester City\n", + " midfield\n", + " manchester city\n", " \n", " \n", " 4\n", - " \u00c1ngel Di Mar\u00eda\n", + " \u00e1ngel di mar\u00eda\n", " 15.0\n", " 13\n", " 3\n", @@ -1351,12 +1490,12 @@ " 13\n", " 10.17\n", " 132.23\n", - " Midfield\n", - " Manchester United\n", + " midfield\n", + " manchester united\n", " \n", " \n", " 5\n", - " Santiago Cazorla\n", + " santiago cazorla\n", " 14.8\n", " 20\n", " 4\n", @@ -1364,12 +1503,12 @@ " 20\n", " 9.97\n", " 0.00\n", - " Midfield\n", - " Arsenal\n", + " midfield\n", + " arsenal\n", " \n", " \n", " 6\n", - " David Silva\n", + " david silva\n", " 14.3\n", " 15\n", " 6\n", @@ -1377,12 +1516,12 @@ " 11\n", " 10.35\n", " 155.26\n", - " Midfield\n", - " Manchester City\n", + " midfield\n", + " manchester city\n", " \n", " \n", " 7\n", - " Cesc F\u00e0bregas\n", + " cesc f\u00e0bregas\n", " 14.0\n", " 20\n", " 2\n", @@ -1390,12 +1529,12 @@ " 10\n", " 10.47\n", " 209.49\n", - " Midfield\n", - " Chelsea\n", + " midfield\n", + " chelsea\n", " \n", " \n", " 8\n", - " Saido Berahino\n", + " saido berahino\n", " 13.8\n", " 21\n", " 9\n", @@ -1403,12 +1542,12 @@ " 20\n", " 7.02\n", " 147.43\n", - " Forward\n", - " West Brom\n", + " forward\n", + " west brom\n", " \n", " \n", " 9\n", - " Steven Gerrard\n", + " steven gerrard\n", " 13.8\n", " 20\n", " 5\n", @@ -1416,8 +1555,8 @@ " 11\n", " 7.50\n", " 150.01\n", - " Midfield\n", - " Liverpool\n", + " midfield\n", + " liverpool\n", " \n", " \n", "\n", @@ -1425,35 +1564,35 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 10, + "prompt_number": 12, "text": [ " player salary games goals assists shots_on_target \\\n", - "0 Sergio Ag\u00fcero 19.2 16 14 3 34 \n", - "1 Eden Hazard 18.9 21 8 4 17 \n", - "2 Alexis S\u00e1nchez 17.6 0 12 7 29 \n", - "3 Yaya Tour\u00e9 16.6 18 7 1 19 \n", - "4 \u00c1ngel Di Mar\u00eda 15.0 13 3 0 13 \n", - "5 Santiago Cazorla 14.8 20 4 0 20 \n", - "6 David Silva 14.3 15 6 2 11 \n", - "7 Cesc F\u00e0bregas 14.0 20 2 14 10 \n", - "8 Saido Berahino 13.8 21 9 0 20 \n", - "9 Steven Gerrard 13.8 20 5 1 11 \n", + "0 sergio ag\u00fcero 19.2 16 14 3 34 \n", + "1 eden hazard 18.9 21 8 4 17 \n", + "2 alexis s\u00e1nchez 17.6 0 12 7 29 \n", + "3 yaya tour\u00e9 16.6 18 7 1 19 \n", + "4 \u00e1ngel di mar\u00eda 15.0 13 3 0 13 \n", + "5 santiago cazorla 14.8 20 4 0 20 \n", + "6 david silva 14.3 15 6 2 11 \n", + "7 cesc f\u00e0bregas 14.0 20 2 14 10 \n", + "8 saido berahino 13.8 21 9 0 20 \n", + "9 steven gerrard 13.8 20 5 1 11 \n", "\n", " points_per_game points position team \n", - "0 13.12 209.98 Forward Manchester City \n", - "1 13.05 274.04 Midfield Chelsea \n", - "2 11.19 223.86 Forward Arsenal \n", - "3 10.99 197.91 Midfield Manchester City \n", - "4 10.17 132.23 Midfield Manchester United \n", - "5 9.97 0.00 Midfield Arsenal \n", - "6 10.35 155.26 Midfield Manchester City \n", - "7 10.47 209.49 Midfield Chelsea \n", - "8 7.02 147.43 Forward West Brom \n", - "9 7.50 150.01 Midfield Liverpool " + "0 13.12 209.98 forward manchester city \n", + "1 13.05 274.04 midfield chelsea \n", + "2 11.19 223.86 forward arsenal \n", + "3 10.99 197.91 midfield manchester city \n", + "4 10.17 132.23 midfield manchester united \n", + "5 9.97 0.00 midfield arsenal \n", + "6 10.35 155.26 midfield manchester city \n", + "7 10.47 209.49 midfield chelsea \n", + "8 7.02 147.43 forward west brom \n", + "9 7.50 150.01 midfield liverpool " ] } ], - "prompt_number": 10 + "prompt_number": 12 }, { "cell_type": "markdown", @@ -1518,7 +1657,7 @@ " \n", " \n", " 8 \n", - " Saido Berahino\n", + " saido berahino\n", " 13.8\n", " 21\n", " 9\n", @@ -1526,12 +1665,12 @@ " 20\n", " 7.02\n", " 147.43\n", - " Forward\n", - " West Brom\n", + " forward\n", + " west brom\n", " \n", " \n", " 9 \n", - " Steven Gerrard\n", + " steven gerrard\n", " 13.8\n", " 20\n", " 5\n", @@ -1539,8 +1678,8 @@ " 11\n", " 7.50\n", " 150.01\n", - " Midfield\n", - " Liverpool\n", + " midfield\n", + " liverpool\n", " \n", " \n", " 10\n", @@ -1561,21 +1700,21 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 11, + "prompt_number": 13, "text": [ " player salary games goals assists shots_on_target \\\n", - "8 Saido Berahino 13.8 21 9 0 20 \n", - "9 Steven Gerrard 13.8 20 5 1 11 \n", + "8 saido berahino 13.8 21 9 0 20 \n", + "9 steven gerrard 13.8 20 5 1 11 \n", "10 NaN NaN NaN NaN NaN NaN \n", "\n", " points_per_game points position team \n", - "8 7.02 147.43 Forward West Brom \n", - "9 7.50 150.01 Midfield Liverpool \n", + "8 7.02 147.43 forward west brom \n", + "9 7.50 150.01 midfield liverpool \n", "10 NaN NaN NaN NaN " ] } ], - "prompt_number": 11 + "prompt_number": 13 }, { "cell_type": "code", @@ -1612,7 +1751,7 @@ " \n", " \n", " 8 \n", - " Saido Berahino\n", + " saido berahino\n", " 13.8\n", " 21\n", " 9\n", @@ -1620,12 +1759,12 @@ " 20\n", " 7.02\n", " 147.43\n", - " Forward\n", - " West Brom\n", + " forward\n", + " west brom\n", " \n", " \n", " 9 \n", - " Steven Gerrard\n", + " steven gerrard\n", " 13.8\n", " 20\n", " 5\n", @@ -1633,8 +1772,8 @@ " 11\n", " 7.50\n", " 150.01\n", - " Midfield\n", - " Liverpool\n", + " midfield\n", + " liverpool\n", " \n", " \n", " 10\n", @@ -1655,21 +1794,21 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 12, + "prompt_number": 14, "text": [ " player salary games goals assists shots_on_target \\\n", - "8 Saido Berahino 13.8 21 9 0 20 \n", - "9 Steven Gerrard 13.8 20 5 1 11 \n", + "8 saido berahino 13.8 21 9 0 20 \n", + "9 steven gerrard 13.8 20 5 1 11 \n", "10 New Player 12.3 NaN NaN NaN NaN \n", "\n", " points_per_game points position team \n", - "8 7.02 147.43 Forward West Brom \n", - "9 7.50 150.01 Midfield Liverpool \n", + "8 7.02 147.43 forward west brom \n", + "9 7.50 150.01 midfield liverpool \n", "10 NaN NaN NaN NaN " ] } ], - "prompt_number": 12 + "prompt_number": 14 }, { "cell_type": "markdown", @@ -1728,7 +1867,7 @@ " \n", " \n", " 0\n", - " Sergio Ag\u00fcero\n", + " sergio ag\u00fcero\n", " 19.2\n", " 16\n", " 14\n", @@ -1736,12 +1875,12 @@ " 34\n", " 13.12\n", " 209.98\n", - " Forward\n", - " Manchester City\n", + " forward\n", + " manchester city\n", " \n", " \n", " 2\n", - " Alexis S\u00e1nchez\n", + " alexis s\u00e1nchez\n", " 17.6\n", " 0\n", " 12\n", @@ -1749,12 +1888,12 @@ " 29\n", " 11.19\n", " 223.86\n", - " Forward\n", - " Arsenal\n", + " forward\n", + " arsenal\n", " \n", " \n", " 8\n", - " Saido Berahino\n", + " saido berahino\n", " 13.8\n", " 21\n", " 9\n", @@ -1762,12 +1901,12 @@ " 20\n", " 7.02\n", " 147.43\n", - " Forward\n", - " West Brom\n", + " forward\n", + " west brom\n", " \n", " \n", " 1\n", - " Eden Hazard\n", + " eden hazard\n", " 18.9\n", " 21\n", " 8\n", @@ -1775,12 +1914,12 @@ " 17\n", " 13.05\n", " 274.04\n", - " Midfield\n", - " Chelsea\n", + " midfield\n", + " chelsea\n", " \n", " \n", " 3\n", - " Yaya Tour\u00e9\n", + " yaya tour\u00e9\n", " 16.6\n", " 18\n", " 7\n", @@ -1788,8 +1927,8 @@ " 19\n", " 10.99\n", " 197.91\n", - " Midfield\n", - " Manchester City\n", + " midfield\n", + " manchester city\n", " \n", " \n", "\n", @@ -1797,25 +1936,25 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 13, + "prompt_number": 15, "text": [ " player salary games goals assists shots_on_target \\\n", - "0 Sergio Ag\u00fcero 19.2 16 14 3 34 \n", - "2 Alexis S\u00e1nchez 17.6 0 12 7 29 \n", - "8 Saido Berahino 13.8 21 9 0 20 \n", - "1 Eden Hazard 18.9 21 8 4 17 \n", - "3 Yaya Tour\u00e9 16.6 18 7 1 19 \n", + "0 sergio ag\u00fcero 19.2 16 14 3 34 \n", + "2 alexis s\u00e1nchez 17.6 0 12 7 29 \n", + "8 saido berahino 13.8 21 9 0 20 \n", + "1 eden hazard 18.9 21 8 4 17 \n", + "3 yaya tour\u00e9 16.6 18 7 1 19 \n", "\n", " points_per_game points position team \n", - "0 13.12 209.98 Forward Manchester City \n", - "2 11.19 223.86 Forward Arsenal \n", - "8 7.02 147.43 Forward West Brom \n", - "1 13.05 274.04 Midfield Chelsea \n", - "3 10.99 197.91 Midfield Manchester City " + "0 13.12 209.98 forward manchester city \n", + "2 11.19 223.86 forward arsenal \n", + "8 7.02 147.43 forward west brom \n", + "1 13.05 274.04 midfield chelsea \n", + "3 10.99 197.91 midfield manchester city " ] } ], - "prompt_number": 13 + "prompt_number": 15 }, { "cell_type": "code", @@ -1851,7 +1990,7 @@ " \n", " \n", " 1\n", - " Sergio Ag\u00fcero\n", + " sergio ag\u00fcero\n", " 19.2\n", " 16\n", " 14\n", @@ -1859,12 +1998,12 @@ " 34\n", " 13.12\n", " 209.98\n", - " Forward\n", - " Manchester City\n", + " forward\n", + " manchester city\n", " \n", " \n", " 2\n", - " Alexis S\u00e1nchez\n", + " alexis s\u00e1nchez\n", " 17.6\n", " 0\n", " 12\n", @@ -1872,12 +2011,12 @@ " 29\n", " 11.19\n", " 223.86\n", - " Forward\n", - " Arsenal\n", + " forward\n", + " arsenal\n", " \n", " \n", " 3\n", - " Saido Berahino\n", + " saido berahino\n", " 13.8\n", " 21\n", " 9\n", @@ -1885,12 +2024,12 @@ " 20\n", " 7.02\n", " 147.43\n", - " Forward\n", - " West Brom\n", + " forward\n", + " west brom\n", " \n", " \n", " 4\n", - " Eden Hazard\n", + " eden hazard\n", " 18.9\n", " 21\n", " 8\n", @@ -1898,12 +2037,12 @@ " 17\n", " 13.05\n", " 274.04\n", - " Midfield\n", - " Chelsea\n", + " midfield\n", + " chelsea\n", " \n", " \n", " 5\n", - " Yaya Tour\u00e9\n", + " yaya tour\u00e9\n", " 16.6\n", " 18\n", " 7\n", @@ -1911,8 +2050,8 @@ " 19\n", " 10.99\n", " 197.91\n", - " Midfield\n", - " Manchester City\n", + " midfield\n", + " manchester city\n", " \n", " \n", "\n", @@ -1920,25 +2059,25 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 14, + "prompt_number": 16, "text": [ " player salary games goals assists shots_on_target \\\n", - "1 Sergio Ag\u00fcero 19.2 16 14 3 34 \n", - "2 Alexis S\u00e1nchez 17.6 0 12 7 29 \n", - "3 Saido Berahino 13.8 21 9 0 20 \n", - "4 Eden Hazard 18.9 21 8 4 17 \n", - "5 Yaya Tour\u00e9 16.6 18 7 1 19 \n", + "1 sergio ag\u00fcero 19.2 16 14 3 34 \n", + "2 alexis s\u00e1nchez 17.6 0 12 7 29 \n", + "3 saido berahino 13.8 21 9 0 20 \n", + "4 eden hazard 18.9 21 8 4 17 \n", + "5 yaya tour\u00e9 16.6 18 7 1 19 \n", "\n", " points_per_game points position team \n", - "1 13.12 209.98 Forward Manchester City \n", - "2 11.19 223.86 Forward Arsenal \n", - "3 7.02 147.43 Forward West Brom \n", - "4 13.05 274.04 Midfield Chelsea \n", - "5 10.99 197.91 Midfield Manchester City " + "1 13.12 209.98 forward manchester city \n", + "2 11.19 223.86 forward arsenal \n", + "3 7.02 147.43 forward west brom \n", + "4 13.05 274.04 midfield chelsea \n", + "5 10.99 197.91 midfield manchester city " ] } ], - "prompt_number": 14 + "prompt_number": 16 }, { "cell_type": "markdown", @@ -1998,7 +2137,7 @@ " \n", " \n", " 1\n", - " Sergio Ag\u00fcero\n", + " sergio ag\u00fcero\n", " 20\n", " 16\n", " 14\n", @@ -2006,12 +2145,12 @@ " 34\n", " 13.12\n", " 209.98\n", - " Forward\n", - " Manchester City\n", + " forward\n", + " manchester city\n", " \n", " \n", " 2\n", - " Alexis S\u00e1nchez\n", + " alexis s\u00e1nchez\n", " 15\n", " 0\n", " 12\n", @@ -2019,12 +2158,12 @@ " 29\n", " 11.19\n", " 223.86\n", - " Forward\n", - " Arsenal\n", + " forward\n", + " arsenal\n", " \n", " \n", " 3\n", - " Saido Berahino\n", + " saido berahino\n", " 13.8\n", " 21\n", " 9\n", @@ -2032,8 +2171,8 @@ " 20\n", " 7.02\n", " 147.43\n", - " Forward\n", - " West Brom\n", + " forward\n", + " west brom\n", " \n", " \n", "\n", @@ -2041,21 +2180,21 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 15, + "prompt_number": 17, "text": [ " player salary games goals assists shots_on_target \\\n", - "1 Sergio Ag\u00fcero 20 16 14 3 34 \n", - "2 Alexis S\u00e1nchez 15 0 12 7 29 \n", - "3 Saido Berahino 13.8 21 9 0 20 \n", + "1 sergio ag\u00fcero 20 16 14 3 34 \n", + "2 alexis s\u00e1nchez 15 0 12 7 29 \n", + "3 saido berahino 13.8 21 9 0 20 \n", "\n", " points_per_game points position team \n", - "1 13.12 209.98 Forward Manchester City \n", - "2 11.19 223.86 Forward Arsenal \n", - "3 7.02 147.43 Forward West Brom " + "1 13.12 209.98 forward manchester city \n", + "2 11.19 223.86 forward arsenal \n", + "3 7.02 147.43 forward west brom " ] } ], - "prompt_number": 15 + "prompt_number": 17 }, { "cell_type": "markdown", @@ -2111,7 +2250,7 @@ " \n", " \n", " \n", - " Sergio Ag\u00fcero\n", + " sergio ag\u00fcero\n", " 19.2\n", " 16\n", " 14\n", @@ -2119,11 +2258,11 @@ " 34\n", " 13.12\n", " 209.98\n", - " Forward\n", - " Manchester City\n", + " forward\n", + " manchester city\n", " \n", " \n", - " Alexis S\u00e1nchez\n", + " alexis s\u00e1nchez\n", " 17.6\n", " 0\n", " 12\n", @@ -2131,11 +2270,11 @@ " 29\n", " 11.19\n", " 223.86\n", - " Forward\n", - " Arsenal\n", + " forward\n", + " arsenal\n", " \n", " \n", - " Saido Berahino\n", + " saido berahino\n", " 13.8\n", " 21\n", " 9\n", @@ -2143,8 +2282,8 @@ " 20\n", " 7.02\n", " 147.43\n", - " Forward\n", - " West Brom\n", + " forward\n", + " west brom\n", " \n", " \n", "\n", @@ -2152,23 +2291,23 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 16, + "prompt_number": 18, "text": [ " salary games goals assists shots_on_target \\\n", "player \n", - "Sergio Ag\u00fcero 19.2 16 14 3 34 \n", - "Alexis S\u00e1nchez 17.6 0 12 7 29 \n", - "Saido Berahino 13.8 21 9 0 20 \n", + "sergio ag\u00fcero 19.2 16 14 3 34 \n", + "alexis s\u00e1nchez 17.6 0 12 7 29 \n", + "saido berahino 13.8 21 9 0 20 \n", "\n", " points_per_game points position team \n", "player \n", - "Sergio Ag\u00fcero 13.12 209.98 Forward Manchester City \n", - "Alexis S\u00e1nchez 11.19 223.86 Forward Arsenal \n", - "Saido Berahino 7.02 147.43 Forward West Brom " + "sergio ag\u00fcero 13.12 209.98 forward manchester city \n", + "alexis s\u00e1nchez 11.19 223.86 forward arsenal \n", + "saido berahino 7.02 147.43 forward west brom " ] } ], - "prompt_number": 16 + "prompt_number": 18 }, { "cell_type": "markdown", @@ -2221,7 +2360,7 @@ " \n", " \n", " \n", - " Sergio Ag\u00fcero\n", + " sergio ag\u00fcero\n", " 20\n", " 16\n", " 14\n", @@ -2229,11 +2368,11 @@ " 34\n", " 13.12\n", " 209.98\n", - " Forward\n", - " Manchester City\n", + " forward\n", + " manchester city\n", " \n", " \n", - " Alexis S\u00e1nchez\n", + " alexis s\u00e1nchez\n", " 15\n", " 0\n", " 12\n", @@ -2241,11 +2380,11 @@ " 29\n", " 11.19\n", " 223.86\n", - " Forward\n", - " Arsenal\n", + " forward\n", + " arsenal\n", " \n", " \n", - " Saido Berahino\n", + " saido berahino\n", " 13.8\n", " 21\n", " 9\n", @@ -2253,8 +2392,8 @@ " 20\n", " 7.02\n", " 147.43\n", - " Forward\n", - " West Brom\n", + " forward\n", + " west brom\n", " \n", " \n", "\n", @@ -2262,23 +2401,23 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 17, + "prompt_number": 19, "text": [ " salary games goals assists shots_on_target \\\n", "player \n", - "Sergio Ag\u00fcero 20 16 14 3 34 \n", - "Alexis S\u00e1nchez 15 0 12 7 29 \n", - "Saido Berahino 13.8 21 9 0 20 \n", + "sergio ag\u00fcero 20 16 14 3 34 \n", + "alexis s\u00e1nchez 15 0 12 7 29 \n", + "saido berahino 13.8 21 9 0 20 \n", "\n", " points_per_game points position team \n", "player \n", - "Sergio Ag\u00fcero 13.12 209.98 Forward Manchester City \n", - "Alexis S\u00e1nchez 11.19 223.86 Forward Arsenal \n", - "Saido Berahino 7.02 147.43 Forward West Brom " + "sergio ag\u00fcero 13.12 209.98 forward manchester city \n", + "alexis s\u00e1nchez 11.19 223.86 forward arsenal \n", + "saido berahino 7.02 147.43 forward west brom " ] } ], - "prompt_number": 17 + "prompt_number": 19 }, { "cell_type": "markdown", @@ -2321,7 +2460,7 @@ " \n", " \n", " 0\n", - " Sergio Ag\u00fcero\n", + " sergio ag\u00fcero\n", " 20\n", " 16\n", " 14\n", @@ -2329,12 +2468,12 @@ " 34\n", " 13.12\n", " 209.98\n", - " Forward\n", - " Manchester City\n", + " forward\n", + " manchester city\n", " \n", " \n", " 1\n", - " Alexis S\u00e1nchez\n", + " alexis s\u00e1nchez\n", " 15\n", " 0\n", " 12\n", @@ -2342,12 +2481,12 @@ " 29\n", " 11.19\n", " 223.86\n", - " Forward\n", - " Arsenal\n", + " forward\n", + " arsenal\n", " \n", " \n", " 2\n", - " Saido Berahino\n", + " saido berahino\n", " 13.8\n", " 21\n", " 9\n", @@ -2355,8 +2494,8 @@ " 20\n", " 7.02\n", " 147.43\n", - " Forward\n", - " West Brom\n", + " forward\n", + " west brom\n", " \n", " \n", "\n", @@ -2364,21 +2503,21 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 18, + "prompt_number": 20, "text": [ " player salary games goals assists shots_on_target \\\n", - "0 Sergio Ag\u00fcero 20 16 14 3 34 \n", - "1 Alexis S\u00e1nchez 15 0 12 7 29 \n", - "2 Saido Berahino 13.8 21 9 0 20 \n", + "0 sergio ag\u00fcero 20 16 14 3 34 \n", + "1 alexis s\u00e1nchez 15 0 12 7 29 \n", + "2 saido berahino 13.8 21 9 0 20 \n", "\n", " points_per_game points position team \n", - "0 13.12 209.98 Forward Manchester City \n", - "1 11.19 223.86 Forward Arsenal \n", - "2 7.02 147.43 Forward West Brom " + "0 13.12 209.98 forward manchester city \n", + "1 11.19 223.86 forward arsenal \n", + "2 7.02 147.43 forward west brom " ] } ], - "prompt_number": 18 + "prompt_number": 20 }, { "cell_type": "markdown", @@ -2434,81 +2573,21 @@ " \n", " \n", " \n", - " \n", - " 1\n", - " Alexis S\u00e1nchez\n", - " 15\n", - " 0\n", - " 12\n", - " 7\n", - " 29\n", - " 11.19\n", - " 223.86\n", - " Forward\n", - " Arsenal\n", - " \n", - " \n", - " 3\n", - " Eden Hazard\n", - " 18.9\n", - " 21\n", - " 8\n", - " 4\n", - " 17\n", - " 13.05\n", - " 274.04\n", - " Midfield\n", - " Chelsea\n", - " \n", - " \n", - " 7\n", - " Santiago Cazorla\n", - " 14.8\n", - " 20\n", - " 4\n", - " 0\n", - " 20\n", - " 9.97\n", - " 0.00\n", - " Midfield\n", - " Arsenal\n", - " \n", - " \n", - " 9\n", - " Cesc F\u00e0bregas\n", - " 14.0\n", - " 20\n", - " 2\n", - " 14\n", - " 10\n", - " 10.47\n", - " 209.49\n", - " Midfield\n", - " Chelsea\n", - " \n", " \n", "\n", "" ], "metadata": {}, "output_type": "pyout", - "prompt_number": 19, + "prompt_number": 21, "text": [ - " player salary games goals assists shots_on_target \\\n", - "1 Alexis S\u00e1nchez 15 0 12 7 29 \n", - "3 Eden Hazard 18.9 21 8 4 17 \n", - "7 Santiago Cazorla 14.8 20 4 0 20 \n", - "9 Cesc F\u00e0bregas 14.0 20 2 14 10 \n", - "\n", - " points_per_game points position team \n", - "1 11.19 223.86 Forward Arsenal \n", - "3 13.05 274.04 Midfield Chelsea \n", - "7 9.97 0.00 Midfield Arsenal \n", - "9 10.47 209.49 Midfield Chelsea " + "Empty DataFrame\n", + "Columns: [player, salary, games, goals, assists, shots_on_target, points_per_game, points, position, team]\n", + "Index: []" ] } ], - "prompt_number": 19 + "prompt_number": 21 }, { "cell_type": "code", @@ -2541,36 +2620,21 @@ " \n", " \n", " \n", - " \n", - " 1\n", - " Alexis S\u00e1nchez\n", - " 15\n", - " 0\n", - " 12\n", - " 7\n", - " 29\n", - " 11.19\n", - " 223.86\n", - " Forward\n", - " Arsenal\n", - " \n", " \n", "\n", "" ], "metadata": {}, "output_type": "pyout", - "prompt_number": 20, + "prompt_number": 22, "text": [ - " player salary games goals assists shots_on_target \\\n", - "1 Alexis S\u00e1nchez 15 0 12 7 29 \n", - "\n", - " points_per_game points position team \n", - "1 11.19 223.86 Forward Arsenal " + "Empty DataFrame\n", + "Columns: [player, salary, games, goals, assists, shots_on_target, points_per_game, points, position, team]\n", + "Index: []" ] } ], - "prompt_number": 20 + "prompt_number": 22 } ], "metadata": {} From db6679eb9c064d1ee974e5c0226f81a739141112 Mon Sep 17 00:00:00 2001 From: rasbt Date: Wed, 28 Jan 2015 22:25:09 -0500 Subject: [PATCH 51/83] Applying Functions to Multiple Columns --- tutorials/things_in_pandas.ipynb | 99 ++++++++++++++++++++++++++++---- 1 file changed, 87 insertions(+), 12 deletions(-) diff --git a/tutorials/things_in_pandas.ipynb b/tutorials/things_in_pandas.ipynb index 87c09bb..53145eb 100644 --- a/tutorials/things_in_pandas.ipynb +++ b/tutorials/things_in_pandas.ipynb @@ -1,7 +1,7 @@ { "metadata": { "name": "", - "signature": "sha256:c69dee8958d58e899a12b80810cc37f7abd7a90f9b76135251a76499ed8aeb2a" + "signature": "sha256:3155cd3fa2449393a467f91f3cdbb32eeac212db664843ef30f96b635dbfc06d" }, "nbformat": 3, "nbformat_minor": 0, @@ -1722,7 +1722,7 @@ "input": [ "# Filling cells with data\n", "\n", - "df.loc[df.index[-1], 'player'] = 'New Player'\n", + "df.loc[df.index[-1], 'player'] = 'new player'\n", "df.loc[df.index[-1], 'salary'] = 12.3\n", "df.tail(3)" ], @@ -1777,7 +1777,7 @@ " \n", " \n", " 10\n", - " New Player\n", + " new player\n", " 12.3\n", " NaN\n", " NaN\n", @@ -1799,7 +1799,7 @@ " player salary games goals assists shots_on_target \\\n", "8 saido berahino 13.8 21 9 0 20 \n", "9 steven gerrard 13.8 20 5 1 11 \n", - "10 New Player 12.3 NaN NaN NaN NaN \n", + "10 new player 12.3 NaN NaN NaN NaN \n", "\n", " points_per_game points position team \n", "8 7.02 147.43 forward west brom \n", @@ -2548,7 +2548,7 @@ "input": [ "# Selecting only those players that either playing for Arsenal or Chelsea\n", "\n", - "df[ (df['team'] == 'Arsenal') | (df['team'] == 'Chelsea') ]" + "df[ (df['team'] == 'arsenal') | (df['team'] == 'chelsea') ]" ], "language": "python", "metadata": {}, @@ -2573,6 +2573,58 @@ " \n", " \n", " \n", + " \n", + " 1\n", + " alexis s\u00e1nchez\n", + " 15\n", + " 0\n", + " 12\n", + " 7\n", + " 29\n", + " 11.19\n", + " 223.86\n", + " forward\n", + " arsenal\n", + " \n", + " \n", + " 3\n", + " eden hazard\n", + " 18.9\n", + " 21\n", + " 8\n", + " 4\n", + " 17\n", + " 13.05\n", + " 274.04\n", + " midfield\n", + " chelsea\n", + " \n", + " \n", + " 7\n", + " santiago cazorla\n", + " 14.8\n", + " 20\n", + " 4\n", + " 0\n", + " 20\n", + " 9.97\n", + " 0.00\n", + " midfield\n", + " arsenal\n", + " \n", + " \n", + " 9\n", + " cesc f\u00e0bregas\n", + " 14.0\n", + " 20\n", + " 2\n", + " 14\n", + " 10\n", + " 10.47\n", + " 209.49\n", + " midfield\n", + " chelsea\n", + " \n", " \n", "\n", "" @@ -2581,9 +2633,17 @@ "output_type": "pyout", "prompt_number": 21, "text": [ - "Empty DataFrame\n", - "Columns: [player, salary, games, goals, assists, shots_on_target, points_per_game, points, position, team]\n", - "Index: []" + " player salary games goals assists shots_on_target \\\n", + "1 alexis s\u00e1nchez 15 0 12 7 29 \n", + "3 eden hazard 18.9 21 8 4 17 \n", + "7 santiago cazorla 14.8 20 4 0 20 \n", + "9 cesc f\u00e0bregas 14.0 20 2 14 10 \n", + "\n", + " points_per_game points position team \n", + "1 11.19 223.86 forward arsenal \n", + "3 13.05 274.04 midfield chelsea \n", + "7 9.97 0.00 midfield arsenal \n", + "9 10.47 209.49 midfield chelsea " ] } ], @@ -2595,7 +2655,7 @@ "input": [ "# Selecting forwards from Arsenal only\n", "\n", - "df[ (df['team'] == 'Arsenal') & (df['position'] == 'Forward') ]" + "df[ (df['team'] == 'arsenal') & (df['position'] == 'forward') ]" ], "language": "python", "metadata": {}, @@ -2620,6 +2680,19 @@ " \n", " \n", " \n", + " \n", + " 1\n", + " alexis s\u00e1nchez\n", + " 15\n", + " 0\n", + " 12\n", + " 7\n", + " 29\n", + " 11.19\n", + " 223.86\n", + " forward\n", + " arsenal\n", + " \n", " \n", "\n", "" @@ -2628,9 +2701,11 @@ "output_type": "pyout", "prompt_number": 22, "text": [ - "Empty DataFrame\n", - "Columns: [player, salary, games, goals, assists, shots_on_target, points_per_game, points, position, team]\n", - "Index: []" + " player salary games goals assists shots_on_target \\\n", + "1 alexis s\u00e1nchez 15 0 12 7 29 \n", + "\n", + " points_per_game points position team \n", + "1 11.19 223.86 forward arsenal " ] } ], From 40d5dd93a56218bd2e2287ff95ce428e3607dfa7 Mon Sep 17 00:00:00 2001 From: rasbt Date: Wed, 28 Jan 2015 22:31:23 -0500 Subject: [PATCH 52/83] Getting an Overview of the Column Types --- tutorials/things_in_pandas.ipynb | 142 +++++++++++++++++++++---------- 1 file changed, 98 insertions(+), 44 deletions(-) diff --git a/tutorials/things_in_pandas.ipynb b/tutorials/things_in_pandas.ipynb index 53145eb..bf6c0b5 100644 --- a/tutorials/things_in_pandas.ipynb +++ b/tutorials/things_in_pandas.ipynb @@ -1,7 +1,7 @@ { "metadata": { "name": "", - "signature": "sha256:3155cd3fa2449393a467f91f3cdbb32eeac212db664843ef30f96b635dbfc06d" + "signature": "sha256:2dd2df7144acb424c4be84b5679ebc4d06bf16dc6a3e0f7fd3d1ed0595479f64" }, "nbformat": 3, "nbformat_minor": 0, @@ -38,7 +38,7 @@ ] } ], - "prompt_number": 1 + "prompt_number": 2 }, { "cell_type": "markdown", @@ -98,7 +98,8 @@ "- [Appending Rows to a DataFrame](#Appending-Rows-to-a-DataFrame)\n", "- [Sorting and Reindexing DataFrames](#Sorting-and-Reindexing-DataFrames)\n", "- [Updating Columns](#Updating-Columns)\n", - "- [Chaining Conditions - Using Bitwise Operators](#Chaining-Conditions---Using-Bitwise-Operators)" + "- [Chaining Conditions - Using Bitwise Operators](#Chaining-Conditions---Using-Bitwise-Operators)\n", + "- [Getting an Overview of the Column Types](#Getting-an-Overview-of-the-Column-Types)" ] }, { @@ -277,7 +278,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 2, + "prompt_number": 3, "text": [ " PLAYER SALARY GP G A SOT \\\n", "0 Sergio Ag\u00fcero\\n Forward \u2014 Manchester City $19.2m 16 14 3 34 \n", @@ -305,7 +306,7 @@ ] } ], - "prompt_number": 2 + "prompt_number": 3 }, { "cell_type": "markdown", @@ -419,7 +420,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 3, + "prompt_number": 4, "text": [ " player salary gp g a sot ppg \\\n", "7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea $14.0m 20 2 14 10 10.47 \n", @@ -433,7 +434,7 @@ ] } ], - "prompt_number": 3 + "prompt_number": 4 }, { "cell_type": "markdown", @@ -524,7 +525,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 4, + "prompt_number": 5, "text": [ " player salary games goals assists \\\n", "7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea $14.0m 20 2 14 \n", @@ -538,7 +539,7 @@ ] } ], - "prompt_number": 4 + "prompt_number": 5 }, { "cell_type": "markdown", @@ -670,7 +671,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 5, + "prompt_number": 6, "text": [ " player salary games goals assists \\\n", "5 Santiago Cazorla\\n Midfield \u2014 Arsenal 14.8 20 4 NaN \n", @@ -688,7 +689,7 @@ ] } ], - "prompt_number": 5 + "prompt_number": 6 }, { "cell_type": "markdown", @@ -785,7 +786,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 6, + "prompt_number": 7, "text": [ " player salary games goals assists \\\n", "7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea 14.0 20 2 14 \n", @@ -799,7 +800,7 @@ ] } ], - "prompt_number": 6 + "prompt_number": 7 }, { "cell_type": "code", @@ -892,7 +893,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 7, + "prompt_number": 8, "text": [ " player salary games goals assists shots_on_target \\\n", "7 Cesc F\u00e0bregas 14.0 20 2 14 10 \n", @@ -906,7 +907,7 @@ ] } ], - "prompt_number": 7 + "prompt_number": 8 }, { "cell_type": "markdown", @@ -1026,7 +1027,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 8, + "prompt_number": 9, "text": [ " player salary games goals assists shots_on_target \\\n", "0 sergio ag\u00fcero 19.2 16 14 3 34 \n", @@ -1044,7 +1045,7 @@ ] } ], - "prompt_number": 8 + "prompt_number": 9 }, { "cell_type": "markdown", @@ -1104,7 +1105,7 @@ ] } ], - "prompt_number": 9 + "prompt_number": 10 }, { "cell_type": "markdown", @@ -1185,7 +1186,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 10, + "prompt_number": 11, "text": [ " player salary games goals assists shots_on_target \\\n", "4 \u00e1ngel di mar\u00eda 15.0 13 3 NaN 13 \n", @@ -1197,7 +1198,7 @@ ] } ], - "prompt_number": 10 + "prompt_number": 11 }, { "cell_type": "markdown", @@ -1354,7 +1355,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 11, + "prompt_number": 12, "text": [ " player salary games goals assists shots_on_target \\\n", "0 sergio ag\u00fcero 19.2 16 14 3 34 \n", @@ -1378,7 +1379,7 @@ ] } ], - "prompt_number": 11 + "prompt_number": 12 }, { "cell_type": "markdown", @@ -1564,7 +1565,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 12, + "prompt_number": 13, "text": [ " player salary games goals assists shots_on_target \\\n", "0 sergio ag\u00fcero 19.2 16 14 3 34 \n", @@ -1592,7 +1593,7 @@ ] } ], - "prompt_number": 12 + "prompt_number": 13 }, { "cell_type": "markdown", @@ -1700,7 +1701,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 13, + "prompt_number": 14, "text": [ " player salary games goals assists shots_on_target \\\n", "8 saido berahino 13.8 21 9 0 20 \n", @@ -1714,7 +1715,7 @@ ] } ], - "prompt_number": 13 + "prompt_number": 14 }, { "cell_type": "code", @@ -1794,7 +1795,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 14, + "prompt_number": 15, "text": [ " player salary games goals assists shots_on_target \\\n", "8 saido berahino 13.8 21 9 0 20 \n", @@ -1808,7 +1809,7 @@ ] } ], - "prompt_number": 14 + "prompt_number": 15 }, { "cell_type": "markdown", @@ -1936,7 +1937,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 15, + "prompt_number": 16, "text": [ " player salary games goals assists shots_on_target \\\n", "0 sergio ag\u00fcero 19.2 16 14 3 34 \n", @@ -1954,7 +1955,7 @@ ] } ], - "prompt_number": 15 + "prompt_number": 16 }, { "cell_type": "code", @@ -2059,7 +2060,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 16, + "prompt_number": 17, "text": [ " player salary games goals assists shots_on_target \\\n", "1 sergio ag\u00fcero 19.2 16 14 3 34 \n", @@ -2077,7 +2078,7 @@ ] } ], - "prompt_number": 16 + "prompt_number": 17 }, { "cell_type": "markdown", @@ -2180,7 +2181,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 17, + "prompt_number": 18, "text": [ " player salary games goals assists shots_on_target \\\n", "1 sergio ag\u00fcero 20 16 14 3 34 \n", @@ -2194,7 +2195,7 @@ ] } ], - "prompt_number": 17 + "prompt_number": 18 }, { "cell_type": "markdown", @@ -2291,7 +2292,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 18, + "prompt_number": 19, "text": [ " salary games goals assists shots_on_target \\\n", "player \n", @@ -2307,7 +2308,7 @@ ] } ], - "prompt_number": 18 + "prompt_number": 19 }, { "cell_type": "markdown", @@ -2401,7 +2402,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 19, + "prompt_number": 20, "text": [ " salary games goals assists shots_on_target \\\n", "player \n", @@ -2417,7 +2418,7 @@ ] } ], - "prompt_number": 19 + "prompt_number": 20 }, { "cell_type": "markdown", @@ -2503,7 +2504,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 20, + "prompt_number": 21, "text": [ " player salary games goals assists shots_on_target \\\n", "0 sergio ag\u00fcero 20 16 14 3 34 \n", @@ -2517,7 +2518,7 @@ ] } ], - "prompt_number": 20 + "prompt_number": 21 }, { "cell_type": "markdown", @@ -2631,7 +2632,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 21, + "prompt_number": 22, "text": [ " player salary games goals assists shots_on_target \\\n", "1 alexis s\u00e1nchez 15 0 12 7 29 \n", @@ -2647,7 +2648,7 @@ ] } ], - "prompt_number": 21 + "prompt_number": 22 }, { "cell_type": "code", @@ -2699,7 +2700,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 22, + "prompt_number": 23, "text": [ " player salary games goals assists shots_on_target \\\n", "1 alexis s\u00e1nchez 15 0 12 7 29 \n", @@ -2709,7 +2710,60 @@ ] } ], - "prompt_number": 22 + "prompt_number": 23 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Getting an Overview of the Column Types" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to section overview](#Sections)]" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "types = df.columns.to_series().groupby(df.dtypes).groups\n", + "for t in types.items():\n", + " print(t)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(dtype('O'), ['player', 'salary', 'position', 'team'])\n", + "(dtype('float64'), ['games', 'goals', 'assists', 'shots_on_target', 'points_per_game', 'points'])\n" + ] + } + ], + "prompt_number": 29 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] } ], "metadata": {} From c20584ea6c8c32380e47fa614e68d7b9f341e990 Mon Sep 17 00:00:00 2001 From: rasbt Date: Wed, 28 Jan 2015 22:47:03 -0500 Subject: [PATCH 53/83] column types --- tutorials/things_in_pandas.ipynb | 273 +++++++++++++++++++++++++------ 1 file changed, 219 insertions(+), 54 deletions(-) diff --git a/tutorials/things_in_pandas.ipynb b/tutorials/things_in_pandas.ipynb index bf6c0b5..505c1f3 100644 --- a/tutorials/things_in_pandas.ipynb +++ b/tutorials/things_in_pandas.ipynb @@ -1,7 +1,7 @@ { "metadata": { "name": "", - "signature": "sha256:2dd2df7144acb424c4be84b5679ebc4d06bf16dc6a3e0f7fd3d1ed0595479f64" + "signature": "sha256:c8ab1a3c99e7c72951c91e74991b8837884cd9e3863f1cd1833651e180ff32bd" }, "nbformat": 3, "nbformat_minor": 0, @@ -38,7 +38,7 @@ ] } ], - "prompt_number": 2 + "prompt_number": 1 }, { "cell_type": "markdown", @@ -99,7 +99,10 @@ "- [Sorting and Reindexing DataFrames](#Sorting-and-Reindexing-DataFrames)\n", "- [Updating Columns](#Updating-Columns)\n", "- [Chaining Conditions - Using Bitwise Operators](#Chaining-Conditions---Using-Bitwise-Operators)\n", - "- [Getting an Overview of the Column Types](#Getting-an-Overview-of-the-Column-Types)" + "- [Column Types](#Column-Types)\n", + " - [Printing Column Types](#Printing-Column-Types)\n", + " - [Selecting by Column Type](#Selecting-by-Column-Type)\n", + " - [Converting Column Types](#Converting-Column-Types)" ] }, { @@ -278,7 +281,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 3, + "prompt_number": 2, "text": [ " PLAYER SALARY GP G A SOT \\\n", "0 Sergio Ag\u00fcero\\n Forward \u2014 Manchester City $19.2m 16 14 3 34 \n", @@ -306,7 +309,7 @@ ] } ], - "prompt_number": 3 + "prompt_number": 2 }, { "cell_type": "markdown", @@ -420,7 +423,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 4, + "prompt_number": 3, "text": [ " player salary gp g a sot ppg \\\n", "7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea $14.0m 20 2 14 10 10.47 \n", @@ -434,7 +437,7 @@ ] } ], - "prompt_number": 4 + "prompt_number": 3 }, { "cell_type": "markdown", @@ -525,7 +528,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 5, + "prompt_number": 4, "text": [ " player salary games goals assists \\\n", "7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea $14.0m 20 2 14 \n", @@ -539,7 +542,7 @@ ] } ], - "prompt_number": 5 + "prompt_number": 4 }, { "cell_type": "markdown", @@ -671,7 +674,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 6, + "prompt_number": 5, "text": [ " player salary games goals assists \\\n", "5 Santiago Cazorla\\n Midfield \u2014 Arsenal 14.8 20 4 NaN \n", @@ -689,7 +692,7 @@ ] } ], - "prompt_number": 6 + "prompt_number": 5 }, { "cell_type": "markdown", @@ -786,7 +789,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 7, + "prompt_number": 6, "text": [ " player salary games goals assists \\\n", "7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea 14.0 20 2 14 \n", @@ -800,7 +803,7 @@ ] } ], - "prompt_number": 7 + "prompt_number": 6 }, { "cell_type": "code", @@ -893,7 +896,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 8, + "prompt_number": 7, "text": [ " player salary games goals assists shots_on_target \\\n", "7 Cesc F\u00e0bregas 14.0 20 2 14 10 \n", @@ -907,7 +910,7 @@ ] } ], - "prompt_number": 8 + "prompt_number": 7 }, { "cell_type": "markdown", @@ -1027,7 +1030,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 9, + "prompt_number": 8, "text": [ " player salary games goals assists shots_on_target \\\n", "0 sergio ag\u00fcero 19.2 16 14 3 34 \n", @@ -1045,7 +1048,7 @@ ] } ], - "prompt_number": 9 + "prompt_number": 8 }, { "cell_type": "markdown", @@ -1105,7 +1108,7 @@ ] } ], - "prompt_number": 10 + "prompt_number": 9 }, { "cell_type": "markdown", @@ -1186,7 +1189,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 11, + "prompt_number": 10, "text": [ " player salary games goals assists shots_on_target \\\n", "4 \u00e1ngel di mar\u00eda 15.0 13 3 NaN 13 \n", @@ -1198,7 +1201,7 @@ ] } ], - "prompt_number": 11 + "prompt_number": 10 }, { "cell_type": "markdown", @@ -1355,7 +1358,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 12, + "prompt_number": 11, "text": [ " player salary games goals assists shots_on_target \\\n", "0 sergio ag\u00fcero 19.2 16 14 3 34 \n", @@ -1379,7 +1382,7 @@ ] } ], - "prompt_number": 12 + "prompt_number": 11 }, { "cell_type": "markdown", @@ -1565,7 +1568,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 13, + "prompt_number": 12, "text": [ " player salary games goals assists shots_on_target \\\n", "0 sergio ag\u00fcero 19.2 16 14 3 34 \n", @@ -1593,7 +1596,7 @@ ] } ], - "prompt_number": 13 + "prompt_number": 12 }, { "cell_type": "markdown", @@ -1701,7 +1704,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 14, + "prompt_number": 13, "text": [ " player salary games goals assists shots_on_target \\\n", "8 saido berahino 13.8 21 9 0 20 \n", @@ -1715,7 +1718,7 @@ ] } ], - "prompt_number": 14 + "prompt_number": 13 }, { "cell_type": "code", @@ -1795,7 +1798,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 15, + "prompt_number": 14, "text": [ " player salary games goals assists shots_on_target \\\n", "8 saido berahino 13.8 21 9 0 20 \n", @@ -1809,7 +1812,7 @@ ] } ], - "prompt_number": 15 + "prompt_number": 14 }, { "cell_type": "markdown", @@ -1937,7 +1940,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 16, + "prompt_number": 15, "text": [ " player salary games goals assists shots_on_target \\\n", "0 sergio ag\u00fcero 19.2 16 14 3 34 \n", @@ -1955,7 +1958,7 @@ ] } ], - "prompt_number": 16 + "prompt_number": 15 }, { "cell_type": "code", @@ -2060,7 +2063,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 17, + "prompt_number": 16, "text": [ " player salary games goals assists shots_on_target \\\n", "1 sergio ag\u00fcero 19.2 16 14 3 34 \n", @@ -2078,7 +2081,7 @@ ] } ], - "prompt_number": 17 + "prompt_number": 16 }, { "cell_type": "markdown", @@ -2181,7 +2184,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 18, + "prompt_number": 17, "text": [ " player salary games goals assists shots_on_target \\\n", "1 sergio ag\u00fcero 20 16 14 3 34 \n", @@ -2195,7 +2198,7 @@ ] } ], - "prompt_number": 18 + "prompt_number": 17 }, { "cell_type": "markdown", @@ -2292,7 +2295,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 19, + "prompt_number": 18, "text": [ " salary games goals assists shots_on_target \\\n", "player \n", @@ -2308,7 +2311,7 @@ ] } ], - "prompt_number": 19 + "prompt_number": 18 }, { "cell_type": "markdown", @@ -2402,7 +2405,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 20, + "prompt_number": 19, "text": [ " salary games goals assists shots_on_target \\\n", "player \n", @@ -2418,7 +2421,7 @@ ] } ], - "prompt_number": 20 + "prompt_number": 19 }, { "cell_type": "markdown", @@ -2504,7 +2507,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 21, + "prompt_number": 20, "text": [ " player salary games goals assists shots_on_target \\\n", "0 sergio ag\u00fcero 20 16 14 3 34 \n", @@ -2518,7 +2521,7 @@ ] } ], - "prompt_number": 21 + "prompt_number": 20 }, { "cell_type": "markdown", @@ -2632,7 +2635,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 22, + "prompt_number": 21, "text": [ " player salary games goals assists shots_on_target \\\n", "1 alexis s\u00e1nchez 15 0 12 7 29 \n", @@ -2648,7 +2651,7 @@ ] } ], - "prompt_number": 22 + "prompt_number": 21 }, { "cell_type": "code", @@ -2700,7 +2703,7 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 23, + "prompt_number": 22, "text": [ " player salary games goals assists shots_on_target \\\n", "1 alexis s\u00e1nchez 15 0 12 7 29 \n", @@ -2710,7 +2713,7 @@ ] } ], - "prompt_number": 23 + "prompt_number": 22 }, { "cell_type": "markdown", @@ -2725,7 +2728,7 @@ "level": 1, "metadata": {}, "source": [ - "Getting an Overview of the Column Types" + "Column Types" ] }, { @@ -2735,35 +2738,197 @@ "[[back to section overview](#Sections)]" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Printing Column Types" + ] + }, { "cell_type": "code", "collapsed": false, "input": [ "types = df.columns.to_series().groupby(df.dtypes).groups\n", - "for t in types.items():\n", - " print(t)" + "types" ], "language": "python", "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "metadata": {}, + "output_type": "pyout", + "prompt_number": 23, + "text": [ + "{dtype('float64'): ['games',\n", + " 'goals',\n", + " 'assists',\n", + " 'shots_on_target',\n", + " 'points_per_game',\n", + " 'points'],\n", + " dtype('O'): ['player', 'salary', 'position', 'team']}" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Selecting by Column Type" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# select string columns\n", + "df.loc[:, (df.dtypes == np.dtype('O')).values].head()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarypositionteam
0 sergio ag\u00fcero 20 forward manchester city
1 alexis s\u00e1nchez 15 forward arsenal
2 saido berahino 13.8 forward west brom
3 eden hazard 18.9 midfield chelsea
4 yaya tour\u00e9 16.6 midfield manchester city
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 24, "text": [ - "(dtype('O'), ['player', 'salary', 'position', 'team'])\n", - "(dtype('float64'), ['games', 'goals', 'assists', 'shots_on_target', 'points_per_game', 'points'])\n" + " player salary position team\n", + "0 sergio ag\u00fcero 20 forward manchester city\n", + "1 alexis s\u00e1nchez 15 forward arsenal\n", + "2 saido berahino 13.8 forward west brom\n", + "3 eden hazard 18.9 midfield chelsea\n", + "4 yaya tour\u00e9 16.6 midfield manchester city" ] } ], - "prompt_number": 29 + "prompt_number": 24 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Converting Column Types" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "df['salary'] = df['salary'].astype(float)" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 25 }, { "cell_type": "code", "collapsed": false, - "input": [], + "input": [ + "types = df.columns.to_series().groupby(df.dtypes).groups\n", + "types" + ], "language": "python", "metadata": {}, - "outputs": [] + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 26, + "text": [ + "{dtype('float64'): ['salary',\n", + " 'games',\n", + " 'goals',\n", + " 'assists',\n", + " 'shots_on_target',\n", + " 'points_per_game',\n", + " 'points'],\n", + " dtype('O'): ['player', 'position', 'team']}" + ] + } + ], + "prompt_number": 26 } ], "metadata": {} From 99f48330a091f0d27ff794402b82d171b2571625 Mon Sep 17 00:00:00 2001 From: rasbt Date: Fri, 6 Feb 2015 11:52:10 -0500 Subject: [PATCH 54/83] added large_csv_to_sqlite.py --- useful_scripts/large_csv_to_sqlite.py | 45 +++++++++++++++++++++++++++ 1 file changed, 45 insertions(+) create mode 100644 useful_scripts/large_csv_to_sqlite.py diff --git a/useful_scripts/large_csv_to_sqlite.py b/useful_scripts/large_csv_to_sqlite.py new file mode 100644 index 0000000..633ea8c --- /dev/null +++ b/useful_scripts/large_csv_to_sqlite.py @@ -0,0 +1,45 @@ +# This is a workaround snippet for reading very large CSV that exceed the +# machine's memory and dump it into an SQLite database using pandas. +# +# Sebastian Raschka, 2015 +# +# Tested in Python 3.4.2 and pandas 0.15.2 + +import pandas as pd +import sqlite3 +from pandas.io import sql +import subprocess + +# In and output file paths +in_csv = '../data/my_large.csv' +out_sqlite = '../data/my.sqlite' + +table_name = 'my_table' # name for the SQLite database table +chunksize = 100000 # number of lines to process at each iteration + +# Get number of lines in the CSV file +nlines = subprocess.check_output('wc -l %s' % in_csv, shell=True) +nlines = int(nlines.split()[0]) + +# connect to database +cnx = sqlite3.connect(out_sqlite) + +# Iteratively read CSV and dump lines into the SQLite table +for i in range(0, nlines, chunksize): + + df = pd.read_csv(in_csv, + header=None, # no header, define column header manually later + nrows=chunksize, # number of rows to read at each iteration + skiprows=i) # skip rows that were already read + + # columns to read + df.columns = ['molecule_id','charge','db','drugsnow','hba','hbd','loc','nrb','smiles'] + + sql.to_sql(df, + name=table_name, + con=cnx, + index=False, # don't use CSV file index + index_label='molecule_id', # use a unique column from DataFrame as index + if_exists='append') +cnx.close() + From edc17e29074871bd7bbd75075577ff730cf91a16 Mon Sep 17 00:00:00 2001 From: rasbt Date: Fri, 6 Feb 2015 11:58:24 -0500 Subject: [PATCH 55/83] updated readme --- README.md | 6 +++--- useful_scripts/sparsify_matrix.py | 2 ++ 2 files changed, 5 insertions(+), 3 deletions(-) diff --git a/README.md b/README.md index 8b1340d..66ad901 100644 --- a/README.md +++ b/README.md @@ -154,11 +154,11 @@ - [Shell script](./useful_scripts/prepend_python_shebang.sh) For prepending Python-shebangs to .py files. -- Convert 'tab-delimited' to 'comma-separated' CSV files [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/useful_scripts/fix_tab_csv.ipynb)] - -- A random string generator [function](./useful_scripts/random_string_generator.py) +- A random string generator [function](./useful_scripts/random_string_generator.py). +- [Converting large CSV files](https://github.com/rasbt/python_reference/blob/master/useful_scripts/large_csv_to_sqlite.py) to SQLite databases using pandas. +- [Sparsifying a matrix](https://github.com/rasbt/python_reference/blob/master/useful_scripts/sparsify_matrix.py) by zeroing out all elements but the top k elements in a row using NumPy.
diff --git a/useful_scripts/sparsify_matrix.py b/useful_scripts/sparsify_matrix.py index 27c864c..ef5e141 100644 --- a/useful_scripts/sparsify_matrix.py +++ b/useful_scripts/sparsify_matrix.py @@ -4,6 +4,8 @@ # The matrix could be a distance or similarity matrix (e.g., kernel matrix in kernel PCA), # where we are interested to keep the top k neighbors. +import numpy as np + print('Sparsify a matrix by zeroing all elements but the top 2 values in a row.\n') A = np.array([[1,2,3,4,5],[9,8,6,4,5],[3,1,7,8,9]]) From 45c931b3f90742f306aaf813ed8a9964d7e41d5f Mon Sep 17 00:00:00 2001 From: rasbt Date: Fri, 6 Feb 2015 12:01:46 -0500 Subject: [PATCH 56/83] updated readme --- useful_scripts/large_csv_to_sqlite.py | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/useful_scripts/large_csv_to_sqlite.py b/useful_scripts/large_csv_to_sqlite.py index 633ea8c..5e67691 100644 --- a/useful_scripts/large_csv_to_sqlite.py +++ b/useful_scripts/large_csv_to_sqlite.py @@ -17,6 +17,9 @@ table_name = 'my_table' # name for the SQLite database table chunksize = 100000 # number of lines to process at each iteration +# columns that should be read from the CSV file +columns = ['molecule_id','charge','db','drugsnow','hba','hbd','loc','nrb','smiles'] + # Get number of lines in the CSV file nlines = subprocess.check_output('wc -l %s' % in_csv, shell=True) nlines = int(nlines.split()[0]) @@ -33,7 +36,7 @@ skiprows=i) # skip rows that were already read # columns to read - df.columns = ['molecule_id','charge','db','drugsnow','hba','hbd','loc','nrb','smiles'] + df.columns = columns sql.to_sql(df, name=table_name, From cdac4741154ed99afbc8740ca2f38f9fa62cd678 Mon Sep 17 00:00:00 2001 From: rasbt Date: Fri, 6 Feb 2015 15:09:13 -0500 Subject: [PATCH 57/83] shell cmd upd --- useful_scripts/large_csv_to_sqlite.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/useful_scripts/large_csv_to_sqlite.py b/useful_scripts/large_csv_to_sqlite.py index 5e67691..8edba57 100644 --- a/useful_scripts/large_csv_to_sqlite.py +++ b/useful_scripts/large_csv_to_sqlite.py @@ -21,7 +21,7 @@ columns = ['molecule_id','charge','db','drugsnow','hba','hbd','loc','nrb','smiles'] # Get number of lines in the CSV file -nlines = subprocess.check_output('wc -l %s' % in_csv, shell=True) +nlines = subprocess.check_output(['wc', '-l', in_csv]) nlines = int(nlines.split()[0]) # connect to database From 06387b454dc65483ccbdaeff710e5ccdff4eac32 Mon Sep 17 00:00:00 2001 From: rasbt Date: Fri, 6 Feb 2015 17:00:53 -0500 Subject: [PATCH 58/83] comment to skip header --- useful_scripts/large_csv_to_sqlite.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/useful_scripts/large_csv_to_sqlite.py b/useful_scripts/large_csv_to_sqlite.py index 8edba57..9932f9c 100644 --- a/useful_scripts/large_csv_to_sqlite.py +++ b/useful_scripts/large_csv_to_sqlite.py @@ -28,7 +28,7 @@ cnx = sqlite3.connect(out_sqlite) # Iteratively read CSV and dump lines into the SQLite table -for i in range(0, nlines, chunksize): +for i in range(0, nlines, chunksize): # change 0 -> 1 if your csv file contains a column header df = pd.read_csv(in_csv, header=None, # no header, define column header manually later From 80a06cfd60ac7bc20947ea9ef136f1c424aac9f4 Mon Sep 17 00:00:00 2001 From: rasbt Date: Thu, 19 Feb 2015 20:51:20 -0500 Subject: [PATCH 59/83] added pep links --- README.md | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index 66ad901..42903d5 100644 --- a/README.md +++ b/README.md @@ -170,7 +170,9 @@ - [PyPI - the Python Package Index](https://pypi.python.org/pypi) - The official repository for all open source Python modules and packages. -- [PEP 8](http://legacy.python.org/dev/peps/pep-0008/) - The official style guide for Python code. +- [PEP 8](https://www.python.org/dev/peps/pep-0008/) - The official style guide for Python code. + +- [PEP 257](https://www.python.org/dev/peps/pep-0257/) - Python's official docstring conventions; [pep257 - Python style guide checker](https://pypi.python.org/pypi/pep257)
From c4feff05e53aad7796ee70f483eff3d03dffd5af Mon Sep 17 00:00:00 2001 From: rasbt Date: Wed, 3 Jun 2015 15:50:00 -0400 Subject: [PATCH 60/83] namedtuple ex --- python_patterns/patterns.ipynb | 3068 ++++++++++++++++---------------- 1 file changed, 1563 insertions(+), 1505 deletions(-) diff --git a/python_patterns/patterns.ipynb b/python_patterns/patterns.ipynb index 2a769ba..64c6fe1 100644 --- a/python_patterns/patterns.ipynb +++ b/python_patterns/patterns.ipynb @@ -1,1542 +1,1600 @@ { - "metadata": { - "name": "", - "signature": "sha256:714a46a359c5b1c3e7e7bd4d19d73221f9def5bcb806840be82541070041d29e" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ + "cells": [ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[Go back](https://github.com/rasbt/python_reference) to the `python_reference` repository." - ] - }, - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "A random collection of useful Python snippets" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "I just cleaned my hard drive and found a couple of useful Python snippets that I had some use for in the past. I thought it would be worthwhile to collect them in a IPython notebook for personal reference and share it with people who might find them useful too. \n", - "Most of those snippets are hopefully self-explanatory, but I am planning to add more comments and descriptions in future." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Table of Contents" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "- [Bitstrings from positive and negative elements in a list](#Bitstrings-from-positive-and-negative-elements-in-a-list)\n", - "- [Command line arguments 1 - sys.argv](#Command-line-arguments-1---sys.argv)\n", - "- [Data and time basics](#Data-and-time-basics)\n", - "- [Differences between 2 files](#Differences-between-2-files)\n", - "- [Differences between successive elements in a list](#Differences-between-successive-elements-in-a-list)\n", - "- [Doctest example](#Doctest-example)\n", - "- [English language detection](#English-language-detection)\n", - "- [File browsing basics](#File-browsing-basics)\n", - "- [File reading basics](#File-reading-basics)\n", - "- [Indices of min and max elements from a list](#Indices-of-min-and-max-elements-from-a-list)\n", - "- [Lambda functions](#Lambda-functions)\n", - "- [Private functions](#Private-functions)\n", - "- [Namedtuples](#Namedtuples)\n", - "- [Normalizing data](#Normalizing-data)\n", - "- [NumPy essentials](#NumPy-essentials)\n", - "- [Pickling Python objects to bitstreams](#Pickling-Python-objects-to-bitstreams)\n", - "- [Python version check](#Python-version-check)\n", - "- [Runtime within a script](#Runtime-within-a-script)\n", - "- [Sorting lists of tuples by elements](#Sorting-lists-of-tuples-by-elements)\n", - "- [Sorting multiple lists relative to each other](#Sorting-multiple-lists-relative-to-each-other)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%load_ext watermark" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 1 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%watermark -d -a \"Sebastian Raschka\" -v" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Sebastian Raschka 26/09/2014 \n", - "\n", - "CPython 3.4.1\n", - "IPython 2.0.0\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[More information](https://github.com/rasbt/watermark) about the `watermark` magic command extension." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Bitstrings from positive and negative elements in a list" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[back to top](#Table-of-Contents)" - ] - }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[Go back](https://github.com/rasbt/python_reference) to the `python_reference` repository." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# A random collection of useful Python snippets" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "I just cleaned my hard drive and found a couple of useful Python snippets that I had some use for in the past. I thought it would be worthwhile to collect them in a IPython notebook for personal reference and share it with people who might find them useful too. \n", + "Most of those snippets are hopefully self-explanatory, but I am planning to add more comments and descriptions in future." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Table of Contents" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- [Bitstrings from positive and negative elements in a list](#Bitstrings-from-positive-and-negative-elements-in-a-list)\n", + "- [Command line arguments 1 - sys.argv](#Command-line-arguments-1---sys.argv)\n", + "- [Data and time basics](#Data-and-time-basics)\n", + "- [Differences between 2 files](#Differences-between-2-files)\n", + "- [Differences between successive elements in a list](#Differences-between-successive-elements-in-a-list)\n", + "- [Doctest example](#Doctest-example)\n", + "- [English language detection](#English-language-detection)\n", + "- [File browsing basics](#File-browsing-basics)\n", + "- [File reading basics](#File-reading-basics)\n", + "- [Indices of min and max elements from a list](#Indices-of-min-and-max-elements-from-a-list)\n", + "- [Lambda functions](#Lambda-functions)\n", + "- [Private functions](#Private-functions)\n", + "- [Namedtuples](#Namedtuples)\n", + "- [Normalizing data](#Normalizing-data)\n", + "- [NumPy essentials](#NumPy-essentials)\n", + "- [Pickling Python objects to bitstreams](#Pickling-Python-objects-to-bitstreams)\n", + "- [Python version check](#Python-version-check)\n", + "- [Runtime within a script](#Runtime-within-a-script)\n", + "- [Sorting lists of tuples by elements](#Sorting-lists-of-tuples-by-elements)\n", + "- [Sorting multiple lists relative to each other](#Sorting-multiple-lists-relative-to-each-other)\n", + "- [Using namedtuples](#Using-namedtuples)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%load_ext watermark" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Generating a bitstring from a Python list or numpy array\n", - "# where all postive values -> 1\n", - "# all negative values -> 0\n", - "\n", - "import numpy as np\n", - "\n", - "def make_bitstring(ary):\n", - " return np.where(ary > 0, 1, 0)\n", + "name": "stdout", + "output_type": "stream", + "text": [ + "Sebastian Raschka 26/09/2014 \n", "\n", - "\n", - "def faster_bitstring(ary):\n", - " return np.where(ary > 0).astype('i1')\n", - "\n", - "### Example:\n", - "\n", - "ary1 = np.array([1, 2, 0.3, -1, -2])\n", - "print('input values %s' %ary1)\n", - "print('bitstring %s' %make_bitstring(ary1))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "input values [ 1. 2. 0.3 -1. -2. ]\n", - "bitstring [1 1 1 0 0]\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" + "CPython 3.4.1\n", + "IPython 2.0.0\n" ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Command line arguments 1 - sys.argv" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[back to top](#Table-of-Contents)" + } + ], + "source": [ + "%watermark -d -a \"Sebastian Raschka\" -v" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[More information](https://github.com/rasbt/watermark) about the `watermark` magic command extension." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Bitstrings from positive and negative elements in a list" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "input values [ 1. 2. 0.3 -1. -2. ]\n", + "bitstring [1 1 1 0 0]\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%%file cmd_line_args_1_sysarg.py\n", - "import sys\n", - "\n", - "def error(msg):\n", - " \"\"\"Prints error message, sends it to stderr, and quites the program.\"\"\"\n", - " sys.exit(msg)\n", - "\n", - "args = sys.argv[1:] # sys.argv[0] is the name of the python script itself\n", - "\n", - "try:\n", - " arg1 = int(args[0])\n", - " arg2 = args[1]\n", - " arg3 = args[2]\n", - " print(\"Everything okay!\")\n", - "\n", - "except ValueError:\n", - " error(\"First argument must be integer type!\")\n", - "\n", - "except IndexError:\n", - " error(\"Requires 3 arguments!\")" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Overwriting cmd_line_args_1_sysarg.py\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "% run cmd_line_args_1_sysarg.py 1 2 3" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Everything okay!\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "% run cmd_line_args_1_sysarg.py a 2 3" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "ename": "SystemExit", - "evalue": "First argument must be integer type!", - "output_type": "pyerr", - "traceback": [ - "An exception has occurred, use %tb to see the full traceback.\n", - "\u001b[0;31mSystemExit\u001b[0m\u001b[0;31m:\u001b[0m First argument must be integer type!\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" + } + ], + "source": [ + "# Generating a bitstring from a Python list or numpy array\n", + "# where all postive values -> 1\n", + "# all negative values -> 0\n", + "\n", + "import numpy as np\n", + "\n", + "def make_bitstring(ary):\n", + " return np.where(ary > 0, 1, 0)\n", + "\n", + "\n", + "def faster_bitstring(ary):\n", + " return np.where(ary > 0).astype('i1')\n", + "\n", + "### Example:\n", + "\n", + "ary1 = np.array([1, 2, 0.3, -1, -2])\n", + "print('input values %s' %ary1)\n", + "print('bitstring %s' %make_bitstring(ary1))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Command line arguments 1 - sys.argv" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Overwriting cmd_line_args_1_sysarg.py\n" ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Data and time basics" + } + ], + "source": [ + "%%file cmd_line_args_1_sysarg.py\n", + "import sys\n", + "\n", + "def error(msg):\n", + " \"\"\"Prints error message, sends it to stderr, and quites the program.\"\"\"\n", + " sys.exit(msg)\n", + "\n", + "args = sys.argv[1:] # sys.argv[0] is the name of the python script itself\n", + "\n", + "try:\n", + " arg1 = int(args[0])\n", + " arg2 = args[1]\n", + " arg3 = args[2]\n", + " print(\"Everything okay!\")\n", + "\n", + "except ValueError:\n", + " error(\"First argument must be integer type!\")\n", + "\n", + "except IndexError:\n", + " error(\"Requires 3 arguments!\")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Everything okay!\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[back to top](#Table-of-Contents)" + } + ], + "source": [ + "% run cmd_line_args_1_sysarg.py 1 2 3" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "ename": "SystemExit", + "evalue": "First argument must be integer type!", + "output_type": "error", + "traceback": [ + "An exception has occurred, use %tb to see the full traceback.\n", + "\u001b[0;31mSystemExit\u001b[0m\u001b[0;31m:\u001b[0m First argument must be integer type!\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import time\n", - "\n", - "# print time HOURS:MINUTES:SECONDS\n", - "# e.g., '10:50:58'\n", - "print(time.strftime(\"%H:%M:%S\"))\n", - "\n", - "# print current date DAY:MONTH:YEAR\n", - "# e.g., '06/03/2014'\n", - "print(time.strftime(\"%d/%m/%Y\"))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "13:28:05\n", - "26/09/2014\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" + } + ], + "source": [ + "% run cmd_line_args_1_sysarg.py a 2 3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data and time basics" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13:28:05\n", + "26/09/2014\n" ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Differences between 2 files" + } + ], + "source": [ + "import time\n", + "\n", + "# print time HOURS:MINUTES:SECONDS\n", + "# e.g., '10:50:58'\n", + "print(time.strftime(\"%H:%M:%S\"))\n", + "\n", + "# print current date DAY:MONTH:YEAR\n", + "# e.g., '06/03/2014'\n", + "print(time.strftime(\"%d/%m/%Y\"))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Differences between 2 files" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Writing id_file1.txt\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[back to top](#Table-of-Contents)" + } + ], + "source": [ + "%%file id_file1.txt\n", + "1234\n", + "2342\n", + "2341" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Writing id_file2.txt\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%%file id_file1.txt\n", - "1234\n", - "2342\n", - "2341" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Writing id_file1.txt\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%%file id_file2.txt\n", + } + ], + "source": [ + "%%file id_file2.txt\n", + "5234\n", + "3344\n", + "2341" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ "5234\n", "3344\n", - "2341" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Writing id_file2.txt\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Print lines that are different between 2 files. Insensitive\n", - "# to the order of the file contents.\n", - "\n", - "id_set1 = set()\n", - "id_set2 = set()\n", - "\n", - "with open('id_file1.txt', 'r') as id_file:\n", - " for line in id_file:\n", - " id_set1.add(line.strip())\n", - "\n", - "with open('id_file2.txt', 'r') as id_file:\n", - " for line in id_file:\n", - " id_set2.add(line.strip()) \n", - "\n", - "diffs = id_set2.difference(id_set1)\n", - "\n", - "for d in diffs:\n", - " print(d)\n", - "print(\"Total differences:\",len(diffs))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "5234\n", - "3344\n", - "Total differences: 2\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" + "Total differences: 2\n" ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Differences between successive elements in a list" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[back to top](#Table-of-Contents)" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from itertools import islice\n", - "\n", - "lst = [1,2,3,5,8]\n", - "diff = [j - i for i, j in zip(lst, islice(lst, 1, None))]\n", - "print(diff)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[1, 1, 2, 3]\n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Doctest example" + } + ], + "source": [ + "# Print lines that are different between 2 files. Insensitive\n", + "# to the order of the file contents.\n", + "\n", + "id_set1 = set()\n", + "id_set2 = set()\n", + "\n", + "with open('id_file1.txt', 'r') as id_file:\n", + " for line in id_file:\n", + " id_set1.add(line.strip())\n", + "\n", + "with open('id_file2.txt', 'r') as id_file:\n", + " for line in id_file:\n", + " id_set2.add(line.strip()) \n", + "\n", + "diffs = id_set2.difference(id_set1)\n", + "\n", + "for d in diffs:\n", + " print(d)\n", + "print(\"Total differences:\",len(diffs))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Differences between successive elements in a list" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1, 1, 2, 3]\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[back to top](#Table-of-Contents)" + } + ], + "source": [ + "from itertools import islice\n", + "\n", + "lst = [1,2,3,5,8]\n", + "diff = [j - i for i, j in zip(lst, islice(lst, 1, None))]\n", + "print(diff)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Doctest example" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ok\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def subtract(a, b):\n", - " \"\"\"\n", - " Subtracts second from first number and returns result.\n", - " >>> subtract(10, 5)\n", - " 5\n", - " >>> subtract(11, 0.7)\n", - " 10.3\n", - " \"\"\"\n", - " return a-b\n", - "\n", - "if __name__ == \"__main__\": # is 'false' if imported\n", - " import doctest\n", - " doctest.testmod()\n", - " print('ok')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "ok\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def hello_world():\n", - " \"\"\"\n", - " Returns 'Hello, World'\n", - " >>> hello_world()\n", + } + ], + "source": [ + "def subtract(a, b):\n", + " \"\"\"\n", + " Subtracts second from first number and returns result.\n", + " >>> subtract(10, 5)\n", + " 5\n", + " >>> subtract(11, 0.7)\n", + " 10.3\n", + " \"\"\"\n", + " return a-b\n", + "\n", + "if __name__ == \"__main__\": # is 'false' if imported\n", + " import doctest\n", + " doctest.testmod()\n", + " print('ok')" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "**********************************************************************\n", + "File \"__main__\", line 4, in __main__.hello_world\n", + "Failed example:\n", + " hello_world()\n", + "Expected:\n", " 'Hello, World'\n", - " \"\"\"\n", - " return 'hello world'\n", - "\n", - "if __name__ == \"__main__\": # is 'false' if imported\n", - " import doctest\n", - " doctest.testmod()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "**********************************************************************\n", - "File \"__main__\", line 4, in __main__.hello_world\n", - "Failed example:\n", - " hello_world()\n", - "Expected:\n", - " 'Hello, World'\n", - "Got:\n", - " 'hello world'\n", - "**********************************************************************\n", - "1 items had failures:\n", - " 1 of 1 in __main__.hello_world\n", - "***Test Failed*** 1 failures.\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "English language detection" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[back to top](#Table-of-Contents)" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import nltk\n", - "\n", - "def eng_ratio(text):\n", - " ''' Returns the ratio of non-English to English words from a text '''\n", - "\n", - " english_vocab = set(w.lower() for w in nltk.corpus.words.words()) \n", - " text_vocab = set(w.lower() for w in text.split() if w.lower().isalpha()) \n", - " unusual = text_vocab.difference(english_vocab)\n", - " diff = len(unusual)/len(text_vocab)\n", - " return diff\n", - " \n", - "text = 'This is a test fahrrad'\n", - "\n", - "print(eng_ratio(text))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "0.2\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "File browsing basics" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[back to top](#Table-of-Contents)" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import os\n", - "import shutil\n", - "import glob\n", - "\n", - "# working directory\n", - "c_dir = os.getcwd() # show current working directory\n", - "os.listdir(c_dir) # shows all files in the working directory\n", - "os.chdir('~/Data') # change working directory\n", - "\n", - "\n", - "# get all files in a directory\n", - "glob.glob('/Users/sebastian/Desktop/*')\n", - "\n", - "# e.g., ['/Users/sebastian/Desktop/untitled folder', '/Users/sebastian/Desktop/Untitled.txt']\n", - "\n", - "# walk\n", - "tree = os.walk(c_dir) \n", - "# moves through sub directories and creates a 'generator' object of tuples\n", - "# ('dir', [file1, file2, ...] [subdirectory1, subdirectory2, ...]), \n", - "# (...), ...\n", - "\n", - "#check files: returns either True or False\n", - "os.exists('../rel_path')\n", - "os.exists('/home/abs_path')\n", - "os.isfile('./file.txt')\n", - "os.isdir('./subdir')\n", - "\n", - "\n", - "# file permission (True or False\n", - "os.access('./some_file', os.F_OK) # File exists? Python 2.7\n", - "os.access('./some_file', os.R_OK) # Ok to read? Python 2.7\n", - "os.access('./some_file', os.W_OK) # Ok to write? Python 2.7\n", - "os.access('./some_file', os.X_OK) # Ok to execute? Python 2.7\n", - "os.access('./some_file', os.X_OK | os.W_OK) # Ok to execute or write? Python 2.7\n", - "\n", - "# join (creates operating system dependent paths)\n", - "os.path.join('a', 'b', 'c')\n", - "# 'a/b/c' on Unix/Linux\n", - "# 'a\\\\b\\\\c' on Windows\n", - "os.path.normpath('a/b/c') # converts file separators\n", - "\n", - "\n", - "# os.path: direcory and file names\n", - "os.path.samefile('./some_file', '/home/some_file') # True if those are the same\n", - "os.path.dirname('./some_file') # returns '.' (everythin but last component)\n", - "os.path.basename('./some_file') # returns 'some_file' (only last component\n", - "os.path.split('./some_file') # returns (dirname, basename) or ('.', 'some_file)\n", - "os.path.splitext('./some_file.txt') # returns ('./some_file', '.txt')\n", - "os.path.splitdrive('./some_file.txt') # returns ('', './some_file.txt')\n", - "os.path.isabs('./some_file.txt') # returns False (not an absolute path)\n", - "os.path.abspath('./some_file.txt')\n", - "\n", - "\n", - "# create and delete files and directories\n", - "os.mkdir('./test') # create a new direcotory\n", - "os.rmdir('./test') # removes an empty direcotory\n", - "os.removedirs('./test') # removes nested empty directories\n", - "os.remove('file.txt') # removes an individual file\n", - "shutil.rmtree('./test') # removes directory (empty or not empty)\n", - "\n", - "os.rename('./dir_before', './renamed') # renames directory if destination doesn't exist\n", - "shutil.move('./dir_before', './renamed') # renames directory always\n", - "\n", - "shutil.copytree('./orig', './copy') # copies a directory recursively\n", - "shutil.copyfile('file', 'copy') # copies a file\n", - "\n", - " \n", - "# Getting files of particular type from directory\n", - "files = [f for f in os.listdir(s_pdb_dir) if f.endswith(\".txt\")]\n", - " \n", - "# Copy and move\n", - "shutil.copyfile(\"/path/to/file\", \"/path/to/new/file\") \n", - "shutil.copy(\"/path/to/file\", \"/path/to/directory\")\n", - "shutil.move(\"/path/to/file\",\"/path/to/directory\")\n", - " \n", - "# Check if file or directory exists\n", - "os.path.exists(\"file or directory\")\n", - "os.path.isfile(\"file\")\n", - "os.path.isdir(\"directory\")\n", - " \n", - "# Working directory and absolute path to files\n", - "os.getcwd()\n", - "os.path.abspath(\"file\")" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "File reading basics" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[back to top](#Table-of-Contents)" + "Got:\n", + " 'hello world'\n", + "**********************************************************************\n", + "1 items had failures:\n", + " 1 of 1 in __main__.hello_world\n", + "***Test Failed*** 1 failures.\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Note: rb opens file in binary mode to avoid issues with Windows systems\n", - "# where '\\r\\n' is used instead of '\\n' as newline character(s).\n", - "\n", - "\n", - "# A) Reading in Byte chunks\n", - "reader_a = open(\"file.txt\", \"rb\")\n", - "chunks = []\n", - "data = reader_a.read(64) # reads first 64 bytes\n", - "while data != \"\":\n", - " chunks.append(data)\n", - " data = reader_a.read(64)\n", - "if data:\n", - " chunks.append(data)\n", - "print(len(chunks))\n", - "reader_a.close()\n", - "\n", - "\n", - "# B) Reading whole file at once into a list of lines\n", - "with open(\"file.txt\", \"rb\") as reader_b: # recommended syntax, auto closes\n", - " data = reader_b.readlines() # data is assigned a list of lines\n", - "print(len(data))\n", - "\n", - "\n", - "# C) Reading whole file at once into a string\n", - "with open(\"file.txt\", \"rb\") as reader_c:\n", - " data = reader_c.read() # data is assigned a list of lines\n", - "print(len(data))\n", - "\n", - "\n", - "# D) Reading line by line into a list\n", - "data = []\n", - "with open(\"file.txt\", \"rb\") as reader_d:\n", - " for line in reader_d:\n", - " data.append(line)\n", - "print(len(data))\n" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Indices of min and max elements from a list" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[back to top](#Table-of-Contents)" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import operator\n", - "\n", - "values = [1, 2, 3, 4, 5]\n", - "\n", - "min_index, min_value = min(enumerate(values), key=operator.itemgetter(1))\n", - "max_index, max_value = max(enumerate(values), key=operator.itemgetter(1))\n", - "\n", - "print('min_index:', min_index, 'min_value:', min_value)\n", - "print('max_index:', max_index, 'max_value:', max_value)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "min_index: 0 min_value: 1\n", - "max_index: 4 max_value: 5\n" - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Lambda functions" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[back to top](#Table-of-Contents)" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Lambda functions are just a short-hand way or writing\n", - "# short function definitions\n", - "\n", - "def square_root1(x):\n", - " return x**0.5\n", - " \n", - "square_root2 = lambda x: x**0.5\n", - "\n", - "assert(square_root1(9) == square_root2(9))" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 20 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Private functions" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[back to top](#Table-of-Contents)" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def create_message(msg_txt):\n", - " def _priv_msg(message): # private, no access from outside\n", - " print(\"{}: {}\".format(msg_txt, message))\n", - " return _priv_msg # returns a function\n", - "\n", - "new_msg = create_message(\"My message\")\n", - "# note, new_msg is a function\n", - "\n", - "new_msg(\"Hello, World\")" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "My message: Hello, World\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Namedtuples" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[back to top](#Table-of-Contents)" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from collections import namedtuple\n", - "\n", - "my_namedtuple = namedtuple('field_name', ['x', 'y', 'z', 'bla', 'blub'])\n", - "p = my_namedtuple(1, 2, 3, 4, 5)\n", - "print(p.x, p.y, p.z)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "1 2 3\n" - ] - } - ], - "prompt_number": 25 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Normalizing data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[back to top](#Table-of-Contents)" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def normalize(data, min_val=0, max_val=1):\n", - " \"\"\"\n", - " Normalizes values in a list of data points to a range, e.g.,\n", - " between 0.0 and 1.0. \n", - " Returns the original object if value is not a integer or float.\n", - " \n", - " \"\"\"\n", - " norm_data = []\n", - " data_min = min(data)\n", - " data_max = max(data)\n", - " for x in data:\n", - " numerator = x - data_min\n", - " denominator = data_max - data_min\n", - " x_norm = (max_val-min_val) * numerator/denominator + min_val\n", - " norm_data.append(x_norm)\n", - " return norm_data" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 28 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "normalize([1,2,3,4,5])" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "pyout", - "prompt_number": 31, - "text": [ - "[0.0, 0.25, 0.5, 0.75, 1.0]" - ] - } - ], - "prompt_number": 31 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "normalize([1,2,3,4,5], min_val=-10, max_val=10)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "pyout", - "prompt_number": 30, - "text": [ - "[-10.0, -5.0, 0.0, 5.0, 10.0]" - ] - } - ], - "prompt_number": 30 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "NumPy essentials" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[back to top](#Table-of-Contents)" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import numpy as np\n", - "\n", - "ary1 = np.array([1,2,3,4,5]) # must be same type\n", - "ary2 = np.zeros((3,4)) # 3x4 matrix consisiting of 0s \n", - "ary3 = np.ones((3,4)) # 3x4 matrix consisiting of 1s \n", - "ary4 = np.identity(3) # 3x3 identity matrix\n", - "ary5 = ary1.copy() # make a copy of ary1\n", - "\n", - "item1 = ary3[0, 0] # item in row1, column1\n", - "\n", - "ary2.shape # tuple of dimensions. Here: (3,4)\n", - "ary2.size # number of elements. Here: 12\n", - "\n", - "\n", - "ary2_t = ary2.transpose() # transposes matrix\n", - "\n", - "ary2.ravel() # makes an array linear (1-dimensional)\n", - " # by concatenating rows\n", - "ary2.reshape(2,6) # reshapes array (must have same dimensions)\n", - "\n", - "ary3[0:2, 0:3] # submatrix of first 2 rows and first 3 columns \n", - "\n", - "ary3 = ary3[[2,0,1]] # re-arrange rows\n", - "\n", - "\n", - "# element-wise operations\n", - "\n", - "ary1 + ary1\n", - "ary1 * ary1\n", - "numpy.dot(ary1, ary1) # matrix/vector (dot) product\n", - "\n", - "numpy.sum(ary1, axis=1) # sum of a 1D array, column sums of a 2D array\n", - "numpy.mean(ary1, axis=1) # mean of a 1D array, column means of a 2D array" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Pickling Python objects to bitstreams" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[back to top](#Table-of-Contents)" + } + ], + "source": [ + "def hello_world():\n", + " \"\"\"\n", + " Returns 'Hello, World'\n", + " >>> hello_world()\n", + " 'Hello, World'\n", + " \"\"\"\n", + " return 'hello world'\n", + "\n", + "if __name__ == \"__main__\": # is 'false' if imported\n", + " import doctest\n", + " doctest.testmod()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## English language detection" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.2\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import pickle\n", - "\n", - "#### Generate some object\n", - "my_dict = dict()\n", - "for i in range(1,10):\n", - " my_dict[i] = \"some text\"\n", - "\n", - "#### Save object to file\n", - "pickle_out = open('my_file.pkl', 'wb')\n", - "pickle.dump(my_dict, pickle_out)\n", - "pickle_out.close()\n", - "\n", - "#### Load object from file\n", - "my_object_file = open('my_file.pkl', 'rb')\n", - "my_dict = pickle.load(my_object_file)\n", - "my_object_file.close()\n", - "\n", - "print(my_dict)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "{1: 'some text', 2: 'some text', 3: 'some text', 4: 'some text', 5: 'some text', 6: 'some text', 7: 'some text', 8: 'some text', 9: 'some text'}\n" - ] - } - ], - "prompt_number": 35 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" + } + ], + "source": [ + "import nltk\n", + "\n", + "def eng_ratio(text):\n", + " ''' Returns the ratio of non-English to English words from a text '''\n", + "\n", + " english_vocab = set(w.lower() for w in nltk.corpus.words.words()) \n", + " text_vocab = set(w.lower() for w in text.split() if w.lower().isalpha()) \n", + " unusual = text_vocab.difference(english_vocab)\n", + " diff = len(unusual)/len(text_vocab)\n", + " return diff\n", + " \n", + "text = 'This is a test fahrrad'\n", + "\n", + "print(eng_ratio(text))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## File browsing basics" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import os\n", + "import shutil\n", + "import glob\n", + "\n", + "# working directory\n", + "c_dir = os.getcwd() # show current working directory\n", + "os.listdir(c_dir) # shows all files in the working directory\n", + "os.chdir('~/Data') # change working directory\n", + "\n", + "\n", + "# get all files in a directory\n", + "glob.glob('/Users/sebastian/Desktop/*')\n", + "\n", + "# e.g., ['/Users/sebastian/Desktop/untitled folder', '/Users/sebastian/Desktop/Untitled.txt']\n", + "\n", + "# walk\n", + "tree = os.walk(c_dir) \n", + "# moves through sub directories and creates a 'generator' object of tuples\n", + "# ('dir', [file1, file2, ...] [subdirectory1, subdirectory2, ...]), \n", + "# (...), ...\n", + "\n", + "#check files: returns either True or False\n", + "os.exists('../rel_path')\n", + "os.exists('/home/abs_path')\n", + "os.isfile('./file.txt')\n", + "os.isdir('./subdir')\n", + "\n", + "\n", + "# file permission (True or False\n", + "os.access('./some_file', os.F_OK) # File exists? Python 2.7\n", + "os.access('./some_file', os.R_OK) # Ok to read? Python 2.7\n", + "os.access('./some_file', os.W_OK) # Ok to write? Python 2.7\n", + "os.access('./some_file', os.X_OK) # Ok to execute? Python 2.7\n", + "os.access('./some_file', os.X_OK | os.W_OK) # Ok to execute or write? Python 2.7\n", + "\n", + "# join (creates operating system dependent paths)\n", + "os.path.join('a', 'b', 'c')\n", + "# 'a/b/c' on Unix/Linux\n", + "# 'a\\\\b\\\\c' on Windows\n", + "os.path.normpath('a/b/c') # converts file separators\n", + "\n", + "\n", + "# os.path: direcory and file names\n", + "os.path.samefile('./some_file', '/home/some_file') # True if those are the same\n", + "os.path.dirname('./some_file') # returns '.' (everythin but last component)\n", + "os.path.basename('./some_file') # returns 'some_file' (only last component\n", + "os.path.split('./some_file') # returns (dirname, basename) or ('.', 'some_file)\n", + "os.path.splitext('./some_file.txt') # returns ('./some_file', '.txt')\n", + "os.path.splitdrive('./some_file.txt') # returns ('', './some_file.txt')\n", + "os.path.isabs('./some_file.txt') # returns False (not an absolute path)\n", + "os.path.abspath('./some_file.txt')\n", + "\n", + "\n", + "# create and delete files and directories\n", + "os.mkdir('./test') # create a new direcotory\n", + "os.rmdir('./test') # removes an empty direcotory\n", + "os.removedirs('./test') # removes nested empty directories\n", + "os.remove('file.txt') # removes an individual file\n", + "shutil.rmtree('./test') # removes directory (empty or not empty)\n", + "\n", + "os.rename('./dir_before', './renamed') # renames directory if destination doesn't exist\n", + "shutil.move('./dir_before', './renamed') # renames directory always\n", + "\n", + "shutil.copytree('./orig', './copy') # copies a directory recursively\n", + "shutil.copyfile('file', 'copy') # copies a file\n", + "\n", + " \n", + "# Getting files of particular type from directory\n", + "files = [f for f in os.listdir(s_pdb_dir) if f.endswith(\".txt\")]\n", + " \n", + "# Copy and move\n", + "shutil.copyfile(\"/path/to/file\", \"/path/to/new/file\") \n", + "shutil.copy(\"/path/to/file\", \"/path/to/directory\")\n", + "shutil.move(\"/path/to/file\",\"/path/to/directory\")\n", + " \n", + "# Check if file or directory exists\n", + "os.path.exists(\"file or directory\")\n", + "os.path.isfile(\"file\")\n", + "os.path.isdir(\"directory\")\n", + " \n", + "# Working directory and absolute path to files\n", + "os.getcwd()\n", + "os.path.abspath(\"file\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## File reading basics" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Note: rb opens file in binary mode to avoid issues with Windows systems\n", + "# where '\\r\\n' is used instead of '\\n' as newline character(s).\n", + "\n", + "\n", + "# A) Reading in Byte chunks\n", + "reader_a = open(\"file.txt\", \"rb\")\n", + "chunks = []\n", + "data = reader_a.read(64) # reads first 64 bytes\n", + "while data != \"\":\n", + " chunks.append(data)\n", + " data = reader_a.read(64)\n", + "if data:\n", + " chunks.append(data)\n", + "print(len(chunks))\n", + "reader_a.close()\n", + "\n", + "\n", + "# B) Reading whole file at once into a list of lines\n", + "with open(\"file.txt\", \"rb\") as reader_b: # recommended syntax, auto closes\n", + " data = reader_b.readlines() # data is assigned a list of lines\n", + "print(len(data))\n", + "\n", + "\n", + "# C) Reading whole file at once into a string\n", + "with open(\"file.txt\", \"rb\") as reader_c:\n", + " data = reader_c.read() # data is assigned a list of lines\n", + "print(len(data))\n", + "\n", + "\n", + "# D) Reading line by line into a list\n", + "data = []\n", + "with open(\"file.txt\", \"rb\") as reader_d:\n", + " for line in reader_d:\n", + " data.append(line)\n", + "print(len(data))\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Indices of min and max elements from a list" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "min_index: 0 min_value: 1\n", + "max_index: 4 max_value: 5\n" ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Python version check" + } + ], + "source": [ + "import operator\n", + "\n", + "values = [1, 2, 3, 4, 5]\n", + "\n", + "min_index, min_value = min(enumerate(values), key=operator.itemgetter(1))\n", + "max_index, max_value = max(enumerate(values), key=operator.itemgetter(1))\n", + "\n", + "print('min_index:', min_index, 'min_value:', min_value)\n", + "print('max_index:', max_index, 'max_value:', max_value)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Lambda functions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Lambda functions are just a short-hand way or writing\n", + "# short function definitions\n", + "\n", + "def square_root1(x):\n", + " return x**0.5\n", + " \n", + "square_root2 = lambda x: x**0.5\n", + "\n", + "assert(square_root1(9) == square_root2(9))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Private functions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "My message: Hello, World\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[back to top](#Table-of-Contents)" + } + ], + "source": [ + "def create_message(msg_txt):\n", + " def _priv_msg(message): # private, no access from outside\n", + " print(\"{}: {}\".format(msg_txt, message))\n", + " return _priv_msg # returns a function\n", + "\n", + "new_msg = create_message(\"My message\")\n", + "# note, new_msg is a function\n", + "\n", + "new_msg(\"Hello, World\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Namedtuples" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1 2 3\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import sys\n", - "\n", - "def give_letter(word):\n", - " for letter in word:\n", - " yield letter\n", - "\n", - "if sys.version_info[0] == 3:\n", - " print('executed in Python 3.x')\n", - " test = give_letter('Hello')\n", - " print(next(test))\n", - " print('in for-loop:')\n", - " for l in test:\n", - " print(l)\n", - "\n", - "# if Python 2.x\n", - "if sys.version_info[0] == 2:\n", - " print('executed in Python 2.x')\n", - " test = give_letter('Hello')\n", - " print(test.next())\n", - " print('in for-loop:') \n", - " for l in test:\n", - " print(l)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "executed in Python 3.x\n", - "H\n", - "in for-loop:\n", - "e\n", - "l\n", - "l\n", - "o\n" - ] - } - ], - "prompt_number": 36 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" + } + ], + "source": [ + "from collections import namedtuple\n", + "\n", + "my_namedtuple = namedtuple('field_name', ['x', 'y', 'z', 'bla', 'blub'])\n", + "p = my_namedtuple(1, 2, 3, 4, 5)\n", + "print(p.x, p.y, p.z)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Normalizing data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "def normalize(data, min_val=0, max_val=1):\n", + " \"\"\"\n", + " Normalizes values in a list of data points to a range, e.g.,\n", + " between 0.0 and 1.0. \n", + " Returns the original object if value is not a integer or float.\n", + " \n", + " \"\"\"\n", + " norm_data = []\n", + " data_min = min(data)\n", + " data_max = max(data)\n", + " for x in data:\n", + " numerator = x - data_min\n", + " denominator = data_max - data_min\n", + " x_norm = (max_val-min_val) * numerator/denominator + min_val\n", + " norm_data.append(x_norm)\n", + " return norm_data" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[0.0, 0.25, 0.5, 0.75, 1.0]" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "normalize([1,2,3,4,5])" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[-10.0, -5.0, 0.0, 5.0, 10.0]" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "normalize([1,2,3,4,5], min_val=-10, max_val=10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## NumPy essentials" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "ary1 = np.array([1,2,3,4,5]) # must be same type\n", + "ary2 = np.zeros((3,4)) # 3x4 matrix consisiting of 0s \n", + "ary3 = np.ones((3,4)) # 3x4 matrix consisiting of 1s \n", + "ary4 = np.identity(3) # 3x3 identity matrix\n", + "ary5 = ary1.copy() # make a copy of ary1\n", + "\n", + "item1 = ary3[0, 0] # item in row1, column1\n", + "\n", + "ary2.shape # tuple of dimensions. Here: (3,4)\n", + "ary2.size # number of elements. Here: 12\n", + "\n", + "\n", + "ary2_t = ary2.transpose() # transposes matrix\n", + "\n", + "ary2.ravel() # makes an array linear (1-dimensional)\n", + " # by concatenating rows\n", + "ary2.reshape(2,6) # reshapes array (must have same dimensions)\n", + "\n", + "ary3[0:2, 0:3] # submatrix of first 2 rows and first 3 columns \n", + "\n", + "ary3 = ary3[[2,0,1]] # re-arrange rows\n", + "\n", + "\n", + "# element-wise operations\n", + "\n", + "ary1 + ary1\n", + "ary1 * ary1\n", + "numpy.dot(ary1, ary1) # matrix/vector (dot) product\n", + "\n", + "numpy.sum(ary1, axis=1) # sum of a 1D array, column sums of a 2D array\n", + "numpy.mean(ary1, axis=1) # mean of a 1D array, column means of a 2D array" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pickling Python objects to bitstreams" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{1: 'some text', 2: 'some text', 3: 'some text', 4: 'some text', 5: 'some text', 6: 'some text', 7: 'some text', 8: 'some text', 9: 'some text'}\n" ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Runtime within a script" + } + ], + "source": [ + "import pickle\n", + "\n", + "#### Generate some object\n", + "my_dict = dict()\n", + "for i in range(1,10):\n", + " my_dict[i] = \"some text\"\n", + "\n", + "#### Save object to file\n", + "pickle_out = open('my_file.pkl', 'wb')\n", + "pickle.dump(my_dict, pickle_out)\n", + "pickle_out.close()\n", + "\n", + "#### Load object from file\n", + "my_object_file = open('my_file.pkl', 'rb')\n", + "my_dict = pickle.load(my_object_file)\n", + "my_object_file.close()\n", + "\n", + "print(my_dict)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Python version check" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "executed in Python 3.x\n", + "H\n", + "in for-loop:\n", + "e\n", + "l\n", + "l\n", + "o\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[back to top](#Table-of-Contents)" + } + ], + "source": [ + "import sys\n", + "\n", + "def give_letter(word):\n", + " for letter in word:\n", + " yield letter\n", + "\n", + "if sys.version_info[0] == 3:\n", + " print('executed in Python 3.x')\n", + " test = give_letter('Hello')\n", + " print(next(test))\n", + " print('in for-loop:')\n", + " for l in test:\n", + " print(l)\n", + "\n", + "# if Python 2.x\n", + "if sys.version_info[0] == 2:\n", + " print('executed in Python 2.x')\n", + " test = give_letter('Hello')\n", + " print(test.next())\n", + " print('in for-loop:') \n", + " for l in test:\n", + " print(l)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Runtime within a script" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Time elapsed: 0.49176900000000057 seconds\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import time\n", - "\n", - "start_time = time.clock()\n", - "\n", - "for i in range(10000000):\n", - " pass\n", - "\n", - "elapsed_time = time.clock() - start_time\n", - "print(\"Time elapsed: {} seconds\".format(elapsed_time))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Time elapsed: 0.49176900000000057 seconds\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import timeit\n", - "elapsed_time = timeit.timeit('for i in range(10000000): pass', number=1)\n", - "print(\"Time elapsed: {} seconds\".format(elapsed_time))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Time elapsed: 0.3550995970144868 seconds\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" + } + ], + "source": [ + "import time\n", + "\n", + "start_time = time.clock()\n", + "\n", + "for i in range(10000000):\n", + " pass\n", + "\n", + "elapsed_time = time.clock() - start_time\n", + "print(\"Time elapsed: {} seconds\".format(elapsed_time))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Time elapsed: 0.3550995970144868 seconds\n" ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Sorting lists of tuples by elements" + } + ], + "source": [ + "import timeit\n", + "elapsed_time = timeit.timeit('for i in range(10000000): pass', number=1)\n", + "print(\"Time elapsed: {} seconds\".format(elapsed_time))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Sorting lists of tuples by elements" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[(2, 3, 'a'), (2, 2, 'b'), (3, 2, 'b'), (1, 3, 'c')]\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[back to top](#Table-of-Contents)" + } + ], + "source": [ + "# Here, we make use of the \"key\" parameter of the in-built \"sorted()\" function \n", + "# (also available for the \".sort()\" method), which let's us define a function \n", + "# that is called on every element that is to be sorted. In this case, our \n", + "# \"key\"-function is a simple lambda function that returns the last item \n", + "# from every tuple.\n", + "\n", + "a_list = [(1,3,'c'), (2,3,'a'), (3,2,'b'), (2,2,'b')]\n", + "\n", + "sorted_list = sorted(a_list, key=lambda e: e[::-1])\n", + "\n", + "print(sorted_list)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[(2, 3, 'a'), (3, 2, 'b'), (2, 2, 'b'), (1, 3, 'c')]\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Here, we make use of the \"key\" parameter of the in-built \"sorted()\" function \n", - "# (also available for the \".sort()\" method), which let's us define a function \n", - "# that is called on every element that is to be sorted. In this case, our \n", - "# \"key\"-function is a simple lambda function that returns the last item \n", - "# from every tuple.\n", - "\n", - "a_list = [(1,3,'c'), (2,3,'a'), (3,2,'b'), (2,2,'b')]\n", - "\n", - "sorted_list = sorted(a_list, key=lambda e: e[::-1])\n", - "\n", - "print(sorted_list)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[(2, 3, 'a'), (2, 2, 'b'), (3, 2, 'b'), (1, 3, 'c')]\n" - ] - } - ], - "prompt_number": 37 - }, + } + ], + "source": [ + "# prints [(2, 3, 'a'), (2, 2, 'b'), (3, 2, 'b'), (1, 3, 'c')]\n", + "\n", + "# If we are only interesting in sorting the list by the last element\n", + "# of the tuple and don't care about a \"tie\" situation, we can also use\n", + "# the index of the tuple item directly instead of reversing the tuple \n", + "# for efficiency.\n", + "\n", + "a_list = [(1,3,'c'), (2,3,'a'), (3,2,'b'), (2,2,'b')]\n", + "\n", + "sorted_list = sorted(a_list, key=lambda e: e[-1])\n", + "\n", + "print(sorted_list)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Sorting multiple lists relative to each other" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "code", - "collapsed": false, - "input": [ - "# prints [(2, 3, 'a'), (2, 2, 'b'), (3, 2, 'b'), (1, 3, 'c')]\n", - "\n", - "# If we are only interesting in sorting the list by the last element\n", - "# of the tuple and don't care about a \"tie\" situation, we can also use\n", - "# the index of the tuple item directly instead of reversing the tuple \n", - "# for efficiency.\n", + "name": "stdout", + "output_type": "stream", + "text": [ + "input values:\n", + " ['c', 'b', 'a'] [6, 5, 4] ['some-val-associated-with-c', 'another_val-b', 'z_another_third_val-a']\n", "\n", - "a_list = [(1,3,'c'), (2,3,'a'), (3,2,'b'), (2,2,'b')]\n", "\n", - "sorted_list = sorted(a_list, key=lambda e: e[-1])\n", - "\n", - "print(sorted_list)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[(2, 3, 'a'), (3, 2, 'b'), (2, 2, 'b'), (1, 3, 'c')]\n" - ] - } - ], - "prompt_number": 38 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Sorting multiple lists relative to each other" + "sorted output:\n", + " ['a', 'b', 'c'] [4, 5, 6] ['z_another_third_val-a', 'another_val-b', 'some-val-associated-with-c']\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[back to top](#Table-of-Contents)" + } + ], + "source": [ + "\"\"\"\n", + "You have 3 lists that you want to sort \"relative\" to each other,\n", + "for example, picturing each list as a row in a 3x3 matrix: sort it by columns\n", + "\n", + "########################\n", + "If the input lists are\n", + "########################\n", + "\n", + " list1 = ['c','b','a']\n", + " list2 = [6,5,4]\n", + " list3 = ['some-val-associated-with-c','another_val-b','z_another_third_val-a']\n", + "\n", + "########################\n", + "the desired outcome is:\n", + "########################\n", + "\n", + " ['a', 'b', 'c'] \n", + " [4, 5, 6] \n", + " ['z_another_third_val-a', 'another_val-b', 'some-val-associated-with-c']\n", + "\n", + "########################\n", + "and NOT:\n", + "########################\n", + "\n", + " ['a', 'b', 'c'] \n", + " [4, 5, 6] \n", + " ['another_val-b', 'some-val-associated-with-c', 'z_another_third_val-a']\n", + "\n", + "\n", + "\"\"\"\n", + "\n", + "list1 = ['c','b','a']\n", + "list2 = [6,5,4]\n", + "list3 = ['some-val-associated-with-c','another_val-b','z_another_third_val-a']\n", + "\n", + "print('input values:\\n', list1, list2, list3)\n", + "\n", + "list1, list2, list3 = [list(t) for t in zip(*sorted(zip(list1, list2, list3)))]\n", + "\n", + "print('\\n\\nsorted output:\\n', list1, list2, list3 )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Using namedtuples" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[back to top](#Table-of-Contents)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`namedtuples` are high-performance container datatypes in the [`collection`](https://docs.python.org/2/library/collections.html) module (part of Python's stdlib since 2.6).\n", + "`namedtuple()` is factory function for creating tuple subclasses with named fields." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "X-coordinate: 1\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\"\"\"\n", - "You have 3 lists that you want to sort \"relative\" to each other,\n", - "for example, picturing each list as a row in a 3x3 matrix: sort it by columns\n", - "\n", - "########################\n", - "If the input lists are\n", - "########################\n", - "\n", - " list1 = ['c','b','a']\n", - " list2 = [6,5,4]\n", - " list3 = ['some-val-associated-with-c','another_val-b','z_another_third_val-a']\n", - "\n", - "########################\n", - "the desired outcome is:\n", - "########################\n", - "\n", - " ['a', 'b', 'c'] \n", - " [4, 5, 6] \n", - " ['z_another_third_val-a', 'another_val-b', 'some-val-associated-with-c']\n", - "\n", - "########################\n", - "and NOT:\n", - "########################\n", - "\n", - " ['a', 'b', 'c'] \n", - " [4, 5, 6] \n", - " ['another_val-b', 'some-val-associated-with-c', 'z_another_third_val-a']\n", - "\n", - "\n", - "\"\"\"\n", - "\n", - "list1 = ['c','b','a']\n", - "list2 = [6,5,4]\n", - "list3 = ['some-val-associated-with-c','another_val-b','z_another_third_val-a']\n", - "\n", - "print('input values:\\n', list1, list2, list3)\n", - "\n", - "list1, list2, list3 = [list(t) for t in zip(*sorted(zip(list1, list2, list3)))]\n", - "\n", - "print('\\n\\nsorted output:\\n', list1, list2, list3 )" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "input values:\n", - " ['c', 'b', 'a'] [6, 5, 4] ['some-val-associated-with-c', 'another_val-b', 'z_another_third_val-a']\n", - "\n", - "\n", - "sorted output:\n", - " ['a', 'b', 'c'] [4, 5, 6] ['z_another_third_val-a', 'another_val-b', 'some-val-associated-with-c']\n" - ] - } - ], - "prompt_number": 49 } ], - "metadata": {} + "source": [ + "from collections import namedtuple\n", + "\n", + "Coordinates = namedtuple('Coordinates', ['x', 'y', 'z'])\n", + "point1 = Coordinates(1, 2, 3)\n", + "print('X-coordinate: %d' % point1.x)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] } - ] -} \ No newline at end of file + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.4.3" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} From 06830b939358f35f2daf50af42509e603c93d9b4 Mon Sep 17 00:00:00 2001 From: rasbt Date: Thu, 25 Jun 2015 14:16:13 -0400 Subject: [PATCH 61/83] flask template --- templates/webapp_ex1/README.md | 13 ++++++++ templates/webapp_ex1/app.py | 31 ++++++++++++++++++ templates/webapp_ex1/img/img_1.png | Bin 0 -> 6278 bytes templates/webapp_ex1/static/style.css | 7 ++++ .../webapp_ex1/templates/_formhelpers.html | 12 +++++++ templates/webapp_ex1/templates/entry.html | 26 +++++++++++++++ 6 files changed, 89 insertions(+) create mode 100644 templates/webapp_ex1/README.md create mode 100644 templates/webapp_ex1/app.py create mode 100644 templates/webapp_ex1/img/img_1.png create mode 100644 templates/webapp_ex1/static/style.css create mode 100644 templates/webapp_ex1/templates/_formhelpers.html create mode 100644 templates/webapp_ex1/templates/entry.html diff --git a/templates/webapp_ex1/README.md b/templates/webapp_ex1/README.md new file mode 100644 index 0000000..d07794d --- /dev/null +++ b/templates/webapp_ex1/README.md @@ -0,0 +1,13 @@ +Sebastian Raschka, 2015 + +# Flask Example App 1 + +A simple Flask app that calculates the sum of two numbers entered in the respective input fields. + +A more detailed description is going to follow some time in future. + +You can run the app locally by executing `python app.py` within this directory. + +
+ +![](./img/img_1.png) diff --git a/templates/webapp_ex1/app.py b/templates/webapp_ex1/app.py new file mode 100644 index 0000000..5314e37 --- /dev/null +++ b/templates/webapp_ex1/app.py @@ -0,0 +1,31 @@ +from flask import Flask, render_template, request +from wtforms import Form, DecimalField, validators + +app = Flask(__name__) + + +class EntryForm(Form): + x_entry = DecimalField('x:', + places=10, + validators=[validators.NumberRange(-1e10, 1e10)]) + y_entry = DecimalField('y:', + places=10, + validators=[validators.NumberRange(-1e10, 1e10)]) + +@app.route('/') +def index(): + form = EntryForm(request.form) + return render_template('entry.html', form=form, z='') + +@app.route('/results', methods=['POST']) +def results(): + form = EntryForm(request.form) + z = '' + if request.method == 'POST' and form.validate(): + x = request.form['x_entry'] + y = request.form['y_entry'] + z = float(x) + float(y) + return render_template('entry.html', form=form, z=z) + +if __name__ == '__main__': + app.run(debug=True) \ No newline at end of file diff --git a/templates/webapp_ex1/img/img_1.png b/templates/webapp_ex1/img/img_1.png new file mode 100644 index 0000000000000000000000000000000000000000..bfc35109142affd9b2c6b2c2ec1014a822c15416 GIT binary patch literal 6278 zcmb_gbySq=w}zo+0AUz99lBe(hM|UZKxvQ~N=gu$A zIz>WCiTinean4$I-T&^aH8XEK`+4iz&;H&Whc?iMap{C@_%^z;qj$8*xCwc3-Jxw+1c6-jtcUV`uH2g#wHrs zcJ+0ScK5+?w*BzJ94o7@4A8HASn80rcirF;(VfT~_#Tptr|`R3yY ze1Dz$-Vy`^oFu6Q`9}HqWS9-SS@|I%4Q|8X#zRNfXha5bW|dL%{7Z)^1oc2D4yQqVXni7YLukQnSQBi+?e-VF45icKSQE@prIZ-hQQ3(lQ z03rM^(9_p0K-lvk=f6n)!=vu_(80&`fv>BVC;T_BoxPWzuM!8x?}7gN`PV!h16=w%ZwlrNsiIh^YvEp5wBvrW#{E@{X#1Bki2nYq&gc{iKyPTI`XP9K|Q61 zZR-i79`_nAKuor{tn}uM%Oy*1)q1M7N3V*-YqGQT(e2Xl)0@PRk!FiQI3+)ywmK8X z*j?R{QgfEL^oY;hJH2FAJVG+14hs417UR$7}Y@b zip*p>+|U^nLVYFXv;|u)VrViuz#+%rPv73!&1JY9bYxQ6xe6ezarJ`+S>uoFHp4xZ zL#e7;k(LfZkj9^c@@mooZB=^&E7WIcDTAvBwfj68>#F@SFt9qJU;>vr=4Lv-G54tCf0odc{-GGzL=~@Jlugw^p#@Kzz)f5hBHgP<=wzz}nqovkE82?| zx+u5ouw!U$Q~JhG-3omC#L*cLq>L-T2F9;^L1+?|y*j;np5HXA}pZTL^ZWh0l9!WV-J zQ`k`JONLrjbxUuyd)o)JnPkG_LIYizMZCi42n5KRzv1?n4dP8B1+$4Wr<*Z;n1EGR z$fz8VZTUfw;n~o=Or{9I9Eu{HZdO>VL_{-9-oX%OfZr3U$IcXe>Ca+dIr}T$gLo)f zry>=?4#it-LO7t?;QE>2Y^z?M%E{UO$E3Je=0%uYvM*#TgFsb2j53^Xj^F}q_ zcr8y*#!&&`dJ@9wQUa%2@w$wqs77#L-B^Zhk?qwUf?g<@NL57It|O%x9A@U4h%3!-nLzO@48l#5xxeHZj#Et{(kM*&HghN zl}enF#a2aFywG+w?Tw$*vBPv8qbD+kADdYGOEa4<7p$TeAMe;f7oD7fEUVRpprv{EQA!l(!Y*>UU0_I9mu-!N_k5^5oS9rt|=JPA1?|VZpcU8jyOZ0kZ3}lKx;$D z*Kk&OJBa!PP+)k?KquGksKA`J-c;?eksS&HK5eh+`1oR< zYu{j0#7yXX#)!Su#jJVpeYwAqtL%&p$8ynLQW(K=PDyOVaD}`$t3I zj45#ul0;pT43_UoCp^mvkW_3ow$diX_oG>=>1VDoJcjC8s*besMj`k% zB^t97D^W-Yf`aEt7GB7pa3$_n$TEDhzbAH+DpvRTY;ZD%{~dx8zhj5)M^KOcz<`PYk@8vZ z9|wxN!?RDWp5wE$zq~Wdl8*w@Wl6Z);>_=L zTSyrDkIARtA85cQ8lN{l0UYT^*eyqlN^H80pq?zC6nk>~Pi57Z*yhbZZn?4iN|DNA zT3Z_LP6Iih*+{on{8}B&yt<}<`E_*9UW-vjLtQROR=xN-mMsa<1~_iUmO4P&(S~s|z4KK2CZI1LPJTobI)9Bc5;lAJeGh z-Jp8qW$WVud(_5iT63@8)FzZjZdY@5HJZe$^W14ZXy-LbUthz>D7}thDaj}->*yU% zagYz2xtW@p+5=e@vnF>&&$e$(%wtEx*`k8VT)e!3%7eWtnji}(dZA=UI9I4HKc7YT zPbtyB!J8C^;a*-fA0+O$97X1857BIjb_klJrJ6WvaU`NGsTBK^=k-;=^1_Zr#6a6ujP@}aIx_mIQdo-d>& zU}>b-s7kQOsr~&q{g02|kb7)Y4Jwo^bK9KvxoP`C*dzF;V)G`99$v8-m)&12g&3}S zsXFQ_DVsO2Jv*w;ED5tyNU(ePAp}2}s@<=NHbdDU#BH+6A;g~HwMrXEcdULN1#bN1 z&v9N6mPqMmtDz5(ZmRBfrl#IhKETre*zb^jg$Ki;TIa@r-E$am7$B zAK#l2nvb%7G=%wB-Dp~K=JeaTH1nY0FPgdX8F8E|qm`${GsE2N1iLS5Teal`DVhph1u3 zLx&x>Yu-|+XK|E1wHs|2x22IW`!h8*{S#{;SI{$xamE-TvZw;V)MK8v83~Fq7(uoL zQio(BMh_{5Z(&S!tJ`nh$-r`KK$YP;Gn12#jbE8Wizc1*epXgy55l@G7Y^SZ;22wy zfX}MTI~ZTZ(UT8>VXVsEgUM zE*4pi8sk*|;mby~HxxD)=*@}$8eC47ci}SB-HkO_%bO0ts9?gI)37FlcgZ}KdZU}S z%AW1_kleJzVANk7YDnE|nfEz&{4eIqiy;;B^zehQtq(5+FOcZn!?GPt}`D}l3UixlEw0H_{|oa7WIppPky21Qc5fIcSYGj68=`Z!?m zay*Z^c;c4U82K>@KsvmhbRGrtF^|(ZCJ0c{tv8>x>em7B9Zi!|Qv#IqhuO{#^ZzaN z0Qtk!5p)WGRQe~hGRkR8fm~~?hTd1s+siB0;b)P~)-qkg zeT&mkA%W48`pp1vy`4Ogd)EfoA(Mf{9tZp6aF+W|?w+KY@fDM0H7F`(EhbAI zip#+Ex#4Ar&$>M95%OWhI@=77#%$Og*3SPrl-52I$$h18ImVRDMDY=I8P>n6h)K7t z&fvK)8h*m+!;)yUv+s-1YGiRr{~X#|=Fsxe8FVwI%WdORo^7#Wjrw218sTyOorhp=y^WyrnS`^%x2I1jP}f{!`vJM%Z{tF^l~u&&E5}pu~%`Zn!qaZpsJ{?=5OgmmV&{#T5YvDKDD%5GK_IK>~7DJw-fDw-Y(KP&bMPBS}Oeca`L z2G0vKpMI&f>akHe1{I1Pnt#_WW!(D(-7|hZwmea@*d6-abVW+8+luorglYI90|^kTk@NAX2xPSp-4FMn z-wXKR&_F>#pF1qhqxp3;Tw%BGnj{c%KCX2Ida^+6Nh#KweWkWrlQpe7_hfo3g}+ha ztZmv>Fpy4#`~eWRTA`=HZLDuaA^Tms1{khUx|5BCoBWSX3)v9<-;M$rgIWA6qZyv* zJSgtz0GFh9ANedL6(CWT-r>bWpR5e}MZf&${8cwTkFq7kZ~WHs){^jr6vnjrDAjOF zIZhAMb#oJ(zvlAl!)Vlb^D0fa31=yj{D|Kg!m&h8Jt=(u(Eku8%eh}s zga79Ho;1_@s|Q&&iKk)&Upg&!Wp3EtZ4cDlYL~9yYF3(T%c+%7`r>yR@o^x|8QmAu zstThob0N}kPMRQUSlP`|e}b<2+?$lwJpSlJMz1jvxDFBIWfDAn-)$>g29{yVTeu(O z;id3i#lyecaH!_Y@f0snrsNX4|K2x5(`_y3p+R%#R@m$UQkpW*LA@o@P^*55>i({? zyxgg;I((%3g&s1I)H4QiNFGO-|M`_wei^~*C2{>`EmpVIse6GdAH37D72OvVS7ko! zJ$p9EuOCaMycynohqv?{Z1$u9D*xJPt$Fh8lkF|(F=#2TmzQb1*%g%GJ6c&i(Q&lo zg`o6-9angHPNj3g{M*g>Y2FAiBsINrt~OQHIl2v5-nV@vqT@@%mC-ziY%)f=9QON% zP@G!4*buZ+`C{sb6m4SaxB2pYp#41fdyk&U>FERN z%hC97vG^JV8nzqhpHpaR^gDMRBSwVhrv7uigY91N9WHjN36;yT@6q4ES2Raxtc+pYXu*M!_B8hHG@4-*d`?}Lb+2$7!SBMnDdr zlrT^kQVyhzDzG>%E+{{6;WLU<1X5ej;)%Nmdl)P>6EB*MU$yWyNC3D43c$r75Op0a zG9eQ_&WleA#1`7roG3yL;JsZ#Cv_tOOA166Qj{JNlm{{ field.label }} +
{{ field(**kwargs)|safe }} + {% if field.errors %} +
    + {% for error in field.errors %} +
  • {{ error }}
  • + {% endfor %} +
+ {% endif %} +
+{% endmacro %} \ No newline at end of file diff --git a/templates/webapp_ex1/templates/entry.html b/templates/webapp_ex1/templates/entry.html new file mode 100644 index 0000000..c31100d --- /dev/null +++ b/templates/webapp_ex1/templates/entry.html @@ -0,0 +1,26 @@ + + + + Webapp Ex 1 + + + + +{% from "_formhelpers.html" import render_field %} + +
+
+ {{ render_field(form.x_entry, cols='1', rows='1') }} + {{ render_field(form.y_entry, cols='1', rows='1') }} +
+
+ +
+ +
+ x + y = {{ z }} +
+
+ + + \ No newline at end of file From b13d26a7ef8782ec807706654e9e0652fd81abf3 Mon Sep 17 00:00:00 2001 From: rasbt Date: Mon, 29 Jun 2015 15:35:39 -0400 Subject: [PATCH 62/83] upd. watermark download link --- ipython_magic/watermark.ipynb | 857 +++++++++++++++++----------------- 1 file changed, 437 insertions(+), 420 deletions(-) diff --git a/ipython_magic/watermark.ipynb b/ipython_magic/watermark.ipynb index d88d6b8..8210d3c 100644 --- a/ipython_magic/watermark.ipynb +++ b/ipython_magic/watermark.ipynb @@ -1,436 +1,453 @@ { - "metadata": { - "name": "", - "signature": "sha256:968e6f47972d4ab9e2ef4eef6906343257267ccf094fcae08da24fec3647743d" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ + "cells": [ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[Sebastian Raschka](http://sebastianraschka.com) \n", + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[Sebastian Raschka](http://sebastianraschka.com) \n", + "\n", + "- [Link to the GitHub Repository python_reference](https://github.com/rasbt/python_reference/)\n", + "\n", + "
\n", + "I would be happy to hear your comments and suggestions. \n", + "Please feel free to drop me a note via\n", + "[twitter](https://twitter.com/rasbt), [email](mailto:bluewoodtree@gmail.com), or [google+](https://plus.google.com/+SebastianRaschka).\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**watermark is now located and maintained in a separate GitHub repository:** [https://github.com/rasbt/watermark](https://github.com/rasbt/watermark)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# IPython magic function documentation - `%watermark`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "I wrote this simple `watermark` IPython magic function to conveniently add date- and time-stamps to my IPython notebooks. Also, I often want to document various system information, e.g., for my [Python benchmarks](https://github.com/rasbt/One-Python-benchmark-per-day) series.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Installation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `watermark` line magic can be directly installed from my GitHub repository via" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Installed watermark.py. To use it, type:\n", + " %load_ext watermark\n" + ] + } + ], + "source": [ + "install_ext https://raw.githubusercontent.com/rasbt/watermark/master/watermark.py" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Loading the `%watermark` magic" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To load the `date` magic, execute the following line in your IPython notebook or current IPython shell" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%load_ext watermark" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Usage" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In order to display the optional `watermark` arguments, type" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%watermark?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
  %watermark [-a AUTHOR] [-d] [-e] [-n] [-t] [-z] [-u] [-c CUSTOM_TIME]\n",
+    "                 [-v] [-p PACKAGES] [-h] [-m] [-g] [-w]\n",
+    "\n",
+    " \n",
+    "IPython magic function to print date/time stamps \n",
+    "and various system information.\n",
+    "\n",
+    "watermark version 1.2.1\n",
+    "\n",
+    "optional arguments:\n",
+    "  -a AUTHOR, --author AUTHOR\n",
+    "                        prints author name\n",
+    "  -d, --date            prints current date as MM/DD/YYYY\n",
+    "  -e, --eurodate        prints current date as DD/MM/YYYY\n",
+    "  -n, --datename        prints date with abbrv. day and month names\n",
+    "  -t, --time            prints current time\n",
+    "  -z, --timezone        appends the local time zone\n",
+    "  -u, --updated         appends a string \"Last updated: \"\n",
+    "  -c CUSTOM_TIME, --custom_time CUSTOM_TIME\n",
+    "                        prints a valid strftime() string\n",
+    "  -v, --python          prints Python and IPython version\n",
+    "  -p PACKAGES, --packages PACKAGES\n",
+    "                        prints versions of specified Python modules and\n",
+    "                        packages\n",
+    "  -h, --hostname        prints the host name\n",
+    "  -m, --machine         prints system and machine info\n",
+    "  -g, --githash         prints current Git commit hash\n",
+    "  -w, --watermark       prints the current version of watermark\n",
+    "File:      ~/.ipython/extensions/watermark.py\n",
+    "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Examples" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "06/29/2015 15:34:42\n", "\n", - "- [Link to the GitHub Repository python_reference](https://github.com/rasbt/python_reference/)\n", + "CPython 3.4.3\n", + "IPython 3.2.0\n", "\n", - "
\n", - "I would be happy to hear your comments and suggestions. \n", - "Please feel free to drop me a note via\n", - "[twitter](https://twitter.com/rasbt), [email](mailto:bluewoodtree@gmail.com), or [google+](https://plus.google.com/+SebastianRaschka).\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**watermark is now located and maintained in a separate GitHub repository:** [https://github.com/rasbt/watermark](https://github.com/rasbt/watermark)" + "compiler : GCC 4.2.1 (Apple Inc. build 5577)\n", + "system : Darwin\n", + "release : 14.3.0\n", + "machine : x86_64\n", + "processor : i386\n", + "CPU cores : 4\n", + "interpreter: 64bit\n" ] - }, - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "IPython magic function documentation - `%watermark`" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "I wrote this simple `watermark` IPython magic function to conveniently add date- and time-stamps to my IPython notebooks. Also, I often want to document various system information, e.g., for my [Python benchmarks](https://github.com/rasbt/One-Python-benchmark-per-day) series.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Installation" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `watermark` line magic can be directly installed from my GitHub repository via" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%install_ext https://raw.githubusercontent.com/rasbt/python_reference/master/ipython_magic/watermark.py" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Installed watermark.py. To use it, type:\n", - " %load_ext watermark\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Loading the `%watermark` magic" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To load the `date` magic, execute the following line in your IPython notebook or current IPython shell" + } + ], + "source": [ + "%watermark" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "06/29/2015 15:34:43 \n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%load_ext watermark" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 2 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" + } + ], + "source": [ + "%watermark -d -t" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Last updated: Mon Jun 29 2015 15:34:44 EDT\n" ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Usage" + } + ], + "source": [ + "%watermark -u -n -t -z" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPython 3.4.3\n", + "IPython 3.2.0\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In order to display the optional `watermark` arguments, type" + } + ], + "source": [ + "%watermark -v" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "compiler : GCC 4.2.1 (Apple Inc. build 5577)\n", + "system : Darwin\n", + "release : 14.3.0\n", + "machine : x86_64\n", + "processor : i386\n", + "CPU cores : 4\n", + "interpreter: 64bit\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%watermark?" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 3 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
  %watermark [-a AUTHOR] [-d] [-n] [-t] [-z] [-u] [-c CUSTOM_TIME] [-v]\n",
-      "                 [-p PACKAGES] [-h] [-m] [-g]\n",
-      "\n",
-      " \n",
-      "IPython magic function to print date/time stamps \n",
-      "and various system information.\n",
+    }
+   ],
+   "source": [
+    "%watermark -m"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "
" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPython 3.4.3\n", + "IPython 3.2.0\n", "\n", - "watermark version 1.1.0\n", + "numpy 1.9.2\n", + "scipy 0.15.1\n", "\n", - "optional arguments:\n", - " -a AUTHOR, --author AUTHOR\n", - " prints author name\n", - " -d, --date prints current date\n", - " -n, --datename prints date with abbrv. day and month names\n", - " -t, --time prints current time\n", - " -z, --timezone appends the local time zone\n", - " -u, --updated appends a string \"Last updated: \"\n", - " -c CUSTOM_TIME, --custom_time CUSTOM_TIME\n", - " prints a valid strftime() string\n", - " -v, --python prints Python and IPython version\n", - " -p PACKAGES, --packages PACKAGES\n", - " prints versions of specified Python modules and\n", - " packages\n", - " -h, --hostname prints the host name\n", - " -m, --machine prints system and machine info\n", - " -g, --githash prints current Git commit hash\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Examples" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%watermark" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "29/06/2014 01:19:10\n", - "\n", - "CPython 3.4.1\n", - "IPython 2.1.0\n", - "\n", - "compiler : GCC 4.2.1 (Apple Inc. build 5577)\n", - "system : Darwin\n", - "release : 13.2.0\n", - "machine : x86_64\n", - "processor : i386\n", - "CPU cores : 2\n", - "interpreter: 64bit\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%watermark -d -t" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "29/06/2014 01:19:11 \n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%watermark -u -n -t -z" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Last updated: Sun Jun 19 2014 01:19:12 EDT\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%watermark -v" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "CPython 3.4.1\n", - "IPython 2.1.0\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%watermark -m" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "compiler : GCC 4.2.1 (Apple Inc. build 5577)\n", - "system : Darwin\n", - "release : 13.2.0\n", - "machine : x86_64\n", - "processor : i386\n", - "CPU cores : 2\n", - "interpreter: 64bit\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%watermark -v -m -p numpy,scipy" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "CPython 3.4.1\n", - "IPython 2.1.0\n", - "\n", - "numpy 1.8.1\n", - "scipy 0.14.0\n", - "\n", - "compiler : GCC 4.2.1 (Apple Inc. build 5577)\n", - "system : Darwin\n", - "release : 13.2.0\n", - "machine : x86_64\n", - "processor : i386\n", - "CPU cores : 2\n", - "interpreter: 64bit\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" + "compiler : GCC 4.2.1 (Apple Inc. build 5577)\n", + "system : Darwin\n", + "release : 14.3.0\n", + "machine : x86_64\n", + "processor : i386\n", + "CPU cores : 4\n", + "interpreter: 64bit\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%watermark -a \"John Doe\" -d -v -m -g" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "John Doe 29/06/2014 01:20:48 EDT\n", - "\n", - "CPython 3.4.1\n", - "IPython 2.1.0\n", - "\n", - "compiler : GCC 4.2.1 (Apple Inc. build 5577)\n", - "system : Darwin\n", - "release : 13.2.0\n", - "machine : x86_64\n", - "processor : i386\n", - "CPU cores : 2\n", - "interpreter: 64bit\n", - "Git hash : fbe7759fd7e0298bf0bd05ea4aac01b87aa8ed25\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" + } + ], + "source": [ + "%watermark -v -m -p numpy,scipy" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "John Doe 06/29/2015 \n", + "\n", + "CPython 3.4.3\n", + "IPython 3.2.0\n", + "\n", + "compiler : GCC 4.2.1 (Apple Inc. build 5577)\n", + "system : Darwin\n", + "release : 14.3.0\n", + "machine : x86_64\n", + "processor : i386\n", + "CPU cores : 4\n", + "interpreter: 64bit\n", + "Git hash : 06830b939358f35f2daf50af42509e603c93d9b4\n" ] } ], - "metadata": {} + "source": [ + "%watermark -a \"John Doe\" -d -v -m -g" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] } - ] -} \ No newline at end of file + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.4.3" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} From e34d2f21b1db5e2d8503d6fed7f0b6c2e5c5b57a Mon Sep 17 00:00:00 2001 From: rasbt Date: Mon, 29 Jun 2015 15:37:25 -0400 Subject: [PATCH 63/83] watermark clarficitation --- ipython_magic/watermark.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/ipython_magic/watermark.ipynb b/ipython_magic/watermark.ipynb index 8210d3c..5f07900 100644 --- a/ipython_magic/watermark.ipynb +++ b/ipython_magic/watermark.ipynb @@ -19,7 +19,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "**watermark is now located and maintained in a separate GitHub repository:** [https://github.com/rasbt/watermark](https://github.com/rasbt/watermark)" + "### watermark is now located and maintained in a separate GitHub repository: [https://github.com/rasbt/watermark](https://github.com/rasbt/watermark)" ] }, { From 360fd6be3298392ee9223b85ef9b54b3f86a784a Mon Sep 17 00:00:00 2001 From: rasbt Date: Sat, 1 Aug 2015 01:33:04 -0400 Subject: [PATCH 64/83] pandas if test --- tutorials/things_in_pandas.ipynb | 6120 ++++++++++++++++-------------- 1 file changed, 3192 insertions(+), 2928 deletions(-) diff --git a/tutorials/things_in_pandas.ipynb b/tutorials/things_in_pandas.ipynb index 505c1f3..968d734 100644 --- a/tutorials/things_in_pandas.ipynb +++ b/tutorials/things_in_pandas.ipynb @@ -1,2937 +1,3201 @@ { - "metadata": { - "name": "", - "signature": "sha256:c8ab1a3c99e7c72951c91e74991b8837884cd9e3863f1cd1833651e180ff32bd" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ + "cells": [ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[Back to the GitHub repository](https://github.com/rasbt/python_reference)" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%load_ext watermark\n", - "%watermark -a 'Sebastian Raschka' -v -d -p pandas" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Sebastian Raschka 28/01/2015 \n", - "\n", - "CPython 3.4.2\n", - "IPython 2.3.1\n", - "\n", - "pandas 0.15.2\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[More information](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/ipython_magic/watermark.ipynb) about the `watermark` magic command extension." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Things in Pandas I Wish I'd Had Known Earlier" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is just a small but growing collection of pandas snippets that I find occasionally and particularly useful -- consider it as my personal notebook. Suggestions, tips, and contributions are very, very welcome!" - ] - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Sections" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "- [Loading Some Example Data](#Loading-Some-Example-Data)\n", - "- [Renaming Columns](#Renaming-Columns)\n", - " - [Converting Column Names to Lowercase](#Converting-Column-Names-to-Lowercase)\n", - " - [Renaming Particular Columns](#Renaming-Particular-Columns)\n", - "- [Applying Computations Rows-wise](#Applying-Computations-Rows-wise)\n", - " - [Changing Values in a Column](#Changing-Values-in-a-Column)\n", - " - [Adding a New Column](#Adding-a-New-Column)\n", - " - [Applying Functions to Multiple Columns](#Applying-Functions-to-Multiple-Columns)\n", - "- [Missing Values aka NaNs](#Missing-Values-aka-NaNs)\n", - " - [Counting Rows with NaNs](#Counting-Rows-with-NaNs)\n", - " - [Selecting NaN Rows](#Selecting-NaN-Rows)\n", - " - [Selecting non-NaN Rows](#Selecting-non-NaN-Rows)\n", - " - [Filling NaN Rows](#Filling-NaN-Rows)\n", - "- [Appending Rows to a DataFrame](#Appending-Rows-to-a-DataFrame)\n", - "- [Sorting and Reindexing DataFrames](#Sorting-and-Reindexing-DataFrames)\n", - "- [Updating Columns](#Updating-Columns)\n", - "- [Chaining Conditions - Using Bitwise Operators](#Chaining-Conditions---Using-Bitwise-Operators)\n", - "- [Column Types](#Column-Types)\n", - " - [Printing Column Types](#Printing-Column-Types)\n", - " - [Selecting by Column Type](#Selecting-by-Column-Type)\n", - " - [Converting Column Types](#Converting-Column-Types)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Loading Some Example Data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to section overview](#Sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "I am heavily into sports prediction (via a machine learning approach) these days. So, let us use a (very) small subset of the soccer data that I am just working with." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import pandas as pd\n", - "\n", - "df = pd.read_csv('https://raw.githubusercontent.com/rasbt/python_reference/master/Data/some_soccer_data.csv')\n", - "df" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PLAYERSALARYGPGASOTPPGP
0 Sergio Ag\u00fcero\\n Forward \u2014 Manchester City $19.2m 16 14 3 34 13.12 209.98
1 Eden Hazard\\n Midfield \u2014 Chelsea $18.9m 21 8 4 17 13.05 274.04
2 Alexis S\u00e1nchez\\n Forward \u2014 Arsenal $17.6mNaN 12 7 29 11.19 223.86
3 Yaya Tour\u00e9\\n Midfield \u2014 Manchester City $16.6m 18 7 1 19 10.99 197.91
4 \u00c1ngel Di Mar\u00eda\\n Midfield \u2014 Manchester United $15.0m 13 3NaN 13 10.17 132.23
5 Santiago Cazorla\\n Midfield \u2014 Arsenal $14.8m 20 4NaN 20 9.97 NaN
6 David Silva\\n Midfield \u2014 Manchester City $14.3m 15 6 2 11 10.35 155.26
7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea $14.0m 20 2 14 10 10.47 209.49
8 Saido Berahino\\n Forward \u2014 West Brom $13.8m 21 9 0 20 7.02 147.43
9 Steven Gerrard\\n Midfield \u2014 Liverpool $13.8m 20 5 1 11 7.50 150.01
\n", - "
" - ], - "metadata": {}, - "output_type": "pyout", - "prompt_number": 2, - "text": [ - " PLAYER SALARY GP G A SOT \\\n", - "0 Sergio Ag\u00fcero\\n Forward \u2014 Manchester City $19.2m 16 14 3 34 \n", - "1 Eden Hazard\\n Midfield \u2014 Chelsea $18.9m 21 8 4 17 \n", - "2 Alexis S\u00e1nchez\\n Forward \u2014 Arsenal $17.6m NaN 12 7 29 \n", - "3 Yaya Tour\u00e9\\n Midfield \u2014 Manchester City $16.6m 18 7 1 19 \n", - "4 \u00c1ngel Di Mar\u00eda\\n Midfield \u2014 Manchester United $15.0m 13 3 NaN 13 \n", - "5 Santiago Cazorla\\n Midfield \u2014 Arsenal $14.8m 20 4 NaN 20 \n", - "6 David Silva\\n Midfield \u2014 Manchester City $14.3m 15 6 2 11 \n", - "7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea $14.0m 20 2 14 10 \n", - "8 Saido Berahino\\n Forward \u2014 West Brom $13.8m 21 9 0 20 \n", - "9 Steven Gerrard\\n Midfield \u2014 Liverpool $13.8m 20 5 1 11 \n", - "\n", - " PPG P \n", - "0 13.12 209.98 \n", - "1 13.05 274.04 \n", - "2 11.19 223.86 \n", - "3 10.99 197.91 \n", - "4 10.17 132.23 \n", - "5 9.97 NaN \n", - "6 10.35 155.26 \n", - "7 10.47 209.49 \n", - "8 7.02 147.43 \n", - "9 7.50 150.01 " - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Renaming Columns" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to section overview](#Sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Converting Column Names to Lowercase" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Converting column names to lowercase\n", - "\n", - "df.columns = [c.lower() for c in df.columns]\n", - "\n", - "# or\n", - "# df.rename(columns=lambda x : x.lower())\n", - "\n", - "df.tail(3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
playersalarygpgasotppgp
7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea $14.0m 20 2 14 10 10.47 209.49
8 Saido Berahino\\n Forward \u2014 West Brom $13.8m 21 9 0 20 7.02 147.43
9 Steven Gerrard\\n Midfield \u2014 Liverpool $13.8m 20 5 1 11 7.50 150.01
\n", - "
" - ], - "metadata": {}, - "output_type": "pyout", - "prompt_number": 3, - "text": [ - " player salary gp g a sot ppg \\\n", - "7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea $14.0m 20 2 14 10 10.47 \n", - "8 Saido Berahino\\n Forward \u2014 West Brom $13.8m 21 9 0 20 7.02 \n", - "9 Steven Gerrard\\n Midfield \u2014 Liverpool $13.8m 20 5 1 11 7.50 \n", - "\n", - " p \n", - "7 209.49 \n", - "8 147.43 \n", - "9 150.01 " - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Renaming Particular Columns" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "df = df.rename(columns={'p': 'points', \n", - " 'gp': 'games',\n", - " 'sot': 'shots_on_target',\n", - " 'g': 'goals',\n", - " 'ppg': 'points_per_game',\n", - " 'a': 'assists',})\n", - "\n", - "df.tail(3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepoints
7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea $14.0m 20 2 14 10 10.47 209.49
8 Saido Berahino\\n Forward \u2014 West Brom $13.8m 21 9 0 20 7.02 147.43
9 Steven Gerrard\\n Midfield \u2014 Liverpool $13.8m 20 5 1 11 7.50 150.01
\n", - "
" - ], - "metadata": {}, - "output_type": "pyout", - "prompt_number": 4, - "text": [ - " player salary games goals assists \\\n", - "7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea $14.0m 20 2 14 \n", - "8 Saido Berahino\\n Forward \u2014 West Brom $13.8m 21 9 0 \n", - "9 Steven Gerrard\\n Midfield \u2014 Liverpool $13.8m 20 5 1 \n", - "\n", - " shots_on_target points_per_game points \n", - "7 10 10.47 209.49 \n", - "8 20 7.02 147.43 \n", - "9 11 7.50 150.01 " - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Applying Computations Rows-wise" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to section overview](#Sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Changing Values in a Column" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Processing `salary` column\n", - "\n", - "df['salary'] = df['salary'].apply(lambda x: x.strip('$m'))\n", - "df.tail()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepoints
5 Santiago Cazorla\\n Midfield \u2014 Arsenal 14.8 20 4NaN 20 9.97 NaN
6 David Silva\\n Midfield \u2014 Manchester City 14.3 15 6 2 11 10.35 155.26
7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea 14.0 20 2 14 10 10.47 209.49
8 Saido Berahino\\n Forward \u2014 West Brom 13.8 21 9 0 20 7.02 147.43
9 Steven Gerrard\\n Midfield \u2014 Liverpool 13.8 20 5 1 11 7.50 150.01
\n", - "
" - ], - "metadata": {}, - "output_type": "pyout", - "prompt_number": 5, - "text": [ - " player salary games goals assists \\\n", - "5 Santiago Cazorla\\n Midfield \u2014 Arsenal 14.8 20 4 NaN \n", - "6 David Silva\\n Midfield \u2014 Manchester City 14.3 15 6 2 \n", - "7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea 14.0 20 2 14 \n", - "8 Saido Berahino\\n Forward \u2014 West Brom 13.8 21 9 0 \n", - "9 Steven Gerrard\\n Midfield \u2014 Liverpool 13.8 20 5 1 \n", - "\n", - " shots_on_target points_per_game points \n", - "5 20 9.97 NaN \n", - "6 11 10.35 155.26 \n", - "7 10 10.47 209.49 \n", - "8 20 7.02 147.43 \n", - "9 11 7.50 150.01 " - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Adding a New Column" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "df['team'] = pd.Series('', index=df.index)\n", - "\n", - "# or\n", - "df.insert(loc=8, column='position', value='') \n", - "\n", - "df.tail(3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea 14.0 20 2 14 10 10.47 209.49
8 Saido Berahino\\n Forward \u2014 West Brom 13.8 21 9 0 20 7.02 147.43
9 Steven Gerrard\\n Midfield \u2014 Liverpool 13.8 20 5 1 11 7.50 150.01
\n", - "
" - ], - "metadata": {}, - "output_type": "pyout", - "prompt_number": 6, - "text": [ - " player salary games goals assists \\\n", - "7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea 14.0 20 2 14 \n", - "8 Saido Berahino\\n Forward \u2014 West Brom 13.8 21 9 0 \n", - "9 Steven Gerrard\\n Midfield \u2014 Liverpool 13.8 20 5 1 \n", - "\n", - " shots_on_target points_per_game points position team \n", - "7 10 10.47 209.49 \n", - "8 20 7.02 147.43 \n", - "9 11 7.50 150.01 " - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Processing `player` column\n", - "\n", - "def process_player_col(text):\n", - " name, rest = text.split('\\n')\n", - " position, team = [x.strip() for x in rest.split(' \u2014 ')]\n", - " return pd.Series([name, team, position])\n", - "\n", - "df[['player', 'team', 'position']] = df.player.apply(process_player_col)\n", - "\n", - "# modified after tip from reddit.com/user/hharison\n", - "#\n", - "# Alternative (inferior) approach:\n", - "#\n", - "#for idx,row in df.iterrows():\n", - "# name, position, team = process_player_col(row['player'])\n", - "# df.ix[idx, 'player'], df.ix[idx, 'position'], df.ix[idx, 'team'] = name, position, team\n", - " \n", - "df.tail(3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
7 Cesc F\u00e0bregas 14.0 20 2 14 10 10.47 209.49 Midfield Chelsea
8 Saido Berahino 13.8 21 9 0 20 7.02 147.43 Forward West Brom
9 Steven Gerrard 13.8 20 5 1 11 7.50 150.01 Midfield Liverpool
\n", - "
" - ], - "metadata": {}, - "output_type": "pyout", - "prompt_number": 7, - "text": [ - " player salary games goals assists shots_on_target \\\n", - "7 Cesc F\u00e0bregas 14.0 20 2 14 10 \n", - "8 Saido Berahino 13.8 21 9 0 20 \n", - "9 Steven Gerrard 13.8 20 5 1 11 \n", - "\n", - " points_per_game points position team \n", - "7 10.47 209.49 Midfield Chelsea \n", - "8 7.02 147.43 Forward West Brom \n", - "9 7.50 150.01 Midfield Liverpool " - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Applying Functions to Multiple Columns" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "cols = ['player', 'position', 'team']\n", - "df[cols] = df[cols].applymap(lambda x: x.lower())\n", - "df.head()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
0 sergio ag\u00fcero 19.2 16 14 3 34 13.12 209.98 forward manchester city
1 eden hazard 18.9 21 8 4 17 13.05 274.04 midfield chelsea
2 alexis s\u00e1nchez 17.6NaN 12 7 29 11.19 223.86 forward arsenal
3 yaya tour\u00e9 16.6 18 7 1 19 10.99 197.91 midfield manchester city
4 \u00e1ngel di mar\u00eda 15.0 13 3NaN 13 10.17 132.23 midfield manchester united
\n", - "
" - ], - "metadata": {}, - "output_type": "pyout", - "prompt_number": 8, - "text": [ - " player salary games goals assists shots_on_target \\\n", - "0 sergio ag\u00fcero 19.2 16 14 3 34 \n", - "1 eden hazard 18.9 21 8 4 17 \n", - "2 alexis s\u00e1nchez 17.6 NaN 12 7 29 \n", - "3 yaya tour\u00e9 16.6 18 7 1 19 \n", - "4 \u00e1ngel di mar\u00eda 15.0 13 3 NaN 13 \n", - "\n", - " points_per_game points position team \n", - "0 13.12 209.98 forward manchester city \n", - "1 13.05 274.04 midfield chelsea \n", - "2 11.19 223.86 forward arsenal \n", - "3 10.99 197.91 midfield manchester city \n", - "4 10.17 132.23 midfield manchester united " - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Missing Values aka NaNs" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to section overview](#Sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Counting Rows with NaNs" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "nans = df.shape[0] - df.dropna().shape[0]\n", - "\n", - "print('%d rows have missing values' % nans)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "3 rows have missing values\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Selecting NaN Rows" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Selecting all rows that have NaNs in the `assists` column\n", - "\n", - "df[df['assists'].isnull()]" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
4 \u00e1ngel di mar\u00eda 15.0 13 3NaN 13 10.17 132.23 midfield manchester united
5 santiago cazorla 14.8 20 4NaN 20 9.97 NaN midfield arsenal
\n", - "
" - ], - "metadata": {}, - "output_type": "pyout", - "prompt_number": 10, - "text": [ - " player salary games goals assists shots_on_target \\\n", - "4 \u00e1ngel di mar\u00eda 15.0 13 3 NaN 13 \n", - "5 santiago cazorla 14.8 20 4 NaN 20 \n", - "\n", - " points_per_game points position team \n", - "4 10.17 132.23 midfield manchester united \n", - "5 9.97 NaN midfield arsenal " - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Selecting non-NaN Rows" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "df[df['assists'].notnull()]" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
0 sergio ag\u00fcero 19.2 16 14 3 34 13.12 209.98 forward manchester city
1 eden hazard 18.9 21 8 4 17 13.05 274.04 midfield chelsea
2 alexis s\u00e1nchez 17.6NaN 12 7 29 11.19 223.86 forward arsenal
3 yaya tour\u00e9 16.6 18 7 1 19 10.99 197.91 midfield manchester city
6 david silva 14.3 15 6 2 11 10.35 155.26 midfield manchester city
7 cesc f\u00e0bregas 14.0 20 2 14 10 10.47 209.49 midfield chelsea
8 saido berahino 13.8 21 9 0 20 7.02 147.43 forward west brom
9 steven gerrard 13.8 20 5 1 11 7.50 150.01 midfield liverpool
\n", - "
" - ], - "metadata": {}, - "output_type": "pyout", - "prompt_number": 11, - "text": [ - " player salary games goals assists shots_on_target \\\n", - "0 sergio ag\u00fcero 19.2 16 14 3 34 \n", - "1 eden hazard 18.9 21 8 4 17 \n", - "2 alexis s\u00e1nchez 17.6 NaN 12 7 29 \n", - "3 yaya tour\u00e9 16.6 18 7 1 19 \n", - "6 david silva 14.3 15 6 2 11 \n", - "7 cesc f\u00e0bregas 14.0 20 2 14 10 \n", - "8 saido berahino 13.8 21 9 0 20 \n", - "9 steven gerrard 13.8 20 5 1 11 \n", - "\n", - " points_per_game points position team \n", - "0 13.12 209.98 forward manchester city \n", - "1 13.05 274.04 midfield chelsea \n", - "2 11.19 223.86 forward arsenal \n", - "3 10.99 197.91 midfield manchester city \n", - "6 10.35 155.26 midfield manchester city \n", - "7 10.47 209.49 midfield chelsea \n", - "8 7.02 147.43 forward west brom \n", - "9 7.50 150.01 midfield liverpool " - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Filling NaN Rows" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Filling NaN cells with default value 0\n", - "\n", - "df.fillna(value=0, inplace=True)\n", - "df" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
0 sergio ag\u00fcero 19.2 16 14 3 34 13.12 209.98 forward manchester city
1 eden hazard 18.9 21 8 4 17 13.05 274.04 midfield chelsea
2 alexis s\u00e1nchez 17.6 0 12 7 29 11.19 223.86 forward arsenal
3 yaya tour\u00e9 16.6 18 7 1 19 10.99 197.91 midfield manchester city
4 \u00e1ngel di mar\u00eda 15.0 13 3 0 13 10.17 132.23 midfield manchester united
5 santiago cazorla 14.8 20 4 0 20 9.97 0.00 midfield arsenal
6 david silva 14.3 15 6 2 11 10.35 155.26 midfield manchester city
7 cesc f\u00e0bregas 14.0 20 2 14 10 10.47 209.49 midfield chelsea
8 saido berahino 13.8 21 9 0 20 7.02 147.43 forward west brom
9 steven gerrard 13.8 20 5 1 11 7.50 150.01 midfield liverpool
\n", - "
" - ], - "metadata": {}, - "output_type": "pyout", - "prompt_number": 12, - "text": [ - " player salary games goals assists shots_on_target \\\n", - "0 sergio ag\u00fcero 19.2 16 14 3 34 \n", - "1 eden hazard 18.9 21 8 4 17 \n", - "2 alexis s\u00e1nchez 17.6 0 12 7 29 \n", - "3 yaya tour\u00e9 16.6 18 7 1 19 \n", - "4 \u00e1ngel di mar\u00eda 15.0 13 3 0 13 \n", - "5 santiago cazorla 14.8 20 4 0 20 \n", - "6 david silva 14.3 15 6 2 11 \n", - "7 cesc f\u00e0bregas 14.0 20 2 14 10 \n", - "8 saido berahino 13.8 21 9 0 20 \n", - "9 steven gerrard 13.8 20 5 1 11 \n", - "\n", - " points_per_game points position team \n", - "0 13.12 209.98 forward manchester city \n", - "1 13.05 274.04 midfield chelsea \n", - "2 11.19 223.86 forward arsenal \n", - "3 10.99 197.91 midfield manchester city \n", - "4 10.17 132.23 midfield manchester united \n", - "5 9.97 0.00 midfield arsenal \n", - "6 10.35 155.26 midfield manchester city \n", - "7 10.47 209.49 midfield chelsea \n", - "8 7.02 147.43 forward west brom \n", - "9 7.50 150.01 midfield liverpool " - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Appending Rows to a DataFrame" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to section overview](#Sections)]" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Adding an \"empty\" row to the DataFrame\n", - "\n", - "import numpy as np\n", - "\n", - "df = df.append(pd.Series(\n", - " [np.nan]*len(df.columns), # Fill cells with NaNs\n", - " index=df.columns), \n", - " ignore_index=True)\n", - "\n", - "df.tail(3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
8 saido berahino 13.8 21 9 0 20 7.02 147.43 forward west brom
9 steven gerrard 13.8 20 5 1 11 7.50 150.01 midfield liverpool
10 NaN NaNNaNNaNNaNNaN NaN NaN NaN NaN
\n", - "
" - ], - "metadata": {}, - "output_type": "pyout", - "prompt_number": 13, - "text": [ - " player salary games goals assists shots_on_target \\\n", - "8 saido berahino 13.8 21 9 0 20 \n", - "9 steven gerrard 13.8 20 5 1 11 \n", - "10 NaN NaN NaN NaN NaN NaN \n", - "\n", - " points_per_game points position team \n", - "8 7.02 147.43 forward west brom \n", - "9 7.50 150.01 midfield liverpool \n", - "10 NaN NaN NaN NaN " - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Filling cells with data\n", - "\n", - "df.loc[df.index[-1], 'player'] = 'new player'\n", - "df.loc[df.index[-1], 'salary'] = 12.3\n", - "df.tail(3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
8 saido berahino 13.8 21 9 0 20 7.02 147.43 forward west brom
9 steven gerrard 13.8 20 5 1 11 7.50 150.01 midfield liverpool
10 new player 12.3NaNNaNNaNNaN NaN NaN NaN NaN
\n", - "
" - ], - "metadata": {}, - "output_type": "pyout", - "prompt_number": 14, - "text": [ - " player salary games goals assists shots_on_target \\\n", - "8 saido berahino 13.8 21 9 0 20 \n", - "9 steven gerrard 13.8 20 5 1 11 \n", - "10 new player 12.3 NaN NaN NaN NaN \n", - "\n", - " points_per_game points position team \n", - "8 7.02 147.43 forward west brom \n", - "9 7.50 150.01 midfield liverpool \n", - "10 NaN NaN NaN NaN " - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Sorting and Reindexing DataFrames" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to section overview](#Sections)]" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Sorting the DataFrame by a certain column (from highest to lowest)\n", - "\n", - "df.sort('goals', ascending=False, inplace=True)\n", - "df.head()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
0 sergio ag\u00fcero 19.2 16 14 3 34 13.12 209.98 forward manchester city
2 alexis s\u00e1nchez 17.6 0 12 7 29 11.19 223.86 forward arsenal
8 saido berahino 13.8 21 9 0 20 7.02 147.43 forward west brom
1 eden hazard 18.9 21 8 4 17 13.05 274.04 midfield chelsea
3 yaya tour\u00e9 16.6 18 7 1 19 10.99 197.91 midfield manchester city
\n", - "
" - ], - "metadata": {}, - "output_type": "pyout", - "prompt_number": 15, - "text": [ - " player salary games goals assists shots_on_target \\\n", - "0 sergio ag\u00fcero 19.2 16 14 3 34 \n", - "2 alexis s\u00e1nchez 17.6 0 12 7 29 \n", - "8 saido berahino 13.8 21 9 0 20 \n", - "1 eden hazard 18.9 21 8 4 17 \n", - "3 yaya tour\u00e9 16.6 18 7 1 19 \n", - "\n", - " points_per_game points position team \n", - "0 13.12 209.98 forward manchester city \n", - "2 11.19 223.86 forward arsenal \n", - "8 7.02 147.43 forward west brom \n", - "1 13.05 274.04 midfield chelsea \n", - "3 10.99 197.91 midfield manchester city " - ] - } - ], - "prompt_number": 15 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Optional reindexing of the DataFrame after sorting\n", - "\n", - "df.index = range(1,len(df.index)+1)\n", - "df.head()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
1 sergio ag\u00fcero 19.2 16 14 3 34 13.12 209.98 forward manchester city
2 alexis s\u00e1nchez 17.6 0 12 7 29 11.19 223.86 forward arsenal
3 saido berahino 13.8 21 9 0 20 7.02 147.43 forward west brom
4 eden hazard 18.9 21 8 4 17 13.05 274.04 midfield chelsea
5 yaya tour\u00e9 16.6 18 7 1 19 10.99 197.91 midfield manchester city
\n", - "
" - ], - "metadata": {}, - "output_type": "pyout", - "prompt_number": 16, - "text": [ - " player salary games goals assists shots_on_target \\\n", - "1 sergio ag\u00fcero 19.2 16 14 3 34 \n", - "2 alexis s\u00e1nchez 17.6 0 12 7 29 \n", - "3 saido berahino 13.8 21 9 0 20 \n", - "4 eden hazard 18.9 21 8 4 17 \n", - "5 yaya tour\u00e9 16.6 18 7 1 19 \n", - "\n", - " points_per_game points position team \n", - "1 13.12 209.98 forward manchester city \n", - "2 11.19 223.86 forward arsenal \n", - "3 7.02 147.43 forward west brom \n", - "4 13.05 274.04 midfield chelsea \n", - "5 10.99 197.91 midfield manchester city " - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Updating Columns" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to section overview](#Sections)]" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Creating a dummy DataFrame with changes in the `salary` column\n", - "\n", - "df_2 = df.copy()\n", - "df_2.loc[0:2, 'salary'] = [20.0, 15.0]\n", - "df_2.head(3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
1 sergio ag\u00fcero 20 16 14 3 34 13.12 209.98 forward manchester city
2 alexis s\u00e1nchez 15 0 12 7 29 11.19 223.86 forward arsenal
3 saido berahino 13.8 21 9 0 20 7.02 147.43 forward west brom
\n", - "
" - ], - "metadata": {}, - "output_type": "pyout", - "prompt_number": 17, - "text": [ - " player salary games goals assists shots_on_target \\\n", - "1 sergio ag\u00fcero 20 16 14 3 34 \n", - "2 alexis s\u00e1nchez 15 0 12 7 29 \n", - "3 saido berahino 13.8 21 9 0 20 \n", - "\n", - " points_per_game points position team \n", - "1 13.12 209.98 forward manchester city \n", - "2 11.19 223.86 forward arsenal \n", - "3 7.02 147.43 forward west brom " - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Temporarily use the `player` columns as indices to \n", - "# apply the update functions\n", - "\n", - "df.set_index('player', inplace=True)\n", - "df_2.set_index('player', inplace=True)\n", - "df.head(3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
salarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
player
sergio ag\u00fcero 19.2 16 14 3 34 13.12 209.98 forward manchester city
alexis s\u00e1nchez 17.6 0 12 7 29 11.19 223.86 forward arsenal
saido berahino 13.8 21 9 0 20 7.02 147.43 forward west brom
\n", - "
" - ], - "metadata": {}, - "output_type": "pyout", - "prompt_number": 18, - "text": [ - " salary games goals assists shots_on_target \\\n", - "player \n", - "sergio ag\u00fcero 19.2 16 14 3 34 \n", - "alexis s\u00e1nchez 17.6 0 12 7 29 \n", - "saido berahino 13.8 21 9 0 20 \n", - "\n", - " points_per_game points position team \n", - "player \n", - "sergio ag\u00fcero 13.12 209.98 forward manchester city \n", - "alexis s\u00e1nchez 11.19 223.86 forward arsenal \n", - "saido berahino 7.02 147.43 forward west brom " - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Update the `salary` column\n", - "df.update(other=df_2['salary'], overwrite=True)\n", - "df.head(3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
salarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
player
sergio ag\u00fcero 20 16 14 3 34 13.12 209.98 forward manchester city
alexis s\u00e1nchez 15 0 12 7 29 11.19 223.86 forward arsenal
saido berahino 13.8 21 9 0 20 7.02 147.43 forward west brom
\n", - "
" - ], - "metadata": {}, - "output_type": "pyout", - "prompt_number": 19, - "text": [ - " salary games goals assists shots_on_target \\\n", - "player \n", - "sergio ag\u00fcero 20 16 14 3 34 \n", - "alexis s\u00e1nchez 15 0 12 7 29 \n", - "saido berahino 13.8 21 9 0 20 \n", - "\n", - " points_per_game points position team \n", - "player \n", - "sergio ag\u00fcero 13.12 209.98 forward manchester city \n", - "alexis s\u00e1nchez 11.19 223.86 forward arsenal \n", - "saido berahino 7.02 147.43 forward west brom " - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Reset the indices\n", - "df.reset_index(inplace=True)\n", - "df.head(3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
0 sergio ag\u00fcero 20 16 14 3 34 13.12 209.98 forward manchester city
1 alexis s\u00e1nchez 15 0 12 7 29 11.19 223.86 forward arsenal
2 saido berahino 13.8 21 9 0 20 7.02 147.43 forward west brom
\n", - "
" - ], - "metadata": {}, - "output_type": "pyout", - "prompt_number": 20, - "text": [ - " player salary games goals assists shots_on_target \\\n", - "0 sergio ag\u00fcero 20 16 14 3 34 \n", - "1 alexis s\u00e1nchez 15 0 12 7 29 \n", - "2 saido berahino 13.8 21 9 0 20 \n", - "\n", - " points_per_game points position team \n", - "0 13.12 209.98 forward manchester city \n", - "1 11.19 223.86 forward arsenal \n", - "2 7.02 147.43 forward west brom " - ] - } - ], - "prompt_number": 20 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chaining Conditions - Using Bitwise Operators" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to section overview](#Sections)]" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Selecting only those players that either playing for Arsenal or Chelsea\n", + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[Back to the GitHub repository](https://github.com/rasbt/python_reference)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Sebastian Raschka 28/01/2015 \n", "\n", - "df[ (df['team'] == 'arsenal') | (df['team'] == 'chelsea') ]" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
1 alexis s\u00e1nchez 15 0 12 7 29 11.19 223.86 forward arsenal
3 eden hazard 18.9 21 8 4 17 13.05 274.04 midfield chelsea
7 santiago cazorla 14.8 20 4 0 20 9.97 0.00 midfield arsenal
9 cesc f\u00e0bregas 14.0 20 2 14 10 10.47 209.49 midfield chelsea
\n", - "
" - ], - "metadata": {}, - "output_type": "pyout", - "prompt_number": 21, - "text": [ - " player salary games goals assists shots_on_target \\\n", - "1 alexis s\u00e1nchez 15 0 12 7 29 \n", - "3 eden hazard 18.9 21 8 4 17 \n", - "7 santiago cazorla 14.8 20 4 0 20 \n", - "9 cesc f\u00e0bregas 14.0 20 2 14 10 \n", - "\n", - " points_per_game points position team \n", - "1 11.19 223.86 forward arsenal \n", - "3 13.05 274.04 midfield chelsea \n", - "7 9.97 0.00 midfield arsenal \n", - "9 10.47 209.49 midfield chelsea " - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Selecting forwards from Arsenal only\n", + "CPython 3.4.2\n", + "IPython 2.3.1\n", "\n", - "df[ (df['team'] == 'arsenal') & (df['position'] == 'forward') ]" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
1 alexis s\u00e1nchez 15 0 12 7 29 11.19 223.86 forward arsenal
\n", - "
" - ], - "metadata": {}, - "output_type": "pyout", - "prompt_number": 22, - "text": [ - " player salary games goals assists shots_on_target \\\n", - "1 alexis s\u00e1nchez 15 0 12 7 29 \n", - "\n", - " points_per_game points position team \n", - "1 11.19 223.86 forward arsenal " - ] - } - ], - "prompt_number": 22 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Column Types" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to section overview](#Sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Printing Column Types" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "types = df.columns.to_series().groupby(df.dtypes).groups\n", - "types" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "pyout", - "prompt_number": 23, - "text": [ - "{dtype('float64'): ['games',\n", - " 'goals',\n", - " 'assists',\n", - " 'shots_on_target',\n", - " 'points_per_game',\n", - " 'points'],\n", - " dtype('O'): ['player', 'salary', 'position', 'team']}" - ] - } - ], - "prompt_number": 23 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" + "pandas 0.15.2\n" ] - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Selecting by Column Type" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# select string columns\n", - "df.loc[:, (df.dtypes == np.dtype('O')).values].head()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
playersalarypositionteam
0 sergio ag\u00fcero 20 forward manchester city
1 alexis s\u00e1nchez 15 forward arsenal
2 saido berahino 13.8 forward west brom
3 eden hazard 18.9 midfield chelsea
4 yaya tour\u00e9 16.6 midfield manchester city
\n", - "
" - ], - "metadata": {}, - "output_type": "pyout", - "prompt_number": 24, - "text": [ - " player salary position team\n", - "0 sergio ag\u00fcero 20 forward manchester city\n", - "1 alexis s\u00e1nchez 15 forward arsenal\n", - "2 saido berahino 13.8 forward west brom\n", - "3 eden hazard 18.9 midfield chelsea\n", - "4 yaya tour\u00e9 16.6 midfield manchester city" - ] - } - ], - "prompt_number": 24 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Converting Column Types" + } + ], + "source": [ + "%load_ext watermark\n", + "%watermark -a 'Sebastian Raschka' -v -d -p pandas" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[More information](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/ipython_magic/watermark.ipynb) about the `watermark` magic command extension." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Things in Pandas I Wish I'd Known Earlier" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is just a small but growing collection of pandas snippets that I find occasionally and particularly useful -- consider it as my personal notebook. Suggestions, tips, and contributions are very, very welcome!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Sections" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- [Loading Some Example Data](#Loading-Some-Example-Data)\n", + "- [Renaming Columns](#Renaming-Columns)\n", + " - [Converting Column Names to Lowercase](#Converting-Column-Names-to-Lowercase)\n", + " - [Renaming Particular Columns](#Renaming-Particular-Columns)\n", + "- [Applying Computations Rows-wise](#Applying-Computations-Rows-wise)\n", + " - [Changing Values in a Column](#Changing-Values-in-a-Column)\n", + " - [Adding a New Column](#Adding-a-New-Column)\n", + " - [Applying Functions to Multiple Columns](#Applying-Functions-to-Multiple-Columns)\n", + "- [Missing Values aka NaNs](#Missing-Values-aka-NaNs)\n", + " - [Counting Rows with NaNs](#Counting-Rows-with-NaNs)\n", + " - [Selecting NaN Rows](#Selecting-NaN-Rows)\n", + " - [Selecting non-NaN Rows](#Selecting-non-NaN-Rows)\n", + " - [Filling NaN Rows](#Filling-NaN-Rows)\n", + "- [Appending Rows to a DataFrame](#Appending-Rows-to-a-DataFrame)\n", + "- [Sorting and Reindexing DataFrames](#Sorting-and-Reindexing-DataFrames)\n", + "- [Updating Columns](#Updating-Columns)\n", + "- [Chaining Conditions - Using Bitwise Operators](#Chaining-Conditions---Using-Bitwise-Operators)\n", + "- [Column Types](#Column-Types)\n", + " - [Printing Column Types](#Printing-Column-Types)\n", + " - [Selecting by Column Type](#Selecting-by-Column-Type)\n", + " - [Converting Column Types](#Converting-Column-Types)\n", + "- [If-tests](#If-tests)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Loading Some Example Data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to section overview](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "I am heavily into sports prediction (via a machine learning approach) these days. So, let us use a (very) small subset of the soccer data that I am just working with." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PLAYERSALARYGPGASOTPPGP
0 Sergio Agüero\\n Forward — Manchester City $19.2m 16 14 3 34 13.12 209.98
1 Eden Hazard\\n Midfield — Chelsea $18.9m 21 8 4 17 13.05 274.04
2 Alexis Sánchez\\n Forward — Arsenal $17.6mNaN 12 7 29 11.19 223.86
3 Yaya Touré\\n Midfield — Manchester City $16.6m 18 7 1 19 10.99 197.91
4 Ángel Di María\\n Midfield — Manchester United $15.0m 13 3NaN 13 10.17 132.23
5 Santiago Cazorla\\n Midfield — Arsenal $14.8m 20 4NaN 20 9.97 NaN
6 David Silva\\n Midfield — Manchester City $14.3m 15 6 2 11 10.35 155.26
7 Cesc Fàbregas\\n Midfield — Chelsea $14.0m 20 2 14 10 10.47 209.49
8 Saido Berahino\\n Forward — West Brom $13.8m 21 9 0 20 7.02 147.43
9 Steven Gerrard\\n Midfield — Liverpool $13.8m 20 5 1 11 7.50 150.01
\n", + "
" + ], + "text/plain": [ + " PLAYER SALARY GP G A SOT \\\n", + "0 Sergio Agüero\\n Forward — Manchester City $19.2m 16 14 3 34 \n", + "1 Eden Hazard\\n Midfield — Chelsea $18.9m 21 8 4 17 \n", + "2 Alexis Sánchez\\n Forward — Arsenal $17.6m NaN 12 7 29 \n", + "3 Yaya Touré\\n Midfield — Manchester City $16.6m 18 7 1 19 \n", + "4 Ángel Di María\\n Midfield — Manchester United $15.0m 13 3 NaN 13 \n", + "5 Santiago Cazorla\\n Midfield — Arsenal $14.8m 20 4 NaN 20 \n", + "6 David Silva\\n Midfield — Manchester City $14.3m 15 6 2 11 \n", + "7 Cesc Fàbregas\\n Midfield — Chelsea $14.0m 20 2 14 10 \n", + "8 Saido Berahino\\n Forward — West Brom $13.8m 21 9 0 20 \n", + "9 Steven Gerrard\\n Midfield — Liverpool $13.8m 20 5 1 11 \n", + "\n", + " PPG P \n", + "0 13.12 209.98 \n", + "1 13.05 274.04 \n", + "2 11.19 223.86 \n", + "3 10.99 197.91 \n", + "4 10.17 132.23 \n", + "5 9.97 NaN \n", + "6 10.35 155.26 \n", + "7 10.47 209.49 \n", + "8 7.02 147.43 \n", + "9 7.50 150.01 " + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "df = pd.read_csv('https://raw.githubusercontent.com/rasbt/python_reference/master/Data/some_soccer_data.csv')\n", + "df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Renaming Columns" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to section overview](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Converting Column Names to Lowercase" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygpgasotppgp
7 Cesc Fàbregas\\n Midfield — Chelsea $14.0m 20 2 14 10 10.47 209.49
8 Saido Berahino\\n Forward — West Brom $13.8m 21 9 0 20 7.02 147.43
9 Steven Gerrard\\n Midfield — Liverpool $13.8m 20 5 1 11 7.50 150.01
\n", + "
" + ], + "text/plain": [ + " player salary gp g a sot ppg \\\n", + "7 Cesc Fàbregas\\n Midfield — Chelsea $14.0m 20 2 14 10 10.47 \n", + "8 Saido Berahino\\n Forward — West Brom $13.8m 21 9 0 20 7.02 \n", + "9 Steven Gerrard\\n Midfield — Liverpool $13.8m 20 5 1 11 7.50 \n", + "\n", + " p \n", + "7 209.49 \n", + "8 147.43 \n", + "9 150.01 " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Converting column names to lowercase\n", + "\n", + "df.columns = [c.lower() for c in df.columns]\n", + "\n", + "# or\n", + "# df.rename(columns=lambda x : x.lower())\n", + "\n", + "df.tail(3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Renaming Particular Columns" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepoints
7 Cesc Fàbregas\\n Midfield — Chelsea $14.0m 20 2 14 10 10.47 209.49
8 Saido Berahino\\n Forward — West Brom $13.8m 21 9 0 20 7.02 147.43
9 Steven Gerrard\\n Midfield — Liverpool $13.8m 20 5 1 11 7.50 150.01
\n", + "
" + ], + "text/plain": [ + " player salary games goals assists \\\n", + "7 Cesc Fàbregas\\n Midfield — Chelsea $14.0m 20 2 14 \n", + "8 Saido Berahino\\n Forward — West Brom $13.8m 21 9 0 \n", + "9 Steven Gerrard\\n Midfield — Liverpool $13.8m 20 5 1 \n", + "\n", + " shots_on_target points_per_game points \n", + "7 10 10.47 209.49 \n", + "8 20 7.02 147.43 \n", + "9 11 7.50 150.01 " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = df.rename(columns={'p': 'points', \n", + " 'gp': 'games',\n", + " 'sot': 'shots_on_target',\n", + " 'g': 'goals',\n", + " 'ppg': 'points_per_game',\n", + " 'a': 'assists',})\n", + "\n", + "df.tail(3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Applying Computations Rows-wise" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to section overview](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Changing Values in a Column" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepoints
5 Santiago Cazorla\\n Midfield — Arsenal 14.8 20 4NaN 20 9.97 NaN
6 David Silva\\n Midfield — Manchester City 14.3 15 6 2 11 10.35 155.26
7 Cesc Fàbregas\\n Midfield — Chelsea 14.0 20 2 14 10 10.47 209.49
8 Saido Berahino\\n Forward — West Brom 13.8 21 9 0 20 7.02 147.43
9 Steven Gerrard\\n Midfield — Liverpool 13.8 20 5 1 11 7.50 150.01
\n", + "
" + ], + "text/plain": [ + " player salary games goals assists \\\n", + "5 Santiago Cazorla\\n Midfield — Arsenal 14.8 20 4 NaN \n", + "6 David Silva\\n Midfield — Manchester City 14.3 15 6 2 \n", + "7 Cesc Fàbregas\\n Midfield — Chelsea 14.0 20 2 14 \n", + "8 Saido Berahino\\n Forward — West Brom 13.8 21 9 0 \n", + "9 Steven Gerrard\\n Midfield — Liverpool 13.8 20 5 1 \n", + "\n", + " shots_on_target points_per_game points \n", + "5 20 9.97 NaN \n", + "6 11 10.35 155.26 \n", + "7 10 10.47 209.49 \n", + "8 20 7.02 147.43 \n", + "9 11 7.50 150.01 " + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Processing `salary` column\n", + "\n", + "df['salary'] = df['salary'].apply(lambda x: x.strip('$m'))\n", + "df.tail()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adding a New Column" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
7 Cesc Fàbregas\\n Midfield — Chelsea 14.0 20 2 14 10 10.47 209.49
8 Saido Berahino\\n Forward — West Brom 13.8 21 9 0 20 7.02 147.43
9 Steven Gerrard\\n Midfield — Liverpool 13.8 20 5 1 11 7.50 150.01
\n", + "
" + ], + "text/plain": [ + " player salary games goals assists \\\n", + "7 Cesc Fàbregas\\n Midfield — Chelsea 14.0 20 2 14 \n", + "8 Saido Berahino\\n Forward — West Brom 13.8 21 9 0 \n", + "9 Steven Gerrard\\n Midfield — Liverpool 13.8 20 5 1 \n", + "\n", + " shots_on_target points_per_game points position team \n", + "7 10 10.47 209.49 \n", + "8 20 7.02 147.43 \n", + "9 11 7.50 150.01 " + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['team'] = pd.Series('', index=df.index)\n", + "\n", + "# or\n", + "df.insert(loc=8, column='position', value='') \n", + "\n", + "df.tail(3)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
7 Cesc Fàbregas 14.0 20 2 14 10 10.47 209.49 Midfield Chelsea
8 Saido Berahino 13.8 21 9 0 20 7.02 147.43 Forward West Brom
9 Steven Gerrard 13.8 20 5 1 11 7.50 150.01 Midfield Liverpool
\n", + "
" + ], + "text/plain": [ + " player salary games goals assists shots_on_target \\\n", + "7 Cesc Fàbregas 14.0 20 2 14 10 \n", + "8 Saido Berahino 13.8 21 9 0 20 \n", + "9 Steven Gerrard 13.8 20 5 1 11 \n", + "\n", + " points_per_game points position team \n", + "7 10.47 209.49 Midfield Chelsea \n", + "8 7.02 147.43 Forward West Brom \n", + "9 7.50 150.01 Midfield Liverpool " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Processing `player` column\n", + "\n", + "def process_player_col(text):\n", + " name, rest = text.split('\\n')\n", + " position, team = [x.strip() for x in rest.split(' — ')]\n", + " return pd.Series([name, team, position])\n", + "\n", + "df[['player', 'team', 'position']] = df.player.apply(process_player_col)\n", + "\n", + "# modified after tip from reddit.com/user/hharison\n", + "#\n", + "# Alternative (inferior) approach:\n", + "#\n", + "#for idx,row in df.iterrows():\n", + "# name, position, team = process_player_col(row['player'])\n", + "# df.ix[idx, 'player'], df.ix[idx, 'position'], df.ix[idx, 'team'] = name, position, team\n", + " \n", + "df.tail(3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Applying Functions to Multiple Columns" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
0 sergio agüero 19.2 16 14 3 34 13.12 209.98 forward manchester city
1 eden hazard 18.9 21 8 4 17 13.05 274.04 midfield chelsea
2 alexis sánchez 17.6NaN 12 7 29 11.19 223.86 forward arsenal
3 yaya touré 16.6 18 7 1 19 10.99 197.91 midfield manchester city
4 ángel di maría 15.0 13 3NaN 13 10.17 132.23 midfield manchester united
\n", + "
" + ], + "text/plain": [ + " player salary games goals assists shots_on_target \\\n", + "0 sergio agüero 19.2 16 14 3 34 \n", + "1 eden hazard 18.9 21 8 4 17 \n", + "2 alexis sánchez 17.6 NaN 12 7 29 \n", + "3 yaya touré 16.6 18 7 1 19 \n", + "4 ángel di maría 15.0 13 3 NaN 13 \n", + "\n", + " points_per_game points position team \n", + "0 13.12 209.98 forward manchester city \n", + "1 13.05 274.04 midfield chelsea \n", + "2 11.19 223.86 forward arsenal \n", + "3 10.99 197.91 midfield manchester city \n", + "4 10.17 132.23 midfield manchester united " + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cols = ['player', 'position', 'team']\n", + "df[cols] = df[cols].applymap(lambda x: x.lower())\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Missing Values aka NaNs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to section overview](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Counting Rows with NaNs" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3 rows have missing values\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "df['salary'] = df['salary'].astype(float)" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 25 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "types = df.columns.to_series().groupby(df.dtypes).groups\n", - "types" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "pyout", - "prompt_number": 26, - "text": [ - "{dtype('float64'): ['salary',\n", - " 'games',\n", - " 'goals',\n", - " 'assists',\n", - " 'shots_on_target',\n", - " 'points_per_game',\n", - " 'points'],\n", - " dtype('O'): ['player', 'position', 'team']}" - ] - } - ], - "prompt_number": 26 } ], - "metadata": {} + "source": [ + "nans = df.shape[0] - df.dropna().shape[0]\n", + "\n", + "print('%d rows have missing values' % nans)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Selecting NaN Rows" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
4 ángel di maría 15.0 13 3NaN 13 10.17 132.23 midfield manchester united
5 santiago cazorla 14.8 20 4NaN 20 9.97 NaN midfield arsenal
\n", + "
" + ], + "text/plain": [ + " player salary games goals assists shots_on_target \\\n", + "4 ángel di maría 15.0 13 3 NaN 13 \n", + "5 santiago cazorla 14.8 20 4 NaN 20 \n", + "\n", + " points_per_game points position team \n", + "4 10.17 132.23 midfield manchester united \n", + "5 9.97 NaN midfield arsenal " + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Selecting all rows that have NaNs in the `assists` column\n", + "\n", + "df[df['assists'].isnull()]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Selecting non-NaN Rows" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
0 sergio agüero 19.2 16 14 3 34 13.12 209.98 forward manchester city
1 eden hazard 18.9 21 8 4 17 13.05 274.04 midfield chelsea
2 alexis sánchez 17.6NaN 12 7 29 11.19 223.86 forward arsenal
3 yaya touré 16.6 18 7 1 19 10.99 197.91 midfield manchester city
6 david silva 14.3 15 6 2 11 10.35 155.26 midfield manchester city
7 cesc fàbregas 14.0 20 2 14 10 10.47 209.49 midfield chelsea
8 saido berahino 13.8 21 9 0 20 7.02 147.43 forward west brom
9 steven gerrard 13.8 20 5 1 11 7.50 150.01 midfield liverpool
\n", + "
" + ], + "text/plain": [ + " player salary games goals assists shots_on_target \\\n", + "0 sergio agüero 19.2 16 14 3 34 \n", + "1 eden hazard 18.9 21 8 4 17 \n", + "2 alexis sánchez 17.6 NaN 12 7 29 \n", + "3 yaya touré 16.6 18 7 1 19 \n", + "6 david silva 14.3 15 6 2 11 \n", + "7 cesc fàbregas 14.0 20 2 14 10 \n", + "8 saido berahino 13.8 21 9 0 20 \n", + "9 steven gerrard 13.8 20 5 1 11 \n", + "\n", + " points_per_game points position team \n", + "0 13.12 209.98 forward manchester city \n", + "1 13.05 274.04 midfield chelsea \n", + "2 11.19 223.86 forward arsenal \n", + "3 10.99 197.91 midfield manchester city \n", + "6 10.35 155.26 midfield manchester city \n", + "7 10.47 209.49 midfield chelsea \n", + "8 7.02 147.43 forward west brom \n", + "9 7.50 150.01 midfield liverpool " + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df[df['assists'].notnull()]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Filling NaN Rows" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
0 sergio agüero 19.2 16 14 3 34 13.12 209.98 forward manchester city
1 eden hazard 18.9 21 8 4 17 13.05 274.04 midfield chelsea
2 alexis sánchez 17.6 0 12 7 29 11.19 223.86 forward arsenal
3 yaya touré 16.6 18 7 1 19 10.99 197.91 midfield manchester city
4 ángel di maría 15.0 13 3 0 13 10.17 132.23 midfield manchester united
5 santiago cazorla 14.8 20 4 0 20 9.97 0.00 midfield arsenal
6 david silva 14.3 15 6 2 11 10.35 155.26 midfield manchester city
7 cesc fàbregas 14.0 20 2 14 10 10.47 209.49 midfield chelsea
8 saido berahino 13.8 21 9 0 20 7.02 147.43 forward west brom
9 steven gerrard 13.8 20 5 1 11 7.50 150.01 midfield liverpool
\n", + "
" + ], + "text/plain": [ + " player salary games goals assists shots_on_target \\\n", + "0 sergio agüero 19.2 16 14 3 34 \n", + "1 eden hazard 18.9 21 8 4 17 \n", + "2 alexis sánchez 17.6 0 12 7 29 \n", + "3 yaya touré 16.6 18 7 1 19 \n", + "4 ángel di maría 15.0 13 3 0 13 \n", + "5 santiago cazorla 14.8 20 4 0 20 \n", + "6 david silva 14.3 15 6 2 11 \n", + "7 cesc fàbregas 14.0 20 2 14 10 \n", + "8 saido berahino 13.8 21 9 0 20 \n", + "9 steven gerrard 13.8 20 5 1 11 \n", + "\n", + " points_per_game points position team \n", + "0 13.12 209.98 forward manchester city \n", + "1 13.05 274.04 midfield chelsea \n", + "2 11.19 223.86 forward arsenal \n", + "3 10.99 197.91 midfield manchester city \n", + "4 10.17 132.23 midfield manchester united \n", + "5 9.97 0.00 midfield arsenal \n", + "6 10.35 155.26 midfield manchester city \n", + "7 10.47 209.49 midfield chelsea \n", + "8 7.02 147.43 forward west brom \n", + "9 7.50 150.01 midfield liverpool " + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Filling NaN cells with default value 0\n", + "\n", + "df.fillna(value=0, inplace=True)\n", + "df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Appending Rows to a DataFrame" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to section overview](#Sections)]" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
8 saido berahino 13.8 21 9 0 20 7.02 147.43 forward west brom
9 steven gerrard 13.8 20 5 1 11 7.50 150.01 midfield liverpool
10 NaN NaNNaNNaNNaNNaN NaN NaN NaN NaN
\n", + "
" + ], + "text/plain": [ + " player salary games goals assists shots_on_target \\\n", + "8 saido berahino 13.8 21 9 0 20 \n", + "9 steven gerrard 13.8 20 5 1 11 \n", + "10 NaN NaN NaN NaN NaN NaN \n", + "\n", + " points_per_game points position team \n", + "8 7.02 147.43 forward west brom \n", + "9 7.50 150.01 midfield liverpool \n", + "10 NaN NaN NaN NaN " + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Adding an \"empty\" row to the DataFrame\n", + "\n", + "import numpy as np\n", + "\n", + "df = df.append(pd.Series(\n", + " [np.nan]*len(df.columns), # Fill cells with NaNs\n", + " index=df.columns), \n", + " ignore_index=True)\n", + "\n", + "df.tail(3)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
8 saido berahino 13.8 21 9 0 20 7.02 147.43 forward west brom
9 steven gerrard 13.8 20 5 1 11 7.50 150.01 midfield liverpool
10 new player 12.3NaNNaNNaNNaN NaN NaN NaN NaN
\n", + "
" + ], + "text/plain": [ + " player salary games goals assists shots_on_target \\\n", + "8 saido berahino 13.8 21 9 0 20 \n", + "9 steven gerrard 13.8 20 5 1 11 \n", + "10 new player 12.3 NaN NaN NaN NaN \n", + "\n", + " points_per_game points position team \n", + "8 7.02 147.43 forward west brom \n", + "9 7.50 150.01 midfield liverpool \n", + "10 NaN NaN NaN NaN " + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Filling cells with data\n", + "\n", + "df.loc[df.index[-1], 'player'] = 'new player'\n", + "df.loc[df.index[-1], 'salary'] = 12.3\n", + "df.tail(3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Sorting and Reindexing DataFrames" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to section overview](#Sections)]" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
0 sergio agüero 19.2 16 14 3 34 13.12 209.98 forward manchester city
2 alexis sánchez 17.6 0 12 7 29 11.19 223.86 forward arsenal
8 saido berahino 13.8 21 9 0 20 7.02 147.43 forward west brom
1 eden hazard 18.9 21 8 4 17 13.05 274.04 midfield chelsea
3 yaya touré 16.6 18 7 1 19 10.99 197.91 midfield manchester city
\n", + "
" + ], + "text/plain": [ + " player salary games goals assists shots_on_target \\\n", + "0 sergio agüero 19.2 16 14 3 34 \n", + "2 alexis sánchez 17.6 0 12 7 29 \n", + "8 saido berahino 13.8 21 9 0 20 \n", + "1 eden hazard 18.9 21 8 4 17 \n", + "3 yaya touré 16.6 18 7 1 19 \n", + "\n", + " points_per_game points position team \n", + "0 13.12 209.98 forward manchester city \n", + "2 11.19 223.86 forward arsenal \n", + "8 7.02 147.43 forward west brom \n", + "1 13.05 274.04 midfield chelsea \n", + "3 10.99 197.91 midfield manchester city " + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Sorting the DataFrame by a certain column (from highest to lowest)\n", + "\n", + "df.sort('goals', ascending=False, inplace=True)\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
1 sergio agüero 19.2 16 14 3 34 13.12 209.98 forward manchester city
2 alexis sánchez 17.6 0 12 7 29 11.19 223.86 forward arsenal
3 saido berahino 13.8 21 9 0 20 7.02 147.43 forward west brom
4 eden hazard 18.9 21 8 4 17 13.05 274.04 midfield chelsea
5 yaya touré 16.6 18 7 1 19 10.99 197.91 midfield manchester city
\n", + "
" + ], + "text/plain": [ + " player salary games goals assists shots_on_target \\\n", + "1 sergio agüero 19.2 16 14 3 34 \n", + "2 alexis sánchez 17.6 0 12 7 29 \n", + "3 saido berahino 13.8 21 9 0 20 \n", + "4 eden hazard 18.9 21 8 4 17 \n", + "5 yaya touré 16.6 18 7 1 19 \n", + "\n", + " points_per_game points position team \n", + "1 13.12 209.98 forward manchester city \n", + "2 11.19 223.86 forward arsenal \n", + "3 7.02 147.43 forward west brom \n", + "4 13.05 274.04 midfield chelsea \n", + "5 10.99 197.91 midfield manchester city " + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Optional reindexing of the DataFrame after sorting\n", + "\n", + "df.index = range(1,len(df.index)+1)\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Updating Columns" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to section overview](#Sections)]" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
1 sergio agüero 20 16 14 3 34 13.12 209.98 forward manchester city
2 alexis sánchez 15 0 12 7 29 11.19 223.86 forward arsenal
3 saido berahino 13.8 21 9 0 20 7.02 147.43 forward west brom
\n", + "
" + ], + "text/plain": [ + " player salary games goals assists shots_on_target \\\n", + "1 sergio agüero 20 16 14 3 34 \n", + "2 alexis sánchez 15 0 12 7 29 \n", + "3 saido berahino 13.8 21 9 0 20 \n", + "\n", + " points_per_game points position team \n", + "1 13.12 209.98 forward manchester city \n", + "2 11.19 223.86 forward arsenal \n", + "3 7.02 147.43 forward west brom " + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Creating a dummy DataFrame with changes in the `salary` column\n", + "\n", + "df_2 = df.copy()\n", + "df_2.loc[0:2, 'salary'] = [20.0, 15.0]\n", + "df_2.head(3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
salarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
player
sergio agüero 19.2 16 14 3 34 13.12 209.98 forward manchester city
alexis sánchez 17.6 0 12 7 29 11.19 223.86 forward arsenal
saido berahino 13.8 21 9 0 20 7.02 147.43 forward west brom
\n", + "
" + ], + "text/plain": [ + " salary games goals assists shots_on_target \\\n", + "player \n", + "sergio agüero 19.2 16 14 3 34 \n", + "alexis sánchez 17.6 0 12 7 29 \n", + "saido berahino 13.8 21 9 0 20 \n", + "\n", + " points_per_game points position team \n", + "player \n", + "sergio agüero 13.12 209.98 forward manchester city \n", + "alexis sánchez 11.19 223.86 forward arsenal \n", + "saido berahino 7.02 147.43 forward west brom " + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Temporarily use the `player` columns as indices to \n", + "# apply the update functions\n", + "\n", + "df.set_index('player', inplace=True)\n", + "df_2.set_index('player', inplace=True)\n", + "df.head(3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
salarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
player
sergio agüero 20 16 14 3 34 13.12 209.98 forward manchester city
alexis sánchez 15 0 12 7 29 11.19 223.86 forward arsenal
saido berahino 13.8 21 9 0 20 7.02 147.43 forward west brom
\n", + "
" + ], + "text/plain": [ + " salary games goals assists shots_on_target \\\n", + "player \n", + "sergio agüero 20 16 14 3 34 \n", + "alexis sánchez 15 0 12 7 29 \n", + "saido berahino 13.8 21 9 0 20 \n", + "\n", + " points_per_game points position team \n", + "player \n", + "sergio agüero 13.12 209.98 forward manchester city \n", + "alexis sánchez 11.19 223.86 forward arsenal \n", + "saido berahino 7.02 147.43 forward west brom " + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Update the `salary` column\n", + "df.update(other=df_2['salary'], overwrite=True)\n", + "df.head(3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
0 sergio agüero 20 16 14 3 34 13.12 209.98 forward manchester city
1 alexis sánchez 15 0 12 7 29 11.19 223.86 forward arsenal
2 saido berahino 13.8 21 9 0 20 7.02 147.43 forward west brom
\n", + "
" + ], + "text/plain": [ + " player salary games goals assists shots_on_target \\\n", + "0 sergio agüero 20 16 14 3 34 \n", + "1 alexis sánchez 15 0 12 7 29 \n", + "2 saido berahino 13.8 21 9 0 20 \n", + "\n", + " points_per_game points position team \n", + "0 13.12 209.98 forward manchester city \n", + "1 11.19 223.86 forward arsenal \n", + "2 7.02 147.43 forward west brom " + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Reset the indices\n", + "df.reset_index(inplace=True)\n", + "df.head(3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chaining Conditions - Using Bitwise Operators" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to section overview](#Sections)]" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
1 alexis sánchez 15 0 12 7 29 11.19 223.86 forward arsenal
3 eden hazard 18.9 21 8 4 17 13.05 274.04 midfield chelsea
7 santiago cazorla 14.8 20 4 0 20 9.97 0.00 midfield arsenal
9 cesc fàbregas 14.0 20 2 14 10 10.47 209.49 midfield chelsea
\n", + "
" + ], + "text/plain": [ + " player salary games goals assists shots_on_target \\\n", + "1 alexis sánchez 15 0 12 7 29 \n", + "3 eden hazard 18.9 21 8 4 17 \n", + "7 santiago cazorla 14.8 20 4 0 20 \n", + "9 cesc fàbregas 14.0 20 2 14 10 \n", + "\n", + " points_per_game points position team \n", + "1 11.19 223.86 forward arsenal \n", + "3 13.05 274.04 midfield chelsea \n", + "7 9.97 0.00 midfield arsenal \n", + "9 10.47 209.49 midfield chelsea " + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Selecting only those players that either playing for Arsenal or Chelsea\n", + "\n", + "df[ (df['team'] == 'arsenal') | (df['team'] == 'chelsea') ]" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarygamesgoalsassistsshots_on_targetpoints_per_gamepointspositionteam
1 alexis sánchez 15 0 12 7 29 11.19 223.86 forward arsenal
\n", + "
" + ], + "text/plain": [ + " player salary games goals assists shots_on_target \\\n", + "1 alexis sánchez 15 0 12 7 29 \n", + "\n", + " points_per_game points position team \n", + "1 11.19 223.86 forward arsenal " + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Selecting forwards from Arsenal only\n", + "\n", + "df[ (df['team'] == 'arsenal') & (df['position'] == 'forward') ]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Column Types" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to section overview](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Printing Column Types" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{dtype('float64'): ['games',\n", + " 'goals',\n", + " 'assists',\n", + " 'shots_on_target',\n", + " 'points_per_game',\n", + " 'points'],\n", + " dtype('O'): ['player', 'salary', 'position', 'team']}" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "types = df.columns.to_series().groupby(df.dtypes).groups\n", + "types" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Selecting by Column Type" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
playersalarypositionteam
0 sergio agüero 20 forward manchester city
1 alexis sánchez 15 forward arsenal
2 saido berahino 13.8 forward west brom
3 eden hazard 18.9 midfield chelsea
4 yaya touré 16.6 midfield manchester city
\n", + "
" + ], + "text/plain": [ + " player salary position team\n", + "0 sergio agüero 20 forward manchester city\n", + "1 alexis sánchez 15 forward arsenal\n", + "2 saido berahino 13.8 forward west brom\n", + "3 eden hazard 18.9 midfield chelsea\n", + "4 yaya touré 16.6 midfield manchester city" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# select string columns\n", + "df.loc[:, (df.dtypes == np.dtype('O')).values].head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Converting Column Types" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "df['salary'] = df['salary'].astype(float)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{dtype('float64'): ['salary',\n", + " 'games',\n", + " 'goals',\n", + " 'assists',\n", + " 'shots_on_target',\n", + " 'points_per_game',\n", + " 'points'],\n", + " dtype('O'): ['player', 'position', 'team']}" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "types = df.columns.to_series().groupby(df.dtypes).groups\n", + "types" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# If-tests" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to section overview](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "I was recently asked how to do an if-test in pandas, that is, how to create an array of 1s and 0s depending on a condition, e.g., if `val` less than 0.5 -> 0, else -> 1. Using the boolean mask, that's pretty simple since `True` and `False` are integers after all." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "int(True)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0123
02.00.304.005
10.80.030.025
\n", + "
" + ], + "text/plain": [ + " 0 1 2 3\n", + "0 2.0 0.30 4.00 5\n", + "1 0.8 0.03 0.02 5" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "a = [[2., .3, 4., 5.], [.8, .03, 0.02, 5.]]\n", + "df = pd.DataFrame(a)\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0123
0FalseFalseFalseFalse
1FalseTrueTrueFalse
\n", + "
" + ], + "text/plain": [ + " 0 1 2 3\n", + "0 False False False False\n", + "1 False True True False" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = df <= 0.05\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0123
00000
10110
\n", + "
" + ], + "text/plain": [ + " 0 1 2 3\n", + "0 0 0 0 0\n", + "1 0 1 1 0" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.astype(int)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] } - ] -} \ No newline at end of file + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.4.3" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} From 3fc278cae3ca6645bab14d30ee24e089371a3dd2 Mon Sep 17 00:00:00 2001 From: rasbt Date: Wed, 27 Jan 2016 22:54:10 -0500 Subject: [PATCH 65/83] remove redundant files --- ...ey_differences_between_python_2_and_3.html | 4242 ----------------- .../key_differences_between_python_2_and_3.md | 416 -- tutorials/scope_resolution_legb_rule.md | 579 --- tutorials/table_of_contents_ipython.md | 125 - 4 files changed, 5362 deletions(-) delete mode 100644 tutorials/key_differences_between_python_2_and_3.html delete mode 100644 tutorials/key_differences_between_python_2_and_3.md delete mode 100644 tutorials/scope_resolution_legb_rule.md delete mode 100644 tutorials/table_of_contents_ipython.md diff --git a/tutorials/key_differences_between_python_2_and_3.html b/tutorials/key_differences_between_python_2_and_3.html deleted file mode 100644 index 2a5a0c5..0000000 --- a/tutorials/key_differences_between_python_2_and_3.html +++ /dev/null @@ -1,4242 +0,0 @@ - - - - - -Notebook - - - - - - - - - - - - - - - - - - - - - - -
\n",
-      "4 -> i in global\n",
-      "
"
+    }
+   ],
+   "source": [
+    "for a in range(5):\n",
+    "    if a == 4:\n",
+    "        print(a, '-> a in for-loop')\n",
+    "print(a, '-> a in global')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "**This also applies if we explicitly defined the `for-loop` variable in the global namespace before!** In this case it will rebind the existing variable:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "4 -> b in for-loop\n",
+      "4 -> b in global\n"
      ]
-    },
-    {
-     "cell_type": "markdown",
-     "metadata": {},
-     "source": [
-      "This goes back to a change that was made in Python 3.x and is described in [What\u2019s New In Python 3.0](https://docs.python.org/3/whatsnew/3.0.html) as follows:\n",
-      "\n",
-      "\"List comprehensions no longer support the syntactic form `[... for var in item1, item2, ...]`. Use `[... for var in (item1, item2, ...)]` instead. Also note that list comprehensions have different semantics: they are closer to syntactic sugar for a generator expression inside a `list()` constructor, and in particular the loop control variables are no longer leaked into the surrounding scope.\""
+    }
+   ],
+   "source": [
+    "b = 1\n",
+    "for b in range(5):\n",
+    "    if b == 4:\n",
+    "        print(b, '-> b in for-loop')\n",
+    "print(b, '-> b in global')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "However, in **Python 3.x**, we can use closures to prevent the for-loop variable to cut into the global namespace. Here is an example (exectuted in Python 3.4):"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "[0, 1, 2, 3, 4]\n",
+      "1 -> i in global\n"
      ]
-    },
-    {
-     "cell_type": "code",
-     "collapsed": false,
-     "input": [],
-     "language": "python",
-     "metadata": {},
-     "outputs": []
     }
    ],
-   "metadata": {}
+   "source": [
+    "i = 1\n",
+    "print([i for i in range(5)])\n",
+    "print(i, '-> i in global')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Why did I mention \"Python 3.x\"? Well, as it happens, the same code executed in Python 2.x would print:\n",
+    "\n",
+    "
\n",
+    "4 -> i in global\n",
+    "
"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "This goes back to a change that was made in Python 3.x and is described in [What’s New In Python 3.0](https://docs.python.org/3/whatsnew/3.0.html) as follows:\n",
+    "\n",
+    "\"List comprehensions no longer support the syntactic form `[... for var in item1, item2, ...]`. Use `[... for var in (item1, item2, ...)]` instead. Also note that list comprehensions have different semantics: they are closer to syntactic sugar for a generator expression inside a `list()` constructor, and in particular the loop control variables are no longer leaked into the surrounding scope.\""
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [],
+   "source": []
   }
- ]
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.5.1"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
 }

From 4797e5d32790dff54f0418f77d5fa0bace5f8df8 Mon Sep 17 00:00:00 2001
From: rasbt 
Date: Sun, 10 Apr 2016 18:50:40 -0400
Subject: [PATCH 67/83] How to Make Mistakes in Python

---
 other/python_book_reviews.md                  |  104 +-
 ...y_differences_between_python_2_and_3.ipynb | 4160 ++++----
 tutorials/not_so_obvious_python_stuff.ipynb   | 8504 ++++++++---------
 tutorials/scope_resolution_legb_rule.ipynb    |    2 +-
 4 files changed, 6347 insertions(+), 6423 deletions(-)

diff --git a/other/python_book_reviews.md b/other/python_book_reviews.md
index bc1105f..4b762ea 100644
--- a/other/python_book_reviews.md
+++ b/other/python_book_reviews.md
@@ -3,14 +3,13 @@
 
 # Python Book Reviews
 
-- [Matplotlib Plotting Cookbook](#Matplotlib-Plotting-Cookbook)
-- [Python High Performance Programming](#Python-High-Performance-Programming)
-- [Learning Ipython for Interactive Computing and Data Visualization](#Learning-Ipython-for-Interactive-Computing-and-Data-Visualization)
-- [The Practice of Computing Using Python (2nd Edition)](#The-Practice-of-Computing-Using-Python-(2nd-Edition))
+- [Matplotlib Plotting Cookbook](#matplotlib-plotting-cookbook)
+- [Python High Performance Programming](#python-high-performance-programming)
+- [Learning IPython for Interactive Computing and Data Visualization](#learning-ipython-for-interactive-computing-and-data-visualization)
+- [The Practice of Computing Using Python (2nd Edition)](#the-practice-of-computing-using-python-(2nd-Edition))
+- [How to Make Mistakes in Python](#how-to-make-mistakes-in-python)
 
 
-
- **Where are the links?** I decided to **not** post any links to any online shop here - I don't want to advertise anything but merely want to leave my brief thoughts in hope that it might be helpful to one or the other. @@ -18,25 +17,20 @@ I decided to **not** post any links to any online shop here - I don't want to ad **About the rating scale/review scores** -Most popular review sites provide some sort of rating, e.g., 7/10, 90/100, 3 starts out of 5 etc. +Most popular review sites provide some sort of rating, e.g., 7/10, 90/100, 3 stars out of 5 etc. I have to admit that I am not a big fan of those review scores - and you won't find them here. Based on my experience, review scores are just kindling all sorts of arguments, destructive debates, and hate-mails. Let's be honest, every opinion is subjective, and I think that boiling it down to a final score is just an annoyance for everyone. -
- - -
+--- +### Matplotlib Plotting Cookbook - -### Matplotlib Plotting Cookbook -[[back to top](#table-of-contents)] ***by Alexandre Devert*** - -Paperback: 222 pages -Release Date: March 2014 -ISBN: 1849513260 -ISBN 13: 9781849513265 +- Paperback: 222 pages +- Release Date: March 2014 +- ISBN: 1849513260 +- ISBN 13: 9781849513265 +- Publisher: Packt **A good alternative to the official matplotlib documentation** @@ -56,42 +50,41 @@ But to it's defense, my hard copy of the "Gnuplot in Action" is also presented i Not a real point of criticism but more like a suggestion for future editions: as big fan of it, I was actually looking for this section that mentions how to use it in IPython notebooks (%pylab inline vs. matplotlib inline), and maybe also plotly for additional value :) -
+--- - ### Python High Performance Programming -[[back to top](#table-of-contents)] ***by Gabriele Lanaro*** - -Paperback: 108 pages -Release Date: December 2013 -ISBN: 1783288450 -ISBN 13: 9781783288458 + +- Paperback: 108 pages +- Release Date: December 2013 +- ISBN: 1783288450 +- ISBN 13: 9781783288458 +- Publisher: Packt **Really recommended book for Python beginners** A really nice read! It covered 4 important topics: how to profile & benchmark Python code, NumPy, C-extensions via Cython, and parallel programming. However, I found it a little bit too brief on all of the topics, a little bit more depth would have been nice. -Also, I missed a few parts, like general Python tricks for better performance (e.g., in-place operators for mutable types and many many others that I started to create benchmarks for here: https://github.com/rasbt/One-Python-benchmark-per-day) +Also, I missed a few parts, like general Python tricks for better performance (e.g., in-place operators for mutable types and many many others that I started to create benchmarks for here: https://github.com/rasbt/One-Python-benchmark-per-day) And another thing that I think would be worth adding in a future addition would be the JIT (just-in-time) compilers, such as parakeet or Numba, especially since Numexpr was briefly mentioned in the NumPy section. But overall I think it is a very recommended read for Python beginners! -
+--- + +### Learning Ipython for Interactive Computing and Data Visualization + - -###Learning Ipython for Interactive Computing and Data Visualization -[[back to top](#table-of-contents)] - ***by Cyrille Rossant*** - -Paperback: 138 pages -Release Date: April 2013 -ISBN: 1782169938 -ISBN 13: 9781782169932 + +- Paperback: 138 pages +- Release Date: April 2013 +- ISBN: 1782169938 +- ISBN 13: 9781782169932 +- Publisher: Packt @@ -100,23 +93,38 @@ ISBN 13: 9781782169932
It's a brief but good book that provides a good introduction to the IPython environment. I think the high-performance chapter that explained the usage of NumPy among others was a little bit redundant, since it is a general Python topic and is not necessarily specific to IPython. And on the other hand, the chapters on customizing IPython and especially writing own IPython magic extensions were way too brief - when I wrote my own extensions, I needed to look more closely at the IPython extension source code to be able to handle this task. But still, this is a nice book that I would recommend to people who are fairly new to Python and people who want to get a taste of IPython! -
+--- + +### The Practice of Computing Using Python (2nd Edition) - -###The Practice of Computing Using Python (2nd Edition) -[[back to top](#table-of-contents)] ***by William F. Punch and Richard Enbody*** - -Paperback: 792 pages -Release Date: February 25, 2012 -ISBN-10: 013280557X -ISBN-13: 978-0132805575 +- Paperback: 792 pages +- Release Date: February 25, 2012 +- ISBN-10: 013280557X +- ISBN-13: 978-0132805575 +- Publisher: Pearson **A great first Python book** This was actually my first Python book. It is not meant to be a thorough coverage of all the greatest Python features and capabilities, but it provides a great introduction to computing and programming in general by using the Python language. It is maybe a little bit to trivial for programmers who just want to pick up the syntax Python language, but I would really recommend this book as a first introduction to people who have never programmed before - I think that Python is a very nice language to pick up this valuable skill. -I am a big fan of books that contains self-assessments: from short exercises up to bigger project assignments, and this book comes with a huge abundance of valuable material, which is a big bonus point. \ No newline at end of file +I am a big fan of books that contains self-assessments: from short exercises up to bigger project assignments, and this book comes with a huge abundance of valuable material, which is a big bonus point. + + +--- + +### How to Make Mistakes in Python + + +***by Mike Pirnat*** + + +- e-Book: 154 pages +- Release Date: October, 2015 +- Publisher: O'Reilly + + +Although I already have many years of experience with coding in Python, I thought that it couldn't hurt to read through this book -- I got the free copy via O'Reilly, and it's relatively short. Sure, many topics throughout this book are trivial for an experienced Python programmer, but I believe that it's a great summary for someone who just got started with this programming language. Although the author doesn't go into technical depths regarding e.g., pylint, unit testing, etc., I think that his descriptions are sufficient, and a reader can always look at the online documentation of the respective tools. What's more important is that the author gives good reasons WHY we should use/do certain things, and I really like the use of paraphrased examples from real-world use cases. It's a solid book overall! diff --git a/tutorials/key_differences_between_python_2_and_3.ipynb b/tutorials/key_differences_between_python_2_and_3.ipynb index f3e2067..0f74195 100644 --- a/tutorials/key_differences_between_python_2_and_3.ipynb +++ b/tutorials/key_differences_between_python_2_and_3.ipynb @@ -1,2194 +1,2118 @@ { - "metadata": { - "name": "", - "signature": "sha256:1a71ccc70829239143d02cebcb97bec031b45e676ebad340fc04c9bd4a5760bf" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ + "cells": [ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[Sebastian Raschka](http://sebastianraschka.com) \n", - "\n", - "last updated 05/27/2014\n", - "\n", - "- [Open in IPython nbviewer](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/key_differences_between_python_2_and_3.ipynb?create=1) \n", - "\n", - "- [Link to this IPython notebook on Github](https://github.com/rasbt/python_reference/blob/master/tutorials/key_differences_between_python_2_and_3.ipynb) \n", - "\n", - "- [Link to the GitHub repository python_reference](https://github.com/rasbt/python_reference)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "I would be happy to hear your comments and suggestions. \n", - "Please feel free to drop me a note via\n", - "[twitter](https://twitter.com/rasbt), [email](mailto:bluewoodtree@gmail.com), or [google+](https://plus.google.com/118404394130788869227).\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Key differences between Python 2.7.x and Python 3.x" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Many beginning Python users are wondering with which version of Python they should start. My answer to this question is usually something along the lines \"just go with the version your favorite tutorial was written in, and check out the differences later on.\"\n", - "\n", - "But what if you are starting a new project and have the choice to pick? I would say there is currently no \"right\" or \"wrong\" as long as both Python 2.7.x and Python 3.x support the libraries that you are planning to use. However, it is worthwhile to have a look at the major differences between those two most popular versions of Python to avoid common pitfalls when writing the code for either one of them, or if you are planning to port your project." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[Sebastian Raschka](http://sebastianraschka.com) \n", + "\n", + "last updated 05/27/2014\n", + "\n", + "- [Open in IPython nbviewer](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/key_differences_between_python_2_and_3.ipynb?create=1) \n", + "\n", + "- [Link to this IPython notebook on Github](https://github.com/rasbt/python_reference/blob/master/tutorials/key_differences_between_python_2_and_3.ipynb) \n", + "\n", + "- [Link to the GitHub repository python_reference](https://github.com/rasbt/python_reference)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "I would be happy to hear your comments and suggestions. \n", + "Please feel free to drop me a note via\n", + "[twitter](https://twitter.com/rasbt), [email](mailto:bluewoodtree@gmail.com), or [google+](https://plus.google.com/118404394130788869227).\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Key differences between Python 2.7.x and Python 3.x" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Many beginning Python users are wondering with which version of Python they should start. My answer to this question is usually something along the lines \"just go with the version your favorite tutorial was written in, and check out the differences later on.\"\n", + "\n", + "But what if you are starting a new project and have the choice to pick? I would say there is currently no \"right\" or \"wrong\" as long as both Python 2.7.x and Python 3.x support the libraries that you are planning to use. However, it is worthwhile to have a look at the major differences between those two most popular versions of Python to avoid common pitfalls when writing the code for either one of them, or if you are planning to port your project." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Sections" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "- [Using the `__future__` module](#future_module)\n", + "\n", + "- [The print function](#The-print-function)\n", + "\n", + "- [Integer division](#Integer-division)\n", + "\n", + "- [Unicode](#Unicode)\n", + "\n", + "- [xrange](#xrange)\n", + "\n", + "- [Raising exceptions](#Raising-exceptions)\n", + "\n", + "- [Handling exceptions](#Handling-exceptions)\n", + "\n", + "- [The next() function and .next() method](#The-next-function-and-next-method)\n", + "\n", + "- [For-loop variables and the global namespace leak](#For-loop-variables-and-the-global-namespace-leak)\n", + "\n", + "- [Comparing unorderable types](#Comparing-unorderable-types)\n", + "\n", + "- [Parsing user inputs via input()](#Parsing-user-inputs-via-input)\n", + "\n", + "- [Returning iterable objects instead of lists](#Returning-iterable-objects-instead-of-lists)\n", + "\n", + "- [More articles about Python 2 and Python 3](#More-articles-about-Python-2-and-Python-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### The `__future__` module" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Python 3.x introduced some Python 2-incompatible keywords and features that can be imported via the in-built `__future__` module in Python 2. It is recommended to use `__future__` imports it if you are planning Python 3.x support for your code. For example, if we want Python 3.x's integer division behavior in Python 2, we can import it via\n", + "\n", + " from __future__ import division\n", + " \n", + "More features that can be imported from the `__future__` module are listed in the table below:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
featureoptional inmandatory ineffect
nested_scopes2.1.0b12.2PEP 227:\n", + "Statically Nested Scopes
generators2.2.0a12.3PEP 255:\n", + "Simple Generators
division2.2.0a23.0PEP 238:\n", + "Changing the Division Operator
absolute_import2.5.0a13.0PEP 328:\n", + "Imports: Multi-Line and Absolute/Relative
with_statement2.5.0a12.6PEP 343:\n", + "The “with” Statement
print_function2.6.0a23.0PEP 3105:\n", + "Make print a function
unicode_literals2.6.0a23.0PEP 3112:\n", + "Bytes literals in Python 3000
\n", + "
\n", + "
(Source: [https://docs.python.org/2/library/__future__.html](https://docs.python.org/2/library/__future__.html#module-__future__))
" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from platform import python_version" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## The print function" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to the section-overview](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Very trivial, and the change in the print-syntax is probably the most widely known change, but still it is worth mentioning: Python 2's print statement has been replaced by the `print()` function, meaning that we have to wrap the object that we want to print in parantheses. \n", + "\n", + "Python 2 doesn't have a problem with additional parantheses, but in contrast, Python 3 would raise a `SyntaxError` if we called the print function the Python 2-way without the parentheses. \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Python 2" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 2.7.6\n", + "Hello, World!\n", + "Hello, World!\n", + "text print more text on the same line\n" ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Sections" + } + ], + "source": [ + "print 'Python', python_version()\n", + "print 'Hello, World!'\n", + "print('Hello, World!')\n", + "print \"text\", ; print 'print more text on the same line'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Python 3" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 3.4.1\n", + "Hello, World!\n", + "some text, print more text on the same line\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "- [Using the `__future__` module](#future_module)\n", - "\n", - "- [The print function](#The-print-function)\n", - "\n", - "- [Integer division](#Integer-division)\n", - "\n", - "- [Unicode](#Unicode)\n", - "\n", - "- [xrange](#xrange)\n", - "\n", - "- [Raising exceptions](#Raising-exceptions)\n", - "\n", - "- [Handling exceptions](#Handling-exceptions)\n", - "\n", - "- [The next() function and .next() method](#The-next-function-and-next-method)\n", - "\n", - "- [For-loop variables and the global namespace leak](#For-loop-variables-and-the-global-namespace-leak)\n", - "\n", - "- [Comparing unorderable types](#Comparing-unorderable-types)\n", - "\n", - "- [Parsing user inputs via input()](#Parsing-user-inputs-via-input)\n", - "\n", - "- [Returning iterable objects instead of lists](#Returning-iterable-objects-instead-of-lists)\n", - "\n", - "- [More articles about Python 2 and Python 3](#More-articles-about-Python-2-and-Python-3)" + } + ], + "source": [ + "print('Python', python_version())\n", + "print('Hello, World!')\n", + "\n", + "print(\"some text,\", end=\"\") \n", + "print(' print more text on the same line')" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "ename": "SyntaxError", + "evalue": "invalid syntax (, line 1)", + "output_type": "error", + "traceback": [ + "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m print 'Hello, World!'\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "" + } + ], + "source": [ + "print 'Hello, World!'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Note:**\n", + "\n", + "Printing \"Hello, World\" above via Python 2 looked quite \"normal\". However, if we have multiple objects inside the parantheses, we will create a tuple, since `print` is a \"statement\" in Python 2, not a function call." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 2.7.7\n", + "('a', 'b')\n", + "a b\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" + } + ], + "source": [ + "print 'Python', python_version()\n", + "print('a', 'b')\n", + "print 'a', 'b'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Integer division" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to the section-overview](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This change is particularly dangerous if you are porting code, or if you are executing Python 3 code in Python 2, since the change in integer-division behavior can often go unnoticed (it doesn't raise a `SyntaxError`). \n", + "So, I still tend to use a `float(3)/2` or `3/2.0` instead of a `3/2` in my Python 3 scripts to save the Python 2 guys some trouble (and vice versa, I recommend a `from __future__ import division` in your Python 2 scripts)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Python 2" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 2.7.6\n", + "3 / 2 = 1\n", + "3 // 2 = 1\n", + "3 / 2.0 = 1.5\n", + "3 // 2.0 = 1.0\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### The `__future__` module" + } + ], + "source": [ + "print 'Python', python_version()\n", + "print '3 / 2 =', 3 / 2\n", + "print '3 // 2 =', 3 // 2\n", + "print '3 / 2.0 =', 3 / 2.0\n", + "print '3 // 2.0 =', 3 // 2.0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Python 3" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 3.4.1\n", + "3 / 2 = 1.5\n", + "3 // 2 = 1\n", + "3 / 2.0 = 1.5\n", + "3 // 2.0 = 1.0\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Python 3.x introduced some Python 2-incompatible keywords and features that can be imported via the in-built `__future__` module in Python 2. It is recommended to use `__future__` imports it if you are planning Python 3.x support for your code. For example, if we want Python 3.x's integer division behavior in Python 2, we can import it via\n", - "\n", - " from __future__ import division\n", - " \n", - "More features that can be imported from the `__future__` module are listed in the table below:" + } + ], + "source": [ + "print('Python', python_version())\n", + "print('3 / 2 =', 3 / 2)\n", + "print('3 // 2 =', 3 // 2)\n", + "print('3 / 2.0 =', 3 / 2.0)\n", + "print('3 // 2.0 =', 3 // 2.0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Unicode" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to the section-overview](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Python 2 has ASCII `str()` types, separate `unicode()`, but no `byte` type. \n", + "\n", + "Now, in Python 3, we finally have Unicode (utf-8) `str`ings, and 2 byte classes: `byte` and `bytearray`s." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Python 2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 2.7.6\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
featureoptional inmandatory ineffect
nested_scopes2.1.0b12.2PEP 227:\n", - "Statically Nested Scopes
generators2.2.0a12.3PEP 255:\n", - "Simple Generators
division2.2.0a23.0PEP 238:\n", - "Changing the Division Operator
absolute_import2.5.0a13.0PEP 328:\n", - "Imports: Multi-Line and Absolute/Relative
with_statement2.5.0a12.6PEP 343:\n", - "The “with” Statement
print_function2.6.0a23.0PEP 3105:\n", - "Make print a function
unicode_literals2.6.0a23.0PEP 3112:\n", - "Bytes literals in Python 3000
\n", - "
\n", - "
(Source: [https://docs.python.org/2/library/__future__.html](https://docs.python.org/2/library/__future__.html#module-__future__))
" + } + ], + "source": [ + "print 'Python', python_version()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from platform import python_version" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 1 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" + } + ], + "source": [ + "print type(unicode('this is like a python3 str type'))" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "The print function" + } + ], + "source": [ + "print type(b'byte type does not exist')" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "they are really the same\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to the section-overview](#Sections)]" + } + ], + "source": [ + "print 'they are really' + b' the same'" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Very trivial, and the change in the print-syntax is probably the most widely known change, but still it is worth mentioning: Python 2's print statement has been replaced by the `print()` function, meaning that we have to wrap the object that we want to print in parantheses. \n", - "\n", - "Python 2 doesn't have a problem with additional parantheses, but in contrast, Python 3 would raise a `SyntaxError` if we called the print function the Python 2-way without the parentheses. \n" + } + ], + "source": [ + "print type(bytearray(b'bytearray oddly does exist though'))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Python 3" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 3.4.1\n", + "strings are now utf-8 μnicoΔé!\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Python 2" + } + ], + "source": [ + "print('Python', python_version())\n", + "print('strings are now utf-8 \\u03BCnico\\u0394é!')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 3.4.1 has \n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print 'Python', python_version()\n", - "print 'Hello, World!'\n", - "print('Hello, World!')\n", - "print \"text\", ; print 'print more text on the same line'" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Python 2.7.6\n", - "Hello, World!\n", - "Hello, World!\n", - "text print more text on the same line\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" + } + ], + "source": [ + "print('Python', python_version(), end=\"\")\n", + "print(' has', type(b' bytes for storing data'))" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "and Python 3.4.1 also has \n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Python 3" + } + ], + "source": [ + "print('and Python', python_version(), end=\"\")\n", + "print(' also has', type(bytearray(b'bytearrays')))" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "ename": "TypeError", + "evalue": "Can't convert 'bytes' object to str implicitly", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;34m'note that we cannot add a string'\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34mb'bytes for data'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m: Can't convert 'bytes' object to str implicitly" ] - }, + } + ], + "source": [ + "'note that we cannot add a string' + b'bytes for data'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## xrange" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to the section-overview](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + " \n", + "The usage of `xrange()` is very popular in Python 2.x for creating an iterable object, e.g., in a for-loop or list/set-dictionary-comprehension. \n", + "The behavior was quite similar to a generator (i.e., \"lazy evaluation\"), but here the xrange-iterable is not exhaustible - meaning, you could iterate over it infinitely. \n", + "\n", + "\n", + "Thanks to its \"lazy-evaluation\", the advantage of the regular `range()` is that `xrange()` is generally faster if you have to iterate over it only once (e.g., in a for-loop). However, in contrast to 1-time iterations, it is not recommended if you repeat the iteration multiple times, since the generation happens every time from scratch! \n", + "\n", + "In Python 3, the `range()` was implemented like the `xrange()` function so that a dedicated `xrange()` function does not exist anymore (`xrange()` raises a `NameError` in Python 3)." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import timeit\n", + "\n", + "n = 10000\n", + "def test_range(n):\n", + " return for i in range(n):\n", + " pass\n", + " \n", + "def test_xrange(n):\n", + " for i in xrange(n):\n", + " pass " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Python 2" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "code", - "collapsed": false, - "input": [ - "print('Python', python_version())\n", - "print('Hello, World!')\n", + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 2.7.6\n", "\n", - "print(\"some text,\", end=\"\") \n", - "print(' print more text on the same line')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Python 3.4.1\n", - "Hello, World!\n", - "some text, print more text on the same line\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print 'Hello, World!'" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "ename": "SyntaxError", - "evalue": "invalid syntax (, line 1)", - "output_type": "pyerr", - "traceback": [ - "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m print 'Hello, World!'\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Note:**\n", + "timing range()\n", + "1000 loops, best of 3: 433 µs per loop\n", "\n", - "Printing \"Hello, World\" above via Python 2 looked quite \"normal\". However, if we have multiple objects inside the parantheses, we will create a tuple, since `print` is a \"statement\" in Python 2, not a function call." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print 'Python', python_version()\n", - "print('a', 'b')\n", - "print 'a', 'b'" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Python 2.7.7\n", - "('a', 'b')\n", - "a b\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Integer division" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to the section-overview](#Sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This change is particularly dangerous if you are porting code, or if you are executing Python 3 code in Python 2, since the change in integer-division behavior can often go unnoticed (it doesn't raise a `SyntaxError`). \n", - "So, I still tend to use a `float(3)/2` or `3/2.0` instead of a `3/2` in my Python 3 scripts to save the Python 2 guys some trouble (and vice versa, I recommend a `from __future__ import division` in your Python 2 scripts)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Python 2" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print 'Python', python_version()\n", - "print '3 / 2 =', 3 / 2\n", - "print '3 // 2 =', 3 // 2\n", - "print '3 / 2.0 =', 3 / 2.0\n", - "print '3 // 2.0 =', 3 // 2.0" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Python 2.7.6\n", - "3 / 2 = 1\n", - "3 // 2 = 1\n", - "3 / 2.0 = 1.5\n", - "3 // 2.0 = 1.0\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Python 3" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print('Python', python_version())\n", - "print('3 / 2 =', 3 / 2)\n", - "print('3 // 2 =', 3 // 2)\n", - "print('3 / 2.0 =', 3 / 2.0)\n", - "print('3 // 2.0 =', 3 // 2.0)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Python 3.4.1\n", - "3 / 2 = 1.5\n", - "3 // 2 = 1\n", - "3 / 2.0 = 1.5\n", - "3 // 2.0 = 1.0\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Unicode" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to the section-overview](#Sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Python 2 has ASCII `str()` types, separate `unicode()`, but no `byte` type. \n", "\n", - "Now, in Python 3, we finally have Unicode (utf-8) `str`ings, and 2 byte classes: `byte` and `bytearray`s." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Python 2" + "timing xrange()\n", + "1000 loops, best of 3: 350 µs per loop\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print 'Python', python_version()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Python 2.7.6\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print type(unicode('this is like a python3 str type'))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print type(b'byte type does not exist')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print 'they are really' + b' the same'" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "they are really the same\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print type(bytearray(b'bytearray oddly does exist though'))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Python 3" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print('Python', python_version())\n", - "print('strings are now utf-8 \\u03BCnico\\u0394\u00e9!')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Python 3.4.1\n", - "strings are now utf-8 \u03bcnico\u0394\u00e9!\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print('Python', python_version(), end=\"\")\n", - "print(' has', type(b' bytes for storing data'))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Python 3.4.1 has \n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print('and Python', python_version(), end=\"\")\n", - "print(' also has', type(bytearray(b'bytearrays')))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "and Python 3.4.1 also has \n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "'note that we cannot add a string' + b'bytes for data'" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "ename": "TypeError", - "evalue": "Can't convert 'bytes' object to str implicitly", - "output_type": "pyerr", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;34m'note that we cannot add a string'\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34mb'bytes for data'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m: Can't convert 'bytes' object to str implicitly" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "xrange" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to the section-overview](#Sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - " \n", - "The usage of `xrange()` is very popular in Python 2.x for creating an iterable object, e.g., in a for-loop or list/set-dictionary-comprehension. \n", - "The behavior was quite similar to a generator (i.e., \"lazy evaluation\"), but here the xrange-iterable is not exhaustible - meaning, you could iterate over it infinitely. \n", - "\n", - "\n", - "Thanks to its \"lazy-evaluation\", the advantage of the regular `range()` is that `xrange()` is generally faster if you have to iterate over it only once (e.g., in a for-loop). However, in contrast to 1-time iterations, it is not recommended if you repeat the iteration multiple times, since the generation happens every time from scratch! \n", - "\n", - "In Python 3, the `range()` was implemented like the `xrange()` function so that a dedicated `xrange()` function does not exist anymore (`xrange()` raises a `NameError` in Python 3)." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import timeit\n", - "\n", - "n = 10000\n", - "def test_range(n):\n", - " return for i in range(n):\n", - " pass\n", - " \n", - "def test_xrange(n):\n", - " for i in xrange(n):\n", - " pass " - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 5 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Python 2" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print 'Python', python_version()\n", - "\n", - "print '\\ntiming range()'\n", - "%timeit test_range(n)\n", - "\n", - "print '\\n\\ntiming xrange()'\n", - "%timeit test_xrange(n)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Python 2.7.6\n", - "\n", - "timing range()\n", - "1000 loops, best of 3: 433 \u00b5s per loop" - ] - }, - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n", - "\n", - "\n", - "timing xrange()\n", - "1000 loops, best of 3: 350 \u00b5s per loop" - ] - }, - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Python 3" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print('Python', python_version())\n", - "\n", - "print('\\ntiming range()')\n", - "%timeit test_range(n)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Python 3.4.1\n", - "\n", - "timing range()\n", - "1000 loops, best of 3: 520 \u00b5s per loop" - ] - }, - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print(xrange(10))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "ename": "NameError", - "evalue": "name 'xrange' is not defined", - "output_type": "pyerr", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mxrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mNameError\u001b[0m: name 'xrange' is not defined" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
\n", - "
\n" - ] - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "The `__contains__` method for `range` objects in Python 3" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Another thing worth mentioning is that `range` got a \"new\" `__contains__` method in Python 3.x (thanks to [Yuchen Ying](https://github.com/yegle), who pointed this out). The `__contains__` method can speedup \"look-ups\" in Python 3.x `range` significantly for integer and Boolean types.\n" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "x = 10000000" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 3 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def val_in_range(x, val):\n", - " return val in range(x)" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 4 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def val_in_xrange(x, val):\n", - " return val in xrange(x)" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 5 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print('Python', python_version())\n", - "assert(val_in_range(x, x/2) == True)\n", - "assert(val_in_range(x, x//2) == True)\n", - "%timeit val_in_range(x, x/2)\n", - "%timeit val_in_range(x, x//2)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Python 3.4.1\n", - "1 loops, best of 3: 742 ms per loop" - ] - }, - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n", - "1000000 loops, best of 3: 1.19 \u00b5s per loop" - ] - }, - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Based on the `timeit` results above, you see that the execution for the \"look up\" was about 60,000 faster when it was of an integer type rather than a float. However, since Python 2.x's `range` or `xrange` doesn't have a `__contains__` method, the \"look-up speed\" wouldn't be that much different for integers or floats:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print 'Python', python_version()\n", - "assert(val_in_xrange(x, x/2.0) == True)\n", - "assert(val_in_xrange(x, x/2) == True)\n", - "assert(val_in_range(x, x/2) == True)\n", - "assert(val_in_range(x, x//2) == True)\n", - "%timeit val_in_xrange(x, x/2.0)\n", - "%timeit val_in_xrange(x, x/2)\n", - "%timeit val_in_range(x, x/2.0)\n", - "%timeit val_in_range(x, x/2)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Python 2.7.7\n", - "1 loops, best of 3: 285 ms per loop" - ] - }, - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n", - "1 loops, best of 3: 179 ms per loop" - ] - }, - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n", - "1 loops, best of 3: 658 ms per loop" - ] - }, - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n", - "1 loops, best of 3: 556 ms per loop" - ] - }, - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Below the \"proofs\" that the `__contain__` method wasn't added to Python 2.x yet:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print('Python', python_version())\n", - "range.__contains__" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Python 3.4.1\n" - ] - }, - { - "metadata": {}, - "output_type": "pyout", - "prompt_number": 8, - "text": [ - "" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print 'Python', python_version()\n", - "range.__contains__" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Python 2.7.7\n" - ] - }, - { - "ename": "AttributeError", - "evalue": "'builtin_function_or_method' object has no attribute '__contains__'", - "output_type": "pyerr", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mprint\u001b[0m \u001b[0;34m'Python'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpython_version\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mrange\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__contains__\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mAttributeError\u001b[0m: 'builtin_function_or_method' object has no attribute '__contains__'" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print 'Python', python_version()\n", - "xrange.__contains__" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Python 2.7.7\n" - ] - }, - { - "ename": "AttributeError", - "evalue": "type object 'xrange' has no attribute '__contains__'", - "output_type": "pyerr", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mprint\u001b[0m \u001b[0;34m'Python'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpython_version\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mxrange\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__contains__\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mAttributeError\u001b[0m: type object 'xrange' has no attribute '__contains__'" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 4, - "metadata": {}, - "source": [ - "Note about the speed differences in Python 2 and 3" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Some people pointed out the speed difference between Python 3's `range()` and Python2's `xrange()`. Since they are implemented the same way one would expect the same speed. However the difference here just comes from the fact that Python 3 generally tends to run slower than Python 2. " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def test_while():\n", - " i = 0\n", - " while i < 20000:\n", - " i += 1\n", - " return" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 3 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print('Python', python_version())\n", - "%timeit test_while()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Python 3.4.1\n", - "100 loops, best of 3: 2.68 ms per loop" - ] - }, - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print 'Python', python_version()\n", - "%timeit test_while()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Python 2.7.6\n", - "1000 loops, best of 3: 1.72 ms per loop" - ] - }, - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Raising exceptions" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to the section-overview](#Sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "\n", - "Where Python 2 accepts both notations, the 'old' and the 'new' syntax, Python 3 chokes (and raises a `SyntaxError` in turn) if we don't enclose the exception argument in parentheses:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Python 2" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print 'Python', python_version()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Python 2.7.6\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "raise IOError, \"file error\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "ename": "IOError", - "evalue": "file error", - "output_type": "pyerr", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mIOError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mIOError\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"file error\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mIOError\u001b[0m: file error" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "raise IOError(\"file error\")" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "ename": "IOError", - "evalue": "file error", - "output_type": "pyerr", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mIOError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mIOError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"file error\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mIOError\u001b[0m: file error" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Python 3" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print('Python', python_version())" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Python 3.4.1\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "raise IOError, \"file error\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "ename": "SyntaxError", - "evalue": "invalid syntax (, line 1)", - "output_type": "pyerr", - "traceback": [ - "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m raise IOError, \"file error\"\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The proper way to raise an exception in Python 3:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print('Python', python_version())\n", - "raise IOError(\"file error\")" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Python 3.4.1\n" - ] - }, - { - "ename": "OSError", - "evalue": "file error", - "output_type": "pyerr", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mOSError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Python'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpython_version\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mIOError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"file error\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mOSError\u001b[0m: file error" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Handling exceptions" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to the section-overview](#Sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Also the handling of exceptions has slightly changed in Python 3. In Python 3 we have to use the \"`as`\" keyword now" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Python 2" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print 'Python', python_version()\n", - "try:\n", - " let_us_cause_a_NameError\n", - "except NameError, err:\n", - " print err, '--> our error message'" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Python 2.7.6\n", - "name 'let_us_cause_a_NameError' is not defined --> our error message\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Python 3" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print('Python', python_version())\n", - "try:\n", - " let_us_cause_a_NameError\n", - "except NameError as err:\n", - " print(err, '--> our error message')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Python 3.4.1\n", - "name 'let_us_cause_a_NameError' is not defined --> our error message\n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "The next() function and .next() method" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to the section-overview](#Sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Since `next()` (`.next()`) is such a commonly used function (method), this is another syntax change (or rather change in implementation) that is worth mentioning: where you can use both the function and method syntax in Python 2.7.5, the `next()` function is all that remains in Python 3 (calling the `.next()` method raises an `AttributeError`)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Python 2" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print 'Python', python_version()\n", - "\n", - "my_generator = (letter for letter in 'abcdefg')\n", - "\n", - "next(my_generator)\n", - "my_generator.next()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Python 2.7.6\n" - ] - }, - { - "metadata": {}, - "output_type": "pyout", - "prompt_number": 11, - "text": [ - "'b'" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Python 3" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print('Python', python_version())\n", - "\n", - "my_generator = (letter for letter in 'abcdefg')\n", - "\n", - "next(my_generator)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Python 3.4.1\n" - ] - }, - { - "metadata": {}, - "output_type": "pyout", - "prompt_number": 13, - "text": [ - "'a'" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "my_generator.next()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "ename": "AttributeError", - "evalue": "'generator' object has no attribute 'next'", - "output_type": "pyerr", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mmy_generator\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mAttributeError\u001b[0m: 'generator' object has no attribute 'next'" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "For-loop variables and the global namespace leak" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to the section-overview](#Sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Good news is: In Python 3.x for-loop variables don't leak into the global namespace anymore!\n", - "\n", - "This goes back to a change that was made in Python 3.x and is described in [What\u2019s New In Python 3.0](https://docs.python.org/3/whatsnew/3.0.html) as follows:\n", - "\n", - "\"List comprehensions no longer support the syntactic form `[... for var in item1, item2, ...]`. Use `[... for var in (item1, item2, ...)]` instead. Also note that list comprehensions have different semantics: they are closer to syntactic sugar for a generator expression inside a `list()` constructor, and in particular the loop control variables are no longer leaked into the surrounding scope.\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Python 2" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print 'Python', python_version()\n", - "\n", - "i = 1\n", - "print 'before: i =', i\n", - "\n", - "print 'comprehension: ', [i for i in range(5)]\n", - "\n", - "print 'after: i =', i" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Python 2.7.6\n", - "before: i = 1\n", - "comprehension: [0, 1, 2, 3, 4]\n", - "after: i = 4\n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Python 3" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print('Python', python_version())\n", - "\n", - "i = 1\n", - "print('before: i =', i)\n", - "\n", - "print('comprehension:', [i for i in range(5)])\n", - "\n", - "print('after: i =', i)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Python 3.4.1\n", - "before: i = 1\n", - "comprehension: [0, 1, 2, 3, 4]\n", - "after: i = 1\n" - ] - } - ], - "prompt_number": 15 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Comparing unorderable types" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to the section-overview](#Sections)]" - ] - }, + } + ], + "source": [ + "print 'Python', python_version()\n", + "\n", + "print '\\ntiming range()'\n", + "%timeit test_range(n)\n", + "\n", + "print '\\n\\ntiming xrange()'\n", + "%timeit test_xrange(n)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Python 3" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Another nice change in Python 3 is that a `TypeError` is raised as warning if we try to compare unorderable types." + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 3.4.1\n", + "\n", + "timing range()\n", + "1000 loops, best of 3: 520 µs per loop\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Python 2" + } + ], + "source": [ + "print('Python', python_version())\n", + "\n", + "print('\\ntiming range()')\n", + "%timeit test_range(n)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'xrange' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mxrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name 'xrange' is not defined" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print 'Python', python_version()\n", - "print \"[1, 2] > 'foo' = \", [1, 2] > 'foo'\n", - "print \"(1, 2) > 'foo' = \", (1, 2) > 'foo'\n", - "print \"[1, 2] > (1, 2) = \", [1, 2] > (1, 2)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Python 2.7.6\n", - "[1, 2] > 'foo' = False\n", - "(1, 2) > 'foo' = True\n", - "[1, 2] > (1, 2) = False\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" + } + ], + "source": [ + "print(xrange(10))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "
\n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### The `__contains__` method for `range` objects in Python 3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Another thing worth mentioning is that `range` got a \"new\" `__contains__` method in Python 3.x (thanks to [Yuchen Ying](https://github.com/yegle), who pointed this out). The `__contains__` method can speedup \"look-ups\" in Python 3.x `range` significantly for integer and Boolean types.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "x = 10000000" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "def val_in_range(x, val):\n", + " return val in range(x)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "def val_in_xrange(x, val):\n", + " return val in xrange(x)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 3.4.1\n", + "1 loops, best of 3: 742 ms per loop\n", + "1000000 loops, best of 3: 1.19 µs per loop\n" ] - }, + } + ], + "source": [ + "print('Python', python_version())\n", + "assert(val_in_range(x, x/2) == True)\n", + "assert(val_in_range(x, x//2) == True)\n", + "%timeit val_in_range(x, x/2)\n", + "%timeit val_in_range(x, x//2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Based on the `timeit` results above, you see that the execution for the \"look up\" was about 60,000 faster when it was of an integer type rather than a float. However, since Python 2.x's `range` or `xrange` doesn't have a `__contains__` method, the \"look-up speed\" wouldn't be that much different for integers or floats:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 2.7.7\n", + "1 loops, best of 3: 285 ms per loop\n", + "1 loops, best of 3: 179 ms per loop\n", + "1 loops, best of 3: 658 ms per loop\n", + "1 loops, best of 3: 556 ms per loop\n" + ] + } + ], + "source": [ + "print 'Python', python_version()\n", + "assert(val_in_xrange(x, x/2.0) == True)\n", + "assert(val_in_xrange(x, x/2) == True)\n", + "assert(val_in_range(x, x/2) == True)\n", + "assert(val_in_range(x, x//2) == True)\n", + "%timeit val_in_xrange(x, x/2.0)\n", + "%timeit val_in_xrange(x, x/2)\n", + "%timeit val_in_range(x, x/2.0)\n", + "%timeit val_in_range(x, x/2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Below the \"proofs\" that the `__contain__` method wasn't added to Python 2.x yet:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Python 3" + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 3.4.1\n" ] }, { - "cell_type": "code", - "collapsed": false, - "input": [ - "print('Python', python_version())\n", - "print(\"[1, 2] > 'foo' = \", [1, 2] > 'foo')\n", - "print(\"(1, 2) > 'foo' = \", (1, 2) > 'foo')\n", - "print(\"[1, 2] > (1, 2) = \", [1, 2] > (1, 2))" - ], - "language": "python", + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Python 3.4.1\n" - ] - }, - { - "ename": "TypeError", - "evalue": "unorderable types: list() > str()", - "output_type": "pyerr", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Python'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpython_version\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"[1, 2] > 'foo' = \"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;34m'foo'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"(1, 2) > 'foo' = \"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;34m'foo'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"[1, 2] > (1, 2) = \"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mTypeError\u001b[0m: unorderable types: list() > str()" - ] - } - ], - "prompt_number": 16 - }, + "output_type": "execute_result" + } + ], + "source": [ + "print('Python', python_version())\n", + "range.__contains__" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 2.7.7\n" ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "" + "ename": "AttributeError", + "evalue": "'builtin_function_or_method' object has no attribute '__contains__'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mprint\u001b[0m \u001b[0;34m'Python'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpython_version\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mrange\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__contains__\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m: 'builtin_function_or_method' object has no attribute '__contains__'" ] - }, + } + ], + "source": [ + "print 'Python', python_version()\n", + "range.__contains__" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Parsing user inputs via input()" + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 2.7.7\n" ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to the section-overview](#Sections)]" + "ename": "AttributeError", + "evalue": "type object 'xrange' has no attribute '__contains__'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mprint\u001b[0m \u001b[0;34m'Python'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpython_version\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mxrange\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__contains__\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m: type object 'xrange' has no attribute '__contains__'" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Fortunately, the `input()` function was fixed in Python 3 so that it always stores the user inputs as `str` objects. In order to avoid the dangerous behavior in Python 2 to read in other types than `strings`, we have to use `raw_input()` instead." + } + ], + "source": [ + "print 'Python', python_version()\n", + "xrange.__contains__" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Note about the speed differences in Python 2 and 3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Some people pointed out the speed difference between Python 3's `range()` and Python2's `xrange()`. Since they are implemented the same way one would expect the same speed. However the difference here just comes from the fact that Python 3 generally tends to run slower than Python 2. " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "def test_while():\n", + " i = 0\n", + " while i < 20000:\n", + " i += 1\n", + " return" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 3.4.1\n", + "100 loops, best of 3: 2.68 ms per loop\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Python 2" + } + ], + "source": [ + "print('Python', python_version())\n", + "%timeit test_while()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 2.7.6\n", + "1000 loops, best of 3: 1.72 ms per loop\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
Python 2.7.6 \n",
-      "[GCC 4.0.1 (Apple Inc. build 5493)] on darwin\n",
-      "Type "help", "copyright", "credits" or "license" for more information.\n",
-      "\n",
-      ">>> my_input = input('enter a number: ')\n",
-      "\n",
-      "enter a number: 123\n",
-      "\n",
-      ">>> type(my_input)\n",
-      "<type 'int'>\n",
-      "\n",
-      ">>> my_input = raw_input('enter a number: ')\n",
-      "\n",
-      "enter a number: 123\n",
-      "\n",
-      ">>> type(my_input)\n",
-      "<type 'str'>\n",
-      "
\n" + } + ], + "source": [ + "print 'Python', python_version()\n", + "%timeit test_while()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Raising exceptions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to the section-overview](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "Where Python 2 accepts both notations, the 'old' and the 'new' syntax, Python 3 chokes (and raises a `SyntaxError` in turn) if we don't enclose the exception argument in parentheses:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Python 2" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 2.7.6\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" + } + ], + "source": [ + "print 'Python', python_version()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "ename": "IOError", + "evalue": "file error", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mIOError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mIOError\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"file error\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mIOError\u001b[0m: file error" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Python 3" + } + ], + "source": [ + "raise IOError, \"file error\"" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "ename": "IOError", + "evalue": "file error", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mIOError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mIOError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"file error\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mIOError\u001b[0m: file error" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
Python 3.4.1 \n",
-      "[GCC 4.2.1 (Apple Inc. build 5577)] on darwin\n",
-      "Type "help", "copyright", "credits" or "license" for more information.\n",
-      "\n",
-      ">>> my_input = input('enter a number: ')\n",
-      "\n",
-      "enter a number: 123\n",
-      "\n",
-      ">>> type(my_input)\n",
-      "<class 'str'>\n",
-      "
\n" + } + ], + "source": [ + "raise IOError(\"file error\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Python 3" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 3.4.1\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" + } + ], + "source": [ + "print('Python', python_version())" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "ename": "SyntaxError", + "evalue": "invalid syntax (, line 1)", + "output_type": "error", + "traceback": [ + "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m raise IOError, \"file error\"\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" ] - }, + } + ], + "source": [ + "raise IOError, \"file error\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The proper way to raise an exception in Python 3:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Returning iterable objects instead of lists" + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 3.4.1\n" ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to the section-overview](#Sections)]" + "ename": "OSError", + "evalue": "file error", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mOSError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Python'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpython_version\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mIOError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"file error\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mOSError\u001b[0m: file error" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As we have already seen in the [`xrange`](#xrange) section, some functions and methods return iterable objects in Python 3 now - instead of lists in Python 2. \n", - "\n", - "Since we usually iterate over those only once anyway, I think this change makes a lot of sense to save memory. However, it is also possible - in contrast to generators - to iterate over those multiple times if needed, it is aonly not so efficient.\n", - "\n", - "And for those cases where we really need the `list`-objects, we can simply convert the iterable object into a `list` via the `list()` function." + } + ], + "source": [ + "print('Python', python_version())\n", + "raise IOError(\"file error\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Handling exceptions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to the section-overview](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Also the handling of exceptions has slightly changed in Python 3. In Python 3 we have to use the \"`as`\" keyword now" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Python 2" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 2.7.6\n", + "name 'let_us_cause_a_NameError' is not defined --> our error message\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Python 2" + } + ], + "source": [ + "print 'Python', python_version()\n", + "try:\n", + " let_us_cause_a_NameError\n", + "except NameError, err:\n", + " print err, '--> our error message'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Python 3" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 3.4.1\n", + "name 'let_us_cause_a_NameError' is not defined --> our error message\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print 'Python', python_version() \n", - "\n", - "print range(3) \n", - "print type(range(3))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Python 2.7.6\n", - "[0, 1, 2]\n", - "\n" - ] - } - ], - "prompt_number": 2 - }, + } + ], + "source": [ + "print('Python', python_version())\n", + "try:\n", + " let_us_cause_a_NameError\n", + "except NameError as err:\n", + " print(err, '--> our error message')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## The next() function and .next() method" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to the section-overview](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Since `next()` (`.next()`) is such a commonly used function (method), this is another syntax change (or rather change in implementation) that is worth mentioning: where you can use both the function and method syntax in Python 2.7.5, the `next()` function is all that remains in Python 3 (calling the `.next()` method raises an `AttributeError`)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Python 2" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Python 3" + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 2.7.6\n" ] }, { - "cell_type": "code", - "collapsed": false, - "input": [ - "print('Python', python_version())\n", - "\n", - "print(range(3))\n", - "print(type(range(3)))\n", - "print(list(range(3)))" - ], - "language": "python", + "data": { + "text/plain": [ + "'b'" + ] + }, + "execution_count": 11, "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Python 3.4.1\n", - "range(0, 3)\n", - "\n", - "[0, 1, 2]\n" - ] - } - ], - "prompt_number": 7 - }, + "output_type": "execute_result" + } + ], + "source": [ + "print 'Python', python_version()\n", + "\n", + "my_generator = (letter for letter in 'abcdefg')\n", + "\n", + "next(my_generator)\n", + "my_generator.next()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Python 3" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 3.4.1\n" ] }, { - "cell_type": "markdown", + "data": { + "text/plain": [ + "'a'" + ] + }, + "execution_count": 13, "metadata": {}, - "source": [ - "**Some more commonly used functions and methods that don't return lists anymore in Python 3:**\n", - "\n", - "- `zip()`\n", - "\n", - "- `map()`\n", - "\n", - "- `filter()`\n", - "\n", - "- dictionary's `.keys()` method\n", - "\n", - "- dictionary's `.values()` method\n", - "\n", - "- dictionary's `.items()` method\n" + "output_type": "execute_result" + } + ], + "source": [ + "print('Python', python_version())\n", + "\n", + "my_generator = (letter for letter in 'abcdefg')\n", + "\n", + "next(my_generator)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "ename": "AttributeError", + "evalue": "'generator' object has no attribute 'next'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mmy_generator\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m: 'generator' object has no attribute 'next'" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" + } + ], + "source": [ + "my_generator.next()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## For-loop variables and the global namespace leak" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to the section-overview](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Good news is: In Python 3.x for-loop variables don't leak into the global namespace anymore!\n", + "\n", + "This goes back to a change that was made in Python 3.x and is described in [What’s New In Python 3.0](https://docs.python.org/3/whatsnew/3.0.html) as follows:\n", + "\n", + "\"List comprehensions no longer support the syntactic form `[... for var in item1, item2, ...]`. Use `[... for var in (item1, item2, ...)]` instead. Also note that list comprehensions have different semantics: they are closer to syntactic sugar for a generator expression inside a `list()` constructor, and in particular the loop control variables are no longer leaked into the surrounding scope.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Python 2" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 2.7.6\n", + "before: i = 1\n", + "comprehension: [0, 1, 2, 3, 4]\n", + "after: i = 4\n" ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "More articles about Python 2 and Python 3" + } + ], + "source": [ + "print 'Python', python_version()\n", + "\n", + "i = 1\n", + "print 'before: i =', i\n", + "\n", + "print 'comprehension: ', [i for i in range(5)]\n", + "\n", + "print 'after: i =', i" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Python 3" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 3.4.1\n", + "before: i = 1\n", + "comprehension: [0, 1, 2, 3, 4]\n", + "after: i = 1\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to the section-overview](#Sections)]" + } + ], + "source": [ + "print('Python', python_version())\n", + "\n", + "i = 1\n", + "print('before: i =', i)\n", + "\n", + "print('comprehension:', [i for i in range(5)])\n", + "\n", + "print('after: i =', i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Comparing unorderable types" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to the section-overview](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Another nice change in Python 3 is that a `TypeError` is raised as warning if we try to compare unorderable types." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Python 2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 2.7.6\n", + "[1, 2] > 'foo' = False\n", + "(1, 2) > 'foo' = True\n", + "[1, 2] > (1, 2) = False\n" ] - }, + } + ], + "source": [ + "print 'Python', python_version()\n", + "print \"[1, 2] > 'foo' = \", [1, 2] > 'foo'\n", + "print \"(1, 2) > 'foo' = \", (1, 2) > 'foo'\n", + "print \"[1, 2] > (1, 2) = \", [1, 2] > (1, 2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Python 3" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here is a list of some good articles concerning Python 2 and 3 that I would recommend as a follow-up.\n", - "\n", - "\n", - "**// Porting to Python 3** \n", - "\n", - "- [Should I use Python 2 or Python 3 for my development activity?](https://wiki.python.org/moin/Python2orPython3)\n", - "\n", - "- [What\u2019s New In Python 3.0](https://docs.python.org/3.0/whatsnew/3.0.html)\n", - "\n", - "- [Porting to Python 3](http://python3porting.com/differences.html)\n", - "\n", - "- [Porting Python 2 Code to Python 3](https://docs.python.org/3/howto/pyporting.html) \n", - "\n", - "- [How keep Python 3 moving forward](http://nothingbutsnark.svbtle.com/my-view-on-the-current-state-of-python-3)\n", - "\n", - "**// Pro and anti Python 3**\n", - "\n", - "- [10 awesome features of Python that you can't use because you refuse to upgrade to Python 3](http://asmeurer.github.io/python3-presentation/slides.html#1)\n", - "\n", - "- [Everything you did not want to know about Unicode in Python 3](http://lucumr.pocoo.org/2014/5/12/everything-about-unicode/)\n", - "\n", - "- [Python 3 is killing Python](https://medium.com/@deliciousrobots/5d2ad703365d/)\n", - "\n", - "- [Python 3 can revive Python](https://medium.com/p/2a7af4788b10)\n", - "\n", - "- [Python 3 is fine](http://sealedabstract.com/rants/python-3-is-fine/)\n" + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 3.4.1\n" ] }, { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] + "ename": "TypeError", + "evalue": "unorderable types: list() > str()", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Python'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpython_version\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"[1, 2] > 'foo' = \"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;34m'foo'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"(1, 2) > 'foo' = \"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;34m'foo'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"[1, 2] > (1, 2) = \"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mTypeError\u001b[0m: unorderable types: list() > str()" + ] + } + ], + "source": [ + "print('Python', python_version())\n", + "print(\"[1, 2] > 'foo' = \", [1, 2] > 'foo')\n", + "print(\"(1, 2) > 'foo' = \", (1, 2) > 'foo')\n", + "print(\"[1, 2] > (1, 2) = \", [1, 2] > (1, 2))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Parsing user inputs via input()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to the section-overview](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Fortunately, the `input()` function was fixed in Python 3 so that it always stores the user inputs as `str` objects. In order to avoid the dangerous behavior in Python 2 to read in other types than `strings`, we have to use `raw_input()` instead." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Python 2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
Python 2.7.6 \n",
+    "[GCC 4.0.1 (Apple Inc. build 5493)] on darwin\n",
+    "Type "help", "copyright", "credits" or "license" for more information.\n",
+    "\n",
+    ">>> my_input = input('enter a number: ')\n",
+    "\n",
+    "enter a number: 123\n",
+    "\n",
+    ">>> type(my_input)\n",
+    "<type 'int'>\n",
+    "\n",
+    ">>> my_input = raw_input('enter a number: ')\n",
+    "\n",
+    "enter a number: 123\n",
+    "\n",
+    ">>> type(my_input)\n",
+    "<type 'str'>\n",
+    "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Python 3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
Python 3.4.1 \n",
+    "[GCC 4.2.1 (Apple Inc. build 5577)] on darwin\n",
+    "Type "help", "copyright", "credits" or "license" for more information.\n",
+    "\n",
+    ">>> my_input = input('enter a number: ')\n",
+    "\n",
+    "enter a number: 123\n",
+    "\n",
+    ">>> type(my_input)\n",
+    "<class 'str'>\n",
+    "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Returning iterable objects instead of lists" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to the section-overview](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we have already seen in the [`xrange`](#xrange) section, some functions and methods return iterable objects in Python 3 now - instead of lists in Python 2. \n", + "\n", + "Since we usually iterate over those only once anyway, I think this change makes a lot of sense to save memory. However, it is also possible - in contrast to generators - to iterate over those multiple times if needed, it is aonly not so efficient.\n", + "\n", + "And for those cases where we really need the `list`-objects, we can simply convert the iterable object into a `list` via the `list()` function." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Python 2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 2.7.6\n", + "[0, 1, 2]\n", + "\n" + ] + } + ], + "source": [ + "print 'Python', python_version() \n", + "\n", + "print range(3) \n", + "print type(range(3))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Python 3" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 3.4.1\n", + "range(0, 3)\n", + "\n", + "[0, 1, 2]\n" + ] } ], - "metadata": {} + "source": [ + "print('Python', python_version())\n", + "\n", + "print(range(3))\n", + "print(type(range(3)))\n", + "print(list(range(3)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Some more commonly used functions and methods that don't return lists anymore in Python 3:**\n", + "\n", + "- `zip()`\n", + "\n", + "- `map()`\n", + "\n", + "- `filter()`\n", + "\n", + "- dictionary's `.keys()` method\n", + "\n", + "- dictionary's `.values()` method\n", + "\n", + "- dictionary's `.items()` method\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## More articles about Python 2 and Python 3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to the section-overview](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here is a list of some good articles concerning Python 2 and 3 that I would recommend as a follow-up.\n", + "\n", + "\n", + "**// Porting to Python 3** \n", + "\n", + "- [Should I use Python 2 or Python 3 for my development activity?](https://wiki.python.org/moin/Python2orPython3)\n", + "\n", + "- [What’s New In Python 3.0](https://docs.python.org/3.0/whatsnew/3.0.html)\n", + "\n", + "- [Porting to Python 3](http://python3porting.com/differences.html)\n", + "\n", + "- [Porting Python 2 Code to Python 3](https://docs.python.org/3/howto/pyporting.html) \n", + "\n", + "- [How keep Python 3 moving forward](http://nothingbutsnark.svbtle.com/my-view-on-the-current-state-of-python-3)\n", + "\n", + "**// Pro and anti Python 3**\n", + "\n", + "- [10 awesome features of Python that you can't use because you refuse to upgrade to Python 3](http://asmeurer.github.io/python3-presentation/slides.html#1)\n", + "\n", + "- [Everything you did not want to know about Unicode in Python 3](http://lucumr.pocoo.org/2014/5/12/everything-about-unicode/)\n", + "\n", + "- [Python 3 is killing Python](https://medium.com/@deliciousrobots/5d2ad703365d/)\n", + "\n", + "- [Python 3 can revive Python](https://medium.com/p/2a7af4788b10)\n", + "\n", + "- [Python 3 is fine](http://sealedabstract.com/rants/python-3-is-fine/)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.0" } - ] -} \ No newline at end of file + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/tutorials/not_so_obvious_python_stuff.ipynb b/tutorials/not_so_obvious_python_stuff.ipynb index a3188b0..15569ba 100644 --- a/tutorials/not_so_obvious_python_stuff.ipynb +++ b/tutorials/not_so_obvious_python_stuff.ipynb @@ -1,4361 +1,4353 @@ { - "metadata": { - "name": "", - "signature": "sha256:5dd675ee714d0dbd00f7be378f1379f4dceaa728c56476124c1bf493d70c569e" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ + "cells": [ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[Sebastian Raschka](http://sebastianraschka.com) \n", - "\n", - "- [Link to this IPython Notebook on GitHub](https://github.com/rasbt/python_reference/blob/master/tutorials/not_so_obvious_python_stuff.ipynb) \n", - "- [Link to the GitHub repository](https://github.com/rasbt/python_reference) \n", - "\n" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%load_ext watermark" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 1 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%watermark -d -u -v" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Last updated: 16/07/2014 \n", - "\n", - "CPython 3.4.1\n", - "IPython 2.0.0\n" - ] - } - ], - "prompt_number": 2 - }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[Sebastian Raschka](http://sebastianraschka.com) \n", + "\n", + "- [Link to this IPython Notebook on GitHub](https://github.com/rasbt/python_reference/blob/master/tutorials/not_so_obvious_python_stuff.ipynb) \n", + "- [Link to the GitHub repository](https://github.com/rasbt/python_reference) \n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%load_ext watermark" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[More information](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/ipython_magic/watermark.ipynb) about the `watermark` magic command extension.\n", + "name": "stdout", + "output_type": "stream", + "text": [ + "Last updated: 16/07/2014 \n", "\n", - "([Changelog](#changelog))" + "CPython 3.4.1\n", + "IPython 2.0.0\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# A collection of not-so-obvious Python stuff you should know!" + } + ], + "source": [ + "%watermark -d -u -v" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[More information](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/ipython_magic/watermark.ipynb) about the `watermark` magic command extension.\n", + "\n", + "([Changelog](#changelog))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# A collection of not-so-obvious Python stuff you should know!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "I am really looking forward to your comments and suggestions to improve and \n", + "extend this little collection! Just send me a quick note \n", + "via Twitter: [@rasbt](https://twitter.com/rasbt) \n", + "or Email: [bluewoodtree@gmail.com](mailto:bluewoodtree@gmail.com)\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Sections\n", + "- [The C3 class resolution algorithm for multiple class inheritance](#c3_class_res)\n", + "\n", + "- [Assignment operators and lists - simple-add vs. add-AND operators](#pm_in_lists)\n", + "\n", + "- [`True` and `False` in the datetime module](#datetime_module)\n", + "\n", + "- [Python reuses objects for small integers - always use \"==\" for equality, \"is\" for identity](#python_small_int)\n", + "\n", + "- [Shallow vs. deep copies if list contains other structures and objects](#shallow_vs_deep)\n", + "\n", + "- [Picking `True` values from logical `and`s and `or`s](#false_true_expressions)\n", + "\n", + "- [Don't use mutable objects as default arguments for functions!](#def_mutable_func)\n", + "\n", + "- [Be aware of the consuming generator](#consuming_generator)\n", + "\n", + "- [`bool` is a subclass of `int`](#bool_int)\n", + "\n", + "- [About lambda-in-closures and-a-loop pitfall](#lambda_closure)\n", + "\n", + "- [Python's LEGB scope resolution and the keywords `global` and `nonlocal`](#python_legb)\n", + "\n", + "- [When mutable contents of immutable tuples aren't so mutable](#immutable_tuple)\n", + "\n", + "- [List comprehensions are fast, but generators are faster!?](#list_generator)\n", + "\n", + "- [Public vs. private class methods and name mangling](#private_class)\n", + "\n", + "- [The consequences of modifying a list when looping through it](#looping_pitfall)\n", + "\n", + "- [Dynamic binding and typos in variable names](#dynamic_binding)\n", + "\n", + "- [List slicing using indexes that are \"out of range](#out_of_range_slicing)\n", + "\n", + "- [Reusing global variable names and UnboundLocalErrors](#unboundlocalerror)\n", + "\n", + "- [Creating copies of mutable objects](#copy_mutable)\n", + "\n", + "- [Key differences between Python 2 and 3](#python_differences)\n", + "\n", + "- [Function annotations - What are those `->`'s in my Python code?](#function_annotation)\n", + "\n", + "- [Abortive statements in `finally` blocks](#finally_blocks)\n", + "\n", + "- [Assigning types to variables as values](#variable_types)\n", + "\n", + "- [Only the first clause of generators is evaluated immediately](#generator_rhs)\n", + "\n", + "- [Keyword argument unpacking syntax - `*args` and `**kwargs`](#splat_op)\n", + "\n", + "- [Metaclasses - What creates a new instance of a class?](#new_instance)\n", + "\n", + "- [Else-clauses: \"conditional else\" and \"completion else\"](#else_clauses)\n", + "\n", + "- [Interning of compile-time constants vs. run-time expressions](#string_interning)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## The C3 class resolution algorithm for multiple class inheritance" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we are dealing with multiple inheritance, according to the newer C3 class resolution algorithm, the following applies: \n", + "Assuming that child class C inherits from two parent classes A and B, \"class A should be checked before class B\".\n", + "\n", + "If you want to learn more, please read the [original blog](http://python-history.blogspot.ru/2010/06/method-resolution-order.html) post by Guido van Rossum.\n", + "\n", + "(Original source: [http://gistroll.com/rolls/21/horizontal_assessments/new](http://gistroll.com/rolls/21/horizontal_assessments/new))" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "class A\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "I am really looking forward to your comments and suggestions to improve and \n", - "extend this little collection! Just send me a quick note \n", - "via Twitter: [@rasbt](https://twitter.com/rasbt) \n", - "or Email: [bluewoodtree@gmail.com](mailto:bluewoodtree@gmail.com)\n", - "
" + } + ], + "source": [ + "class A(object):\n", + " def foo(self):\n", + " print(\"class A\")\n", + "\n", + "class B(object):\n", + " def foo(self):\n", + " print(\"class B\")\n", + "\n", + "class C(A, B):\n", + " pass\n", + "\n", + "C().foo()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So what actually happened above was that class `C` looked in the scope of the parent class `A` for the method `.foo()` first (and found it)!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "I received an email containing a suggestion which uses a more nested example to illustrate Guido van Rossum's point a little bit better:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "class C\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "" + } + ], + "source": [ + "class A(object):\n", + " def foo(self):\n", + " print(\"class A\")\n", + "\n", + "class B(A):\n", + " pass\n", + "\n", + "class C(A):\n", + " def foo(self):\n", + " print(\"class C\")\n", + "\n", + "class D(B,C):\n", + " pass\n", + "\n", + "D().foo()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, class `D` searches in `B` first, which in turn inherits from `A` (note that class `C` also inherits from `A`, but has its own `.foo()` method) so that we come up with the search order: `D, B, C, A`. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Assignment operators and lists - simple-add vs. add-AND operators" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Python `list`s are mutable objects as we all know. So, if we are using the `+=` operator on `list`s, we extend the `list` by directly modifying the object directly. \n", + "\n", + "However, if we use the assigment via `my_list = my_list + ...`, we create a new list object, which can be demonstrated by the following code:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ID: 4366496544\n", + "ID (+=): 4366496544\n", + "ID (list = list + ...): 4366495472\n" ] - }, + } + ], + "source": [ + "a_list = []\n", + "print('ID:', id(a_list))\n", + "\n", + "a_list += [1]\n", + "print('ID (+=):', id(a_list))\n", + "\n", + "a_list = a_list + [2]\n", + "print('ID (list = list + ...):', id(a_list))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Just for reference, the `.append()` and `.extends()` methods are modifying the `list` object in place, just as expected." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Sections\n", - "- [The C3 class resolution algorithm for multiple class inheritance](#c3_class_res)\n", - "\n", - "- [Assignment operators and lists - simple-add vs. add-AND operators](#pm_in_lists)\n", - "\n", - "- [`True` and `False` in the datetime module](#datetime_module)\n", - "\n", - "- [Python reuses objects for small integers - always use \"==\" for equality, \"is\" for identity](#python_small_int)\n", + "name": "stdout", + "output_type": "stream", + "text": [ + "[] \n", + "ID (initial): 140704077653128 \n", "\n", - "- [Shallow vs. deep copies if list contains other structures and objects](#shallow_vs_deep)\n", + "[1] \n", + "ID (append): 140704077653128 \n", "\n", - "- [Picking `True` values from logical `and`s and `or`s](#false_true_expressions)\n", - "\n", - "- [Don't use mutable objects as default arguments for functions!](#def_mutable_func)\n", - "\n", - "- [Be aware of the consuming generator](#consuming_generator)\n", - "\n", - "- [`bool` is a subclass of `int`](#bool_int)\n", - "\n", - "- [About lambda-in-closures and-a-loop pitfall](#lambda_closure)\n", - "\n", - "- [Python's LEGB scope resolution and the keywords `global` and `nonlocal`](#python_legb)\n", - "\n", - "- [When mutable contents of immutable tuples aren't so mutable](#immutable_tuple)\n", - "\n", - "- [List comprehensions are fast, but generators are faster!?](#list_generator)\n", - "\n", - "- [Public vs. private class methods and name mangling](#private_class)\n", - "\n", - "- [The consequences of modifying a list when looping through it](#looping_pitfall)\n", - "\n", - "- [Dynamic binding and typos in variable names](#dynamic_binding)\n", - "\n", - "- [List slicing using indexes that are \"out of range](#out_of_range_slicing)\n", - "\n", - "- [Reusing global variable names and UnboundLocalErrors](#unboundlocalerror)\n", - "\n", - "- [Creating copies of mutable objects](#copy_mutable)\n", - "\n", - "- [Key differences between Python 2 and 3](#python_differences)\n", - "\n", - "- [Function annotations - What are those `->`'s in my Python code?](#function_annotation)\n", - "\n", - "- [Abortive statements in `finally` blocks](#finally_blocks)\n", - "\n", - "- [Assigning types to variables as values](#variable_types)\n", - "\n", - "- [Only the first clause of generators is evaluated immediately](#generator_rhs)\n", - "\n", - "- [Keyword argument unpacking syntax - `*args` and `**kwargs`](#splat_op)\n", - "\n", - "- [Metaclasses - What creates a new instance of a class?](#new_instance)\n", - "\n", - "- [Else-clauses: \"conditional else\" and \"completion else\"](#else_clauses)\n", - "\n", - "- [Interning of compile-time constants vs. run-time expressions](#string_interning)" + "[1, 2] \n", + "ID (extend): 140704077653128\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
\n", - "
" + } + ], + "source": [ + "a_list = []\n", + "print(a_list, '\\nID (initial):',id(a_list), '\\n')\n", + "\n", + "a_list.append(1)\n", + "print(a_list, '\\nID (append):',id(a_list), '\\n')\n", + "\n", + "a_list.extend([2])\n", + "print(a_list, '\\nID (extend):',id(a_list))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## `True` and `False` in the datetime module\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\"It often comes as a big surprise for programmers to find (sometimes by way of a hard-to-reproduce bug) that, unlike any other time value, midnight (i.e. `datetime.time(0,0,0)`) is False. A long discussion on the python-ideas mailing list shows that, while surprising, that behavior is desirable—at least in some quarters.\" \n", + "\n", + "(Original source: [http://lwn.net/SubscriberLink/590299/bf73fe823974acea/](http://lwn.net/SubscriberLink/590299/bf73fe823974acea/))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#sections)]" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\"datetime.time(0,0,0)\" (Midnight) -> False\n", + "\"datetime.time(1,0,0)\" (1 am) -> True\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## The C3 class resolution algorithm for multiple class inheritance" + } + ], + "source": [ + "import datetime\n", + "\n", + "print('\"datetime.time(0,0,0)\" (Midnight) ->', bool(datetime.time(0,0,0)))\n", + "\n", + "print('\"datetime.time(1,0,0)\" (1 am) ->', bool(datetime.time(1,0,0)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## Python reuses objects for small integers - use \"==\" for equality, \"is\" for identity\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This oddity occurs, because Python keeps an array of small integer objects (i.e., integers between -5 and 256, [see the doc](https://docs.python.org/2/c-api/int.html#PyInt_FromLong))." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a is b True\n", + "c is d False\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#sections)]" + } + ], + "source": [ + "a = 1\n", + "b = 1\n", + "print('a is b', bool(a is b))\n", + "True\n", + "\n", + "c = 999\n", + "d = 999\n", + "print('c is d', bool(c is d))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "(*I received a comment that this is in fact a CPython artefact and **must not necessarily be true** in all implementations of Python!*)\n", + "\n", + "So the take home message is: always use \"==\" for equality, \"is\" for identity!\n", + "\n", + "Here is a [nice article](http://python.net/%7Egoodger/projects/pycon/2007/idiomatic/handout.html#other-languages-have-variables) explaining it by comparing \"boxes\" (C language) with \"name tags\" (Python)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This example demonstrates that this applies indeed for integers in the range in -5 to 256:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "256 is 257-1 True\n", + "257 is 258-1 False\n", + "-5 is -6+1 True\n", + "-7 is -6-1 False\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If we are dealing with multiple inheritance, according to the newer C3 class resolution algorithm, the following applies: \n", - "Assuming that child class C inherits from two parent classes A and B, \"class A should be checked before class B\".\n", - "\n", - "If you want to learn more, please read the [original blog](http://python-history.blogspot.ru/2010/06/method-resolution-order.html) post by Guido van Rossum.\n", - "\n", - "(Original source: [http://gistroll.com/rolls/21/horizontal_assessments/new](http://gistroll.com/rolls/21/horizontal_assessments/new))" + } + ], + "source": [ + "print('256 is 257-1', 256 is 257-1)\n", + "print('257 is 258-1', 257 is 258 - 1)\n", + "print('-5 is -6+1', -5 is -6+1)\n", + "print('-7 is -6-1', -7 is -6-1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### And to illustrate the test for equality (`==`) vs. identity (`is`):" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a is b, False\n", + "a == b, True\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "class A(object):\n", - " def foo(self):\n", - " print(\"class A\")\n", - "\n", - "class B(object):\n", - " def foo(self):\n", - " print(\"class B\")\n", - "\n", - "class C(A, B):\n", - " pass\n", - "\n", - "C().foo()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "class A\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "So what actually happened above was that class `C` looked in the scope of the parent class `A` for the method `.foo()` first (and found it)!" + } + ], + "source": [ + "a = 'hello world!'\n", + "b = 'hello world!'\n", + "print('a is b,', a is b)\n", + "print('a == b,', a == b)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We would think that identity would always imply equality, but this is not always true, as we can see in the next example:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a is a, True\n", + "a == a, False\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "I received an email containing a suggestion which uses a more nested example to illustrate Guido van Rossum's point a little bit better:" + } + ], + "source": [ + "a = float('nan')\n", + "print('a is a,', a is a)\n", + "print('a == a,', a == a)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Shallow vs. deep copies if list contains other structures and objects\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Shallow copy**: \n", + "If we use the assignment operator to assign one list to another list, we just create a new name reference to the original list. If we want to create a new list object, we have to make a copy of the original list. This can be done via `a_list[:]` or `a_list.copy()`." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "IDs:\n", + "list1: 4346366472\n", + "list2: 4346366472\n", + "list3: 4346366408\n", + "list4: 4346366536\n", + "\n", + "list1: [3, 2]\n", + "list1: [3, 2]\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "class A(object):\n", - " def foo(self):\n", - " print(\"class A\")\n", - "\n", - "class B(A):\n", - " pass\n", - "\n", - "class C(A):\n", - " def foo(self):\n", - " print(\"class C\")\n", - "\n", - "class D(B,C):\n", - " pass\n", - "\n", - "D().foo()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "class C\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here, class `D` searches in `B` first, which in turn inherits from `A` (note that class `C` also inherits from `A`, but has its own `.foo()` method) so that we come up with the search order: `D, B, C, A`. " + } + ], + "source": [ + "list1 = [1,2]\n", + "list2 = list1 # reference\n", + "list3 = list1[:] # shallow copy\n", + "list4 = list1.copy() # shallow copy\n", + "\n", + "print('IDs:\\nlist1: {}\\nlist2: {}\\nlist3: {}\\nlist4: {}\\n'\n", + " .format(id(list1), id(list2), id(list3), id(list4)))\n", + "\n", + "list2[0] = 3\n", + "print('list1:', list1)\n", + "\n", + "list3[0] = 4\n", + "list4[1] = 4\n", + "print('list1:', list1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Deep copy** \n", + "As we have seen above, a shallow copy works fine if we want to create a new list with contents of the original list which we want to modify independently. \n", + "\n", + "However, if we are dealing with compound objects (e.g., lists that contain other lists, [read here](https://docs.python.org/2/library/copy.html) for more information) it becomes a little trickier.\n", + "\n", + "In the case of compound objects, a shallow copy would create a new compound object, but it would just insert the references to the contained objects into the new compound object. In contrast, a deep copy would go \"deeper\" and create also new objects \n", + "for the objects found in the original compound object. \n", + "If you follow the code, the concept should become more clear:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "IDs:\n", + "list1: 4377956296\n", + "list2: 4377961752\n", + "list3: 4377954928\n", + "\n", + "list1: [[3], [2]]\n", + "list1: [[3], [2]]\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
\n", - "
" + } + ], + "source": [ + "from copy import deepcopy\n", + "\n", + "list1 = [[1],[2]]\n", + "list2 = list1.copy() # shallow copy\n", + "list3 = deepcopy(list1) # deep copy\n", + "\n", + "print('IDs:\\nlist1: {}\\nlist2: {}\\nlist3: {}\\n'\n", + " .format(id(list1), id(list2), id(list3)))\n", + "\n", + "list2[0][0] = 3\n", + "print('list1:', list1)\n", + "\n", + "list3[0][0] = 5\n", + "print('list1:', list1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Picking `True` values from logical `and`s and `or`s" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Logical `or`:** \n", + "\n", + "`a or b == a if a else b` \n", + "- If both values in `or` expressions are `True`, Python will select the first value (e.g., select `\"a\"` in `\"a\" or \"b\"`), and the second one in `and` expressions. \n", + "This is also called **short-circuiting** - we already know that the logical `or` must be `True` if the first value is `True` and therefore can omit the evaluation of the second value.\n", + "\n", + "**Logical `and`:** \n", + "\n", + "`a and b == b if a else a` \n", + "- If both values in `and` expressions are `True`, Python will select the second value, since for a logical `and`, both values must be true.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2 * 7 = 14\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Assignment operators and lists - simple-add vs. add-AND operators" + } + ], + "source": [ + "result = (2 or 3) * (5 and 7)\n", + "print('2 * 7 =', result)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Don't use mutable objects as default arguments for functions!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Don't use mutable objects (e.g., dictionaries, lists, sets, etc.) as default arguments for functions! You might expect that a new list is created every time when we call the function without providing an argument for the default parameter, but this is not the case: **Python will create the mutable object (default parameter) the first time the function is defined - not when it is called**, see the following code:\n", + "\n", + "(Original source: [http://docs.python-guide.org/en/latest/writing/gotchas/](http://docs.python-guide.org/en/latest/writing/gotchas/)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1]\n", + "[1, 2]\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#sections)]" + } + ], + "source": [ + "def append_to_list(value, def_list=[]):\n", + " def_list.append(value)\n", + " return def_list\n", + "\n", + "my_list = append_to_list(1)\n", + "print(my_list)\n", + "\n", + "my_other_list = append_to_list(2)\n", + "print(my_other_list)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Another good example showing that demonstrates that default arguments are created when the function is created (**and not when it is called!**):" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1397764090.456688\n", + "1397764090.456688\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Python `list`s are mutable objects as we all know. So, if we are using the `+=` operator on `list`s, we extend the `list` by directly modifying the object directly. \n", - "\n", - "However, if we use the assigment via `my_list = my_list + ...`, we create a new list object, which can be demonstrated by the following code:" + } + ], + "source": [ + "import time\n", + "def report_arg(my_default=time.time()):\n", + " print(my_default)\n", + "\n", + "report_arg()\n", + "\n", + "time.sleep(5)\n", + "\n", + "report_arg()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Be aware of the consuming generator" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Be aware of what is happening when combining \"`in`\" checks with generators, since they won't evaluate from the beginning once a position is \"consumed\"." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2 in gen, True\n", + "3 in gen, True\n", + "1 in gen, False\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "a_list = []\n", - "print('ID:', id(a_list))\n", - "\n", - "a_list += [1]\n", - "print('ID (+=):', id(a_list))\n", - "\n", - "a_list = a_list + [2]\n", - "print('ID (list = list + ...):', id(a_list))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "ID: 4366496544\n", - "ID (+=): 4366496544\n", - "ID (list = list + ...): 4366495472\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Just for reference, the `.append()` and `.extends()` methods are modifying the `list` object in place, just as expected." + } + ], + "source": [ + "gen = (i for i in range(5))\n", + "print('2 in gen,', 2 in gen)\n", + "print('3 in gen,', 3 in gen)\n", + "print('1 in gen,', 1 in gen) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Although this defeats the purpose of an generator (in most cases), we can convert a generator into a list to circumvent the problem. " + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2 in l, True\n", + "3 in l, True\n", + "1 in l, True\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "a_list = []\n", - "print(a_list, '\\nID (initial):',id(a_list), '\\n')\n", - "\n", - "a_list.append(1)\n", - "print(a_list, '\\nID (append):',id(a_list), '\\n')\n", - "\n", - "a_list.extend([2])\n", - "print(a_list, '\\nID (extend):',id(a_list))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[] \n", - "ID (initial): 140704077653128 \n", - "\n", - "[1] \n", - "ID (append): 140704077653128 \n", - "\n", - "[1, 2] \n", - "ID (extend): 140704077653128\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "" + } + ], + "source": [ + "gen = (i for i in range(5))\n", + "a_list = list(gen)\n", + "print('2 in l,', 2 in a_list)\n", + "print('3 in l,', 3 in a_list)\n", + "print('1 in l,', 1 in a_list) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## `bool` is a subclass of `int`\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Chicken or egg? In the history of Python (Python 2.2 to be specific) truth values were implemented via 1 and 0 (similar to the old C). In order to avoid syntax errors in old (but perfectly working) Python code, `bool` was added as a subclass of `int` in Python 2.3.\n", + "\n", + "Original source: [http://www.peterbe.com/plog/bool-is-int](http://www.peterbe.com/plog/bool-is-int)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "isinstance(True, int): True\n", + "True + True: 2\n", + "3*True + True: 4\n", + "3*True - False: 3\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## `True` and `False` in the datetime module\n", - "\n" + } + ], + "source": [ + "print('isinstance(True, int):', isinstance(True, int))\n", + "print('True + True:', True + True)\n", + "print('3*True + True:', 3*True + True)\n", + "print('3*True - False:', 3*True - False)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## About lambda-in-closures-and-a-loop pitfall" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Remember the section about the [\"consuming generators\"](consuming_generators)? This example is somewhat related, but the result might still come unexpected. \n", + "\n", + "(Original source: [http://openhome.cc/eGossip/Blog/UnderstandingLambdaClosure3.html](http://openhome.cc/eGossip/Blog/UnderstandingLambdaClosure3.html))\n", + "\n", + "In the first example below, we call a `lambda` function in a list comprehension, and the value `i` will be dereferenced every time we call `lambda` within the scope of the list comprehension. Since the list comprehension has already been constructed and evaluated when we for-loop through the list, the closure-variable will be set to the last value 4." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4\n", + "4\n", + "4\n", + "4\n", + "4\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\"It often comes as a big surprise for programmers to find (sometimes by way of a hard-to-reproduce bug) that, unlike any other time value, midnight (i.e. `datetime.time(0,0,0)`) is False. A long discussion on the python-ideas mailing list shows that, while surprising, that behavior is desirable\u2014at least in some quarters.\" \n", - "\n", - "(Original source: [http://lwn.net/SubscriberLink/590299/bf73fe823974acea/](http://lwn.net/SubscriberLink/590299/bf73fe823974acea/))" + } + ], + "source": [ + "my_list = [lambda: i for i in range(5)]\n", + "for l in my_list:\n", + " print(l())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "However, by using a generator expression, we can make use of its stepwise evaluation (note that the returned variable still stems from the same closure, but the value changes as we iterate over the generator)." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n", + "1\n", + "2\n", + "3\n", + "4\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#sections)]" + } + ], + "source": [ + "my_gen = (lambda: n for n in range(5))\n", + "for l in my_gen:\n", + " print(l())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And if you are really keen on using lists, there is a nifty trick that circumvents this problem as a reader nicely pointed out in the comments: We can simply pass the loop variable `i` as a default argument to the lambdas." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n", + "1\n", + "2\n", + "3\n", + "4\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import datetime\n", - "\n", - "print('\"datetime.time(0,0,0)\" (Midnight) ->', bool(datetime.time(0,0,0)))\n", - "\n", - "print('\"datetime.time(1,0,0)\" (1 am) ->', bool(datetime.time(1,0,0)))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\"datetime.time(0,0,0)\" (Midnight) -> False\n", - "\"datetime.time(1,0,0)\" (1 am) -> True\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "" + } + ], + "source": [ + "my_list = [lambda x=i: x for i in range(5)]\n", + "for l in my_list:\n", + " print(l())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Python's LEGB scope resolution and the keywords `global` and `nonlocal`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There is nothing particularly surprising about Python's LEGB scope resolution (Local -> Enclosed -> Global -> Built-in), but it is still useful to take a look at some examples!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### `global` vs. `local`\n", + "\n", + "According to the LEGB rule, Python will first look for a variable in the local scope. So if we set the variable `x = 1` `local`ly in the function's scope, it won't have an effect on the `global` `x`." + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "in_func: 1\n", + "global: 0\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## Python reuses objects for small integers - use \"==\" for equality, \"is\" for identity\n", - "\n" + } + ], + "source": [ + "x = 0\n", + "def in_func():\n", + " x = 1\n", + " print('in_func:', x)\n", + " \n", + "in_func()\n", + "print('global:', x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we want to modify the `global` x via a function, we can simply use the `global` keyword to import the variable into the function's scope:" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "in_func: 1\n", + "global: 1\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#sections)]" + } + ], + "source": [ + "x = 0\n", + "def in_func():\n", + " global x\n", + " x = 1\n", + " print('in_func:', x)\n", + " \n", + "in_func()\n", + "print('global:', x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### `local` vs. `enclosed`\n", + "\n", + "Now, let us take a look at `local` vs. `enclosed`. Here, we set the variable `x = 1` in the `outer` function and set `x = 1` in the enclosed function `inner`. Since `inner` looks in the local scope first, it won't modify `outer`'s `x`." + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "outer before: 1\n", + "inner: 2\n", + "outer after: 1\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This oddity occurs, because Python keeps an array of small integer objects (i.e., integers between -5 and 256, [see the doc](https://docs.python.org/2/c-api/int.html#PyInt_FromLong))." + } + ], + "source": [ + "def outer():\n", + " x = 1\n", + " print('outer before:', x)\n", + " def inner():\n", + " x = 2\n", + " print(\"inner:\", x)\n", + " inner()\n", + " print(\"outer after:\", x)\n", + "outer()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here is where the `nonlocal` keyword comes in handy - it allows us to modify the `x` variable in the `enclosed` scope:" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "outer before: 1\n", + "inner: 2\n", + "outer after: 2\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "a = 1\n", - "b = 1\n", - "print('a is b', bool(a is b))\n", - "True\n", - "\n", - "c = 999\n", - "d = 999\n", - "print('c is d', bool(c is d))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "a is b True\n", - "c is d False\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(*I received a comment that this is in fact a CPython artefact and **must not necessarily be true** in all implementations of Python!*)\n", - "\n", - "So the take home message is: always use \"==\" for equality, \"is\" for identity!\n", - "\n", - "Here is a [nice article](http://python.net/%7Egoodger/projects/pycon/2007/idiomatic/handout.html#other-languages-have-variables) explaining it by comparing \"boxes\" (C language) with \"name tags\" (Python)." + } + ], + "source": [ + "def outer():\n", + " x = 1\n", + " print('outer before:', x)\n", + " def inner():\n", + " nonlocal x\n", + " x = 2\n", + " print(\"inner:\", x)\n", + " inner()\n", + " print(\"outer after:\", x)\n", + "outer()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## When mutable contents of immutable tuples aren't so mutable" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we all know, tuples are immutable objects in Python, right!? But what happens if they contain mutable objects? \n", + "\n", + "First, let us have a look at the expected behavior: a `TypeError` is raised if we try to modify immutable types in a tuple: " + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "ename": "TypeError", + "evalue": "'tuple' object does not support item assignment", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mtup\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mtup\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m: 'tuple' object does not support item assignment" ] - }, + } + ], + "source": [ + "tup = (1,)\n", + "tup[0] += 1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### But what if we put a mutable object into the immutable tuple? Well, modification works, but we **also** get a `TypeError` at the same time." + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This example demonstrates that this applies indeed for integers in the range in -5 to 256:" + "name": "stdout", + "output_type": "stream", + "text": [ + "tup before: ([],)\n" ] }, { - "cell_type": "code", - "collapsed": false, - "input": [ - "print('256 is 257-1', 256 is 257-1)\n", - "print('257 is 258-1', 257 is 258 - 1)\n", - "print('-5 is -6+1', -5 is -6+1)\n", - "print('-7 is -6-1', -7 is -6-1)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "256 is 257-1 True\n", - "257 is 258-1 False\n", - "-5 is -6+1 True\n", - "-7 is -6-1 False\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### And to illustrate the test for equality (`==`) vs. identity (`is`):" + "ename": "TypeError", + "evalue": "'tuple' object does not support item assignment", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mtup\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'tup before: '\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtup\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mtup\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m: 'tuple' object does not support item assignment" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "a = 'hello world!'\n", - "b = 'hello world!'\n", - "print('a is b,', a is b)\n", - "print('a == b,', a == b)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "a is b, False\n", - "a == b, True\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We would think that identity would always imply equality, but this is not always true, as we can see in the next example:" + } + ], + "source": [ + "tup = ([],)\n", + "print('tup before: ', tup)\n", + "tup[0] += [1]" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tup after: ([1],)\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "a = float('nan')\n", - "print('a is a,', a is a)\n", - "print('a == a,', a == a)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "a is a, True\n", - "a == a, False\n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "" + } + ], + "source": [ + "print('tup after: ', tup)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "However, **there are ways** to modify the mutable contents of the tuple without raising the `TypeError`, the solution is the `.extend()` method, or alternatively `.append()` (for lists):" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tup before: ([],)\n", + "tup after: ([1],)\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Shallow vs. deep copies if list contains other structures and objects\n", - "\n" + } + ], + "source": [ + "tup = ([],)\n", + "print('tup before: ', tup)\n", + "tup[0].extend([1])\n", + "print('tup after: ', tup)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tup before: ([],)\n", + "tup after: ([1],)\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#sections)]" + } + ], + "source": [ + "tup = ([],)\n", + "print('tup before: ', tup)\n", + "tup[0].append(1)\n", + "print('tup after: ', tup)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Explanation\n", + "\n", + "**A. Jesse Jiryu Davis** has a nice explanation for this phenomenon (Original source: [http://emptysqua.re/blog/python-increment-is-weird-part-ii/](http://emptysqua.re/blog/python-increment-is-weird-part-ii/))\n", + "\n", + "If we try to extend the list via `+=` *\"then the statement executes `STORE_SUBSCR`, which calls the C function `PyObject_SetItem`, which checks if the object supports item assignment. In our case the object is a tuple, so `PyObject_SetItem` throws the `TypeError`. Mystery solved.\"*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### One more note about the `immutable` status of tuples. Tuples are famous for being immutable. However, how comes that this code works?" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1, 4, 5)\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Shallow copy**: \n", - "If we use the assignment operator to assign one list to another list, we just create a new name reference to the original list. If we want to create a new list object, we have to make a copy of the original list. This can be done via `a_list[:]` or `a_list.copy()`." + } + ], + "source": [ + "my_tup = (1,)\n", + "my_tup += (4,)\n", + "my_tup = my_tup + (5,)\n", + "print(my_tup)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What happens \"behind\" the curtains is that the tuple is not modified, but every time a new object is generated, which will inherit the old \"name tag\":" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4337381840\n", + "4357415496\n", + "4357289952\n" ] - }, + } + ], + "source": [ + "my_tup = (1,)\n", + "print(id(my_tup))\n", + "my_tup += (4,)\n", + "print(id(my_tup))\n", + "my_tup = my_tup + (5,)\n", + "print(id(my_tup))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## List comprehensions are fast, but generators are faster!?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\"List comprehensions are fast, but generators are faster!?\" - No, not really (or significantly, see the benchmarks below). So what's the reason to prefer one over the other?\n", + "- use lists if you want to use the plethora of list methods \n", + "- use generators when you are dealing with huge collections to avoid memory issues" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import timeit\n", + "\n", + "def plainlist(n=100000):\n", + " my_list = []\n", + " for i in range(n):\n", + " if i % 5 == 0:\n", + " my_list.append(i)\n", + " return my_list\n", + "\n", + "def listcompr(n=100000):\n", + " my_list = [i for i in range(n) if i % 5 == 0]\n", + " return my_list\n", + "\n", + "def generator(n=100000):\n", + " my_gen = (i for i in range(n) if i % 5 == 0)\n", + " return my_gen\n", + "\n", + "def generator_yield(n=100000):\n", + " for i in range(n):\n", + " if i % 5 == 0:\n", + " yield i" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### To be fair to the list, let us exhaust the generators:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "code", - "collapsed": false, - "input": [ - "list1 = [1,2]\n", - "list2 = list1 # reference\n", - "list3 = list1[:] # shallow copy\n", - "list4 = list1.copy() # shallow copy\n", + "name": "stdout", + "output_type": "stream", + "text": [ + "plain_list: 10 loops, best of 3: 22.4 ms per loop\n", "\n", - "print('IDs:\\nlist1: {}\\nlist2: {}\\nlist3: {}\\nlist4: {}\\n'\n", - " .format(id(list1), id(list2), id(list3), id(list4)))\n", + "listcompr: 10 loops, best of 3: 20.8 ms per loop\n", "\n", - "list2[0] = 3\n", - "print('list1:', list1)\n", + "generator: 10 loops, best of 3: 22 ms per loop\n", "\n", - "list3[0] = 4\n", - "list4[1] = 4\n", - "print('list1:', list1)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "IDs:\n", - "list1: 4346366472\n", - "list2: 4346366472\n", - "list3: 4346366408\n", - "list4: 4346366536\n", - "\n", - "list1: [3, 2]\n", - "list1: [3, 2]\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Deep copy** \n", - "As we have seen above, a shallow copy works fine if we want to create a new list with contents of the original list which we want to modify independently. \n", - "\n", - "However, if we are dealing with compound objects (e.g., lists that contain other lists, [read here](https://docs.python.org/2/library/copy.html) for more information) it becomes a little trickier.\n", - "\n", - "In the case of compound objects, a shallow copy would create a new compound object, but it would just insert the references to the contained objects into the new compound object. In contrast, a deep copy would go \"deeper\" and create also new objects \n", - "for the objects found in the original compound object. \n", - "If you follow the code, the concept should become more clear:" + "generator_yield: 10 loops, best of 3: 21.9 ms per loop\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from copy import deepcopy\n", - "\n", - "list1 = [[1],[2]]\n", - "list2 = list1.copy() # shallow copy\n", - "list3 = deepcopy(list1) # deep copy\n", - "\n", - "print('IDs:\\nlist1: {}\\nlist2: {}\\nlist3: {}\\n'\n", - " .format(id(list1), id(list2), id(list3)))\n", - "\n", - "list2[0][0] = 3\n", - "print('list1:', list1)\n", - "\n", - "list3[0][0] = 5\n", - "print('list1:', list1)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "IDs:\n", - "list1: 4377956296\n", - "list2: 4377961752\n", - "list3: 4377954928\n", - "\n", - "list1: [[3], [2]]\n", - "list1: [[3], [2]]\n" - ] - } - ], - "prompt_number": 25 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "" + } + ], + "source": [ + "def test_plainlist(plain_list):\n", + " for i in plain_list():\n", + " pass\n", + "\n", + "def test_listcompr(listcompr):\n", + " for i in listcompr():\n", + " pass\n", + "\n", + "def test_generator(generator):\n", + " for i in generator():\n", + " pass\n", + "\n", + "def test_generator_yield(generator_yield):\n", + " for i in generator_yield():\n", + " pass\n", + "\n", + "print('plain_list: ', end = '')\n", + "%timeit test_plainlist(plainlist)\n", + "print('\\nlistcompr: ', end = '')\n", + "%timeit test_listcompr(listcompr)\n", + "print('\\ngenerator: ', end = '')\n", + "%timeit test_generator(generator)\n", + "print('\\ngenerator_yield: ', end = '')\n", + "%timeit test_generator_yield(generator_yield)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Public vs. private class methods and name mangling\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Who has not stumbled across this quote \"we are all consenting adults here\" in the Python community, yet? Unlike in other languages like C++ (sorry, there are many more, but that's one I am most familiar with), we can't really protect class methods from being used outside the class (i.e., by the API user). \n", + "All we can do is to indicate methods as private to make clear that they are better not used outside the class, but it is really up to the class user, since \"we are all consenting adults here\"! \n", + "So, when we want to mark a class method as private, we can put a single underscore in front of it. \n", + "If we additionally want to avoid name clashes with other classes that might use the same method names, we can prefix the name with a double-underscore to invoke the name mangling.\n", + "\n", + "This doesn't prevent the class user to access this class member though, but he has to know the trick and also knows that it his own risk...\n", + "\n", + "Let the following example illustrate what I mean:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Hello public world!\n", + "Hello private world!\n", + "Hello private world!\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Picking `True` values from logical `and`s and `or`s" + } + ], + "source": [ + "class my_class():\n", + " def public_method(self):\n", + " print('Hello public world!')\n", + " def __private_method(self):\n", + " print('Hello private world!')\n", + " def call_private_method_in_class(self):\n", + " self.__private_method()\n", + " \n", + "my_instance = my_class()\n", + "\n", + "my_instance.public_method()\n", + "my_instance._my_class__private_method()\n", + "my_instance.call_private_method_in_class()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## The consequences of modifying a list when looping through it" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It can be really dangerous to modify a list when iterating through it - this is a very common pitfall that can cause unintended behavior! \n", + "Look at the following examples, and for a fun exercise: try to figure out what is going on before you skip to the solution!" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1, 3, 5]\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#sections)]" + } + ], + "source": [ + "a = [1, 2, 3, 4, 5]\n", + "for i in a:\n", + " if not i % 2:\n", + " a.remove(i)\n", + "print(a)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[4, 5]\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Logical `or`:** \n", - "\n", - "`a or b == a if a else b` \n", - "- If both values in `or` expressions are `True`, Python will select the first value (e.g., select `\"a\"` in `\"a\" or \"b\"`), and the second one in `and` expressions. \n", - "This is also called **short-circuiting** - we already know that the logical `or` must be `True` if the first value is `True` and therefore can omit the evaluation of the second value.\n", - "\n", - "**Logical `and`:** \n", + } + ], + "source": [ + "b = [2, 4, 5, 6]\n", + "for i in b:\n", + " if not i % 2:\n", + " b.remove(i)\n", + "print(b)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "**The solution** is that we are iterating through the list index by index, and if we remove one of the items in-between, we inevitably mess around with the indexing, look at the following example, and it will become clear:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 2\n", + "1 5\n", + "2 6\n", + "[4, 5]\n" + ] + } + ], + "source": [ + "b = [2, 4, 5, 6]\n", + "for index, item in enumerate(b):\n", + " print(index, item)\n", + " if not item % 2:\n", + " b.remove(item)\n", + "print(b)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Dynamic binding and typos in variable names\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Be careful, dynamic binding is convenient, but can also quickly become dangerous!" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "first list:\n", + "0\n", + "1\n", + "2\n", "\n", - "`a and b == b if a else a` \n", - "- If both values in `and` expressions are `True`, Python will select the second value, since for a logical `and`, both values must be true.\n" + "second list:\n", + "2\n", + "2\n", + "2\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "result = (2 or 3) * (5 and 7)\n", - "print('2 * 7 =', result)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "2 * 7 = 14\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "" + } + ], + "source": [ + "print('first list:')\n", + "for i in range(3):\n", + " print(i)\n", + " \n", + "print('\\nsecond list:')\n", + "for j in range(3):\n", + " print(i) # I (intentionally) made typo here!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## List slicing using indexes that are \"out of range\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we have all encountered it 1 (x10000) time(s) in our live, the infamous `IndexError`:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "ename": "IndexError", + "evalue": "list index out of range", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mmy_list\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m4\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m5\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmy_list\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mIndexError\u001b[0m: list index out of range" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Don't use mutable objects as default arguments for functions!" + } + ], + "source": [ + "my_list = [1, 2, 3, 4, 5]\n", + "print(my_list[5])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "But suprisingly, it is not raised when we are doing list slicing, which can be a really pain for debugging:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[]\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#sections)]" + } + ], + "source": [ + "my_list = [1, 2, 3, 4, 5]\n", + "print(my_list[5:])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## Reusing global variable names and `UnboundLocalErrors`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Usually, it is no problem to access global variables in the local scope of a function:" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "global\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Don't use mutable objects (e.g., dictionaries, lists, sets, etc.) as default arguments for functions! You might expect that a new list is created every time when we call the function without providing an argument for the default parameter, but this is not the case: **Python will create the mutable object (default parameter) the first time the function is defined - not when it is called**, see the following code:\n", - "\n", - "(Original source: [http://docs.python-guide.org/en/latest/writing/gotchas/](http://docs.python-guide.org/en/latest/writing/gotchas/)" + } + ], + "source": [ + "def my_func():\n", + " print(var)\n", + "\n", + "var = 'global'\n", + "my_func()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And is also no problem to use the same variable name in the local scope without affecting the local counterpart: " + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "global\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def append_to_list(value, def_list=[]):\n", - " def_list.append(value)\n", - " return def_list\n", - "\n", - "my_list = append_to_list(1)\n", - "print(my_list)\n", - "\n", - "my_other_list = append_to_list(2)\n", - "print(my_other_list)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[1]\n", - "[1, 2]\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Another good example showing that demonstrates that default arguments are created when the function is created (**and not when it is called!**):" + } + ], + "source": [ + "def my_func():\n", + " var = 'locally changed'\n", + "\n", + "var = 'global'\n", + "my_func()\n", + "print(var)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "But we have to be careful if we use a variable name that occurs in the global scope, and we want to access it in the local function scope if we want to reuse this name:" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "ename": "UnboundLocalError", + "evalue": "local variable 'var' referenced before assignment", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mUnboundLocalError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mvar\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'global'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mmy_func\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m\u001b[0m in \u001b[0;36mmy_func\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mmy_func\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvar\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# want to access global variable\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mvar\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'locally changed'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mvar\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'global'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mUnboundLocalError\u001b[0m: local variable 'var' referenced before assignment" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import time\n", - "def report_arg(my_default=time.time()):\n", - " print(my_default)\n", - "\n", - "report_arg()\n", - "\n", - "time.sleep(5)\n", - "\n", - "report_arg()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "1397764090.456688\n", - "1397764090.456688" - ] - }, - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n" + } + ], + "source": [ + "def my_func():\n", + " print(var) # want to access global variable\n", + " var = 'locally changed' # but Python thinks we forgot to define the local variable!\n", + " \n", + "var = 'global'\n", + "my_func()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this case, we have to use the `global` keyword!" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "global\n", + "locally changed\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Be aware of the consuming generator" + } + ], + "source": [ + "def my_func():\n", + " global var\n", + " print(var) # want to access global variable\n", + " var = 'locally changed' # changes the gobal variable\n", + "\n", + "var = 'global'\n", + "\n", + "my_func()\n", + "print(var)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Creating copies of mutable objects\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's assume a scenario where we want to duplicate sub`list`s of values stored in another list. If we want to create independent sub`list` object, using the arithmetic multiplication operator could lead to rather unexpected (or undesired) results:" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "initially ---> [[1, 2, 3], [1, 2, 3]]\n", + "after my_list1[1][0] = 'a' ---> [['a', 2, 3], ['a', 2, 3]]\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#sections)]" + } + ], + "source": [ + "my_list1 = [[1, 2, 3]] * 2\n", + "\n", + "print('initially ---> ', my_list1)\n", + "\n", + "# modify the 1st element of the 2nd sublist\n", + "my_list1[1][0] = 'a'\n", + "print(\"after my_list1[1][0] = 'a' ---> \", my_list1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "In this case, we should better create \"new\" objects:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "initially: ---> [[1, 2, 3], [1, 2, 3]]\n", + "after my_list2[1][0] = 'a': ---> [[1, 2, 3], ['a', 2, 3]]\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Be aware of what is happening when combining \"`in`\" checks with generators, since they won't evaluate from the beginning once a position is \"consumed\"." + } + ], + "source": [ + "my_list2 = [[1, 2, 3] for i in range(2)]\n", + "\n", + "print('initially: ---> ', my_list2)\n", + "\n", + "# modify the 1st element of the 2nd sublist\n", + "my_list2[1][0] = 'a'\n", + "print(\"after my_list2[1][0] = 'a': ---> \", my_list2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "And here is the proof:" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "id my_list1: 4350764680, id my_list2: 4350766472\n", + "id my_list1: 4350764680, id my_list2: 4350766664\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "gen = (i for i in range(5))\n", - "print('2 in gen,', 2 in gen)\n", - "print('3 in gen,', 3 in gen)\n", - "print('1 in gen,', 1 in gen) " - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "2 in gen, True\n", - "3 in gen, True\n", - "1 in gen, False\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Although this defeats the purpose of an generator (in most cases), we can convert a generator into a list to circumvent the problem. " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "gen = (i for i in range(5))\n", - "a_list = list(gen)\n", - "print('2 in l,', 2 in a_list)\n", - "print('3 in l,', 3 in a_list)\n", - "print('1 in l,', 1 in a_list) " - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "2 in l, True\n", - "3 in l, True\n", - "1 in l, True\n" - ] - } - ], - "prompt_number": 27 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## `bool` is a subclass of `int`\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Chicken or egg? In the history of Python (Python 2.2 to be specific) truth values were implemented via 1 and 0 (similar to the old C). In order to avoid syntax errors in old (but perfectly working) Python code, `bool` was added as a subclass of `int` in Python 2.3.\n", - "\n", - "Original source: [http://www.peterbe.com/plog/bool-is-int](http://www.peterbe.com/plog/bool-is-int)" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print('isinstance(True, int):', isinstance(True, int))\n", - "print('True + True:', True + True)\n", - "print('3*True + True:', 3*True + True)\n", - "print('3*True - False:', 3*True - False)\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "isinstance(True, int): True\n", - "True + True: 2\n", - "3*True + True: 4\n", - "3*True - False: 3\n" - ] - } - ], - "prompt_number": 28 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## About lambda-in-closures-and-a-loop pitfall" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Remember the section about the [\"consuming generators\"](consuming_generators)? This example is somewhat related, but the result might still come unexpected. \n", - "\n", - "(Original source: [http://openhome.cc/eGossip/Blog/UnderstandingLambdaClosure3.html](http://openhome.cc/eGossip/Blog/UnderstandingLambdaClosure3.html))\n", - "\n", - "In the first example below, we call a `lambda` function in a list comprehension, and the value `i` will be dereferenced every time we call `lambda` within the scope of the list comprehension. Since the list comprehension has already been constructed and evaluated when we for-loop through the list, the closure-variable will be set to the last value 4." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "my_list = [lambda: i for i in range(5)]\n", - "for l in my_list:\n", - " print(l())" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "4\n", - "4\n", - "4\n", - "4\n", - "4\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "However, by using a generator expression, we can make use of its stepwise evaluation (note that the returned variable still stems from the same closure, but the value changes as we iterate over the generator)." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "my_gen = (lambda: n for n in range(5))\n", - "for l in my_gen:\n", - " print(l())" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "0\n", - "1\n", - "2\n", - "3\n", - "4\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And if you are really keen on using lists, there is a nifty trick that circumvents this problem as a reader nicely pointed out in the comments: We can simply pass the loop variable `i` as a default argument to the lambdas." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "my_list = [lambda x=i: x for i in range(5)]\n", - "for l in my_list:\n", - " print(l())" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "0\n", - "1\n", - "2\n", - "3\n", - "4\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Python's LEGB scope resolution and the keywords `global` and `nonlocal`" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "There is nothing particularly surprising about Python's LEGB scope resolution (Local -> Enclosed -> Global -> Built-in), but it is still useful to take a look at some examples!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### `global` vs. `local`\n", - "\n", - "According to the LEGB rule, Python will first look for a variable in the local scope. So if we set the variable `x = 1` `local`ly in the function's scope, it won't have an effect on the `global` `x`." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "x = 0\n", - "def in_func():\n", - " x = 1\n", - " print('in_func:', x)\n", - " \n", - "in_func()\n", - "print('global:', x)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "in_func: 1\n", - "global: 0\n" - ] - } - ], - "prompt_number": 31 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If we want to modify the `global` x via a function, we can simply use the `global` keyword to import the variable into the function's scope:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "x = 0\n", - "def in_func():\n", - " global x\n", - " x = 1\n", - " print('in_func:', x)\n", - " \n", - "in_func()\n", - "print('global:', x)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "in_func: 1\n", - "global: 1\n" - ] - } - ], - "prompt_number": 34 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### `local` vs. `enclosed`\n", - "\n", - "Now, let us take a look at `local` vs. `enclosed`. Here, we set the variable `x = 1` in the `outer` function and set `x = 1` in the enclosed function `inner`. Since `inner` looks in the local scope first, it won't modify `outer`'s `x`." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def outer():\n", - " x = 1\n", - " print('outer before:', x)\n", - " def inner():\n", - " x = 2\n", - " print(\"inner:\", x)\n", - " inner()\n", - " print(\"outer after:\", x)\n", - "outer()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "outer before: 1\n", - "inner: 2\n", - "outer after: 1\n" - ] - } - ], - "prompt_number": 36 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here is where the `nonlocal` keyword comes in handy - it allows us to modify the `x` variable in the `enclosed` scope:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def outer():\n", - " x = 1\n", - " print('outer before:', x)\n", - " def inner():\n", - " nonlocal x\n", - " x = 2\n", - " print(\"inner:\", x)\n", - " inner()\n", - " print(\"outer after:\", x)\n", - "outer()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "outer before: 1\n", - "inner: 2\n", - "outer after: 2\n" - ] - } - ], - "prompt_number": 35 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## When mutable contents of immutable tuples aren't so mutable" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As we all know, tuples are immutable objects in Python, right!? But what happens if they contain mutable objects? \n", - "\n", - "First, let us have a look at the expected behavior: a `TypeError` is raised if we try to modify immutable types in a tuple: " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "tup = (1,)\n", - "tup[0] += 1" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "ename": "TypeError", - "evalue": "'tuple' object does not support item assignment", - "output_type": "pyerr", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mtup\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mtup\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m: 'tuple' object does not support item assignment" - ] - } - ], - "prompt_number": 41 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### But what if we put a mutable object into the immutable tuple? Well, modification works, but we **also** get a `TypeError` at the same time." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "tup = ([],)\n", - "print('tup before: ', tup)\n", - "tup[0] += [1]" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "tup before: ([],)\n" - ] - }, - { - "ename": "TypeError", - "evalue": "'tuple' object does not support item assignment", - "output_type": "pyerr", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mtup\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'tup before: '\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtup\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mtup\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m: 'tuple' object does not support item assignment" - ] - } - ], - "prompt_number": 42 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print('tup after: ', tup)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "tup after: ([1],)\n" - ] - } - ], - "prompt_number": 43 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "However, **there are ways** to modify the mutable contents of the tuple without raising the `TypeError`, the solution is the `.extend()` method, or alternatively `.append()` (for lists):" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "tup = ([],)\n", - "print('tup before: ', tup)\n", - "tup[0].extend([1])\n", - "print('tup after: ', tup)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "tup before: ([],)\n", - "tup after: ([1],)\n" - ] - } - ], - "prompt_number": 44 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "tup = ([],)\n", - "print('tup before: ', tup)\n", - "tup[0].append(1)\n", - "print('tup after: ', tup)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "tup before: ([],)\n", - "tup after: ([1],)\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Explanation\n", - "\n", - "**A. Jesse Jiryu Davis** has a nice explanation for this phenomenon (Original source: [http://emptysqua.re/blog/python-increment-is-weird-part-ii/](http://emptysqua.re/blog/python-increment-is-weird-part-ii/))\n", - "\n", - "If we try to extend the list via `+=` *\"then the statement executes `STORE_SUBSCR`, which calls the C function `PyObject_SetItem`, which checks if the object supports item assignment. In our case the object is a tuple, so `PyObject_SetItem` throws the `TypeError`. Mystery solved.\"*" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### One more note about the `immutable` status of tuples. Tuples are famous for being immutable. However, how comes that this code works?" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "my_tup = (1,)\n", - "my_tup += (4,)\n", - "my_tup = my_tup + (5,)\n", - "print(my_tup)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(1, 4, 5)\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What happens \"behind\" the curtains is that the tuple is not modified, but every time a new object is generated, which will inherit the old \"name tag\":" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "my_tup = (1,)\n", - "print(id(my_tup))\n", - "my_tup += (4,)\n", - "print(id(my_tup))\n", - "my_tup = my_tup + (5,)\n", - "print(id(my_tup))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "4337381840\n", - "4357415496\n", - "4357289952\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## List comprehensions are fast, but generators are faster!?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\"List comprehensions are fast, but generators are faster!?\" - No, not really (or significantly, see the benchmarks below). So what's the reason to prefer one over the other?\n", - "- use lists if you want to use the plethora of list methods \n", - "- use generators when you are dealing with huge collections to avoid memory issues" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import timeit\n", - "\n", - "def plainlist(n=100000):\n", - " my_list = []\n", - " for i in range(n):\n", - " if i % 5 == 0:\n", - " my_list.append(i)\n", - " return my_list\n", - "\n", - "def listcompr(n=100000):\n", - " my_list = [i for i in range(n) if i % 5 == 0]\n", - " return my_list\n", - "\n", - "def generator(n=100000):\n", - " my_gen = (i for i in range(n) if i % 5 == 0)\n", - " return my_gen\n", - "\n", - "def generator_yield(n=100000):\n", - " for i in range(n):\n", - " if i % 5 == 0:\n", - " yield i" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 11 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### To be fair to the list, let us exhaust the generators:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def test_plainlist(plain_list):\n", - " for i in plain_list():\n", - " pass\n", - "\n", - "def test_listcompr(listcompr):\n", - " for i in listcompr():\n", - " pass\n", - "\n", - "def test_generator(generator):\n", - " for i in generator():\n", - " pass\n", - "\n", - "def test_generator_yield(generator_yield):\n", - " for i in generator_yield():\n", - " pass\n", - "\n", - "print('plain_list: ', end = '')\n", - "%timeit test_plainlist(plainlist)\n", - "print('\\nlistcompr: ', end = '')\n", - "%timeit test_listcompr(listcompr)\n", - "print('\\ngenerator: ', end = '')\n", - "%timeit test_generator(generator)\n", - "print('\\ngenerator_yield: ', end = '')\n", - "%timeit test_generator_yield(generator_yield)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "plain_list: 10 loops, best of 3: 22.4 ms per loop" - ] - }, - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n", - "\n", - "listcompr: 10 loops, best of 3: 20.8 ms per loop" - ] - }, - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n", - "\n", - "generator: 10 loops, best of 3: 22 ms per loop" - ] - }, - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n", - "\n", - "generator_yield: 10 loops, best of 3: 21.9 ms per loop" - ] - }, - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Public vs. private class methods and name mangling\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Who has not stumbled across this quote \"we are all consenting adults here\" in the Python community, yet? Unlike in other languages like C++ (sorry, there are many more, but that's one I am most familiar with), we can't really protect class methods from being used outside the class (i.e., by the API user). \n", - "All we can do is to indicate methods as private to make clear that they are better not used outside the class, but it is really up to the class user, since \"we are all consenting adults here\"! \n", - "So, when we want to mark a class method as private, we can put a single underscore in front of it. \n", - "If we additionally want to avoid name clashes with other classes that might use the same method names, we can prefix the name with a double-underscore to invoke the name mangling.\n", - "\n", - "This doesn't prevent the class user to access this class member though, but he has to know the trick and also knows that it his own risk...\n", - "\n", - "Let the following example illustrate what I mean:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "class my_class():\n", - " def public_method(self):\n", - " print('Hello public world!')\n", - " def __private_method(self):\n", - " print('Hello private world!')\n", - " def call_private_method_in_class(self):\n", - " self.__private_method()\n", - " \n", - "my_instance = my_class()\n", - "\n", - "my_instance.public_method()\n", - "my_instance._my_class__private_method()\n", - "my_instance.call_private_method_in_class()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Hello public world!\n", - "Hello private world!\n", - "Hello private world!\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## The consequences of modifying a list when looping through it" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "It can be really dangerous to modify a list when iterating through it - this is a very common pitfall that can cause unintended behavior! \n", - "Look at the following examples, and for a fun exercise: try to figure out what is going on before you skip to the solution!" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "a = [1, 2, 3, 4, 5]\n", - "for i in a:\n", - " if not i % 2:\n", - " a.remove(i)\n", - "print(a)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[1, 3, 5]\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "b = [2, 4, 5, 6]\n", - "for i in b:\n", - " if not i % 2:\n", - " b.remove(i)\n", - "print(b)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[4, 5]\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "**The solution** is that we are iterating through the list index by index, and if we remove one of the items in-between, we inevitably mess around with the indexing, look at the following example, and it will become clear:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "b = [2, 4, 5, 6]\n", - "for index, item in enumerate(b):\n", - " print(index, item)\n", - " if not item % 2:\n", - " b.remove(item)\n", - "print(b)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "0 2\n", - "1 5\n", - "2 6\n", - "[4, 5]\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Dynamic binding and typos in variable names\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Be careful, dynamic binding is convenient, but can also quickly become dangerous!" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print('first list:')\n", - "for i in range(3):\n", - " print(i)\n", - " \n", - "print('\\nsecond list:')\n", - "for j in range(3):\n", - " print(i) # I (intentionally) made typo here!" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "first list:\n", - "0\n", - "1\n", - "2\n", - "\n", - "second list:\n", - "2\n", - "2\n", - "2\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## List slicing using indexes that are \"out of range\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As we have all encountered it 1 (x10000) time(s) in our live, the infamous `IndexError`:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "my_list = [1, 2, 3, 4, 5]\n", - "print(my_list[5])" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "ename": "IndexError", - "evalue": "list index out of range", - "output_type": "pyerr", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mmy_list\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m4\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m5\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmy_list\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mIndexError\u001b[0m: list index out of range" - ] - } - ], - "prompt_number": 15 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "But suprisingly, it is not raised when we are doing list slicing, which can be a really pain for debugging:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "my_list = [1, 2, 3, 4, 5]\n", - "print(my_list[5:])" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[]\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## Reusing global variable names and `UnboundLocalErrors`" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Usually, it is no problem to access global variables in the local scope of a function:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def my_func():\n", - " print(var)\n", - "\n", - "var = 'global'\n", - "my_func()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "global\n" - ] - } - ], - "prompt_number": 37 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And is also no problem to use the same variable name in the local scope without affecting the local counterpart: " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def my_func():\n", - " var = 'locally changed'\n", - "\n", - "var = 'global'\n", - "my_func()\n", - "print(var)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "global\n" - ] - } - ], - "prompt_number": 38 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "But we have to be careful if we use a variable name that occurs in the global scope, and we want to access it in the local function scope if we want to reuse this name:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def my_func():\n", - " print(var) # want to access global variable\n", - " var = 'locally changed' # but Python thinks we forgot to define the local variable!\n", - " \n", - "var = 'global'\n", - "my_func()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "ename": "UnboundLocalError", - "evalue": "local variable 'var' referenced before assignment", - "output_type": "pyerr", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mUnboundLocalError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mvar\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'global'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mmy_func\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m\u001b[0m in \u001b[0;36mmy_func\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mmy_func\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvar\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# want to access global variable\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mvar\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'locally changed'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mvar\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'global'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mUnboundLocalError\u001b[0m: local variable 'var' referenced before assignment" - ] - } - ], - "prompt_number": 40 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this case, we have to use the `global` keyword!" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def my_func():\n", - " global var\n", - " print(var) # want to access global variable\n", - " var = 'locally changed' # changes the gobal variable\n", - "\n", - "var = 'global'\n", - "\n", - "my_func()\n", - "print(var)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "global\n", - "locally changed\n" - ] - } - ], - "prompt_number": 43 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Creating copies of mutable objects\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's assume a scenario where we want to duplicate sub`list`s of values stored in another list. If we want to create independent sub`list` object, using the arithmetic multiplication operator could lead to rather unexpected (or undesired) results:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "my_list1 = [[1, 2, 3]] * 2\n", - "\n", - "print('initially ---> ', my_list1)\n", - "\n", - "# modify the 1st element of the 2nd sublist\n", - "my_list1[1][0] = 'a'\n", - "print(\"after my_list1[1][0] = 'a' ---> \", my_list1)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "initially ---> [[1, 2, 3], [1, 2, 3]]\n", - "after my_list1[1][0] = 'a' ---> [['a', 2, 3], ['a', 2, 3]]\n" - ] - } - ], - "prompt_number": 24 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "In this case, we should better create \"new\" objects:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "my_list2 = [[1, 2, 3] for i in range(2)]\n", - "\n", - "print('initially: ---> ', my_list2)\n", - "\n", - "# modify the 1st element of the 2nd sublist\n", - "my_list2[1][0] = 'a'\n", - "print(\"after my_list2[1][0] = 'a': ---> \", my_list2)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "initially: ---> [[1, 2, 3], [1, 2, 3]]\n", - "after my_list2[1][0] = 'a': ---> [[1, 2, 3], ['a', 2, 3]]\n" - ] - } - ], - "prompt_number": 25 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "And here is the proof:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "for a,b in zip(my_list1, my_list2):\n", - " print('id my_list1: {}, id my_list2: {}'.format(id(a), id(b)))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "id my_list1: 4350764680, id my_list2: 4350766472\n", - "id my_list1: 4350764680, id my_list2: 4350766664\n" - ] - } - ], - "prompt_number": 26 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## Key differences between Python 2 and 3\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "There are some good articles already that are summarizing the differences between Python 2 and 3, e.g., \n", - "- [https://wiki.python.org/moin/Python2orPython3](https://wiki.python.org/moin/Python2orPython3)\n", - "- [https://docs.python.org/3.0/whatsnew/3.0.html](https://docs.python.org/3.0/whatsnew/3.0.html)\n", - "- [http://python3porting.com/differences.html](http://python3porting.com/differences.html)\n", - "- [https://docs.python.org/3/howto/pyporting.html](https://docs.python.org/3/howto/pyporting.html) \n", - "etc.\n", - "\n", - "But it might be still worthwhile, especially for Python newcomers, to take a look at some of those!\n", - "(Note: the the code was executed in Python 3.4.0 and Python 2.7.5 and copied from interactive shell sessions.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Overview - Key differences between Python 2 and 3" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "\n", - "- [Unicode](#unicode)\n", - "- [The print statement](#print)\n", - "- [Integer division](#integer_div)\n", - "- [xrange()](#xrange)\n", - "- [Raising exceptions](#raising_exceptions)\n", - "- [Handling exceptions](#handling_exceptions)\n", - "- [next() function and .next() method](#next_next)\n", - "- [Loop variables and leaking into the global scope](#loop_leak)\n", - "- [Comparing unorderable types](#compare_unorder)\n", - "\n", - "
\n", - "
\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Unicode..." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to Python 2.x vs 3.x overview](#py23_overview)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "####- Python 2: \n", - "We have ASCII `str()` types, separate `unicode()`, but no `byte` type\n", - "####- Python 3: \n", - "Now, we finally have Unicode (utf-8) `str`ings, and 2 byte classes: `byte` and `bytearray`s" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#############\n", - "# Python 2\n", - "#############\n", - "\n", - ">>> type(unicode('is like a python3 str()'))\n", - "\n", - "\n", - ">>> type(b'byte type does not exist')\n", - "\n", - "\n", - ">>> 'they are really' + b' the same'\n", - "'they are really the same'\n", - "\n", - ">>> type(bytearray(b'bytearray oddly does exist though'))\n", - "\n", - "\n", - "#############\n", - "# Python 3\n", - "#############\n", - "\n", - ">>> print('strings are now utf-8 \\u03BCnico\\u0394\u00e9!')\n", - "strings are now utf-8 \u03bcnico\u0394\u00e9!\n", - "\n", - "\n", - ">>> type(b' and we have byte types for storing data')\n", - "\n", - "\n", - ">>> type(bytearray(b'but also bytearrays for those who prefer them over strings'))\n", - "\n", - "\n", - ">>> 'string' + b'bytes for data'\n", - "Traceback (most recent call last):s\n", - " File \"\", line 1, in \n", - "TypeError: Can't convert 'bytes' object to str implicitly" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### The print statement" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to Python 2.x vs 3.x overview](#py23_overview)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Very trivial, but this change makes sense, Python 3 now only accepts `print`s with proper parentheses - just like the other function calls ..." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Python 2\n", - ">>> print 'Hello, World!'\n", - "Hello, World!\n", - ">>> print('Hello, World!')\n", - "Hello, World!\n", - "\n", - "# Python 3\n", - ">>> print('Hello, World!')\n", - "Hello, World!\n", - ">>> print 'Hello, World!'\n", - " File \"\", line 1\n", - " print 'Hello, World!'\n", - " ^\n", - "SyntaxError: invalid syntax" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And if we want to print the output of 2 consecutive print functions on the same line, you would use a comma in Python 2, and a `end=\"\"` in Python 3:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Python 2\n", - ">>> print \"line 1\", ; print 'same line'\n", - "line 1 same line\n", - "\n", - "# Python 3\n", - ">>> print(\"line 1\", end=\"\") ; print (\" same line\")\n", - "line 1 same line" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Integer division" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to Python 2.x vs 3.x overview](#py23_overview)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is a pretty dangerous thing if you are porting code, or executing Python 3 code in Python 2 since the change in integer-division behavior can often go unnoticed. \n", - "So, I still tend to use a `float(3)/2` or `3/2.0` instead of a `3/2` in my Python 3 scripts to save the Python 2 guys some trouble ... (PS: and vice versa, you can `from __future__ import division` in your Python 2 scripts)." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Python 2\n", - ">>> 3 / 2\n", - "1\n", - ">>> 3 // 2\n", - "1\n", - ">>> 3 / 2.0\n", - "1.5\n", - ">>> 3 // 2.0\n", - "1.0\n", - "\n", - "# Python 3\n", - ">>> 3 / 2\n", - "1.5\n", - ">>> 3 // 2\n", - "1\n", - ">>> 3 / 2.0\n", - "1.5\n", - ">>> 3 // 2.0\n", - "1.0" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "###`xrange()` " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to Python 2.x vs 3.x overview](#py23_overview)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - " \n", - "`xrange()` was pretty popular in Python 2.x if you wanted to create an iterable object. The behavior was quite similar to a generator ('lazy evaluation'), but you could iterate over it infinitely. The advantage was that it was generally faster than `range()` (e.g., in a for-loop) - not if you had to iterate over the list multiple times, since the generation happens every time from scratch! \n", - "In Python 3, the `range()` was implemented like the `xrange()` function so that a dedicated `xrange()` function does not exist anymore." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Python 2\n", - "> python -m timeit 'for i in range(1000000):' ' pass'\n", - "10 loops, best of 3: 66 msec per loop\n", - "\n", - " > python -m timeit 'for i in xrange(1000000):' ' pass'\n", - "10 loops, best of 3: 27.8 msec per loop\n", - "\n", - "# Python 3\n", - "> python3 -m timeit 'for i in range(1000000):' ' pass'\n", - "10 loops, best of 3: 51.1 msec per loop\n", - "\n", - "> python3 -m timeit 'for i in xrange(1000000):' ' pass'\n", - "Traceback (most recent call last):\n", - " File \"/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/timeit.py\", line 292, in main\n", - " x = t.timeit(number)\n", - " File \"/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/timeit.py\", line 178, in timeit\n", - " timing = self.inner(it, self.timer)\n", - " File \"\", line 6, in inner\n", - " for i in xrange(1000000):\n", - "NameError: name 'xrange' is not defined" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Raising exceptions" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to Python 2.x vs 3.x overview](#py23_overview)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "\n", - "Where Python 2 accepts both notations, the 'old' and the 'new' way, Python 3 chokes (and raises a `SyntaxError` in turn) if we don't enclose the exception argument in parentheses:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Python 2\n", - ">>> raise IOError, \"file error\"\n", - "Traceback (most recent call last):\n", - " File \"\", line 1, in \n", - "IOError: file error\n", - ">>> raise IOError(\"file error\")\n", - "Traceback (most recent call last):\n", - " File \"\", line 1, in \n", - "IOError: file error\n", - "\n", - " \n", - "# Python 3 \n", - ">>> raise IOError, \"file error\"\n", - " File \"\", line 1\n", - " raise IOError, \"file error\"\n", - " ^\n", - "SyntaxError: invalid syntax\n", - ">>> raise IOError(\"file error\")\n", - "Traceback (most recent call last):\n", - " File \"\", line 1, in \n", - "OSError: file error" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Handling exceptions" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to Python 2.x vs 3.x overview](#py23_overview)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "\n", - "Also the handling of exceptions has slightly changed in Python 3. Now, we have to use the `as` keyword!" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Python 2\n", - ">>> try:\n", - "... blabla\n", - "... except NameError, err:\n", - "... print err, '--> our error msg'\n", - "... \n", - "name 'blabla' is not defined --> our error msg\n", - "\n", - "# Python 3\n", - ">>> try:\n", - "... blabla\n", - "... except NameError as err:\n", - "... print(err, '--> our error msg')\n", - "... \n", - "name 'blabla' is not defined --> our error msg" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "
\n", - "
" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### The `next()` function and `.next()` method" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to Python 2.x vs 3.x overview](#py23_overview)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "\n", - "Where you can use both function and method in Python 2.7.5, the `next()` function is all that remain in Python 3!" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Python 2\n", - ">>> my_generator = (letter for letter in 'abcdefg')\n", - ">>> my_generator.next()\n", - "'a'\n", - ">>> next(my_generator)\n", - "'b'\n", - "\n", - "# Python 3\n", - ">>> my_generator = (letter for letter in 'abcdefg')\n", - ">>> next(my_generator)\n", - "'a'\n", - ">>> my_generator.next()\n", - "Traceback (most recent call last):\n", - " File \"\", line 1, in \n", - "AttributeError: 'generator' object has no attribute 'next'" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### In Python 3.x for-loop variables don't leak into the global namespace anymore" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to Python 2.x vs 3.x overview](#py23_overview)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This goes back to a change that was made in Python 3.x and is described in [What\u2019s New In Python 3.0](https://docs.python.org/3/whatsnew/3.0.html) as follows:\n", - "\n", - "\"List comprehensions no longer support the syntactic form `[... for var in item1, item2, ...]`. Use `[... for var in (item1, item2, ...)]` instead. Also note that list comprehensions have different semantics: they are closer to syntactic sugar for a generator expression inside a `list()` constructor, and in particular the loop control variables are no longer leaked into the surrounding scope.\"" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from platform import python_version\n", - "print('This code cell was executed in Python', python_version())\n", - "\n", - "i = 1\n", - "print([i for i in range(5)])\n", - "print(i, '-> i in global')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "This code cell was executed in Python 3.3.5\n", - "[0, 1, 2, 3, 4]\n", - "1 -> i in global\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from platform import python_version\n", - "print 'This code cell was executed in Python', python_version()\n", - "\n", - "i = 1\n", - "print [i for i in range(5)]\n", - "print i, '-> i in global' " - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "This code cell was executed in Python 2.7.6\n", - "[0, 1, 2, 3, 4]\n", - "4 -> i in global\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Python 3.x prevents us from comparing unorderable types" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to Python 2.x vs 3.x overview](#py23_overview)]" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from platform import python_version\n", - "print 'This code cell was executed in Python', python_version()\n", - "\n", - "print [1, 2] > 'foo'\n", - "print (1, 2) > 'foo'\n", - "print [1, 2] > (1, 2)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "This code cell was executed in Python 2.7.6\n", - "False\n", - "True\n", - "False\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from platform import python_version\n", - "print('This code cell was executed in Python', python_version())\n", - "\n", - "print([1, 2] > 'foo')\n", - "print((1, 2) > 'foo')\n", - "print([1, 2] > (1, 2))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "This code cell was executed in Python 3.3.5\n" - ] - }, - { - "ename": "TypeError", - "evalue": "unorderable types: list() > str()", - "output_type": "pyerr", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'This code cell was executed in Python'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpython_version\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;34m'foo'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;34m'foo'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mTypeError\u001b[0m: unorderable types: list() > str()" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "## Function annotations - What are those `->`'s in my Python code?\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Have you ever seen any Python code that used colons inside the parantheses of a function definition?" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def foo1(x: 'insert x here', y: 'insert x^2 here'):\n", - " print('Hello, World')\n", - " return" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 8 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And what about the fancy arrow here?" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def foo2(x, y) -> 'Hi!':\n", - " print('Hello, World')\n", - " return" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 10 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Q: Is this valid Python syntax? \n", - "A: Yes!\n", - " \n", - " \n", - "Q: So, what happens if I *just call* the function? \n", - "A: Nothing!\n", - " \n", - "Here is the proof!" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "foo1(1,2)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Hello, World\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "foo2(1,2) " - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Hello, World\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**So, those are function annotations ... ** \n", - "- the colon for the function parameters \n", - "- the arrow for the return value \n", - "\n", - "You probably will never make use of them (or at least very rarely). Usually, we write good function documentations below the function as a docstring - or at least this is how I would do it (okay this case is a little bit extreme, I have to admit):" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def is_palindrome(a):\n", - " \"\"\"\n", - " Case-and punctuation insensitive check if a string is a palindrom.\n", - " \n", - " Keyword arguments:\n", - " a (str): The string to be checked if it is a palindrome.\n", - " \n", - " Returns `True` if input string is a palindrome, else False.\n", - " \n", - " \"\"\"\n", - " stripped_str = [l for l in my_str.lower() if l.isalpha()]\n", - " return stripped_str == stripped_str[::-1]\n", - " " - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "However, function annotations can be useful to indicate that work is still in progress in some cases. But they are optional and I see them very very rarely.\n", - "\n", - "As it is stated in [PEP3107](http://legacy.python.org/dev/peps/pep-3107/#fundamentals-of-function-annotations):\n", - "\n", - "1. Function annotations, both for parameters and return values, are completely optional.\n", - "\n", - "2. Function annotations are nothing more than a way of associating arbitrary Python expressions with various parts of a function at compile-time.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The nice thing about function annotations is their `__annotations__` attribute, which is dictionary of all the parameters and/or the `return` value you annotated." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "foo1.__annotations__" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "pyout", - "prompt_number": 17, - "text": [ - "{'y': 'insert x^2 here', 'x': 'insert x here'}" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "foo2.__annotations__" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "pyout", - "prompt_number": 18, - "text": [ - "{'return': 'Hi!'}" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**When are they useful?**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Function annotations can be useful for a couple of things \n", - "- Documentation in general\n", - "- pre-condition testing\n", - "- [type checking](http://legacy.python.org/dev/peps/pep-0362/#annotation-checker)\n", - " \n", - "..." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Abortive statements in `finally` blocks" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Python's `try-except-finally` blocks are very handy for catching and handling errors. The `finally` block is always executed whether an `exception` has been raised or not as illustrated in the following example." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def try_finally1():\n", - " try:\n", - " print('in try:')\n", - " print('do some stuff')\n", - " float('abc')\n", - " except ValueError:\n", - " print('an error occurred')\n", - " else:\n", - " print('no error occurred')\n", - " finally:\n", - " print('always execute finally')\n", - " \n", - "try_finally1()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "in try:\n", - "do some stuff\n", - "an error occurred\n", - "always execute finally\n" - ] - } - ], - "prompt_number": 24 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "But can you also guess what will be printed in the next code cell?" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def try_finally2():\n", - " try:\n", - " print(\"do some stuff in try block\")\n", - " return \"return from try block\"\n", - " finally:\n", - " print(\"do some stuff in finally block\")\n", - " return \"always execute finally\"\n", - " \n", - "print(try_finally2())" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "do some stuff in try block\n", - "do some stuff in finally block\n", - "always execute finally\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Here, the abortive `return` statement in the `finally` block simply overrules the `return` in the `try` block, since **`finally` is guaranteed to always be executed.** So, be careful using abortive statements in `finally` blocks!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#Assigning types to variables as values" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "I am not yet sure in which context this can be useful, but it is a nice fun fact to know that we can assign types as values to variables." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "a_var = str\n", - "a_var(123)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "pyout", - "prompt_number": 1, - "text": [ - "'123'" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from random import choice\n", - "\n", - "a, b, c = float, int, str\n", - "for i in range(5):\n", - " j = choice([a,b,c])(i)\n", - " print(j, type(j))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "0 \n", - "1 \n", - "2.0 \n", - "3 \n", - "4 \n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Only the first clause of generators is evaluated immediately" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The main reason why we love to use generators in certain cases (i.e., when we are dealing with large numbers of computations) is that it only computes the next value when it is needed, which is also known as \"lazy\" evaluation.\n", - "However, the first clause of an generator is already checked upon it's creation, as the following example demonstrates:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "gen_fails = (i for i in 1/0)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "ename": "ZeroDivisionError", - "evalue": "division by zero", - "output_type": "pyerr", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mZeroDivisionError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mgen_fails\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mZeroDivisionError\u001b[0m: division by zero" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Certainly, this is a nice feature, since it notifies us about syntax erros immediately. However, this is (unfortunately) not the case if we have multiple cases in our generator." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "gen_succeeds = (i for i in range(5) for j in 1/0)" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 19 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print('But obviously fails when we iterate ...')\n", - "for i in gen_succeeds:\n", - " print(i)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "ename": "ZeroDivisionError", - "evalue": "division by zero", - "output_type": "pyerr", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mZeroDivisionError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'But obviously fails when we iterate ...'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mgen_succeeds\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mgen_succeeds\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mj\u001b[0m \u001b[0;32min\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mZeroDivisionError\u001b[0m: division by zero" - ] - }, - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "But obviously fails when we iterate ...\n" - ] - } - ], - "prompt_number": 20 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
\n", - "
" + } + ], + "source": [ + "for a,b in zip(my_list1, my_list2):\n", + " print('id my_list1: {}, id my_list2: {}'.format(id(a), id(b)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## Key differences between Python 2 and 3\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There are some good articles already that are summarizing the differences between Python 2 and 3, e.g., \n", + "- [https://wiki.python.org/moin/Python2orPython3](https://wiki.python.org/moin/Python2orPython3)\n", + "- [https://docs.python.org/3.0/whatsnew/3.0.html](https://docs.python.org/3.0/whatsnew/3.0.html)\n", + "- [http://python3porting.com/differences.html](http://python3porting.com/differences.html)\n", + "- [https://docs.python.org/3/howto/pyporting.html](https://docs.python.org/3/howto/pyporting.html) \n", + "etc.\n", + "\n", + "But it might be still worthwhile, especially for Python newcomers, to take a look at some of those!\n", + "(Note: the the code was executed in Python 3.4.0 and Python 2.7.5 and copied from interactive shell sessions.)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Overview - Key differences between Python 2 and 3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "- [Unicode](#unicode)\n", + "- [The print statement](#print)\n", + "- [Integer division](#integer_div)\n", + "- [xrange()](#xrange)\n", + "- [Raising exceptions](#raising_exceptions)\n", + "- [Handling exceptions](#handling_exceptions)\n", + "- [next() function and .next() method](#next_next)\n", + "- [Loop variables and leaking into the global scope](#loop_leak)\n", + "- [Comparing unorderable types](#compare_unorder)\n", + "\n", + "
\n", + "
\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Unicode..." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to Python 2.x vs 3.x overview](#py23_overview)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "####- Python 2: \n", + "We have ASCII `str()` types, separate `unicode()`, but no `byte` type\n", + "####- Python 3: \n", + "Now, we finally have Unicode (utf-8) `str`ings, and 2 byte classes: `byte` and `bytearray`s" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "#############\n", + "# Python 2\n", + "#############\n", + "\n", + ">>> type(unicode('is like a python3 str()'))\n", + "\n", + "\n", + ">>> type(b'byte type does not exist')\n", + "\n", + "\n", + ">>> 'they are really' + b' the same'\n", + "'they are really the same'\n", + "\n", + ">>> type(bytearray(b'bytearray oddly does exist though'))\n", + "\n", + "\n", + "#############\n", + "# Python 3\n", + "#############\n", + "\n", + ">>> print('strings are now utf-8 \\u03BCnico\\u0394é!')\n", + "strings are now utf-8 μnicoΔé!\n", + "\n", + "\n", + ">>> type(b' and we have byte types for storing data')\n", + "\n", + "\n", + ">>> type(bytearray(b'but also bytearrays for those who prefer them over strings'))\n", + "\n", + "\n", + ">>> 'string' + b'bytes for data'\n", + "Traceback (most recent call last):s\n", + " File \"\", line 1, in \n", + "TypeError: Can't convert 'bytes' object to str implicitly" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### The print statement" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to Python 2.x vs 3.x overview](#py23_overview)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Very trivial, but this change makes sense, Python 3 now only accepts `print`s with proper parentheses - just like the other function calls ..." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Python 2\n", + ">>> print 'Hello, World!'\n", + "Hello, World!\n", + ">>> print('Hello, World!')\n", + "Hello, World!\n", + "\n", + "# Python 3\n", + ">>> print('Hello, World!')\n", + "Hello, World!\n", + ">>> print 'Hello, World!'\n", + " File \"\", line 1\n", + " print 'Hello, World!'\n", + " ^\n", + "SyntaxError: invalid syntax" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And if we want to print the output of 2 consecutive print functions on the same line, you would use a comma in Python 2, and a `end=\"\"` in Python 3:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Python 2\n", + ">>> print \"line 1\", ; print 'same line'\n", + "line 1 same line\n", + "\n", + "# Python 3\n", + ">>> print(\"line 1\", end=\"\") ; print (\" same line\")\n", + "line 1 same line" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Integer division" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to Python 2.x vs 3.x overview](#py23_overview)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is a pretty dangerous thing if you are porting code, or executing Python 3 code in Python 2 since the change in integer-division behavior can often go unnoticed. \n", + "So, I still tend to use a `float(3)/2` or `3/2.0` instead of a `3/2` in my Python 3 scripts to save the Python 2 guys some trouble ... (PS: and vice versa, you can `from __future__ import division` in your Python 2 scripts)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Python 2\n", + ">>> 3 / 2\n", + "1\n", + ">>> 3 // 2\n", + "1\n", + ">>> 3 / 2.0\n", + "1.5\n", + ">>> 3 // 2.0\n", + "1.0\n", + "\n", + "# Python 3\n", + ">>> 3 / 2\n", + "1.5\n", + ">>> 3 // 2\n", + "1\n", + ">>> 3 / 2.0\n", + "1.5\n", + ">>> 3 // 2.0\n", + "1.0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "###`xrange()` " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to Python 2.x vs 3.x overview](#py23_overview)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + " \n", + "`xrange()` was pretty popular in Python 2.x if you wanted to create an iterable object. The behavior was quite similar to a generator ('lazy evaluation'), but you could iterate over it infinitely. The advantage was that it was generally faster than `range()` (e.g., in a for-loop) - not if you had to iterate over the list multiple times, since the generation happens every time from scratch! \n", + "In Python 3, the `range()` was implemented like the `xrange()` function so that a dedicated `xrange()` function does not exist anymore." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Python 2\n", + "> python -m timeit 'for i in range(1000000):' ' pass'\n", + "10 loops, best of 3: 66 msec per loop\n", + "\n", + " > python -m timeit 'for i in xrange(1000000):' ' pass'\n", + "10 loops, best of 3: 27.8 msec per loop\n", + "\n", + "# Python 3\n", + "> python3 -m timeit 'for i in range(1000000):' ' pass'\n", + "10 loops, best of 3: 51.1 msec per loop\n", + "\n", + "> python3 -m timeit 'for i in xrange(1000000):' ' pass'\n", + "Traceback (most recent call last):\n", + " File \"/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/timeit.py\", line 292, in main\n", + " x = t.timeit(number)\n", + " File \"/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/timeit.py\", line 178, in timeit\n", + " timing = self.inner(it, self.timer)\n", + " File \"\", line 6, in inner\n", + " for i in xrange(1000000):\n", + "NameError: name 'xrange' is not defined" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Raising exceptions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to Python 2.x vs 3.x overview](#py23_overview)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "Where Python 2 accepts both notations, the 'old' and the 'new' way, Python 3 chokes (and raises a `SyntaxError` in turn) if we don't enclose the exception argument in parentheses:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Python 2\n", + ">>> raise IOError, \"file error\"\n", + "Traceback (most recent call last):\n", + " File \"\", line 1, in \n", + "IOError: file error\n", + ">>> raise IOError(\"file error\")\n", + "Traceback (most recent call last):\n", + " File \"\", line 1, in \n", + "IOError: file error\n", + "\n", + " \n", + "# Python 3 \n", + ">>> raise IOError, \"file error\"\n", + " File \"\", line 1\n", + " raise IOError, \"file error\"\n", + " ^\n", + "SyntaxError: invalid syntax\n", + ">>> raise IOError(\"file error\")\n", + "Traceback (most recent call last):\n", + " File \"\", line 1, in \n", + "OSError: file error" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Handling exceptions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to Python 2.x vs 3.x overview](#py23_overview)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "Also the handling of exceptions has slightly changed in Python 3. Now, we have to use the `as` keyword!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Python 2\n", + ">>> try:\n", + "... blabla\n", + "... except NameError, err:\n", + "... print err, '--> our error msg'\n", + "... \n", + "name 'blabla' is not defined --> our error msg\n", + "\n", + "# Python 3\n", + ">>> try:\n", + "... blabla\n", + "... except NameError as err:\n", + "... print(err, '--> our error msg')\n", + "... \n", + "name 'blabla' is not defined --> our error msg" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "\n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### The `next()` function and `.next()` method" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to Python 2.x vs 3.x overview](#py23_overview)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "Where you can use both function and method in Python 2.7.5, the `next()` function is all that remain in Python 3!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Python 2\n", + ">>> my_generator = (letter for letter in 'abcdefg')\n", + ">>> my_generator.next()\n", + "'a'\n", + ">>> next(my_generator)\n", + "'b'\n", + "\n", + "# Python 3\n", + ">>> my_generator = (letter for letter in 'abcdefg')\n", + ">>> next(my_generator)\n", + "'a'\n", + ">>> my_generator.next()\n", + "Traceback (most recent call last):\n", + " File \"\", line 1, in \n", + "AttributeError: 'generator' object has no attribute 'next'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### In Python 3.x for-loop variables don't leak into the global namespace anymore" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to Python 2.x vs 3.x overview](#py23_overview)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This goes back to a change that was made in Python 3.x and is described in [What’s New In Python 3.0](https://docs.python.org/3/whatsnew/3.0.html) as follows:\n", + "\n", + "\"List comprehensions no longer support the syntactic form `[... for var in item1, item2, ...]`. Use `[... for var in (item1, item2, ...)]` instead. Also note that list comprehensions have different semantics: they are closer to syntactic sugar for a generator expression inside a `list()` constructor, and in particular the loop control variables are no longer leaked into the surrounding scope.\"" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "This code cell was executed in Python 3.3.5\n", + "[0, 1, 2, 3, 4]\n", + "1 -> i in global\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##Keyword argument unpacking syntax - `*args` and `**kwargs`" + } + ], + "source": [ + "from platform import python_version\n", + "print('This code cell was executed in Python', python_version())\n", + "\n", + "i = 1\n", + "print([i for i in range(5)])\n", + "print(i, '-> i in global')" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "This code cell was executed in Python 2.7.6\n", + "[0, 1, 2, 3, 4]\n", + "4 -> i in global\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#sections)]" + } + ], + "source": [ + "from platform import python_version\n", + "print 'This code cell was executed in Python', python_version()\n", + "\n", + "i = 1\n", + "print [i for i in range(5)]\n", + "print i, '-> i in global' " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Python 3.x prevents us from comparing unorderable types" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to Python 2.x vs 3.x overview](#py23_overview)]" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "This code cell was executed in Python 2.7.6\n", + "False\n", + "True\n", + "False\n" ] - }, + } + ], + "source": [ + "from platform import python_version\n", + "print 'This code cell was executed in Python', python_version()\n", + "\n", + "print [1, 2] > 'foo'\n", + "print (1, 2) > 'foo'\n", + "print [1, 2] > (1, 2)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Python has a very convenient \"keyword argument unpacking syntax\" (often also referred to as \"splat\"-operators). This is particularly useful, if we want to define a function that can take a arbitrary number of input arguments." + "name": "stdout", + "output_type": "stream", + "text": [ + "This code cell was executed in Python 3.3.5\n" ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Single-asterisk (*args)" + "ename": "TypeError", + "evalue": "unorderable types: list() > str()", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'This code cell was executed in Python'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpython_version\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;34m'foo'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;34m'foo'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mTypeError\u001b[0m: unorderable types: list() > str()" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def a_func(*args):\n", - " print('type of args:', type(args))\n", - " print('args contents:', args)\n", - " print('1st argument:', args[0])\n", - "\n", - "a_func(0, 1, 'a', 'b', 'c')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "type of args: \n", - "args contents: (0, 1, 'a', 'b', 'c')\n", - "1st argument: 0\n" - ] - } - ], - "prompt_number": 55 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Double-asterisk (**kwargs)" + } + ], + "source": [ + "from platform import python_version\n", + "print('This code cell was executed in Python', python_version())\n", + "\n", + "print([1, 2] > 'foo')\n", + "print((1, 2) > 'foo')\n", + "print([1, 2] > (1, 2))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## Function annotations - What are those `->`'s in my Python code?\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Have you ever seen any Python code that used colons inside the parantheses of a function definition?" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "def foo1(x: 'insert x here', y: 'insert x^2 here'):\n", + " print('Hello, World')\n", + " return" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And what about the fancy arrow here?" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "def foo2(x, y) -> 'Hi!':\n", + " print('Hello, World')\n", + " return" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Q: Is this valid Python syntax? \n", + "A: Yes!\n", + " \n", + " \n", + "Q: So, what happens if I *just call* the function? \n", + "A: Nothing!\n", + " \n", + "Here is the proof!" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Hello, World\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def b_func(**kwargs):\n", - " print('type of kwargs:', type(kwargs))\n", - " print('kwargs contents: ', kwargs)\n", - " print('value of argument a:', kwargs['a'])\n", - " \n", - "b_func(a=1, b=2, c=3, d=4)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "type of kwargs: \n", - "kwargs contents: {'d': 4, 'a': 1, 'c': 3, 'b': 2}\n", - "value of argument a: 1\n" - ] - } - ], - "prompt_number": 56 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### (Partially) unpacking of iterables\n", - "Another useful application of the \"unpacking\"-operator is the unpacking of lists and other other iterables." + } + ], + "source": [ + "foo1(1,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Hello, World\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "val1, *vals = [1, 2, 3, 4, 5]\n", - "print('val1:', val1)\n", - "print('vals:', vals)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "val1: 1\n", - "vals: [2, 3, 4, 5]\n" - ] - } - ], - "prompt_number": 57 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
\n", - "
" + } + ], + "source": [ + "foo2(1,2) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**So, those are function annotations ... ** \n", + "- the colon for the function parameters \n", + "- the arrow for the return value \n", + "\n", + "You probably will never make use of them (or at least very rarely). Usually, we write good function documentations below the function as a docstring - or at least this is how I would do it (okay this case is a little bit extreme, I have to admit):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "def is_palindrome(a):\n", + " \"\"\"\n", + " Case-and punctuation insensitive check if a string is a palindrom.\n", + " \n", + " Keyword arguments:\n", + " a (str): The string to be checked if it is a palindrome.\n", + " \n", + " Returns `True` if input string is a palindrome, else False.\n", + " \n", + " \"\"\"\n", + " stripped_str = [l for l in my_str.lower() if l.isalpha()]\n", + " return stripped_str == stripped_str[::-1]\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "However, function annotations can be useful to indicate that work is still in progress in some cases. But they are optional and I see them very very rarely.\n", + "\n", + "As it is stated in [PEP3107](http://legacy.python.org/dev/peps/pep-3107/#fundamentals-of-function-annotations):\n", + "\n", + "1. Function annotations, both for parameters and return values, are completely optional.\n", + "\n", + "2. Function annotations are nothing more than a way of associating arbitrary Python expressions with various parts of a function at compile-time.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The nice thing about function annotations is their `__annotations__` attribute, which is dictionary of all the parameters and/or the `return` value you annotated." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'y': 'insert x^2 here', 'x': 'insert x here'}" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "foo1.__annotations__" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'return': 'Hi!'}" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "foo2.__annotations__" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**When are they useful?**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Function annotations can be useful for a couple of things \n", + "- Documentation in general\n", + "- pre-condition testing\n", + "- [type checking](http://legacy.python.org/dev/peps/pep-0362/#annotation-checker)\n", + " \n", + "..." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Abortive statements in `finally` blocks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Python's `try-except-finally` blocks are very handy for catching and handling errors. The `finally` block is always executed whether an `exception` has been raised or not as illustrated in the following example." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "in try:\n", + "do some stuff\n", + "an error occurred\n", + "always execute finally\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Metaclasses - What creates a new instance of a class?" + } + ], + "source": [ + "def try_finally1():\n", + " try:\n", + " print('in try:')\n", + " print('do some stuff')\n", + " float('abc')\n", + " except ValueError:\n", + " print('an error occurred')\n", + " else:\n", + " print('no error occurred')\n", + " finally:\n", + " print('always execute finally')\n", + " \n", + "try_finally1()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "But can you also guess what will be printed in the next code cell?" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "do some stuff in try block\n", + "do some stuff in finally block\n", + "always execute finally\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#sections)]" + } + ], + "source": [ + "def try_finally2():\n", + " try:\n", + " print(\"do some stuff in try block\")\n", + " return \"return from try block\"\n", + " finally:\n", + " print(\"do some stuff in finally block\")\n", + " return \"always execute finally\"\n", + " \n", + "print(try_finally2())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Here, the abortive `return` statement in the `finally` block simply overrules the `return` in the `try` block, since **`finally` is guaranteed to always be executed.** So, be careful using abortive statements in `finally` blocks!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#Assigning types to variables as values" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "I am not yet sure in which context this can be useful, but it is a nice fun fact to know that we can assign types as values to variables." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'123'" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a_var = str\n", + "a_var(123)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 \n", + "1 \n", + "2.0 \n", + "3 \n", + "4 \n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Usually, it is the `__init__` method when we think of instanciating a new object from a class. However, it is the static method `__new__` (it is not a class method!) that creates and returns a new instance before `__init__()` is called. \n", - "More specifically, this is what is returned: \n", - "`return super(, cls).__new__(subcls, *args, **kwargs)` \n", - "\n", - "For more information about the `__new__` method, please see the [documentation](https://www.python.org/download/releases/2.2/descrintro/#__new__).\n", - "\n", - "As a little experiment, let us screw with `__new__` so that it returns `None` and see if `__init__` will be executed:" + } + ], + "source": [ + "from random import choice\n", + "\n", + "a, b, c = float, int, str\n", + "for i in range(5):\n", + " j = choice([a,b,c])(i)\n", + " print(j, type(j))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Only the first clause of generators is evaluated immediately" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The main reason why we love to use generators in certain cases (i.e., when we are dealing with large numbers of computations) is that it only computes the next value when it is needed, which is also known as \"lazy\" evaluation.\n", + "However, the first clause of an generator is already checked upon it's creation, as the following example demonstrates:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "ename": "ZeroDivisionError", + "evalue": "division by zero", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mZeroDivisionError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mgen_fails\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mZeroDivisionError\u001b[0m: division by zero" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "class a_class(object):\n", - " def __new__(clss, *args, **kwargs):\n", - " print('excecuted __new__')\n", - " return None\n", - " def __init__(self, an_arg):\n", - " print('excecuted __init__')\n", - " self.an_arg = an_arg\n", - " \n", - "a_object = a_class(1)\n", - "print('Type of a_object:', type(a_object))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "excecuted __new__\n", - "Type of a_object: \n" - ] - } - ], - "prompt_number": 53 - }, + } + ], + "source": [ + "gen_fails = (i for i in 1/0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Certainly, this is a nice feature, since it notifies us about syntax erros immediately. However, this is (unfortunately) not the case if we have multiple cases in our generator." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "gen_succeeds = (i for i in range(5) for j in 1/0)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As we can see in the code above, `__init__` requires the returned instance from `__new__` in order to called. So, here we just created a `NoneType` object. \n", - "Let us override the `__new__`, now and let us confirm that `__init__` is called now to instantiate the new object\":" + "ename": "ZeroDivisionError", + "evalue": "division by zero", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mZeroDivisionError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'But obviously fails when we iterate ...'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mgen_succeeds\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mgen_succeeds\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mj\u001b[0m \u001b[0;32min\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mZeroDivisionError\u001b[0m: division by zero" ] }, { - "cell_type": "code", - "collapsed": false, - "input": [ - "class a_class(object):\n", - " def __new__(cls, *args, **kwargs):\n", - " print('excecuted __new__')\n", - " inst = super(a_class, cls).__new__(cls)\n", - " return inst\n", - " def __init__(self, an_arg):\n", - " print('excecuted __init__')\n", - " self.an_arg = an_arg\n", - " \n", - "a_object = a_class(1)\n", - "print('Type of a_object:', type(a_object))\n", - "print('a_object.an_arg: ', a_object.an_arg)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "excecuted __new__\n", - "excecuted __init__\n", - "Type of a_object: \n", - "a_object.an_arg: 1\n" - ] - } - ], - "prompt_number": 54 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "for i in range(5):\n", - " if i == 1:\n", - " print('in for')\n", - "else:\n", - " print('in else')\n", - "print('after for-loop')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "in for\n", - "in else\n", - "after for-loop\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "for i in range(5):\n", - " if i == 1:\n", - " break\n", - "else:\n", - " print('in else')\n", - "print('after for-loop')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "after for-loop\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
\n", - "
" + "name": "stdout", + "output_type": "stream", + "text": [ + "But obviously fails when we iterate ...\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Else-clauses: \"conditional else\" and \"completion else\"" + } + ], + "source": [ + "print('But obviously fails when we iterate ...')\n", + "for i in gen_succeeds:\n", + " print(i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Keyword argument unpacking syntax - `*args` and `**kwargs`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Python has a very convenient \"keyword argument unpacking syntax\" (often also referred to as \"splat\"-operators). This is particularly useful, if we want to define a function that can take a arbitrary number of input arguments." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Single-asterisk (*args)" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "type of args: \n", + "args contents: (0, 1, 'a', 'b', 'c')\n", + "1st argument: 0\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#sections)]" + } + ], + "source": [ + "def a_func(*args):\n", + " print('type of args:', type(args))\n", + " print('args contents:', args)\n", + " print('1st argument:', args[0])\n", + "\n", + "a_func(0, 1, 'a', 'b', 'c')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Double-asterisk (**kwargs)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "type of kwargs: \n", + "kwargs contents: {'d': 4, 'a': 1, 'c': 3, 'b': 2}\n", + "value of argument a: 1\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "I would claim that the conditional \"else\" is every programmer's daily bread and butter. However, there is a second flavor of \"else\"-clauses in Python, which I will call \"completion else\" (for reason that will become clear later). \n", - "But first, let us take a look at our \"traditional\" conditional else that we all are familiar with. \n" + } + ], + "source": [ + "def b_func(**kwargs):\n", + " print('type of kwargs:', type(kwargs))\n", + " print('kwargs contents: ', kwargs)\n", + " print('value of argument a:', kwargs['a'])\n", + " \n", + "b_func(a=1, b=2, c=3, d=4)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### (Partially) unpacking of iterables\n", + "Another useful application of the \"unpacking\"-operator is the unpacking of lists and other other iterables." + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "val1: 1\n", + "vals: [2, 3, 4, 5]\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "###Conditional else:" + } + ], + "source": [ + "val1, *vals = [1, 2, 3, 4, 5]\n", + "print('val1:', val1)\n", + "print('vals:', vals)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Metaclasses - What creates a new instance of a class?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Usually, it is the `__init__` method when we think of instanciating a new object from a class. However, it is the static method `__new__` (it is not a class method!) that creates and returns a new instance before `__init__()` is called. \n", + "More specifically, this is what is returned: \n", + "`return super(, cls).__new__(subcls, *args, **kwargs)` \n", + "\n", + "For more information about the `__new__` method, please see the [documentation](https://www.python.org/download/releases/2.2/descrintro/#__new__).\n", + "\n", + "As a little experiment, let us screw with `__new__` so that it returns `None` and see if `__init__` will be executed:" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "excecuted __new__\n", + "Type of a_object: \n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# conditional else\n", - "\n", - "a_list = [1,2]\n", - "if a_list[0] == 1:\n", - " print('Hello, World!')\n", - "else:\n", - " print('Bye, World!')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Hello, World!\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# conditional else\n", - "\n", - "a_list = [1,2]\n", - "if a_list[0] == 2:\n", - " print('Hello, World!')\n", - "else:\n", - " print('Bye, World!')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Bye, World!\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Why am I showing those simple examples? I think they are good to highlight some of the key points: It is **either** the code under the `if` clause that is executed, **or** the code under the `else` block, but not both. \n", - "If the condition of the `if` clause evaluates to `True`, the `if`-block is exectured, and if it evaluated to `False`, it is the `else` block. \n", - "\n", - "### Completion else\n", - "**In contrast** to the **either...or*** situation that we know from the conditional `else`, the completion `else` is executed if a code block finished. \n", - "To show you an example, let us use `else` for error-handling:" + } + ], + "source": [ + "class a_class(object):\n", + " def __new__(clss, *args, **kwargs):\n", + " print('excecuted __new__')\n", + " return None\n", + " def __init__(self, an_arg):\n", + " print('excecuted __init__')\n", + " self.an_arg = an_arg\n", + " \n", + "a_object = a_class(1)\n", + "print('Type of a_object:', type(a_object))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we can see in the code above, `__init__` requires the returned instance from `__new__` in order to called. So, here we just created a `NoneType` object. \n", + "Let us override the `__new__`, now and let us confirm that `__init__` is called now to instantiate the new object\":" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "excecuted __new__\n", + "excecuted __init__\n", + "Type of a_object: \n", + "a_object.an_arg: 1\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Completion else (try-except)" + } + ], + "source": [ + "class a_class(object):\n", + " def __new__(cls, *args, **kwargs):\n", + " print('excecuted __new__')\n", + " inst = super(a_class, cls).__new__(cls)\n", + " return inst\n", + " def __init__(self, an_arg):\n", + " print('excecuted __init__')\n", + " self.an_arg = an_arg\n", + " \n", + "a_object = a_class(1)\n", + "print('Type of a_object:', type(a_object))\n", + "print('a_object.an_arg: ', a_object.an_arg)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "in for\n", + "in else\n", + "after for-loop\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "try:\n", - " print('first element:', a_list[0])\n", - "except IndexError:\n", - " print('raised IndexError')\n", - "else:\n", - " print('no error in try-block')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "first element: 1\n", - "no error in try-block\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "try:\n", - " print('third element:', a_list[2])\n", - "except IndexError:\n", - " print('raised IndexError')\n", - "else:\n", - " print('no error in try-block')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "raised IndexError\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "In the code above, we can see that the code under the **`else`-clause is only executed if the `try-block` was executed without encountering an error, i.e., if the `try`-block is \"complete\".** \n", - "The same rule applies to the \"completion\" `else` in while- and for-loops, which you can confirm in the following samples below." + } + ], + "source": [ + "for i in range(5):\n", + " if i == 1:\n", + " print('in for')\n", + "else:\n", + " print('in else')\n", + "print('after for-loop')" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "after for-loop\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Completion else (while-loop)" + } + ], + "source": [ + "for i in range(5):\n", + " if i == 1:\n", + " break\n", + "else:\n", + " print('in else')\n", + "print('after for-loop')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Else-clauses: \"conditional else\" and \"completion else\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "I would claim that the conditional \"else\" is every programmer's daily bread and butter. However, there is a second flavor of \"else\"-clauses in Python, which I will call \"completion else\" (for reason that will become clear later). \n", + "But first, let us take a look at our \"traditional\" conditional else that we all are familiar with. \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "###Conditional else:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Hello, World!\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "i = 0\n", - "while i < 2:\n", - " print(i)\n", - " i += 1\n", - "else:\n", - " print('in else')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "0\n", - "1\n", - "in else\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "i = 0\n", - "while i < 2:\n", - " print(i)\n", - " i += 1\n", - " break\n", - "else:\n", - " print('completed while-loop')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "0\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Completion else (for-loop)" + } + ], + "source": [ + "# conditional else\n", + "\n", + "a_list = [1,2]\n", + "if a_list[0] == 1:\n", + " print('Hello, World!')\n", + "else:\n", + " print('Bye, World!')" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Bye, World!\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "for i in range(2):\n", - " print(i)\n", - "else:\n", - " print('completed for-loop')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "0\n", - "1\n", - "completed for-loop\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "for i in range(2):\n", - " print(i)\n", - " break\n", - "else:\n", - " print('completed for-loop')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "0\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
\n", - "
" + } + ], + "source": [ + "# conditional else\n", + "\n", + "a_list = [1,2]\n", + "if a_list[0] == 2:\n", + " print('Hello, World!')\n", + "else:\n", + " print('Bye, World!')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Why am I showing those simple examples? I think they are good to highlight some of the key points: It is **either** the code under the `if` clause that is executed, **or** the code under the `else` block, but not both. \n", + "If the condition of the `if` clause evaluates to `True`, the `if`-block is exectured, and if it evaluated to `False`, it is the `else` block. \n", + "\n", + "### Completion else\n", + "**In contrast** to the **either...or*** situation that we know from the conditional `else`, the completion `else` is executed if a code block finished. \n", + "To show you an example, let us use `else` for error-handling:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Completion else (try-except)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "first element: 1\n", + "no error in try-block\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Interning of compile-time constants vs. run-time expressions" + } + ], + "source": [ + "try:\n", + " print('first element:', a_list[0])\n", + "except IndexError:\n", + " print('raised IndexError')\n", + "else:\n", + " print('no error in try-block')" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "raised IndexError\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#sections)]" + } + ], + "source": [ + "try:\n", + " print('third element:', a_list[2])\n", + "except IndexError:\n", + " print('raised IndexError')\n", + "else:\n", + " print('no error in try-block')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "In the code above, we can see that the code under the **`else`-clause is only executed if the `try-block` was executed without encountering an error, i.e., if the `try`-block is \"complete\".** \n", + "The same rule applies to the \"completion\" `else` in while- and for-loops, which you can confirm in the following samples below." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Completion else (while-loop)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n", + "1\n", + "in else\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This might not be particularly useful, but it is nonetheless interesting: Python's interpreter is interning compile-time constants but not run-time expressions (note that this is implementation-specific).\n", - "\n", - "(Original source: [Stackoverflow](http://stackoverflow.com/questions/15541404/python-string-interning))" + } + ], + "source": [ + "i = 0\n", + "while i < 2:\n", + " print(i)\n", + " i += 1\n", + "else:\n", + " print('in else')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us have a look at the simple example below. Here we are creating 3 variables and assign the value \"Hello\" to them in different ways before we test them for identity." + } + ], + "source": [ + "i = 0\n", + "while i < 2:\n", + " print(i)\n", + " i += 1\n", + " break\n", + "else:\n", + " print('completed while-loop')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Completion else (for-loop)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n", + "1\n", + "completed for-loop\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "hello1 = 'Hello'\n", - "\n", - "hello2 = 'Hell' + 'o'\n", - "\n", - "hello3 = 'Hell'\n", - "hello3 = hello3 + 'o'\n", - "\n", - "print('hello1 is hello2:', hello1 is hello2)\n", - "print('hello1 is hello3:', hello1 is hello3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "hello1 is hello2: True\n", - "hello1 is hello3: False\n" - ] - } - ], - "prompt_number": 34 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, how does it come that the first expression evaluates to true, but the second does not? To answer this question, we need to take a closer look at the underlying byte codes:" + } + ], + "source": [ + "for i in range(2):\n", + " print(i)\n", + "else:\n", + " print('completed for-loop')" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import dis\n", - "def hello1_func():\n", - " s = 'Hello'\n", - " return s\n", - "dis.dis(hello1_func)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " 3 0 LOAD_CONST 1 ('Hello')\n", - " 3 STORE_FAST 0 (s)\n", - "\n", - " 4 6 LOAD_FAST 0 (s)\n", - " 9 RETURN_VALUE\n" - ] - } - ], - "prompt_number": 38 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def hello2_func():\n", - " s = 'Hell' + 'o'\n", - " return s\n", - "dis.dis(hello2_func)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " 2 0 LOAD_CONST 3 ('Hello')\n", - " 3 STORE_FAST 0 (s)\n", - "\n", - " 3 6 LOAD_FAST 0 (s)\n", - " 9 RETURN_VALUE\n" - ] - } - ], - "prompt_number": 39 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def hello3_func():\n", - " s = 'Hell'\n", - " s = s + 'o'\n", - " return s\n", - "dis.dis(hello3_func)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " 2 0 LOAD_CONST 1 ('Hell')\n", - " 3 STORE_FAST 0 (s)\n", - "\n", - " 3 6 LOAD_FAST 0 (s)\n", - " 9 LOAD_CONST 2 ('o')\n", - " 12 BINARY_ADD\n", - " 13 STORE_FAST 0 (s)\n", - "\n", - " 4 16 LOAD_FAST 0 (s)\n", - " 19 RETURN_VALUE\n" - ] - } - ], - "prompt_number": 40 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "It looks like that `'Hello'` and `'Hell'` + `'o'` are both evaluated and stored as `'Hello'` at compile-time, whereas the third version \n", - "`s = 'Hell'` \n", - "`s = s + 'o'` seems to be not interned. Let us quickly confirm the behavior with the following code:" + } + ], + "source": [ + "for i in range(2):\n", + " print(i)\n", + " break\n", + "else:\n", + " print('completed for-loop')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Interning of compile-time constants vs. run-time expressions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This might not be particularly useful, but it is nonetheless interesting: Python's interpreter is interning compile-time constants but not run-time expressions (note that this is implementation-specific).\n", + "\n", + "(Original source: [Stackoverflow](http://stackoverflow.com/questions/15541404/python-string-interning))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us have a look at the simple example below. Here we are creating 3 variables and assign the value \"Hello\" to them in different ways before we test them for identity." + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "hello1 is hello2: True\n", + "hello1 is hello3: False\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print(hello1_func() is hello2_func())\n", - "print(hello1_func() is hello3_func())" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "True\n", - "False\n" - ] - } - ], - "prompt_number": 42 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, to show that this hypothesis is the answer to this rather unexpected observation, let us `intern` the value manually:" + } + ], + "source": [ + "hello1 = 'Hello'\n", + "\n", + "hello2 = 'Hell' + 'o'\n", + "\n", + "hello3 = 'Hell'\n", + "hello3 = hello3 + 'o'\n", + "\n", + "print('hello1 is hello2:', hello1 is hello2)\n", + "print('hello1 is hello3:', hello1 is hello3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, how does it come that the first expression evaluates to true, but the second does not? To answer this question, we need to take a closer look at the underlying byte codes:" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 3 0 LOAD_CONST 1 ('Hello')\n", + " 3 STORE_FAST 0 (s)\n", + "\n", + " 4 6 LOAD_FAST 0 (s)\n", + " 9 RETURN_VALUE\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import sys\n", - "\n", - "print(hello1_func() is sys.intern(hello3_func()))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "True\n" - ] - } - ], - "prompt_number": 45 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
\n", - "
\n", - "
\n", - "
\n" + } + ], + "source": [ + "import dis\n", + "def hello1_func():\n", + " s = 'Hello'\n", + " return s\n", + "dis.dis(hello1_func)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 2 0 LOAD_CONST 3 ('Hello')\n", + " 3 STORE_FAST 0 (s)\n", + "\n", + " 3 6 LOAD_FAST 0 (s)\n", + " 9 RETURN_VALUE\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Changelog" + } + ], + "source": [ + "def hello2_func():\n", + " s = 'Hell' + 'o'\n", + " return s\n", + "dis.dis(hello2_func)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 2 0 LOAD_CONST 1 ('Hell')\n", + " 3 STORE_FAST 0 (s)\n", + "\n", + " 3 6 LOAD_FAST 0 (s)\n", + " 9 LOAD_CONST 2 ('o')\n", + " 12 BINARY_ADD\n", + " 13 STORE_FAST 0 (s)\n", + "\n", + " 4 16 LOAD_FAST 0 (s)\n", + " 19 RETURN_VALUE\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#sections)]" + } + ], + "source": [ + "def hello3_func():\n", + " s = 'Hell'\n", + " s = s + 'o'\n", + " return s\n", + "dis.dis(hello3_func)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "It looks like that `'Hello'` and `'Hell'` + `'o'` are both evaluated and stored as `'Hello'` at compile-time, whereas the third version \n", + "`s = 'Hell'` \n", + "`s = s + 'o'` seems to be not interned. Let us quickly confirm the behavior with the following code:" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n", + "False\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### 07/16/2014\n", - "- slight change of wording in the [lambda-closure section](#lambda_closure)\n", - "\n", - "#### 05/24/2014\n", - "- new section: unorderable types in Python 2\n", - "- table of contents for the Python 2 vs. Python 3 topic\n", - " \n", - "#### 05/03/2014\n", - "- new section: else clauses: conditional vs. completion\n", - "- new section: Interning of compile-time constants vs. run-time expressions\n", - "\n", - "#### 05/02/2014\n", - "- new section in Python 3.x and Python 2.x key differences: for-loop leak\n", - "- new section: Metaclasses - What creates a new instance of a class? \n", - "\n", - "#### 05/01/2014\n", - "- new section: keyword argument unpacking syntax\n", - "\n", - "#### 04/27/2014\n", - "- minor fixes of typos \n", - "- new section: \"Only the first clause of generators is evaluated immediately\"" + } + ], + "source": [ + "print(hello1_func() is hello2_func())\n", + "print(hello1_func() is hello3_func())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, to show that this hypothesis is the answer to this rather unexpected observation, let us `intern` the value manually:" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] } ], - "metadata": {} + "source": [ + "import sys\n", + "\n", + "print(hello1_func() is sys.intern(hello3_func()))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "
\n", + "
\n", + "
\n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Changelog" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 07/16/2014\n", + "- slight change of wording in the [lambda-closure section](#lambda_closure)\n", + "\n", + "#### 05/24/2014\n", + "- new section: unorderable types in Python 2\n", + "- table of contents for the Python 2 vs. Python 3 topic\n", + " \n", + "#### 05/03/2014\n", + "- new section: else clauses: conditional vs. completion\n", + "- new section: Interning of compile-time constants vs. run-time expressions\n", + "\n", + "#### 05/02/2014\n", + "- new section in Python 3.x and Python 2.x key differences: for-loop leak\n", + "- new section: Metaclasses - What creates a new instance of a class? \n", + "\n", + "#### 05/01/2014\n", + "- new section: keyword argument unpacking syntax\n", + "\n", + "#### 04/27/2014\n", + "- minor fixes of typos \n", + "- new section: \"Only the first clause of generators is evaluated immediately\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.0" } - ] -} \ No newline at end of file + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/tutorials/scope_resolution_legb_rule.ipynb b/tutorials/scope_resolution_legb_rule.ipynb index 18ff06c..58adb8a 100644 --- a/tutorials/scope_resolution_legb_rule.ipynb +++ b/tutorials/scope_resolution_legb_rule.ipynb @@ -1151,7 +1151,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.1" + "version": "3.5.0" } }, "nbformat": 4, From 6432318c5aaf063c3b351aaf5cee5ec263e9f8c2 Mon Sep 17 00:00:00 2001 From: rasbt Date: Sun, 10 Apr 2016 18:53:57 -0400 Subject: [PATCH 68/83] fix links in readme --- README.md | 15 +++++++++------ 1 file changed, 9 insertions(+), 6 deletions(-) diff --git a/README.md b/README.md index 42903d5..a1af37a 100644 --- a/README.md +++ b/README.md @@ -36,7 +36,6 @@ - Installing Scientific Packages for Python3 on MacOS 10.9 Mavericks [[Markdown](./tutorials/installing_scientific_packages.md)] - - Sorting CSV files using the Python csv module [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/sorting_csvs.ipynb)] - Using Cython with and without IPython magic [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/running_cython.ipynb)] @@ -65,7 +64,7 @@ - Creating internal links in IPython Notebooks and Markdown docs [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/table_of_contents_ipython.ipynb)] -- Converting Markdown to HTML and adding Python syntax highlighting [[Markdown](./tutorials/markdown_syntax_highlighting/README.md)] +- Converting Markdown to HTML and adding Python syntax highlighting [[Markdown](./tutorials/markdown_syntax_highlighting/README.md)]
@@ -124,10 +123,10 @@ - Vectorizing a classic for-loop in NumPy [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day16_numpy_vectorization.ipynb)] -
+
-###// Python and "Data Science" +###// Python and "Data Science" [[back to top](#a-collection-of-useful-scripts-tutorials-and-other-python-related-things)] *The "data science"-related posts have been moved to a separate GitHub repository [pattern_classification](https://github.com/rasbt/pattern_classification)* @@ -162,6 +161,12 @@
+###// Other + +- [Python book reviews](./other/python_book_reviews.md) +- [Happy Mother's Day Plot](./other/happy_mothers_day.ipynb) + +
###// Links [[back to top](#a-collection-of-useful-scripts-tutorials-and-other-python-related-things)] @@ -220,5 +225,3 @@ - [Numba](http://numba.pydata.org) - A just-in-time specializing compiler which compiles annotated Python and NumPy code to LLVM (through decorators) - [scikit-learn](http://scikit-learn.org/stable/) - A powerful machine learning library for Python and tools for efficient data mining and analysis. - - From 4e92886d30dcb67ea0c1a21c45671971c2fb3c62 Mon Sep 17 00:00:00 2001 From: rasbt Date: Mon, 9 May 2016 21:41:40 -0400 Subject: [PATCH 69/83] singly linked list --- README.md | 9 ++++----- 1 file changed, 4 insertions(+), 5 deletions(-) diff --git a/README.md b/README.md index a1af37a..fa44730 100644 --- a/README.md +++ b/README.md @@ -68,11 +68,10 @@
-###// Algorithms +###// Algorithms and Data Structures [[back to top](#a-collection-of-useful-scripts-tutorials-and-other-python-related-things)] -*The algorithms category has been moved to a separate GitHub repository [rasbt/algorithms_in_ipython_notebooks](https://github.com/rasbt/algorithms_in_ipython_notebooks)* - +*This category has been moved to a separate GitHub repository [rasbt/algorithms_in_ipython_notebooks](https://github.com/rasbt/algorithms_in_ipython_notebooks)* - Sorting Algorithms [[IPython nb](http://nbviewer.ipython.org/github/rasbt/algorithms_in_ipython_notebooks/blob/master/ipython_nbs/sorting/sorting_algorithms.ipynb?create=1)] @@ -81,10 +80,10 @@ - Dixon's Q test to identify outliers for small sample sizes [[IPython nb](http://nbviewer.ipython.org/github/rasbt/algorithms_in_ipython_notebooks/blob/master/ipython_nbs/statistics/dixon_q_test.ipynb?create=1)] -- Sequential Selection Algorithms [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/sorting_csvs.ipynb)] - - Counting points inside a hypercube [[IPython nb](http://nbviewer.ipython.org/github/rasbt/algorithms_in_ipython_notebooks/blob/master/ipython_nbs/geometry/points_in_hybercube.ipynb)] +- Singly Linked List [[ IPython nbviewer ](http://nbviewer.ipython.org/github/rasbt/algorithms_in_ipython_notebooks/blob/master/ipython_nbs/data-structures/singly-linked-list.ipynb)] +
###// Plotting and Visualization [[back to top](#a-collection-of-useful-scripts-tutorials-and-other-python-related-things)] From e1033b709efe22f73c2fcfee6a898b738cee1366 Mon Sep 17 00:00:00 2001 From: rasbt Date: Sat, 2 Jul 2016 02:41:01 -0400 Subject: [PATCH 70/83] banker's rounding --- ...y_differences_between_python_2_and_3.ipynb | 185 +++++++++++++++++- 1 file changed, 179 insertions(+), 6 deletions(-) diff --git a/tutorials/key_differences_between_python_2_and_3.ipynb b/tutorials/key_differences_between_python_2_and_3.ipynb index 0f74195..7928cb9 100644 --- a/tutorials/key_differences_between_python_2_and_3.ipynb +++ b/tutorials/key_differences_between_python_2_and_3.ipynb @@ -6,7 +6,7 @@ "source": [ "[Sebastian Raschka](http://sebastianraschka.com) \n", "\n", - "last updated 05/27/2014\n", + "last updated 07/02/2016\n", "\n", "- [Open in IPython nbviewer](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/key_differences_between_python_2_and_3.ipynb?create=1) \n", "\n", @@ -87,6 +87,8 @@ "\n", "- [Returning iterable objects instead of lists](#Returning-iterable-objects-instead-of-lists)\n", "\n", + "- [Banker's Rounding](#Banker's-Rounding)\n", + "\n", "- [More articles about Python 2 and Python 3](#More-articles-about-Python-2-and-Python-3)" ] }, @@ -2038,6 +2040,177 @@ "
" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Banker's Rounding" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to the section-overview](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Python 3 adopted the now standard way of rounding decimals when it results in a tie (.5) at the last significant digits. Now, in Python 3, decimals are rounded to the next even number. Although it's an inconvenience for code portability, it's supposedly a better way of rounding compared to rounding up as it avoids the bias towards large numbers. For more information, see the excellent Wikipedia articles and paragraphs:\n", + "- [https://en.wikipedia.org/wiki/Rounding#Round_half_to_even](https://en.wikipedia.org/wiki/Rounding#Round_half_to_even)\n", + "- [https://en.wikipedia.org/wiki/IEEE_floating_point#Roundings_to_nearest](https://en.wikipedia.org/wiki/IEEE_floating_point#Roundings_to_nearest)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Python 2" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 2.7.12\n" + ] + } + ], + "source": [ + "print 'Python', python_version()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "16.0" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "round(15.5)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "17.0" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "round(16.5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Python 3" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 3.5.1\n" + ] + } + ], + "source": [ + "print('Python', python_version())" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "16" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "round(15.5)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "16" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "round(16.5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -2096,21 +2269,21 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 2", "language": "python", - "name": "python3" + "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", - "version": 3 + "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.5.0" + "pygments_lexer": "ipython2", + "version": "2.7.12" } }, "nbformat": 4, From 3a59a6b66a8964a38269a68db9a02fc8ad7766df Mon Sep 17 00:00:00 2001 From: rasbt Date: Tue, 6 Dec 2016 23:57:04 -0500 Subject: [PATCH 71/83] update recommended resources --- README.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index fa44730..4eaf0b6 100644 --- a/README.md +++ b/README.md @@ -194,8 +194,6 @@ **// Resources for learning Python** -- [Learn Python The Hard Way](http://learnpythonthehardway.org/book/) - The popular and probably most recommended resource for learning Python. - - [Dive Into Python](http://www.diveintopython.net) / [Dive Into Python 3](http://getpython3.com/diveintopython3/) - A free Python book for experienced programmers. - [The Hitchhiker’s Guide to Python](http://docs.python-guide.org/en/latest/) - A free best-practice handbook for both novices and experts. @@ -204,6 +202,8 @@ - [Python Patterns](http://matthiaseisen.com/pp/) - A directory of proven, reusable solutions to common programming problems. +- [Intro to Computer Science - Build a Search Engine & a Social Network](https://www.udacity.com/course/intro-to-computer-science--cs101) - A great, free course for learning Python if you haven't programmed before. +
**// My favorite Python projects and packages** From f7dd31f1b58612b7133d9d7a5a747c01ecf2fbdf Mon Sep 17 00:00:00 2001 From: rasbt Date: Wed, 1 Mar 2017 21:52:45 -0500 Subject: [PATCH 72/83] next should be nearest --- tutorials/key_differences_between_python_2_and_3.ipynb | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/tutorials/key_differences_between_python_2_and_3.ipynb b/tutorials/key_differences_between_python_2_and_3.ipynb index 7928cb9..68feac3 100644 --- a/tutorials/key_differences_between_python_2_and_3.ipynb +++ b/tutorials/key_differences_between_python_2_and_3.ipynb @@ -2058,7 +2058,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Python 3 adopted the now standard way of rounding decimals when it results in a tie (.5) at the last significant digits. Now, in Python 3, decimals are rounded to the next even number. Although it's an inconvenience for code portability, it's supposedly a better way of rounding compared to rounding up as it avoids the bias towards large numbers. For more information, see the excellent Wikipedia articles and paragraphs:\n", + "Python 3 adopted the now standard way of rounding decimals when it results in a tie (.5) at the last significant digits. Now, in Python 3, decimals are rounded to the nearest even number. Although it's an inconvenience for code portability, it's supposedly a better way of rounding compared to rounding up as it avoids the bias towards large numbers. For more information, see the excellent Wikipedia articles and paragraphs:\n", "- [https://en.wikipedia.org/wiki/Rounding#Round_half_to_even](https://en.wikipedia.org/wiki/Rounding#Round_half_to_even)\n", "- [https://en.wikipedia.org/wiki/IEEE_floating_point#Roundings_to_nearest](https://en.wikipedia.org/wiki/IEEE_floating_point#Roundings_to_nearest)" ] @@ -2268,6 +2268,7 @@ } ], "metadata": { + "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 2", "language": "python", From 774859799ed53103167cc3b7ca084aff29288665 Mon Sep 17 00:00:00 2001 From: Frenchhorn Date: Mon, 24 Apr 2017 17:59:01 +0800 Subject: [PATCH 73/83] Update README.md udpate anchors --- README.md | 30 +++++++++++------------------- 1 file changed, 11 insertions(+), 19 deletions(-) diff --git a/README.md b/README.md index 4eaf0b6..05c8419 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,4 @@ -### A collection of useful scripts, tutorials, and other Python-related things +

A collection of useful scripts, tutorials, and other Python-related things


@@ -12,8 +12,8 @@ - [// Plotting and Visualization](#-plotting-and-visualization) - [// Benchmarks](#-benchmarks) - [// Python and "Data Science"](#-python-and-data-science) -- [// Other](#-other) - [// Useful scripts and snippets](#-useful-scripts-and-snippets) +- [// Other](#-other) - [// Links](#-links) @@ -21,8 +21,7 @@
-###// Python tips and tutorials -[[back to top](#a-collection-of-useful-scripts-tutorials-and-other-python-related-things)] +Python tips and tutorials [back to top] - A collection of not so obvious Python stuff you should know! [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/not_so_obvious_python_stuff.ipynb?create=1)] @@ -59,8 +58,7 @@
-###// Python and the web -[[back to top](#a-collection-of-useful-scripts-tutorials-and-other-python-related-things)] +Python and the web [back to top] - Creating internal links in IPython Notebooks and Markdown docs [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/table_of_contents_ipython.ipynb)] @@ -68,8 +66,7 @@
-###// Algorithms and Data Structures -[[back to top](#a-collection-of-useful-scripts-tutorials-and-other-python-related-things)] +Algorithms and Data Structures [back to top] *This category has been moved to a separate GitHub repository [rasbt/algorithms_in_ipython_notebooks](https://github.com/rasbt/algorithms_in_ipython_notebooks)* @@ -85,8 +82,7 @@ - Singly Linked List [[ IPython nbviewer ](http://nbviewer.ipython.org/github/rasbt/algorithms_in_ipython_notebooks/blob/master/ipython_nbs/data-structures/singly-linked-list.ipynb)]
-###// Plotting and Visualization -[[back to top](#a-collection-of-useful-scripts-tutorials-and-other-python-related-things)] +Plotting and Visualization [back to top] *The matplotlib-gallery in IPython notebooks has been moved to a separate GitHub repository [matplotlib-gallery](https://github.com/rasbt/matplotlib-gallery)* @@ -99,8 +95,7 @@
-###// Benchmarks -[[back to top](#a-collection-of-useful-scripts-tutorials-and-other-python-related-things)] +Benchmarks [back to top] - Simple tricks to speed up the sum calculation in pandas [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/benchmarks/pandas_sum_tricks.ipynb)] @@ -125,8 +120,7 @@
-###// Python and "Data Science" -[[back to top](#a-collection-of-useful-scripts-tutorials-and-other-python-related-things)] +Python and "Data Science" [back to top] *The "data science"-related posts have been moved to a separate GitHub repository [pattern_classification](https://github.com/rasbt/pattern_classification)* @@ -145,8 +139,7 @@
-###// Useful scripts and snippets -[[back to top](#a-collection-of-useful-scripts-tutorials-and-other-python-related-things)] +Useful scripts and snippets [back to top] - [watermark](https://github.com/rasbt/watermark) - An IPython magic extension for printing date and time stamps, version numbers, and hardware information. @@ -160,15 +153,14 @@
-###// Other +Other [back to top] - [Python book reviews](./other/python_book_reviews.md) - [Happy Mother's Day Plot](./other/happy_mothers_day.ipynb)
-###// Links -[[back to top](#a-collection-of-useful-scripts-tutorials-and-other-python-related-things)] +Links [back to top] From a78df233015d84c4daea6e1fd509ebedfcdd746f Mon Sep 17 00:00:00 2001 From: rasbt Date: Thu, 17 Aug 2017 09:53:32 -0400 Subject: [PATCH 74/83] typo fix --- tutorials/multiprocessing_intro.ipynb | 2208 ++++++++++++------------- 1 file changed, 1081 insertions(+), 1127 deletions(-) diff --git a/tutorials/multiprocessing_intro.ipynb b/tutorials/multiprocessing_intro.ipynb index a3b0916..126f8c2 100644 --- a/tutorials/multiprocessing_intro.ipynb +++ b/tutorials/multiprocessing_intro.ipynb @@ -1,1151 +1,1105 @@ { - "metadata": { - "name": "", - "signature": "sha256:a96ed2f762cf56d93a4e5345428c7db5ec576916158ce54446dfdf837ec7e505" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ + "cells": [ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[Sebastian Raschka](http://sebastianraschka.com) \n", - "\n", - "- [Open in IPython nbviewer](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/multiprocessing_intro.ipynb?create=1) \n", - "\n", - "- [Link to this IPython notebook on Github](https://github.com/rasbt/python_reference/blob/master/tutorials/multiprocessing_intro.ipynb) \n", - "\n", - "- [Link to the GitHub Repository python_reference](https://github.com/rasbt/python_reference)\n" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import time\n", - "print('Last updated: %s' %time.strftime('%d/%m/%Y'))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Last updated: 20/06/2014\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "I would be happy to hear your comments and suggestions. \n", - "Please feel free to drop me a note via\n", - "[twitter](https://twitter.com/rasbt), [email](mailto:bluewoodtree@gmail.com), or [google+](https://plus.google.com/+SebastianRaschka).\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Parallel processing via the `multiprocessing` module" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "CPUs with multiple cores have become the standard in the recent development of modern computer architectures and we can not only find them in supercomputer facilities but also in our desktop machines at home, and our laptops; even Apple's iPhone 5S got a 1.3 Ghz Dual-core processor in 2013.\n", - "\n", - "However, the default Python interpreter was designed with simplicity in mind and has a thread-safe mechanism, the so-called \"GIL\" (Global Interpreter Lock). In order to prevent conflicts between threads, it executes only one statement at a time (so-called serial processing, or single-threading).\n", - "\n", - "In this introduction to Python's `multiprocessing` module, we will see how we can spawn multiple subprocesses to avoid some of the GIL's disadvantages." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Sections" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "- [An introduction to parallel programming using Python's `multiprocessing` module](#An-introduction-to-parallel-programming-using-Python's-`multiprocessing`-module)\n", - " - [Multi-Threading vs. Multi-Processing](#Multi-Threading-vs.-Multi-Processing)\n", - "- [Introduction to the `multiprocessing` module](#Introduction-to-the-multiprocessing-module)\n", - " - [The `Process` class](#The-Process-class)\n", - " - [How to retrieve results in a particular order](#How-to-retrieve-results-in-a-particular-order)\n", - " - [The `Pool` class](#The-Pool-class)\n", - "- [Kernel density estimation as benchmarking function](#Kernel-density-estimation-as-benchmarking-function)\n", - " - [The Parzen-window method in a nutshell](#The-Parzen-window-method-in-a-nutshell)\n", - " - [Sample data and `timeit` benchmarks](#Sample-data-and-timeit-benchmarks)\n", - " - [Benchmarking functions](#Benchmarking-functions)\n", - " - [Preparing the plotting of the results](#Preparing-the-plotting-of-the-results)\n", - "- [Results](#Results)\n", - "- [Conclusion](#Conclusion)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "\n", - "Multi-Threading vs. Multi-Processing\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Depending on the application, two common approaches in parallel programming are either to run code via threads or multiple processes, respectively. If we submit \"jobs\" to different threads, those jobs can be pictured as \"sub-tasks\" of a single process and those threads will usually have access to the same memory areas (i.e., shared memory). This approach can easily lead to conflicts in case of improper synchronization, for example, if processes are writing to the same memory location at the same time. \n", - "\n", - "A safer approach (although it comes with an additional overhead due to the communication overhead between separate processes) is to submit multiple processes to completely separate memory locations (i.e., distributed memory): Every process will run completely independent from each other.\n", - "\n", - "Here, we will take a look at Python's [`multiprocessing`](https://docs.python.org/dev/library/multiprocessing.html) module and how we can use it to submit multiple processes that can run independently from each other in order to make best use of our CPU cores." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![](https://raw.githubusercontent.com/rasbt/python_reference/master/Images/multiprocessing_scheme.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Introduction to the `multiprocessing` module" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#Sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The [multiprocessing](https://docs.python.org/dev/library/multiprocessing.html) module in Python's Standard Library has a lot of powerful features. If you want to read about all the nitty-gritty tips, tricks, and details, I would recommend to use the [official documentation](https://docs.python.org/dev/library/multiprocessing.html) as an entry point. \n", - "\n", - "In the following sections, I want to provide a brief overview of different approaches to show how the `multiprocessing` module can be used for parallel programming." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "The `Process` class" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#Sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The most basic approach is probably to use the `Process` class from the `multiprocessing` module. \n", - "Here, we will use a simple queue function to compute the cubes for the 6 numbers 1, 2, 3, 4, 5, and 6 in 6 parallel processes." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import multiprocessing as mp\n", - "import random\n", - "import string\n", - "\n", - "random.seed(123)\n", - "\n", - "# Define an output queue\n", - "output = mp.Queue()\n", - "\n", - "# define a example function\n", - "def rand_string(length, output):\n", - " \"\"\" Generates a random string of numbers, lower- and uppercase chars. \"\"\"\n", - " rand_str = ''.join(random.choice(\n", - " string.ascii_lowercase \n", - " + string.ascii_uppercase \n", - " + string.digits)\n", - " for i in range(length))\n", - " output.put(rand_str)\n", - "\n", - "# Setup a list of processes that we want to run\n", - "processes = [mp.Process(target=rand_string, args=(5, output)) for x in range(4)]\n", - "\n", - "# Run processes\n", - "for p in processes:\n", - " p.start()\n", - "\n", - "# Exit the completed processes\n", - "for p in processes:\n", - " p.join()\n", - "\n", - "# Get process results from the output queue\n", - "results = [output.get() for p in processes]\n", - "\n", - "print(results)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "['BJWNs', 'GOK0H', '7CTRJ', 'THDF3']\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "How to retrieve results in a particular order " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#Sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The order of the obtained results does not necessarily have to match the order of the processes (in the `processes` list). Since we eventually use the `.get()` method to retrieve the results from the `Queue` sequentially, the order in which the processes finished determines the order of our results. \n", - "E.g., if the second process has finished just before the first process, the order of the strings in the `results` list could have also been\n", - "`['PQpqM', 'yzQfA', 'SHZYV', 'PSNkD']` instead of `['yzQfA', 'PQpqM', 'SHZYV', 'PSNkD']`\n", - "\n", - "If our application required us to retrieve results in a particular order, one possibility would be to refer to the processes' `._identity` attribute. In this case, we could also simply use the values from our `range` object as position argument. The modified code would be:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Define an output queue\n", - "output = mp.Queue()\n", - "\n", - "# define a example function\n", - "def rand_string(length, pos, output):\n", - " \"\"\" Generates a random string of numbers, lower- and uppercase chars. \"\"\"\n", - " rand_str = ''.join(random.choice(\n", - " string.ascii_lowercase \n", - " + string.ascii_uppercase \n", - " + string.digits)\n", - " for i in range(length))\n", - " output.put((pos, rand_str))\n", - "\n", - "# Setup a list of processes that we want to run\n", - "processes = [mp.Process(target=rand_string, args=(5, x, output)) for x in range(4)]\n", - "\n", - "# Run processes\n", - "for p in processes:\n", - " p.start()\n", - "\n", - "# Exit the completed processes\n", - "for p in processes:\n", - " p.join()\n", - "\n", - "# Get process results from the output queue\n", - "results = [output.get() for p in processes]\n", - "\n", - "print(results)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[(0, 'h5hoV'), (1, 'fvdmN'), (2, 'rxGX4'), (3, '8hDJj')]\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And the retrieved results would be tuples, for example, `[(0, 'KAQo6'), (1, '5lUya'), (2, 'nj6Q0'), (3, 'QQvLr')]` \n", - "or `[(1, '5lUya'), (3, 'QQvLr'), (0, 'KAQo6'), (2, 'nj6Q0')]`\n", - "\n", - "To make sure that we retrieved the results in order, we could simply sort the results and optionally get rid of the position argument:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "results.sort()\n", - "results = [r[1] for r in results]\n", - "print(results)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "['h5hoV', 'fvdmN', 'rxGX4', '8hDJj']\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**A simpler way to to maintain an ordered list of results is to use the `Pool.apply` and `Pool.map` functions which we will discuss in the next section.**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "The `Pool` class" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#Sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Another and more convenient approach for simple parallel processing tasks is provided by the `Pool` class. \n", - "\n", - "There are four methods that are particularly interesing:\n", - "\n", - " - Pool.apply\n", - " \n", - " - Pool.map\n", - " \n", - " - Pool.apply_async\n", - " \n", - " - Pool.map_async\n", - " \n", - "The `Pool.apply` and `Pool.map` methods are basically equivalents to Python's in-built [`apply`](https://docs.python.org/2/library/functions.html#apply) and [`map`](https://docs.python.org/2/library/functions.html#map) functions." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Before we come to the `async` variants of the `Pool` methods, let us take a look at a simple example using `Pool.apply` and `Pool.map`. Here, we will set the number of processes to 4, which means that the `Pool` class will only allow 4 processes running at the same time." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def cube(x):\n", - " return x**3" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 5 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "pool = mp.Pool(processes=4)\n", - "results = [pool.apply(cube, args=(x,)) for x in range(1,7)]\n", - "print(results)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[1, 8, 27, 64, 125, 216]\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "pool = mp.Pool(processes=4)\n", - "results = pool.map(cube, range(1,7))\n", - "print(results)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[1, 8, 27, 64, 125, 216]\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `Pool.map` and `Pool.apply` will lock the main program until all a process is finished, which is quite useful if we want to obtain resuls in a particular order for certain applications. \n", - "In contrast, the `async` variants will submit all processes at once and retrieve the results as soon as they are finished. \n", - "One more difference is that we need to use the `get` method after the `apply_async()` call in order to obtain the `return` values of the finished processes." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "pool = mp.Pool(processes=4)\n", - "results = [pool.apply_async(cube, args=(x,)) for x in range(1,7)]\n", - "output = [p.get() for p in results]\n", - "print(output)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[1, 8, 27, 64, 125, 216]\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Kernel density estimation as benchmarking function" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#Sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the following approach, I want to do a simple comparison of a serial vs. multiprocessing approach where I will use a slightly more complex function than the `cube` example, which he have been using above. \n", - "\n", - "Here, I define a function for performing a Kernel density estimation for probability density functions using the Parzen-window technique. \n", - "I don't want to go into much detail about the theory of this technique, since we are mostly interested to see how `multiprocessing` can be used for performance improvements, but you are welcome to read my more detailed article about the [Parzen-window method here](http://sebastianraschka.com/Articles/2014_parzen_density_est.html). " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import numpy as np\n", - "\n", - "def parzen_estimation(x_samples, point_x, h):\n", - " \"\"\"\n", - " Implementation of a hypercube kernel for Parzen-window estimation.\n", - "\n", - " Keyword arguments:\n", - " x_sample:training sample, 'd x 1'-dimensional numpy array\n", - " x: point x for density estimation, 'd x 1'-dimensional numpy array\n", - " h: window width\n", - " \n", - " Returns the predicted pdf as float.\n", - "\n", - " \"\"\"\n", - " k_n = 0\n", - " for row in x_samples:\n", - " x_i = (point_x - row[:,np.newaxis]) / (h)\n", - " for row in x_i:\n", - " if np.abs(row) > (1/2):\n", - " break\n", - " else: # \"completion-else\"*\n", - " k_n += 1\n", - " return (k_n / len(x_samples)) / (h**point_x.shape[1])" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 9 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "**A quick note about the \"completion else**\n", - "\n", - "Sometimes I receive comments about whether I used this for-else combination intentionally or if it happened by mistake. That is a legitimate question, since this \"completion-else\" is rarely used (that's what I call it, I am not aware if there is an \"official\" name for this, if so, please let me know). \n", - "I have a more detailed explanation [here](http://sebastianraschka.com/Articles/2014_deep_python.html#else_clauses) in one of my blog-posts, but in a nutshell: In contrast to a conditional else (in combination with if-statements), the \"completion else\" is only executed if the preceding code block (here the `for`-loop) has finished.\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "The Parzen-window method in a nutshell" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#Sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "So what this function does in a nutshell: It counts points in a defined region (the so-called window), and divides the number of those points inside by the number of total points to estimate the probability of a single point being in a certain region.\n", - "\n", - "Below is a simple example where our window is represented by a hypercube centered at the origin, and we want to get an estimate of the probability for a point being in the center of the plot based on the hypercube." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%matplotlib inline" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 10 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from mpl_toolkits.mplot3d import Axes3D\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "from itertools import product, combinations\n", - "fig = plt.figure(figsize=(7,7))\n", - "ax = fig.gca(projection='3d')\n", - "ax.set_aspect(\"equal\")\n", - "\n", - "# Plot Points\n", - "\n", - "# samples within the cube\n", - "X_inside = np.array([[0,0,0],[0.2,0.2,0.2],[0.1, -0.1, -0.3]])\n", - "\n", - "X_outside = np.array([[-1.2,0.3,-0.3],[0.8,-0.82,-0.9],[1, 0.6, -0.7],\n", - " [0.8,0.7,0.2],[0.7,-0.8,-0.45],[-0.3, 0.6, 0.9],\n", - " [0.7,-0.6,-0.8]])\n", - "\n", - "for row in X_inside:\n", - " ax.scatter(row[0], row[1], row[2], color=\"r\", s=50, marker='^')\n", - "\n", - "for row in X_outside: \n", - " ax.scatter(row[0], row[1], row[2], color=\"k\", s=50)\n", - "\n", - "# Plot Cube\n", - "h = [-0.5, 0.5]\n", - "for s, e in combinations(np.array(list(product(h,h,h))), 2):\n", - " if np.sum(np.abs(s-e)) == h[1]-h[0]:\n", - " ax.plot3D(*zip(s,e), color=\"g\")\n", - " \n", - "ax.set_xlim(-1.5, 1.5)\n", - "ax.set_ylim(-1.5, 1.5)\n", - "ax.set_zlim(-1.5, 1.5)\n", - "\n", - "plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAGUCAYAAAASxdSgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXeUVOX9/9/3Tp/ZQpG6LCxNQUXEgCJIEVgWUIkRCwqK\nDdFEjTExNiwYG/zUX+QY2/fYYn5BiFEhAZYOFiKgIUG/iqgUkaZI2d2pt/3+WJ/rnbv3ztyZuW1m\nn9c5niO7s3eeO+V5P5/OSJIkgUKhUCiUAmGdXgCFQqFQSgMqKBQKhUIxBSooFAqFQjEFKigUCoVC\nMQUqKBQKhUIxBSooFAqFQjEFKigUCoVCMQUqKBQKhUIxBSooFAqFQjEFKigUCoVCMQUqKBQKhUIx\nBSooFAqFQjEFKigUCoVCMQUqKBQKhUIxBSooFAqFQjEFKigUCoVCMQUqKBQKhUIxBSooFAqFQjEF\nKigUCoVCMQUqKBQKhUIxBSooFAqFQjEFKigUCoVCMQUqKBQKhUIxBSooFAqFQjEFKigUCoVCMQUq\nKBQKhUIxBSooFAqFQjEFKigUCoVCMQUqKBQKhUIxBSooFAqFQjEFr9MLoFD0kCQJqVQKPM/D7/fD\n4/GAYRgwDOP00igUigaMJEmS04ugUNSIogiO4+T/iIiIoohAICALDMtSI5tCcQvUQqG4CkmSIAgC\nGhoa4Pf7wbKs/J8kSYjH42AYBhzHAQBYloXX64XP56MCQ6E4DBUUimuQJAkcx0EQBNnNpYRYKcT1\nRYzrVCqFVCoFgAoMheIkVFAorkAURaRSKUiSJMdJRFFEPB6HIAjwer3weDxpf6MUGKBZkEjchQoM\nhWI/NIZCcRTi4iJxEiISx44dgyRJspVCHicIAliWhcfjkf/TC9ITgVF+xFmWhc/nkwWKCgyFYh5U\nUCiOQawJURRlMSFxkkQigVAoBL/fD47j5I2/qakJgUCACgyF4kKoy4viCFouLkEQ0NTUlCYQahiG\nSdv4lcJCxElPYNQpx0RckskkkskkACowFEohUEGh2IokSeB5HjzPg2EYecNOpVKIRqMIBoMIBoNo\namoydD2GYeD1euH1euXrmykwHo9Hjr94vV5aA0OhZIAKCsU2SG2J2sUVi8XAcRzKy8tlYSDkuoEb\nFRilBZJJYERRRGNjIwDIwqK0YKjAUCg/QQWFYjnKwDvw08bN8zyi0Sg8Hg8qKyst2ZwzCUwymYQo\nimnWi5bAkP9YloUoikgkEvL1qcBQKD9BBYViKWoXF7FKEokE4vE4wuEw/H6/bRtxPgKj/FstC4YK\nDIXSDBUUimXo1ZZEo1GIooiKigrNwDvBjgREIwJDrBOSUZbNRUYFhtJaoYJCMR11bQk55XMch2g0\nCp/Ph7Kysoyba6bfWSk0WgKTSCTkYL0RF5lynVRgKK0JKigUU9GrLUkkEkgkEohEIi1aquSC3Rsw\nEUSGYeD3+yGKIkRRBM/z4DgOkiTlLDCkHxlABYZSWlBBoZgGyYiSJAnBYFB2cZEU4MrKyqKv6yCN\nKokFI4qi7CIzKjDKGhoqMJRSggoKpWCUgXdRFAE0b57q2pJS3ByJwPh8PgAtBYY8RikQRgVGEAT4\nfD74/X4qMJSigAoKpSC0XFyiKCIWiyGVSqGsrEzebPO5drGRSWBIw0p1kaWewKRSKVlYyGNIfIcK\nDMWNUEGh5A2JIwBIE5NUKgWv14uKioq8XVylslEWIjDAT0kCQMtkBwBpnZSpwFCchgoKJWe0aksA\nyC1LvF5v1iyu1opSYEirFz2BUVtoWi4yMjuGQATG6/WmxW8oFDuggkLJCb32KdFoFDzPIxgMynUn\nZlGqm6JSILQERhRFJJNJ8DxvuNCSCIwkSXIPMyowFLuggkIxhLp9CtnYeJ5HU1MTvF4vKisrkUwm\nIQiCk0stWtQCE4vF5IaUPM8jmUzK3ZZzFRjye2UMhgoMxWyooFCyohzNq7RKksmk3D4lEAjYup7W\nABEX4sYiWWBEJPIRGHXciwoMxUyooFAykmv7FCI2haJ3nda84SnFA0BGgdHKAqMCQ7EaKigUTfTm\nlpD2KX6/nwbeLSabMGcSGI7jkEgkMk6z1BOYeDwOAHLshQoMxShUUCgtyDSaN5lMFtw+JZ/1tNaN\nLJf7NktgyPvNMAw4jmthwZA0ZSowFDVUUChpaNWWCIKAaDQKIHv7FLNcXsrr0U0rP8wQGKU7k8TS\nqMBQ9KCCQgGgX1vSGtqnGKEUEgGMCgx5rNoyNCIwyj5kVGBaH1RQKHIDR5JRRDaTTKN5rcZsS4fS\nEj2BIW36o9FozhZMKpWSkwOUAkM+V1RgShsqKK0YZW1JKpWSJycKgoCmpiZ4PJ6C2qdQigulwBAx\nUFbxi6KYt8AAkOtrqMCULlRQWimZaktisRhCoRACgUDOX/hStCxK8Z6MoEwjBtKnWRYqMEoLhsRg\nqMAUP1RQWiFatSUA5JOkEy6uTLTmLC83YURg9GbBkL9XuteA5hgd6WGmbhVDBab4cM+uQbEcvdoS\nnuflDsHl5eWu+xKrN6XWaC24kUwCY2RcMoAWAkPa+JDHq7PIKO6GCkorIdtoXq/XK8dQCsHMSnky\nrItSHJghMADSxENtwVCBcTdUUFoByvG06vYpkiShoqICyWTSlSd/0t2YbiD2QToVF0o+AqP8W6Cl\nBUMFxt1QQSlhMrVPaWpqQiAQQCgUcp2LiyAIAhoaGsCyrFzrQKBB3OIjk8AkEglZNEh35GwuMmJ1\nKwVGXQdDsRcqKCWK3twS0j6lkNG8VkM2Cp7nUV5eLt+DKIpIJBLy3HUAuidcivtRCkwgEJBHRxNX\nrCRJGV1k6j5kJEtRK02Zfj7sgQpKiaGeW6Jsn0KKF7Xap1jdJdgopM2LKIrw+/3wer1pJ1CSCeT1\netMsMJKKSjYPOg63+CCC4ff7wbJs2rhk4rKlAuNuqKCUEFq1JUDxtE9RrpNhmLTRtmrI/ZEmlbn2\nqSoGWnu6tHJcMoAWAgOgxfubi8CQFGVq4ZoHFZQSQau2JNf2KU4F5bVcceRLbxS9NiIkJZoU4dE+\nU9lxMjkjk4hmEhhixeYiMMSFSlAWWpI6GEpuUEEpcjLVlkSjUXg8HlRWVmb9cjj15SF9xIDsnYxz\nQUtgjKawUopjkJlSYIgFUojAJBIJcBwnH7yURZbFaOE6ARWUIkavtkQ5mteM2pJcyCWGko8rLt8Y\njZEMI7Lx0Crt4oO8X7kIjF6assfj0bRgqMBkhwpKkSIIAmKxmOwmUtaWaI3mzYadFehuyDbTyjAi\nm486g8yN9TmliBVzdHIRGK2/V66NCkx2qKAUGUoXF/k3wzDyaF6fz+fq0by5uLjs3MgzuU+Ur7XS\ngqFYgxWvrZbAkEMEyRIkkPdZbcFQgckOFZQiIlNtSSKRsH00rxaZLB1SUGnExeXkl1G9+ZAuAizL\nyptPsWeQtXa0YmyxWCztPVY+hgqMMaigFAF6tSXKnxca0LbS5eUGF1chkI2glFOUlbRGFx/5TpHN\nX8uCydaqX0tg4vF4Wnym1AWGCorLyTaal2EYV3YIJliVxeUkmTLIjLRxLwacWK+b6m700tCNHiKU\nVq7y70tdYKiguBi92pJ4PI5UKoVwOJz2AXUTRAiLoWdYoWTKIKMpysVDJkGzWmDIcweDwaIWGCoo\nLkTpylJ+CJXtUyoqKkzPijGr9QoAU1xcxep6UQtMtgrvUrDaWhtmC4yyjxl53Pz583H//ffbf3MF\nQD/JLoPUlhAxIR+uZDKJhoYGBAIBlJWVyadct226ZIYJz/OorKzMW0wync7cds/ZIMH9YDCISCSC\nUCgEj8cjpyhHo1G5qI7OgHGOQlxuRGD8fj9CoRAikYg8QptkYJI0f57nNT/DyhgOy7JYuXJlobdk\nO9RCcRF6Lq5oNCp33rVyNG+hGzXJ4gIgi54ZqE92xSYoatQpynrBX5K+3FpwUwylUIzE2ZQWjPq+\nBUEoSsuVCooLyNQ+hYxE1WqfYubmWsgXWTn5MRKJIBqNmrKm1kAm1wnQ7Dq0O4OslDZ2o1gt3Jni\nbERggGZPxM6dO9G+fXuEQiFL12QFxSeBJYZy9ofSKkkkEmhsbEQoFCqKQkWSuux0HUyxo3SdAJDb\n5wA/ZfaRpAxBEFqVBWMHdn3PiMAEAgGEw+G0uqyHHnoIp512GrZv346HHnoI7777bsZmqddeey06\ndeqEAQMGaP5+/fr1qKysxKBBgzBo0CA8/PDDltwTQAXFMYhVQgZGETEhG3QymURFRQUCgYChaxVK\nPtYOx3FoaGiAx+NBeXm56SY63SxbbjyRSER2lSWTSSowJQTLsggEAliwYAFWrVqFvn37oqmpCb/9\n7W/RvXt32WpVc80116C+vj7jtUeNGoWtW7di69atmD17thXLB0BdXo6gV1tCgnd+v9+QVeKU1aJ2\ncVlhlbjVInMaPdcJz/PyECr1kLFieS1bo6tND5Zl0bNnT8ybNw9As+tTrzffiBEjsHv37ozXs+ug\nQS0UmyG1CWoXVywWQ1NTE8LhMMLhsGu/WEoXV0VFhaaYmB04p6dufYjAkAyycDiclkEWi8VoBpkB\nnBYz9fPHYjGEw2H534XEUxiGwcaNGzFw4EBMmjQJn332WUFrzQS1UGyCnCRJxlZZWRmAn0beAvlV\nkiuLogrBiAgoLahSLlQsZvSaXKr7UxVz8VxrIB6PIxKJmHKtM844A3v37kU4HMby5ctx4YUXYseO\nHaZcWw21UGxAXVtCSKVSaGhogM/nsyQGYRakOr8YLCjKTygbXJLaiGAwCJZlM9ZGOH1adwKn71n9\n/NFoNM1CKYTy8nL5WhMnTgTHcThy5Igp11ZDLRSL0aotIXNLOI4ruFmi1XUZhcxYobiLTCnKytoI\noNlyttuCcXpTdxNkQJ4ZHDp0CB07dgTDMNi8eTMkSUK7du1MubYaKigWoVdbQuack/YpbrFKtISJ\n1MEYTRLIdK1816OMMykFmVI4SoHx+/2yeyyRSJRMk8tiQf19ycXldfnll2PDhg04fPgwqqurMWfO\nHLnFz6xZs/Dmm2/iueeeg9frRTgcxhtvvGH6+glUUCxAbzRvKpWSC9UikYgpX04rLBQ7srgo7oME\n+IGfgsCtZUyyG6wjtcurU6dOhv5uwYIFGX//q1/9Cr/61a8KWptRqKCYDEnfBJB2oo7FYhAEAeFw\nGIlEwvEPrx5ktDB1cVGUKcrZxiSb0eTSDZu6W4jH40VZKU8FxST0akuI28jn86GiokK3OKnQ5y4U\nst7GxsaCxwiXQr+t1kqm9y3TmGT1jHY6Jjk3yERQQiwWkzNBiwkqKCagN5pXy21k9mZrxpeWVF0D\nza4OI9X5lNLGSFGtMoss1wmHbsNt1pGZQXk7oYJSAOrRvMrAezQahSRJtriNChEoZRYXANeM5yXC\nS2JPSv9+a4C8p27a5DJR6HyQ1k62wsZiofV8Q01GkiRwHAdBEFq0T8k0pdBNForSHVdWVoZjx46Z\nti4zkCQJDQ0N8v+TwjyGYeT23nRTcidG2rer4y9OWgluc9FSC6UVkWk0b6FTCu2AbM4kNdHsLC4z\nRJNYfWRIEYF0ZlaP1i21rKNSI1P7dvJeEheaU4cFNxU20hhKK0CvtkQ5mjdb+xQrLJRcrqfMOFO7\n49wQTFcKMwAEg8E08SZuk2AwaHnWEcU61AIjiiKSyaQcewTQwj3Wmg4L1OVV4mjVlgDNA3FisRiC\nwWDaTAMj17P7C6LOOHPbF5Q0ngSa20U0Nja2eIxS9LSyjojgF1tQuLVD3kuGYeD3+9MOC+oMMisO\nC04H5dXPb2YvLzuhgmIAskmpXVyxWAwcx+U0mtfsD60Rq0Lp4gqHw5ZnceVj6Sir8kn+fS7XIO8L\ncd9ptRWhVd/ZcTqOQYSitR8WOI4ryoJiKigZIB/iY8eOpc1I53ke0WgUHo9HczSv0Wvb8SUgM+m1\nXFxqnHB56cVzzGjdotVWROmzV3fdLbVNqVTIdFgolQwyrf2g2O4BoIKii7K2hBQjqk/6fr8/rzfd\nzA9KJhFwu4srF7ErFC2fPS3KK070UpR5nk9rckkOC0asUXVhodM4HcvMFyooKjLVlsTjcVNaklht\nCRTi4rLrg0wSGTweT1axs+L1ysWlUqxf7mIjX6s9U4qyOhvQje5O9eermD9vVFAU6NWWAM0tSXLt\numsH6s22kFO/WfeVTQBSqRSi0ahcle/066nnUlGeeMlj3LghUdLRS1FWjkl245Ax5TqK1QVLBeVH\n9GpLSJfVUChkWrM2qyyUYnBxxeNxpFIpw4kMTpzW1CdecspVfh6Uc9vd5CoplGI+HethxN1JHqec\nCWMXWpZZsb4PrV5QMs0tISmsxDXiVkgOP8ldzzeLy0pXHHk9GYYxNAfGTWJIPheBQKBF111l/MVt\nJ958Kfb1Z0PL3RmPx2VXNzlQOPV+8jxftF2+W7Wg6NWWEJcMqS1pbGx0tBgxGzzP2xLYzhfSjibX\nWh23ot6QSi3jyCmcSFkm33uGYRAIBMCyrO3vp3oviMViRVmDArRiQSEfGL3aEmX7FDdUkGvB87w8\nW8VNLi7yelkxqMtt74WRjKN8AsJOF9q1VvTeT/WYZGLBmBVPU7ddKcYqeaAVCoqR9ilWj+Y1Y1Mk\nLi6l6LlhXQRJktDU1NTqBnVlyjjSailSSvGXUsRoPZOZGWTFOlwLaGWCojW3BPhpc9bLOnLTqZhk\ncfE8j/Ly8rQUZ7dAXmc3ZsXZjTIg3BriL8WKUYtQL4NMS2CMNizVagxJXV4uRl1bonRxKTdnvawj\nswUl3+spazdIhT7JPnILyWQSqVQKPp+v4C+Fm4TcLIzGX0g7d7tx8vUuRjdfpgyyfBuWUpeXi9Gr\nLSEptl6vN+/2KfmSz0apzOLKt0LfinURlPEnN9SWFAOZ3GPk8BOPx20vyKPvXf4oDwxA5o4MenNg\nqKC4FL3aklyryJ08KWdrQumGU7w6/kTakFNyQ3naJWMGfD6fXJAH0PiLVVhlHelZpMqODMokFoZh\nilpQSvITSQLvZKYGedNILUQymURFRYVjLUmMioAgCGhoaIAkSaisrLRlBG6u98lxHBoaGuR4SWvb\n5FauXIna2lrU1NTgzDPPxOuvvy6PUy4UIjDBYBCRSAShUAgejweCICAWiyEajSKZTMqdsCnuhlik\npKN2JBKR9yBJkvD9999j3LhxWLp0KQ4cOCC7zPS49tpr0alTJwwYMED3Mbfeeiv69u2LgQMHYuvW\nrabejxYl9+0XRRGJREIuUCKnDrLxkd5RTrQkyYVkMomGhgYEAgFEIhHdNZhpoeRyn6QYrKmpCWVl\nZWnjjq2IOTmN1v3Mnz8fV111FTZt2oQjR45g+/btuOOOO3DttddassGTky4RGFLTw3EcotEoYrEY\nkskkBEEoSoFxKobi1GuldHl6vV60adMG9957LwRBwLJly9ChQweMHTsWr7zyiubfX3PNNaivr9e9\n/rJly/DVV1/hyy+/xIsvvoibbrrJqluRKSmXF6kYP3bsGNq2bStvbGQCYL61EMS6MYtMG26+c1bs\nRBRFRKNR2XKyyipxgzuPrEPNDz/8gIcfflhOBSbEYjHU19fjww8/xNlnn23pmoq5IaIbcer1IULq\n9/tx7rnnYseOHZg0aRIuuOACvPvuu3K3czUjRozA7t27da+7ZMkSzJgxAwBw1lln4dixYzh06BA6\ndepkxW0AKCFBUfflIT+LRqMAUPDGZ8fGppXFZSdGNnD1ICw3rtEOli1bpvt5isfjWLBggaWCoiZb\nQ0TAWPylGDOtSg0S362oqMD555+f93X27duH6upq+d/dunXDt99+SwXFCOQEpmyfks9oXi3M/oJp\nWTzZamEyXcuODVZvEJaTa3ISMspAC5KO7iR66axunXjYmtOV1bNYzKxDUb+uVt9nyQgKkL6RxePx\ntPYpZl3XbIrBxWXnIKxiYcSIEbpfzrKyMowfP97mFWXGSP2L1+uVs42cwmlhcwNmZXlVVVVh7969\n8r+//fZbVFVVFXzdTJRUUJ5kRQEwTUysgAgUWS9pT5KPmJgdlFdfS/maOikmbrN4+vfvj5EjRyIY\nDKb93OfzoX379rjwwgsdWll2tLKNSFsR0miUjBlwW+FsKaK2kIjLq1AmT56MP//5zwCADz/8EG3a\ntLHU3QWUkIUiSRIaGhoQCoUQj8dNPelYYaGQjdotQ6a0cHoQlttdZ6+//jp+//vf44033oDX6wXH\ncRg5ciSee+65vEcIEOx0wyjdYyzLgud5eL3egqq9iwmnXV5qiFs5G5dffjk2bNiAw4cPo7q6GnPm\nzJHjZbNmzcKkSZOwbNky9OnTB5FIRDdbzExKRlBYlkWbNm3AMIzphXVmN01MpVKy+6hQF5cVm65y\nEFY+lp7bhcAsgsEg5s+fj0cffRT79u3DCSecgPbt2zu9rIJhGAY+ny9tXojV8Re3bep2ov6uRKNR\nQ4KyYMGCrI955pln8l5XPpSMoABIa2Pgxg2NZHERl4Pb4iUkWaCxsREALO+6XCqUlZXhpJNOcnoZ\npqDe2Emii1b8RdnOnTS3pOnJ+WGFy8sJ3LWjmYRbmjkqUbqPWJZtUb9QKGac8EiQNhgMOpISrIfT\ngWLKTxht567snuyWz5EebrOOjLq83EhJCorZmNU0kWRxmdkqwyx3QzKZRDKZhMfjMeV0ZNb9ET++\nJEmOduGlaJOp265eM0RKOmpB4zjOtQlF2SgpQSEbv1tcXnYN7VLed64oU4JDoZAps1XMOu0RMSYB\nbrJZAc2plWZPzaMUjta8djLQLlP8xUkrwW0WClC86dMlJSgEN7i81HPp1X5ptwheY2MjvF4vKioq\nXDOoS5KaRweLoohwOAyfzweO4+Q6iWg0Cr/fr+tmoadgd0DcXaQIViv+ohQWN3wnnMCNgpYvVFBy\nwMgbr8yQsrNQsZD5KsQCcMOXWtknTNmrSk02NwsRFzdUgVOayRR/4ThO/u60poOB+vumHLVRjJSk\noJiN0TfXqIvLyW68dlTm53t/xGLy+XwIh8Nytlk2jFaB0yyk7DhV/+LxeJBMJuX6F3X8hYzTtQI3\nWAjK53f6UFcIJSUoVrVPV15T74OXycXlFsg8GIZhXJcSTF4/o0PP9DDShVdpvbjpNWjtkENBpmFU\nbuo/RmlJSQkKwex28wQtkcqnCNCJGA/HcWhqasooeE64vLK5CAtdT6YspGQyKf+eblLuQutgIIoi\neJ5vEX8pZsuzlDK8gBIWFCssFDWkPX6+J347TG0S4E4kEq7rb6aMl2i9fla8NnrusVLapEqRTJZn\nIpGAJEl5W55ucHkRiJVerJSUoFj5oVCLVCEuLiva4WsJKNmwSfNJuxo7FsNcFSBzkJgUnio3MIp1\n5LqpKy3PQCCgW/+iLLB0I1qNIUOhkIMrKoySEhSC1e3mC+lzRSikdsQIZMP2+XwoKysz9Dx2uby0\nMszcgN4mxXEcRFGUa1/scI9RAcsNI4kZxRB/KeYqeYAKSk7XFAQBsVjMdUFt9f26dcM2I6XazkI4\nskkBzQJNal/sco85semphz0VI7nGX0iihhOoP8dmzUJxCiooBiHptmZlcVm5xnxTgs1ak9Z18s0w\nc8tJXc89pjVi18oUV0ruGIm/kM+Z05l/NIbiIqz4EpNTNWlN4kb/JrGe4vE4WJZ1ZB59JvKNl7jp\nHtQo3WN2tXgvZZyqfwkEAojFYmBZ1pHCWKuGazlFSQkKwayTNjlVA82T+Mw8uZhpoYiiKHcJdlsN\nDHG/ZZtDX8yQyma1D1/LxUKsFze9R60d9eFAL/5iR984M+fJOwEVFB3UdRuxWMw17hcCSQnmeR6B\nQKBg68lMkSM9tziOKzjDrNg2Xy0Xi3K0LlAcGUitESOFsWbGzmgMpQgoZGMkLq5kMmlp3Uahm7ey\nhsPv9zs2610Lcl8kXbnYg7yFwjAtJyCS2IvdJ+BsuO3QZAeZ3G3qwthMsTMz4i9UUFyE+kORq19W\n6eKqrKxM+3BYFUTPB3VMIhaLmb6ufDc1YtkBMJyunG0tdvDRgY8Q42IY2X2kpc+j1YFX6wTsZKNO\np7LLisFSs7rzQjweL+ox0iUlKIR8PphkIySuI/U1nGzoSCCDsEiuOtmUzMzOyhfl2sLhsNxBwKn1\n5MLOYzvx87//HDEuhtM6noaxNWMxrsc4DOkyBD6PtZ0F9DYoUvsSjUape8zFGK1/0bM+aWFjkWC0\ncNCp1iS5ioByEJadVe9GIOnKPM/LLi7ijnP7Brjhmw24btl1GNV9FKrLq3F+n/OxZvca3LX+Luw6\nvgvndDsHo6tHY1TVKPQL9rN8PWSDYhgGqVQKgUCAdk62GLM+p7nEX/RSy2lQ3kVoqX8mMrm4tK5t\nRcNJI5C2+B6PBxUVFZZbT/msjbTst2ODM6PLgCRJ+J///g/mfTgPL096Gf/57j84GD2IEdUjMKJ6\nBB4c8SC+j32PtXvWYtXOVZi3aR7KA+UY22MsxtWMw4jqESjzl5l4Vy0xskGVSufkUiioVKMVf1En\nZwCQiytZli36GEppvYMKsm02HMfh+PHj8Hq9KC8vN/RhtrtDMNDcM6yhoQGBQACRSMTyDTsXceI4\nDg0NDfD7/abES+wiJaRw2+rb8PJ/X8aqqaswsvtIMGh53x3CHXBZ/8vw3Pjn8MnVn+DP5/8Z1RXV\nePbfz+LEF07EpEWT8OTmJ/GfQ/+BKFl/2CAbVCAQQDgcRjgchsfjkTs4RKNRJJNJ8DzfKoPr+WKX\nJU2SM4LBIMLhsOxaF0URy5cvx+DBg7Fjxw58/PHHhmYB1dfXo1+/fujbty/mzp3b4vfr169HZWUl\nBg0ahEGDBuHhhx+24rbSKCkLBcg+V17p4sqlNsLuzTKXNiV2W0/KeInbOhhn43DsMKb/YzraBNtg\n1eWrUO4vB/Dj5wb6mzDLsDit42k4reNpuG3IbYhyUby39z2s2b0G1y67FseTx3Fu93MxtmYsxvQY\ng06RTpbfSzb/fT7prVSI7IEkZxCRqaurQ8eOHTF37lz89a9/xT333INBgwZhzpw5GDNmTIu/FwQB\nN998M1YioTvAAAAgAElEQVSvXo2qqioMGTIEkydPRv/+/dMeN2rUKCxZssSu2yo9QSHotf8gvv1s\nLi4j1zN7fQSlK87utNts92k0lmOGW8rs1/yT7z/BFYuvwCX9L8HsYbPBMumvay7PFfFFMKHXBEzo\nNQEAsOf4HqzdsxZLv1qKO9fdieqKaoztMRZja8ZiaNehCHit7amWrb0IYDy9tVgszVLC6/ViyJAh\niEQiePnll9G2bVu899576Natm+bjN2/ejD59+qCmpgYAMHXqVCxevLiFoNh9QChZQQHSX0yO4xCN\nRgtql27Hm5Mt20wLu2Io2WI5bmbxjsW4bc1teGLME5hy0pQWv89moWSjR2UPXHPaNbjmtGvAizw+\nOvARVu9ejQfffxA7juzA2VVny/GXPm37GEoWKVSM9dq7u7E1jFMJHE5bZFqFjZFIBOFwGHV1dbp/\nt2/fPlRXV8v/7tatGzZt2pT2GIZhsHHjRgwcOBBVVVV44okncPLJJ5t/EwpKVlDIm5Svi0vvemah\nFgG9lGC3QIQuFAohEAjY/uXP9/lEScTcD+fi9U9fx1sXvYVBnQZpX18jhpIvXtaLoVVDMbRqKGYP\nn40j8SNY/816rNm9Bk9/9DS8rFe2XkZ1H4XKQKUpz5sJo4PFlI0SWxNOCyrBaFDeyHrPOOMM7N27\nF+FwGMuXL8eFF16IHTt2mLFMXUpOUJSuFuI6kiTJlPYfVs5YKTQl2Ky1aQmdWyc+ZqMp1YSbVtyE\nA00HsO6KdRnjGgys21DahdrhopMuwkUnXQRJkrD9h+1Ys2cNXt72Mm6svxGndDhFFpgzOp0BD2tt\nSrjSPabunEze71LJHnM7agtFEARDXcKrqqqwd+9e+d979+5t4R4rLy+X/3/ixIn45S9/iSNHjqBd\nu3YmrFybkhMUAglq5+I6shMieIIgoLGxET6fL283klX3VojQOZnKDDTHNC5ffDkGdhqIpZcsNRTD\nKMTlZRSGYdD/hP7of0J/3PyzmxHn4ti4byPW7FmDm1fejIPRgzi3+7kYXT0aI6tGolewly1rIu6x\nWCwmHxpaQ+dkt9VKGW0cOnjwYHz55ZfYvXs3unbtioULF2LBggVpjzl06BA6duwIhmGwefNmSJJk\nqZgAJSgoREg4joPf7zctp9uKDVIQBDQ0NLhuEBbgjnhJvq/5xm83YsbSGbhtyG345aBfuioOpSbk\nC2FsTbN1glHA/sb9zbUvu1bhwQ8eRMdIR9l6GV41HCGftVXUkiTJVomdnZPdtrHbhfK+c/n8eb1e\nPPPMM6irq4MgCLjuuuvQv39/vPDCCwCAWbNm4c0338Rzzz0Hr9eLcDiMN954w5J7UMJIJeYwPXr0\nKDiOk1sdmNXGQBRFHD9+HG3bti34WpIkobGxUa4sL3RaHMdxiMfjqKioKHhtDQ0N8Pl8SCQSBcVL\njh07hvLy8oLcjPF4HJIkIRgMguM4eR2xWAyBQEDz2q9uexV/2PgHvDjhxeZN2iAvbH0BXxz5Ak+N\nfarF7ziOgyAICAaDed9LrnAchxSXwufHP8eaPWuwZvcafPr9pziz65kYVzMOY3qMQf/2/U3fhKPR\nKEKhkK6bS+keEwQBgDmDxTK9p1ZCsuCcqk5vamqS68skScLEiRPxwQcfOLIWMyg5C4UMwSKT2NyG\nMq6jrKJ1A+Q0aka8xKwTP2nrkkqlZL++1nU5gcPdG+7Guj3rUH9ZPfq27Zv7em1weeWCh/VgcJfB\nGNxlMO4ceieOJ4/j3W/exZo9a/DC1hfAiRzG9BiDsTVjMbr7aLQPWd9UUOkeU3ZOVrvH3NA52ShO\nrdGN+1OhuGc3Mwmv1wtBEEwv9jNjg1TOWGFZVp4O54a1kRodURQRDoddEXyXJEkWklAoJLtelIFj\nr9eLY8ljuHrp1fB7/Fh7xdq8sqYYMHCZnrSgMlCJC/pegAv6XgBJkvDVsa+wZvcavPHZG7h11a3o\n27Zvc2PLmubGll7W2q+30c7JRtxjrdXlBaQLWrG/BiUnKFaTzwdfK1OK4zjXnFCUiQHkZOk0yhNv\nJBIBx3HweDzw+XyIRqOyf/+/B/6LGctn4Pze5+OB4Q/A78s/LdxtFkomGIZB37Z90bdtX9w46EYk\n+SQ27d+ENXvW4I61d+Cbhm8wonpEc3ymx1j0qOxhy5qy9a5yW+dkNwlZKpVyxUGuEEpOUMiHww3t\n5oHCqvONUsi9plIpRKNROTHASA8hqyFjg30+n+aplqS9rty9Er9c+Us8MvIRXHLiJXJPq3yyksys\nQ3GCgDeAkd1HYmT3kZgzYg4ORQ9h7Z61WLtnLR7Z+Agq/BVy8H9EN+sbWwItB4tptXbP5MYsddRi\nRr6HxUzJCQrBiqydXNuJkEFYPp8P4XC4hWnr5JdIr1eYWevK5zrqNSkDv+rHPbXlKby07SUsunAR\nhnQZAgBZi/YyWV9uOaWaRadIJ1x+8uW4/OTLIUoiPvn+E6zZvQbPfPQMrlt6Hc7ofAZ6VPTA0Kqh\nuPLUK+W/s+rEnq1zMtB8kFC25m9tkFlCxQwVlBwxek1yyrYjJTjXe1VaTW4Z0au1Jp7nWzwuxsVw\n05qbsKdhD9ZevhZdy7um/V6raE/tdtGbqFdMLq9cYBkWAzsOxMCOA3H7mbejKdWEl7e9jAffexD/\ne/h/0wTFLtTuMZKiTg4CgP77ZCZOurzUz00FpZVhtFtrLBYDx3GGmifaTSarySmUMZxMa9rXuA9X\nLLkCvSp6YeklS1EWyO62yeZ2kVuOiJItLejdwLo96/B/t/xfnNfnPAzsONDp5cgQF2c291ixZI/l\nCnV5uRCrYihGrqksBqysrLT1Q2/kXo1YTWa+bkbnvZDah0x1Hpv3b8ZV/7wKN51xE2aePBNBb+41\nIXpuF5L2yvN8WtsRJzctq07Of/r3nzB/y3y8ddFbeOuLtyzPBMuHbJ2TScp9sbeG0WoMSQXFpdjt\n8lJujEaKAc1cn5HOtUZnq5iFkTVl6xFGXqPXP3kd96y7B8/WPYsJvSbIBY9mrFHuyOsPgPU0N1BU\nn4pLoWGiIAq4e8PdWP/Neqy6fBW6V3THos8XwcO4Z5S0HlZ2TnZTlhdpDFvMUEHJ8ZpqlJt1LsWA\nVqxP68vh5GwVPYz2CONFHrPfm41V36zCskuWod8J1s10J7NRtGoqlLUvhVaEO0GMi+G6ZdehMdWI\nlZetRJtgGwCAIAlpnwenRJM8r9HX1GjnZLe7x2iWVytHLQJu2az1vjAkXpLLDBirYzuiKKKxsTFr\nj7CjiaOY9s40CKKAd698F2Ue6+e3K4PyylMxSRDweDxFVxH+XfQ7XPrOpTip/Ul47fzX4Pf8VKcj\niAK8TMstwK33ooVe52Sjg8XcZHmWQlDe+eOqyVgZQ1HC8zwaGhpymkmvhVVrTCaTaGxslGeP271J\naL3+HMfh+PHj8Pv9cv8iLXb8sAMj/zwSJ7U7CQsvWIh2IWs7pALZ29eT4H4oFEIkEpFjUMlkEtFo\nVG5Iauco5mx88cMXGPfGOIzvOR7P1z2fJiZAs4Vidat8uyEHgUAggEgkglAoJB8EYrEYYrEYksmk\nbHWSv3ECrRgKdXm5FGUHT7M+MKSdSyKRKHgQltkfYuUGTrLM8o2XWCFyRl+zFV+vwPVLr8dDox7C\nFf2uAMdxpq9FD6P3rQ4au3Ea4vt738eMpTPw0IiHMO2UaZqPEUShKGIohaDlHlN2TmYYBizLQhAE\nxy3NeDyODh06OPb8ZlCyggKYM9dcDSnCKnRgF2D++kRRRCwWA8MwebvgzLbsjKZRS5KEpzc/jae3\nPI2FFy3EsG7DkEwmbXNJFNJ6JdumZaSw0kwWfb4Id62/Cy+f9zJGdx+t+zhBElyR5WVXYFwre4wk\neKjdY3bEybQsFLO6ozuF858mk7HqQ0By4lmWde089cbGRlcNFCNt+rMJXIJP4Ff1v8Kn332KDVdu\nQPfK7gDsd0WYlTmm3rSMFlYWiiRJeGLzE3h126v45yX/xMknZJ4fzou8nIzQGiHWCREQpzsnx+Nx\nlJVZ3xLHSkpOUJSYddomKcFmn1zMWh/JzQ+HwwXP7CBuvUIhp79sAneg6QAue+syVFdUY+30tYj4\nnfEhZ7NQ8n2fjBZWFpqRxAkcfrPmN9j23Tasvnw1upR1yfo3glT6Li+jkJ5xyiw/Ymnm2jnZKJIk\npR2yaB2KS1G6kgrZsNX1G27qEAyku5NIzYQbSKVShiZmfnTgI1z21mW4/vTrcdewuxy1qjI1hzTz\nAKFXWEliRcrTslEakg246p9Xwct6sezSZYYbP6pdXk7VZLip/QnBiKVpdudkKigupxBBISnBSneN\n2QHiQtfX2NgIlmVRWVmJhoYGU9eWD0oBJq3w9Zj+znQs3rEYdw+7G78b+rucvpCW1BjB/vb1ytRk\nUjxJxIXM9CEbm571sq9xHy5++2IM7ToU/2fM/8kpJiKIpZflZRVqS1P5XpEi2FzdY7SXVytBOQgr\nGAympSK7IS1Ub31OdQkmz00mUVZUVGStZi/3l+Ok9idh6VdL8fSWpzG6x2jU9a5DXa86VJVXpV3X\nDpzqraZ8fqXLhbhZMgWMt323DZe9cxluHHQjbh18a86nZKuzvARBwBdffAGGYXDSSSe5oqhWTT7v\nuZZ7TGuwWK6dk2kMxeXkukko24Fopbeavenks75kMqmZfuuku4j0MPN6vXLNS7b1nNzhZIR9YTxZ\n+yS+i36HVbtWof7resxeNxtdy7tiQu8JGNt9LE5re5ot95CtDsVuSMA4EAiktRshPv0N+zbglrW3\nYN7oeZjSb0pe77+VWV6LFi3CnXfeKYthJBLBU089hcmTJ1vyfIVQ6HdHaWkC6WnkmTonq7/7tFLe\npeQTQyEnbFEUTUkJNkKu6zPSrsRuiLVktIcZwct6wUvN7ek7Rjpi2qnTMO3U5sr4LQe2oP7retyz\n4R58ffRrnFtzLsb1GIfamtoW7erNxE3t69XuEGVq8ivbXsEjGx/BqxNfxeCOgxGNRvNqlmhVltey\nZctwyy23yLEGoHmznDlzJsrKyjBmzJi0x7upn5YZ6LWG0eoRp6QUXF7us0FNxOiGzfM8jh8/LqcE\nu63lvCAIcoxEb31mrc3odYg119TUhLKysjTXmxE8jAeC2HJ4lof1YGjVUDw48kG8O/1dbLxiIy7o\newHW7VmHs18/G8P+PAx/+NcfsHHfRnCCeTGtQupQ7EKURMx5fw6e/uhp1F9Wj5E1I+VOCGSWiF41\nuBbqLC+zPtv33XdfmpgQ4vE4HnjgAVOewyysFjMSAyPtj4hngcRhEokE1qxZg1deeQXBYNDQQbG+\nvh79+vVD3759MXfuXM3H3Hrrrejbty8GDhyIrVu3mn1bupSkhZILuQ7CstvlpRcvcRKSXcbzfN4C\n52E9EKSWgqKmY7jZernkxEsgSAI+Pvgxln+5HLPfm409DXswqvsojO85HuNqxhlKldWDAQM360mS\nT+KmFTfhm4ZvsHrqapwQPkH+nZHCSi1/viiJLVxehX6+4vE4du7cqfv7bdu2lZxFkgtK9xjP8wgE\nAvB4PFi/fj02btyIU045BXV1dRg/fjzGjBnTogxAEATcfPPNWL16NaqqqjBkyBBMnjwZ/fv3lx+z\nbNkyfPXVV/jyyy+xadMm3HTTTfjwww9tub+StFCM9PMiLqR4PI7y8nJDYmLnl4BkTBELIFuxopnW\nU6brkOyyQl2DHsYDXmw5kTHTWrysF2d1PQt3nXUX1k5diy1Xb8GEXhOwZvcanPXaWRj++nA8+N6D\n2PjtRkPXVuK0hcJu2QLPu+9q/u5I/Ah+/vefgxd5/OPif6SJiRpyIg4EAgiHw4hEIvB6vXK6azQa\nla0XXuRND8qTIVl6+P3+VismWrAsi9GjR+PVV1/FwIED8frrr6NTp06YN28evvvuuxaP37x5M/r0\n6YOamhr4fD5MnToVixcvTnvMkiVLMGPGDADAWWedhWPHjuHQoUO23E9JWyh6mywJIhMXl1Gfs11B\neSfjJZm+7KR7cSAQKNha8rDaLi+jawGa56ZPO2Uapp0yDbzI46MDH2Hl7pW4c/2d2HN8D0Z3H43a\nnrWGrJdMdSiWI4oIXXMNEIsh+sUXgGIEwq5ju3Dx2xdjYq+JeGjkQznHPPQKK1OpFFJ8CjzXbMnk\nWvuih9frRW1tLVasWNEiI9Lj8eDnP/95i79xYx2KE8/NMAwGDx6MwYMH4+6779b8m3379qG6ulr+\nd7du3bBp06asj/n222/RqVMnk++gJSVpoSjR6njb0NAAv9+PsrIy16UyGomXaGF1fEfZvdhoa5dM\n6/GyXkMuL0K25/OyXgytGor7h9+P96a/hy1Xb0FdrzrZejnn9XMw5/05+Ne+f2laL05aKN4lS8D8\n8AOYeBy+v/5V/vnHBz9G3cI63DjoRjw86uGCA+hKf344HAYYIOBvziCLx+Nyymu22Es25s6dizZt\n2qRlIfr9frRr1w4PPfRQQfdQKmi9vka+U0bFT319u0Sz5C0UgjIlOJdBWOrrWWmh5Dr10QrUa1J3\nC9AqVvzmm2+wcuVKSJKE8ePHo0ePHlnXrheUz2eNWqitly0HtmDVrlX4/brfY8/xPTi3x7morWm2\nXjqXdXYubVgUEZg9G0w0CgDwz5kD7oorsHTnUvx23W/x7IRnMbHXREuemhd5+L1+BINBuVCPdDko\nZI57TU0N/vWvf2H+/PlYvHgxGIbBlClTcMstt7iqm64bul7kWkNWVVWFvXv3yv/eu3cvunXrlvEx\n3377LaqqqmAHJSko6hiKKIqIRqOQJAmVlZV5WyVWWQFuFDsAaa+blmtQkiTcfvvteOWVV+Takzvu\nuANXXXUVHn/88YzXztVCKQQv68XZVWfj7Kqzcf859+Ng00Gs3r0aq3avwj0b7kGPyh7oXtEdRxJH\nwIu8rR14iXVCYOJxvPfYTNzVaSMWTl6IM7udadlzi5Iox1DI+8cwDEKhUFqxXj6deLt06YLHHnsM\njz32WNZ1OB2kd0NMJ5VKGRqFMXjwYHz55ZfYvXs3unbtioULF2LBggVpj5k8eTKeeeYZTJ06FR9+\n+CHatGlji7sLKFFBIZDKduLicksXXgJZH6l/KUTszEYQBDQ2NsLn8+kO6Hr++efx2muvyRsO4S9/\n+Qtqamowa9Ys3esbDcoDP/VRItlMhdK5rDOmnzod00+dDl7ksXn/Zvzp33/CJ999gl7P9cKYHmPk\n2EuniIVfRJV1AgBMNIqznl+MZR9tRPcTelv33NAubFQexrTmuBfbxEq3otW63shwLa/Xi2eeeQZ1\ndXUQBAHXXXcd+vfvjxdeeAEAMGvWLEyaNAnLli1Dnz59EIlE8Morr1h2Hy3WZ9sz2YwkSeA4DjzP\no6ysLO9BWErMtgJEUZRPJmVlZaZ0Ly0UpQhnS6WeN28eYrFYi5/HYjH88Y9/xMyZM3X/1mhQXim4\n5P5IFbkZJ1sv68WwbsNwOH4YkiThybFPYvXu1VixcwXuXn83aiprMLbHWIyuGo3hNcNNtV7U1gmh\nrRSAf/lGpK60VlByyfJSpyarW43kU1jpNE5bRkpymYUyceJETJyY7gZVH96eeeYZ09aWCyUpKCRL\niswBN0NM1Ncv9IOYSqWQTCbh9XpNGftphtiR1i6SJKG8vDyj643neRw8eFD394cPH5bbTmhhxOUl\nCAIkSZLfQyIwyWQSgiCkjRQodCMjzSG7lHXBladeiStPvRKcwGHzgc1Y8fUK3PXeXdhfv1+OvdTW\n1KJjpGPezwcAgQceAGIxSCwLUWrOiGIZFkwsjsgjjyA1fXpB189GviOAM7UaccvESrejZaEUe5U8\nUKKCQjaySCSieYLOFzO+GMogdzAYNLXZZKGt+kmqMkk1zYTH40FZWRkaGxs1fx8KhTIKeTaXF0lQ\nYBgG4XAYqVRKzlIim5TP55Nbihe6kWllefk8PgzvNhxndT4Ld595N47yR7F692rU76zH3evvRs82\nPTGupnlm++DOg3PenFO3347D33yOv372V5zWYSBGdx8lr5kLBgGLN2Kzug3nW1hJcJOl4BRUUFxM\nMBgEy7JpbhKzUPYJyxV1kJvjONMEpZAvJKnLISJhpBU+wzCYOXMmnn322RYxlGAwiKuvvjrjmvQq\n5ZUNMMPhsGYLD+Ua1DUWuWxkadcyUIfStbwrrhpwFa4acBU4gcOm/Zuwavcq/Gb1b7Cvad9PsZce\n4wxZL+vG9MaMpQ/hodmPYfgp06BsJJNMJi3PO7NiwJZS9IH0OSKZGiU6gZtqUIzGUNxOSQoKkHs6\nXi7XzeeapChQGeR2qjeYEnVrl1zWc99992Hjxo349NNP0dTUBAAoKytD//79cd9992VuvaJhoahb\nuuSCeiPTc8PoBZFzrUPxeXw4p/ocnFN9DuaMmIP9jfuxevdqLPtqGe5cdyd6tenV7BrrWatpvSz8\nfCHuXn+37tx3SZIsj0Wo29dbscFmKqwkok/cmq3ZUqEWiotRZqq4gVz7heVDPuKUSCQ0W+EbvU4o\nFMKaNWuwatUqvPnmmxBFERdffLGcgZJMJnX/Vm2hqAeakXiJcpPJZcPRc8PoBZELrUPRsl5W7lqJ\n21bfhgNNB2TrZWyPsXjt09fw2ievGZr7biVWtq/XQin6pEEiEReSQGP2FES3ov4sl0KnYaBEBYVg\nhQWQyzWzFQU6ZaEQS4DjuIJbu3g8HkyYMAETJkxI+7kgZA64e1mv7O4jKcqZUruVr1Wur5ue9aJM\ngSXuRzNOyUrr5aGRD2Ff4z6s3r0a//zqn/jVil8h5Avh46s/RueyzgU9T6FY0csrF0hwn+f5tIaJ\nhRZWGsVNFhF1eRURZn9wjGxm5MQNIKd+YflidJPVGm3sxHqIy4sE36203tRopcAyDANBFNJmixgp\n4DNCVXkVZgyYgRkDZuAP7/8BxxLHHBcTIP8sLysgqeBaUxDzKawsNqLRKMrLy51eRsGUtKBY8aEz\nck0SL8lWTGm3hWJ0XYD1pzcP4wEncIhGo3l3BzADckr2+XxgWRbhcLiF9UJqXsx4TYK+ICqQW3zI\nKqweAVwIpV5Yqf4sJRIJdO7s/CGjUEpSUNQdPM3cHLOJgB3xknzWZdQSsOOLKUkSuCQHTijc5WYW\npA5Fy3oh7rBYLJZ2Sg7eeSe4Sy+FOHiw4eeRJMk144bdZKFkw4rCSre5vGgMpQiwywpQxiX0mig6\nsTYjzR3tRHa5gQEYZBQTOy04recip2RCIBBoniPC8xA++gjlL7wAZtMmRNeuNXxKliDBJXpiS5aX\nEXJ93lIorNQKytMYiotRWiZWzzApJC5h5trU15IkCU1NTbrNHfUww6rTep2UwfeKsgrbmkMagVgo\nmVD6+IM/Nj30fvEFhLVrkRg2zFCGktssFDuzvKwi38JKaqGYT/F/mgxgpaDkEpfQupaZ61JCihW9\nXq9uc0c7IfUuxOXmTXhznqpoJbm8Pux//wvvpk1gJAlSLIbKRx5BdO3atAwldQBZTn2GewTF6Swv\nK8ilsNLJGjB1nREVlCLByo2UxEvUdRxGscqlQzZvJ+eqKCH1Lsrgu9GZ8nZitLAxcN99wI+ZRwwA\nz/bt8G3cCPacc5qv86OPn+d5udKfiIubTsVuiaFY+ZpkK6wkYq8WfruhLi+XY6XLi7RQMaOOw+x1\naW3e+VzLjNdM2aRT/Trl0r7eDhgwMKIn7H//C8+P1olMLIbA7NmIrV/ffC2Fj1+5iXEch2QqCQ/r\nkcfuOrWJiZIIBkzBUyCLCXVhJUlHJhMrARhyW5oBbb1SpFhhBZAuwZWVlaY1jCz0OiStNZlMukbk\nRFGEKIpy5bsSD+uRO+xmQytYbmZTTXJNIxaK0jqR/xYAu307PO+/D+FHK0V5XaULxufzgQGTtok5\n0duKF3lXWCdOQsScVO0T95hdhZVKqMurFUI+aF6v15T5JWZ9QInFBEBz886VQkWYxG8A6L5OXtZr\naB6KXRhpDsns2gXv+vWQysshqnuBJRLwP/kk4ipBUSNBgpf1yn3TtHpb2eHf16pBcZM7zm6U4gJY\nX1ipVYdCBaUIMMNCUXbAJTUcZte15Hs9ZVIAqfh2EmWzyWQyqbse17m8DFgoUnU1YsuXA7z2ukXV\nbG/Na+Cn91qrtxUJIAuCIFt4VlgvbsrwcjJdWS/z0e7CSjuagdqBOz5RFqD80po1J6SiokI2id2A\nMinA5/O1aCNvN8r4jcfjybieXIPyVtekiKKIpKDfzBIA4PVCGD7csjUoA8ixWEyus8inHX82SjHD\ny0rMLqxUi2ipWIclKyiEQjYi5ZwQ4kridU6ndq5Pq1jR6lqbbOtRN5vMFuPwMu5JGxYlEX/c8kds\n3r8ZV/7jSozvOR61NbXW9NuSYChtmPS28nq9LawXM4r3BEloVQF5LfLdxM0urHR6hIWZlLyg5It6\nTohZFk+hqId0qU9Ddp908i3qdEvacJyL48YVNyIhJLBpxiZ8fPBjrNy1EvduuBc1lTUY33M8xnYf\niwHtBpjyfEqXVy5opb/mO0wMaBZRt7i8ip18CivV31MnU5bNpOQ/UblmBEmShEQigUQioZt665Q1\nQCrNlUO6lNexm0zryYaRoDxgrYAfjh3G1MVT0b2iO5ZcvARBbxD92vfDtFOmpc00+fWaX+P72PcY\n13Mc6nrWYUyPMWgXapfXc5pRKa/OHMt1mBjgriyvUnH3AMYLK8nv5ILXErFSSlZQ8rEo1PESrdRb\nKz74RtZntLmjGV9OI6+ZsngyGAzmfA2ng/JfHvkSU96egov7XYzZw2a3cP8oZ5rcP+x+7DyyE+8e\neBeLti/Cr1f/Gqd2OBXje45HXc86nHLCKYZf83wtlEzkOkwM0B7/WyqBYaPYIWR6liXQnCr8yiuv\nQBRF2a1pdD1HjhzBZZddhj179qCmpgaLFi1CmzZtWjyupqZG3st8Ph82b95s6v2pKflPj1FBEQRB\nnjZC2BQAACAASURBVKWeqY7DikLJTJB4CWnz7nSnYKA5+N7U1ISysjJNMTECy7CQIBmuRTGT9/e+\njwmLJuCOs+7A/cPvNxRLqC6vxvUDr8eiCxfhq1lf4Xdn/g4Hmg7giiVX4OT/ORm/XvVrLP1qKZpS\nTRmvY3UvL3JCDgQCCIfDCIfD8Hg84HkesVgMsVgMyWQSHM9Rl5fNkPeGpCZHIhH069cPX3zxBT76\n6CPU1NRg1qxZePvtt7N6VR5//HHU1tZix44dGDt2LB5//HHd51y/fj22bt1quZgAJWyh5AI5/TvR\nqiSTQCktpsrKSsdPj1rB93xhGAYexgNBFMB6cruvQkT9jc/ewD0b7sFLk17CuT3OzesaIV8ItT2b\n58VLkoQvj36JlbtW4vmtz2Pm8pkY0nUI6nrWYXzP8ejTtk/a39rdy0svOymWiIGRGLnvmFNdqEvF\n1ZMPDMOgtrYWgwYNwrFjxzBv3jzU19fj7bffxoUXXpjxb5csWYINGzYAAGbMmIHRo0frioqdr3HJ\nCooRl5eReInWde14g7QyzOxam9Z18p1AmcmMJ4F5H6wfriVJEuZ+OBd/+d+/YOklS9H/hP6mXJdh\nGJzY7kSc2O5E3Pyzm9GQbMD6b9Zj5a6V+OOWPyLiizS7xnrVYXjVcEfjBcrsJH/AD6/HK1svyWRz\nyjRxe9k9tMqpOhQ3PC+pku/fvz/69zf2uTx06BA6deoEAOjUqRMOHTqk+TiGYTBu3Dh4PB7MmjUL\nM2fOLPwGMlCygkLQ22RJa3dRFHM6/Vvh8lJfTy/DzCnyCb4beYzRavlCX++UkMKtq27F5z98jjWX\nr0GnSKeCrpeJikAFJvedjMl9J0OSJGz7fhtW7FyBRzc+iu0/bEf7UHsM6DAA+xr3oaq8yrJ1ZIMU\nNir9+6QVTGsYuesm9BpD1tbW4uDBgy1+/sgjj6T9O1OG2AcffIAuXbrg+++/R21tLfr164cRI0aY\ns3ANWqWgKFu7m9FCxUxIcWA+HYytsFCyBd8LIZfAvCiKeZ0ojyaOYvqS6agIVGDZpcsQ8dnXgI9h\nGAzsOBADOw7E74f+Hj/Ef8ANy2/AruO7MOz1YehW3k0O7A/uMtjWmIa6sJFsSmQcMgkeKyvD7epr\nZRdOudv0LBQ1q1at0r1Gp06dcPDgQXTu3BkHDhxAx44dNR/XpUsXAECHDh3wi1/8Aps3b7ZUUEo+\nKK8mlUqhoaEBgUAAkUgk5y+GVRYKiZckEglUVFTk1Q7fbMwIvmfCwxirRSExLhJU5nlefs0ysevY\nLtS+UYsBHQfgLxf8xVYx0aJ9qD1ObHcipvafiq9v/BpPjnkSDBj8du1v0fv53rhm6TV447M38EP8\nB8vXote6nnwfyDCxUCgkH26IizgWiyGRSMjvQyE4nTLsBmEk2Zu5MHnyZLz22msAgNdee00z5hKL\nxdDY2Cg/x8qVKzFggDn1VHqUrIWijqEQkz6ZTBbU2p1g5hdBkiQ0NjbmXByoxiyxkyRJLsoqJPie\nrU+Zl/VmFBSSZqlsnCeKYosZ71rtxrcc2IIrllyB3535O8waNCuv9VsBSRv2sl4MrRqKoVVDcf85\n92N/436s3LUSS75cgt+t/R36tu2L8T3HY2LviRjYcaDpG58gGu/llRZ7UVTtZxsmRtFG/Z2Ix+M5\nC8pdd92FSy+9FC+99JKcNgwA+/fvx8yZM7F06VIcPHgQF110EYDmnn/Tpk3D+PHjzbsRDUpWUAhk\nUyOjcAvNljL7y0JOfYFAIOeJj1agzJMvRNyM4GH1XV7EYgN+6lgsCEJaUVgwGNSsSP7nzn/i9rW3\n49m6ZzGx10TL1p8PeoLftbwrrj7talx92tVI8kms27kOa79di2uXXYumVBNqa2pR16sOo7uPRkWg\nouB18CKfV+sVIhjqrrxaw8TcOs8dcFd2WT7Dtdq1a4fVq1e3+HnXrl2xdOlSAECvXr3wn//8x5Q1\nGqXkBUUQmk/ALMuaNgo328nbKKlUCqlUSg52m7WufCHBd1KMZXWasl5QXhRFNDY2pvnriT+ftHYn\nva78fr98auY4DvM/mo8Xt72IBZMWYFDnQRAEwXU+/2xrCXgDGNltJGp712KeZx6+Pvo1Vu5aiZe3\nvYwb62/EGZ3PkNOST2x3Yl73JkqiKc0hldaL1kwRt1svbsjyysfl5VZKWlCI7x2AqXPVC924lc0d\n3TCiF0gPvpPRqFbDMmwLC4WIGvHfNzQ0yKJAxIS0dud5Xk5xFSQBd757Jz7c/yFWX74aXSNdNavF\nrchYYvbvh//pp5F8/HEgW6GqwTHDSnq37Y2b2t6Em864CVEuig3fbMDKXStx4d8vhM/jk62XEd1G\nIOQLGbqmFe3rjVgv6mFiTsdQ3EAsFkNlZaXTyzCFkhUUsmmXl5ejsbHRNR9cpfutoqICqVRKtqLM\nun6uqMcGx+Nxy+pZlKiD8kTUSHsZ8rfxeFxOb+U4DoIgwO/3y26wo7GjmLliJiRIWH7JcrQJNbeg\nUPe6UmcsmXVq9j/8MHx/+Qv4sWMhZPFRF1opH/FFMKn3JEzqPQmSJOGzw59hxa4VeGrzU7hm6TUY\nVjUMdb2arZfuFd11r6PVvt5sN5DaetEaJsayrCPuJyf3A/VzJxIJVFU5l0JuJiUrKCzLygWBdtSO\nGEGZrmymxaRcVy6YWfmeD17WK7deUYsacZ2EQiHZnUUKK5XWxrcN3+Lity7Gzzr/DHNHzoXP40Mq\nlZItF+V/ymrxTKfmXGC+/Ra+N98EAzTPla+tzWilmFkpzzAMTulwCk7pcApuP/N2HE0cxdo9a7Fi\n5wo8svERdAh3kF1jQ7sOhc/zUyJKtiwvs1E2TSQuSkEQwHGcHC9zYhSyG4jFYgiFjFmWbqdkBQWA\nfPqxoro91+vp1XPYVXmvRm0pabXBtxoP6wEncIjFYkilUrKoEZcWiZNIkiRbFqFQSO6qu+mbTbhm\nxTW44fQbcPtZt8tzWMjfkzYjANLiMdlOzbm0gfc/+ijwY98ldu9eeFatymilWHkybhtsiyknTcGU\nk6ZAEAX8+9C/sXLXSsx+dzZ2HduF0d1Ho65XHWprajVHANsJeR8Yprn9SzAYLOh9KCa06lByDcq7\nlZIWFKvIZUMgm6Hy9G3luow2wsxkKdkVa/IyXjRGG8EHeNmaVIoJwzByejDLsnK2l9frxbp963DD\n8hvwxLlP4Pye5yMajcrJBMr0VjJGVykuRFiUg5AyDbHSuw/ZOvmxLTkTjWa1Uuzq5eVhPRjSZQiG\ndBmCe4fdi0PRQ1i1axVW7FyBu9ffjTJfGTjJ+cmjpNWLkffBTOvFLS5wIL+0YbfSKgTFKZeXsrlj\npnb4dlooVla+54IoioDU7HopLy+Xf6bMyhIEAdFoFH6/Py154cWtL+Lxfz2Ov/3ibzir6iwALQPA\nkiTJlghxdSktEqBZWImwkOfUajVO3DKJRCItHVZpnRCyWSlWtK83QqdIJ0w/dTqmnzod7+99H5ct\nvgwjq0favg4j6L0PpWK9EBElUAulSFBmkdjtViKpr8pYjtVku08ygz6bpWT168XzfLOF5GluUgg0\nb+7ki8YwDDiOQzweRzAYlLOGBFHAvRvuxYqdK7DmijXo2aZn2pqJgASDQbkAklyHzINQurvIc2az\nXjwejxyXIemwvoMHUaawTuR1ZLNSDI4AtorlO5fjlyt+iT+f/2eMrRnr2DqMooy9APkNE9PCTXUo\neq1XipGSFhQldlooPM+jsbHRUHNHO8ROmabsRPBdiXJQmN/jhyAJ8sZO3FypVEqujieFjDEuhuuW\nXoejiaNYc8WarBMTWZZFIBCQs8VIHQtxjRHLRVk/QdxtAFrUr6jTYf0vvgjwPMSyMvz4AFkmPNu3\nw7NxI4Thw1usyykLBQD+3//+Pzzw3gNYdOEiDOkypMXvnXAD5fqc+QwT08NNLi9qoRQRVmRT6YkA\nsQLyae5oxbqyBd/tXI86k4tlWCS5pGyZEOHjeR6RSEQWvkPRQ7j07UvRt21fvHr+qwh49YeM6a2D\nuFCU1ksikZCr74m4sCybFtgn/082L7nQcuZMSMOHt3ClkXsR+vWD58fHKyk0bThf5n80Hy9sfQFL\nL1mKk9qfZPvzW4Ge9aJMD8/HerEaGpQvcuy2AsrLyw0PLLJybfmmKZu9Jq30ZEFozjISJVEWk1gs\nBkmSEIlE5I3488OfY8pbUzDtlGm4Z9g9BW8KWpsQiZMQ15hSYIjvnqyZiIanVy8IvXunCYYH6TPE\nkz8mEyg3NbstFEmScP9796N+Zz1WTF2BbuXdbHtuu9EbJqZV3OqmoHwikaBpw8WA0l1hpcsr3+FT\nZkOyooD04LuT1fhqC0mZyUUGbCkzuZTCt27POlz9z6vx6KhHMe3UaZasT92+hdRGEHGTJAl+vx/B\nYFDXNZYpsE82NTJjhOf5vFvx5wov8rhl1S3YcWQH6i+rR/tQe0ufz00oY2pAS+uFuFedaM2jfu/d\nJG6FUtKCosQqQcln+JTetczCSbebmlgsJs+dAdIzuTxMcx1KU1NTi0yu1z99HfdtuA+vX/A6Rna3\nJxtJuQklk0kkEgn4/X4IgoCGhoa0rDG1a0xd8wIgrSI/EAg0CwkjQRRERKPRtD5XZh9C4lwcVy+9\nGpzIYcnFSxxv3a+HXZup2npJpVLged41w8SooBQRVrmVlAHmQCA3vz7B7LWRzCYz2s4XAgmC+/1+\n2T+szuTyMB5EY9G0TC5JkvCHD/6AhZ8tRP3UevRr36+gdeQK2WzImAPyGpJqfeUJN1PNC9kolVlj\nLMvCw3oQ8DfP4slUsV/IRns0cRRTF09FdXk1nqt7Lq1CnpI+TIwIvZ3DxJTvbSlZJ0ArEhTiojAL\njuOQTCZzipdYCSmglKTCW/QXChFaUqgGQDOTCxLg9XvlxyT5JG6svxG7ju3Cumnr0DGiPYXOKkit\nCc/zKCsrS3sNSZaX0jWWT80LaTWTrWIfaBblXK2XA00HcNFbF2Fk9Ug8NvqxnFrUl9rmZhTi9gSg\n6aa0uh1/Kb3uzu+EFmJFDIWcYHOdRa+HGWsjwXeySZkhJvmsSdkVoLy8XN5seZ5Pa6OSSCTAcRwC\nvgBIwtMP8R9w+TuXo0O4A5Zfttxw11yzUCYFZBsLXUjNi1I4yAalrhQnMSXyOKMn5q+OfoWL3roI\nMwbMwO1Dbi+ZTcoK9D7fyvdWab2o2/EXYr2UkoCoKWlBUWKGoFixcReKMvgun/wLJN8vCRnPq3S3\nkRb9yrRgURQRiUTgZb3gRR5fH/0aU/4+Bef1OQ9/GPWHvAY/FYJeUoBRcql5YVgGPq9P7jsGQJ7z\nog7uk5iSkRPzfw79B5e+cynuHXYvZgyYYe4LZCFObq5GnlfLeiECAxRuvair5oudViEoZnxgycYd\nDAbBsqwpGzfw09ry+WKpg+9mrSlXlJlc5eXl8ibo8/lk9xexxDweD8LhsByU//yHz/Gb1b/BvcPv\nxfWnX2/72kWxOUDu8/lMyYbLVvPC8zwkUcpY86K+XrYT8wcHPsANK27A/Nr5OL/P+QWtn6KP2k1J\nDg+5DBNTH2xJN4hSoaQFxSyXFynIU27cTrZu0Kt8N8u1l8t11LUuwE+ZXORkzvO8bAGQFGufz4dP\nv/8Uy3cux6vnv4oL+l5Q8LpzhayLWBdmo1XzwrBM2kRKdcW+KIry50vpKlRaL8oT89tfvI3frfsd\nXhj3AoZ1GYZkMum6Qj43UqhlQAQjl2Fi6r8HSqvtClDigkLId6PVKsgj17NifUau62Tluxp1ixmg\nZSYX2bRJJpeyXUbXSFcwEoPrl16PYVXDcF6f8zCpzyR0Le9q+dpJvCMUClnaAVqJ0pVVUVHRouaF\nrIPjOIRCobR2/EDLmpdXPnkFc/81F+9MeQcDOgzQbUNiJBXWiQPSwYMH8f777yMcDmPMmDFFfVLP\nlmShF3ehgtJKICdphmFQWVmZ9iGwo/JeCyNt5+1aF3FlEatNGXhWZnKpe3IpT+3LLl8GURTxQ/QH\nrNy5Est3LseD7z2I7hXdMbH3RJzX5zwM6jzIdAHXWpddkPb16sI7EiPh+eaRyKTDMXGfKdOReZ7H\nk1uexILPF2DpxUvRq20vQ21IjAT27bBqeJ7HbbfdhoULF8Ln88mf26effhqXXHKJ5c9vNcr3Qp0V\nSNzSyWQSX3zxBQDkLCh/+9vf8OCDD2L79u3YsmULzjjjDM3H1dfX47bbboMgCLj++utx5513FnZj\nBmgVgpLrRku64ZK55lZ/yYysz87K90zrIVlaiURCTpnWy+RKpVJpPbm0YFkWHco7YNrAabjitCuQ\n5JJ4/5v3sXznclz9j6sR5aOY0HMCzut7Hs7tcW5B2V8kC43juKzrsgotS5TUuIiiKMegiG9eXfPC\neljcteEubNy3EfWX1qNDqIOua0yrDYldqbCZeOCBB/C3v/0NyWQSyWRS/vnNN9+M6upqDB061PI1\n2JkMoDw8KOuY5syZgw8//BBdu3bF888/j0mTJqF7d/2xzYQBAwbg7bffxqxZs3QfIwgCbr75Zqxe\nvRpVVVUYMmQIJk+ejP79+5t5ay0onfQCDfKJoaRSKTQ2NiIUCulm/JhtCWS7XjKZRFNTEyKRSMbu\nxVZbKMQFSGI3Xq9XPnkRq4TEd0gtRy6bNsMwCPqDGNdnHJ6ofQJbr9uKxb9YjJryGjz14VOo+VMN\nprw5BS/95yUcaDqQ89q1Gk/ajXrAlnpdyvYt4XAY5eXlcp+n403HcdU7V2Hbd9vwjyn/QLc23eQO\nA6QYkrjRSIsX4KcNLRAIIBwOIxQKya34o9Eo4vG4nLVkNbFYDC+99JIcZ1ASj8fx+OOP27IOp1DG\nXv7+97/jpZdewoknnogPPvgAP/vZzzB9+vSs1+jXrx9OPPHEjI/ZvHkz+vTpg5qaGvh8PkydOhWL\nFy826zZ0oRbKjygD3dmKFe1yLeWyJqtRugArKioAQHe6IsMwiEQiBZ0Aidvg1C6n4tQup+K3w36L\n75u+x4qvV6B+Zz3uf/d+1FTWYFLvSTivz3kY2Gmg7vMRIQRQ8LoKRdkc0si6iBgkxASuWXUNQt4Q\n/n7h3+GFFw0NDYbmvJDsOqUVowwmk2aWQPOGb2WH3j179mSM+23bts3U53Mb6n2DZVkMHjwY999/\nPwRBwHfffWfK8+zbtw/V1dXyv7t164ZNmzaZcu1MtApBIeiZuU4HurUEKp81WZXllSmTSzldkfTt\nyjYDJh9YlkWnik64atBVuPL0KxFPxvH+3vex/OvlmL54OpJiUnaNje4xGkFvUF5nNBq1bF25IknN\nFookNU/zZFk2q1v1cOwwprw1BaeccArmj58PL+uVr5XrnBee59NcYkp3Gs/zCAQCeQf2jdC2bduM\n1lDbtm0Lfg4juKX+RRmU93g86NKlCwCgtrYWBw8ebPG3jz76KC64IHtGpFP31ioEJdOLm0+Ld6st\nFLImj8eTtWrbakgmFxkZrDwB62VyWQ3DMAgHwxjfdzxq+9RCEAR89t1nWP71cszbOA9X//NqjOg2\nAhN7T8TIziPRrU03Rzsut0CC/JnLJnJ7G/bi53/7OS7oewEeHPFgi+SQfOe8qJtZks+zGYH9THTu\n3Bmnn346tmzZ0qIdUigUwg033JDzNYsZvSyvVatWFXTdqqoq7N27V/733r170a2b9aMLSlpQtDKz\nlD8rdL66WaccpUApCyjzOVGbKXTqwslMmVx2pt8qIafy07qehtO6noY7ht+B7xq/Q/3X9aj/uh6z\nN8xG77a9ZdfYgI4DHBUWURKRTCYNFVJ+fvhzXPjmhbhl8C24efDNGa+rleVFrBetOS/qZpZ67fgz\nBfYz1Vlk4oUXXsDYsWMRi8XkWEokEsHPfvYzXHvttYavUwhOWSjq543FYmjXLvP00WzX02Lw4MH4\n8ssvsXv3bnTt2hULFy7EggUL8n4eo5S0oChRbtrKnlPZ5qvrXcsKCm07b/a6YrGYKZlcdsKyLNqF\n2uGiPhdh2oBpSAkpvP/N+1j29TJMfWcqeJGXU5JHdh8pu8bsgOd58BwvWxSZ2LRvE6a+MxWPnfsY\npp48NefnyjbnhYiLz+eT3ZUkPRnQnvNC4jSk35i6zkJpvWSiV69e+Pe//43XXnsNy5YtQ3l5Oa66\n6iqcd955rmi0aickfT0X3n77bdx66604fPgwzjvvPAwaNAjLly/H/v37MXPmTCxduhRerxfPPPMM\n6urqIAgCrrvuOsszvACAkZws+bYBUnV87NgxlJeXg2VZRKNRCIKQcxaSkqNHj5rW1bexsREA5DXl\n+6WSJAlHjx5F27Zt8xYX4ttPpVLy/ZGTrDqTSxRFuY2KGyCNO5PJZAuRI5vqp999iuVfL8eKXSuw\n/eh2jKoehUl9JmFi74mWdjcmhZQ3rb0Jv+j3C1zc72Ldx67YuQI3LL8BL058EXW96kxfi7IfFXF7\neb1eOftLPfYYQIvAvhJlYJ/EaIwG9kmnArsPJNFoVL5fOyH7EenMMHfuXAwbNgyTJk2ydR1W0WqO\nAyRwTGITZHpgIdczQ4uVJ/9CEwIKtVCUmVzKn6nFhASAnc6YUkIsJq3W88BPrrHTu56O07uejjuH\n34lDjYew/KvlWLZjGe5adxdObHciJvWehEl9JuHUDqeadm/KQkqGYTLOlH/jszdw97q7sejCRTir\n6ixTnl+NsucUqbciSSDKIL1eYF+ZjPH/2zvz6KiqdO0/VZlIJZUAgmkI+RjES6AbIQFJd2OYp5AR\nQQkgImCMtBr0gihLWxBtnJDlvYJcR4aFBklCBiEJU0tkSoKCCkhE8KabQSIIZK6qVKW+P3L38eTk\nnKpTVWeq1P6t1auXUNTZOTlnP3vv932fl69LJbtinwiRms2r+FAzKM+mubmZVsp7K42NjW7HJuSA\n7V5MHHnVHAu78+Tt27fb1TGQtGAtZUwRSPqt3e7cep6g1+vRK7wXFo1YhIWxC9FkbsJX//oKJT+X\n4IFdbdXa5GgsPioeQf7ueX2R4j2yY3LUU37D1xvw7tfvYs/sPRjSY4hb1xMLSaQwGAzMkS/Xj4oc\njZHjMfIMsM0syWKIHah3FNjXorgoCVfIqKB4GTqdjsl66dKlC1MkJsX3erJDYftgkfNqKcflyvdx\nkxPIz2UymdqllMpppOgunlrPA233LKRLCBIGJWDaf0yDzWbD6ZrTKL5YjFcOv4Lzt85j3P8bh8SB\niZh611T0NPR0+p1COyaSNsz97OrDq1H0UxEOzD2AqLAovq+UDCEfM3acRGyfF3bGGDk+c1axzzZQ\nJN+hpJmllk75Scy0s9DpBaWxsZFxYJU64Ofug8kNvpPVtRoIZXIZDAam5zbZqZAgr1aQ2noe+H1S\njYmMQUxkDFbetxK/1P2C0oulKKwqxPJ/LsfgOwa3ZY3dnYjBdwzucF12jIlUvzN/x6mUt7ZakbUv\nC2eun8H+OfvRw9DD45/BEa74mInp88Jugcx3NCYU2CdCQqr0ye5FbGBfCtTK8mL/bNQc0ssglhNS\nT9ruPIxCle9S1rWI/S6ygma3MWbHc8iLDbSJTlBQEGw2G+rq6todg6h1TKfUjkmv1yOyayQWj1iM\nRbGL0GhqRNm/ylDycwnSctLgr/dHwoAEJN6diPui7kOAPsBh9Tt792iymtr8yloaUTy7GKGBobL9\nHEDH4zdXEKp5IQsSsTUv7N0LCfKT41MS2Cc1L3JW7GsFkmnaWej0gkKaEkldjOjq96ldjc8dC8l0\nI8kJXBsVIn42m43JjiP/lm1cSIrdiLgo8eKrYT0PtP3OQ4NDkRidiOmDpsNms+G7a9+h+EIxVpWt\nwsXaixgTOQZT+09FcnQyQnQdjzLIDqXWXIvZ+bMRERKBbSnbEOgn785PyhRvd2pe2LsXIqok/Zw8\nc3yBfS2YWUoJXx0KPfLyIsgvT47qdrHfx26oxBc0JsFOKXD2c/J5cjnK5OKOl/vi8/X0IDsYOV58\nNa3n2ZBd3Ig+IzCizwistK7Ev278CwcuHcDui7ux8vBK/LHHH5mjsUHdB7XdW9hRa67F1OypGN1n\nNN6a+JasLY+dZb9JgSs1L0RciGAAbQsErh0MESxHfd3dbcOtlQwvoE3otRST9JROX4dCttHEtFCq\noDzpOujsYeA2oeJ7kEnSgBQrldra2rZ+7TyTLcnkIrb8QEcxcTeTi0wSxOmWtABmZwh5AilGbWlp\ngcFg0EwhJdB2XxsbG9vFGxpMDfiy+kuU/lyK/f/ajyD/ICQMSMCRK0dQ01CDx2Iew3N/eU7WiU0L\n9ULcmhf2YoNMpmSnQnYvABzWvJDvZNfQuFKxT2I3auwMuHU3CQkJOHz4sGYEzlM6/Q6FoMaRl9jK\nd6nHxvddfJlcXBsVT+ISQscg3Awhd+IujoLcasPnY6bT6WAMNiJlcAqSo5NhtVrx7bVvUXyxGD/e\n+BET+k7AsnuXyTou7j1Ta8Ji7zTIcanFYmFideT5c8XM0llnRGeBfS3tUDobPiUoUh0rOUMo+K4E\nfC8KETZiM8MnJlLHJbjHIEINo5ytKkmNCaC+9TwXMfeM/Kz3Rt2Le6PuxQvxL8BmbZsASTBb6gQH\nrd4zMg6SRUgWMWJqXrhmltyjMbYdjJRmllLDFjMioJ2JTi8ocsVQhL6PxB9aW1sVt53nGwsRtrCw\nMMZVlpxdk6MGT7J/xMAXd+FOJERguFX6WiykBNyP5fj7+cPfz7/dit0doRWCPH9ibPGVhggw+565\nWvPiKGtMbJdKraGl35GnaO/uegl8IsAOvpNWrmqNiytsQplccgds+cbHLp5jryjZ6ad6vR5NTU1M\nR0KtvHREgKXImHJXaIXwBgEWumdia164gX0iLI5qXriBffJvLBaL24F9d+Eet2npdyQFPiMocu0C\nCGKC70qNjQibXq+H0Whk/owrJuRYRM2eK3zZPBaLpZ1fFDkbVxs5BVioSl3s0ZgcRZ5S4UxMV40U\noQAAIABJREFUuLhS80IckrldKoGOuxcS4yI7IRKcB9y34vcE4hDQmej0giLnkReJyXhqOw9IawfR\n3NyMoKAgyTO55Ia8XCQrCQBvN0I1ahHYQW4lBJhvxS50NEZ+n1qzxQE8K6YEXKt5IUe4YswsSUEl\nO4WZBPal7lJJ4L7jzc3NbvVh0jKdXlDYyCEozc3N7arN3f0uKSArr8DAQBgMBt7gOzvFNTAwUDNi\nYrfzW89zV6nuHgd5OjYpg9y1tbX4+eefERERgd69ezv9vKOjMa3a4gBgjgal3M25UvPCDewT4WDP\nA3yCJXdgn3xHZytqBHxIUKSedNirICls5z0VO5PJhObm5nbVyXJnckmFs6Mk9kvvznGQJxDzSXJt\nT54jk8mEZ555Bjt37kRgYCDMZjNGjBiBTz75BFFR4gwh2Udj/v7+zDFXa2urZmxx2DVDcqZ5s+8F\nAN54HFtgiFg0NzdDr9ejpaUFdnv7Pi9iA/tS7JKbmpokq4vTCj4lKFLtUFpbW2EymWC32xEeHq7q\nKp+byUXGJZTJpXaFORey+rfbXbOeZx8HkWJKqa1gpI5LPPzwwzh48CBMJhMzQVVUVGDcuHH4/vvv\nXVqtksUBu4hVjqwxV2EvDpSuGeKreWHfC+KaTQL1AESbWXLT392p2OezXelMxpCADwiK1DEUq9WK\nhoYG+Pv7S2Y77+7YuP5g5HssFku7YjGlM7nEIpX1PN8RSGNjIwAwq1NXJ1Ru9bunnD9/nhET7nXq\n6+uxY8cOLF68WNR3CaUs8x2NKXlMSJ414vqg5rPGvRdsy3yy2BJT88KNvZBjRfKdxIXDHTPLztYL\nBfABQSFIISgWiwWNjY3MOTp5QNWA6w9G/owcZZGdCvB//T40VmEup/U8N1OKTHJirWBI9buUR4PH\njx8XvP+NjY3Yu3evKEERG+R25ThIiudCK5X5QpjNZiYex95pOKt54ZpZsv9fqEulUGCfu0Mhc0ln\nwmcEheCO7QJZebGD79zgnie4KnZklxQUFMRkiZCHnzzEbBNInU6H+vr6DgFLtVDCel4oO8iZFQxf\n8Z0UOPLS0ul+N+oUgh2XcGenyT0OYh8Teno0pmUxIfVY7BgYd1fLrnkB0G7hIbbmRUxgn/ue0yMv\nL4R95OUO5IEkVu/tmiVJXNciRuzILslgMDCTg5hMLim9tTxBrcQAMVYw5LgwNDRU8rqXqVOnMkct\nXIKDg/HQQw8J/lup4xJCx4TuHI1p1eYFEFfo6WnNC/mdignskyQAk8mEiooK1NfXuywoOTk5WL16\nNaqqqnDixAnExsbyfq5fv36MO0ZAQAAqKytdv4Fu0OkFhQ1ZIYh96NnHSiRGwf4uKcclBpLJ5Y4n\nl5gJVe6eJlqynueer5vNZmblSSqopYw1hIWFYf369Vi+fDkzAQNtO5dp06Zh7NixvP9O7voXMUdj\n7MZZ3LGRn8XdGJhcuFNrJUXNi9VqbScu7PtLMsssFgvWrl2LM2fOoH///ggNDUViYiL69OnjdIxD\nhw5Ffn4+MjMznf4shw4dQvfu3UXcLenwCUFhbzXF7iq4x0rcB1LqQklHkBe3paVF0JMLgOhMLqHg\nLbuniZQFhNw0Ui1UvbMhx5dGo7GdwDibUF1lwYIFGDhwIN58802cOXMGEREReOKJJzBnzhze+6zG\n6l/oaMxkMrXLoNPpdEwwWmueYVLF5zyteeGaWZLvDAsLw969e/Hee+/h3//+N44cOYIXXngBzzzz\nDF544QWHY4qOjhY9fqXmJzY+ISgEsQ8WO/iuVLGY0O6JL5NLSk8u9gqKnBWTQDYJLnqSGcQ9X9dS\nYoBQyjJfYydu8NZdURw9ejQKCwtFjY04BKi1+hc6GmtqamJsQ7SUgg7IZ0EjtJPjq4UiR2PsjDHy\nP/KO6fV6WK1WjB8/HrNmzYLNZkNDQ4MkYyXjnTRpEvz8/JCZmYmMjAzJvtsR2noaZMbZroIv+O7u\nd0kxNqFMLj5PLlfqOByNgbvl5xYQurJa1/L5OpmwHaUs8x0TKmEFw06n1srqn/y85NiGHPtYLBY0\nNzdLupNzFyX9zMTUvAQEBLQTY4vFAj8/P0ZcfvvtNyapxs/PD+Hh4QCAyZMn49q1ax2uuXbtWiQn\nJ4sa39GjR9GrVy9cv34dkydPRnR0NOLj46W7AQJQQfk/HAXfHeFO1pgYHGVyETEhL5Cfn58sq1ih\nAkIxq3Wt+oUB7p+v8wVvpa7x8Ib7xnWAdhZrUOJnYIuJ0v5YfEfIbNdoIiKBgYHMs/Prr79i9+7d\nmDBhQofv279/v8dj6tWrFwCgZ8+emDFjBiorK6mgSIWzGIqj4Luj75RrjNwjN0eZXErZuztKteSm\nnQpNPFpAivvG3skJWcG4s1rXsmOwownbWayBXeMhx8+kpphw4dZCkRR5nU6H27dv45FHHkF8fDz2\n7t2LDz74AOPGjXP7WkKL46amJthsNhiNRjQ2NmLfvn1YtWqV29dxBe0caCsA38NstVpRV1eHwMBA\nl49l5AjMm0wmNDY2wmg0CooJqQR3xypfCoiABAcHw2g0Mn5Ezc3NqK+vR0NDgyYnRSKAUt83spML\nCQlBWFgYAgICmB1mQ0MDU1jp6FkhZ+hkFaul+8YdmyPIhBocHIzQ0FAmbmY2m1FXV4fGxkbG1VcK\ntCQmXIh5bGBgIIxGI7p3746MjAwcOXIEly5dwqJFi5CVlYWTJ0+K/s78/HxERUWhvLwciYmJSEhI\nAABcvXoViYmJAIBr164hPj4ew4cPR1xcHJKSkjBlyhRZfkYuOrsaqQAKQ3ofsCc6wPPg++3bt2E0\nGiXJWqqtrYVer2fSQz3N5FIDcp7OztcXW50uN2rUv7BX6y0tLQD4rWD4+tJrBbKjk2Js7CQHkl7r\nydEYdyesJfh2m7W1tUhPT8cLL7yAyZMn48yZM9i9ezf+9Kc/iY6NaB2fEhQSbwgKCmKC76GhoW5P\nzFIJit1ux+3bt5mGWCQ+IpTJZTAYNJV6SwoCuZYg3AlELSdcLdS/sDPorFYrk0FHVu+k3cAXX3yB\nH3/8EZGRkZgxY4bTCno5kVJMuLCPTdliK/ZojCwQtdgDhmRmssWkvr4ec+bMwfLlyzF9+nS1hygb\nPiEoxMSNZPWQLAuj0ejRxFZbW9vO7dUdyHGC3W5HcHAwAgMDHWZyObLwUAOxVdzsTBir1SqpK7Aj\nPG3wJBetra1MvxAAuHDhAu6//36YTCY0NDQwHk+ffvopJk+erPj45PAzE4IrtjabzWEcSutiwrV6\naWxsRHp6OrKyspCamqr2EGXF5wTFYrEgICBAkjTWuro6j144dtvglpYWBAUFMT5c7EwuraWQEthC\n58r95B4FyZGCyy2m1JIIA+3b4ra2tmLQoEGoqanp8DmDwcAUQSqFkmLCh6OjMQCa7U7JJyZNTU2Y\nO3cuMjMzMXPmTLWHKDvaestkhBQh6fV6TdREWCwW1NfXIyQkBMHBwczOiS0mZPdCgpxqj5kNOULU\n6XRuJTOQn8loNDIpzySoT1wB3F3rkGJKNXpyiMFsNrfrsX7w4MF2dixsbDYbPv74Y4/uhyuQ7CyD\nwaBaEzaSNUaSHEjaemNjIxoaGhireC2thfnEpLm5GfPnz8fixYt9QkwAH0kbJpM3CQxLWT3r6kNN\njohMJhNTPGm326HX65mjI7YFvRYDtVKmtwql4LprfaL1Yko+x+ALFy4wR19czGYzqqqqZLGC4SKX\n07InkIxCUkRJdiXclgRqFlTyiYnZbMaCBQvw0EMPYfbs2aqMSw208dTIjE6ng9FoZI6+pMQVQSGT\nndVq7eDJRfL4ST2DzWZjDOiIVYMWkNt6nl1M6ar1idaPB4ViTX379mVaAnMJCgpCdHQ0QkNDZbGC\nIWghcUEIclxNYowER/dDqYJKtuMCEROLxYJHHnkEs2bNwty5c2Ufg5bwiRgK20GVrA6lgJuG7Ah2\nfxJHNipkjMHBwe2q09nVuEq9LFzU7EnPDepziynJi63FCnOunxl3bC0tLbjrrrvw22+/dfi3wcHB\n+P7779G7d+8O38nOkvIkDsWO52gpcQEQn2km5f0QC1tMyAKmpaUFixYtwrRp0/Doo49q6jlUAm0t\nRWRGCf8tPtixENL/wFEmF3sFy3UElttHSgi1V7DO7C1IRbYWxcTZEVxAQAAKCwuRmJjYrvhSp9Ph\n448/7iAmQEcrGO79EGsFo9UsOMC1tGUhaxy2yamU9VDk98oWE6vVioyMDEyYMMEnxQTwkR0KebjI\nCluq3H72uakQJJMrODiYaT/K58kl9qiGnWJJArVy9gpn75q0Vv8C/F79TmJRWiqm5FvBOqKxsRG5\nubk4ffo0+vbti/T0dPTs2dPl67KfD0cpuJ1FTJzBlzXmyVEhEROdTtdOTB5//HHExcUhKyvLJ8UE\noILiEeyHig8lPLnIypRMHlJOpuyjGq3VvwD8R3BaKaYkiwR2oFYN2MemLS0t7VpEu9PuQAmULKh0\ndbfP3nGS7ESbzYYnn3wSQ4cOxbJly3xWTAAfExSymiU20Z5Cjhe4bTzZNvikEp8tJuQFltpyg28y\ndTcjiO/F0RJijuDUKqbUqskjuR/s7pRSN1PzFHYAXsmCSvZuX2hBxvdOtLa2YunSpRg4cCCef/55\nTdxDNaExFInhs8EnL7JOp2MmdjliElzXVz67eTErdS1bqJMjOIvF4vSohi/uInccikyIWiy8A37v\nTkkSQ+SMM7iKkmICCKesC2WNNTc3A2gvJsuWLUPfvn2pmPwfPrFDIV5Tra2tqK2tRbdu3ST5XpIL\nT2wyXM3kUiomIZQhxbdSV9oW3xXE2ryI+R454lByHtV4irNMM/YuXo2jQrWr87lw3xlyTM1Omnn+\n+efRtWtXvPLKKx69J4sWLcKePXtw55134vTp0x3+/tChQ0hNTcWAAQMAADNnzsSLL77o9vXkxKd2\nKFLD3vHYbDameNJRJpca7XDFrtTJ+LQ+IUrZmVKKYkpAexMiG2diAnRspsbtQChnyroW7x07LZ1k\nX/r5+WHz5s147bXXMGTIEHTv3h2vvvqqx/dj4cKFeOqpp/Dwww8Lfmbs2LEoKiry6DpK4FOCIteR\nV0tLCxoaGkRncqlZwU0EhBxnkcmUvDRkhU5WZFpA7up3McWUjlbqatbnOMOdeye0AJGjYZYWxYRA\nhJjtVbdkyRL88ssv+Omnn2A2mxEVFYW4uDhs2bIFffr0ces68fHxqK6udjoWb8AnBIU89OT/pZos\n2X5bzjK5mpqaNBekJTEdMh6DwcC44JLxqp1+q3T1O18feUcrdaliYS0tLfjmm29gt9sRGxsrSfxF\nisQK9gIEaF8k7KkVjDeICXtXZ7fb8dprr8FsNqOgoAB6vR4NDQ3Yv38/7rzzTtnGotPpcOzYMQwb\nNgyRkZFYt24dhgwZItv1PMEnBIWNVKtvEpchwXelMrmkhB2TYKeP8q3U5fSQEkLtbClnK3Vi6Olp\nC4NPP/0Uzz77LLOjtdvtWLNmDR577DG3v9PVGhixkKNCd6xx2GhdTEiiAltM1q1bh+vXr2PTpk3M\nOxAaGooZM2bIOp7Y2FhcunQJBoMBJSUlSEtLw/nz52W9prv4RFAeaMuqstvtuHXrFsLDwz2aFMnL\nSgLc4eHhTIdCsish19SqPxK3Mt9ZMSW3lkFsxpi7aDlbikw4xL3ak6B+aWkpHnroISaDiBAcHIz3\n3nsPDz74oFvjk0NMnF2TW9/BFhf2GIiYaPW9YCfbEDH57//+b1y4cAEffPCBLIk01dXVSE5O5g3K\nc+nfvz+++eYbdO/eXfJxeIq2KpoUwNM4SmtrK+rr65mJGADTsIsdfCeOwp6uXuXAVet5nU6HwMBA\nGAwGxk6cHPXV19eL6pnuCqReKDg4WJNiYjabYbVaYTQaYTQamZbNFovF5b7pq1at6iAmQFuN06pV\nq1y+p+zOpEoaZBIBIS0JSLEvtyUB2x5fa++FkJi89957OHfunGxi4oyamhrmOaisrITdbtekmAA+\nfOTlDiSTKzAwEMHBwcwkSpyBuZlcWqxC9vQYSe7aDi1aqBO4Ew753XIzpLj1P+x7wv2+s2fPCl7v\nypUraGpqYhYuzlD7iJAglPhBjpH8/PyYpBWtvB/c41/yLn/00Uf49ttvsXXrVtnEZM6cOSgrK8ON\nGzcQFRWFl19+mWmLnJmZidzcXGzatInxAtyxY4cs45ACnzvyqq2tdat5EF8mFzmWIX5J/v7+zDGI\nFqvL5bSel6K2Q8veUmJSb/n+jTObj549ewo21woICMD169dFPataERMh2Jlw7GQHtuCq5aLNrg0j\nCwW73Y7Nmzfj8OHD2L59u+biPFpFW0tAGfEkGE8yWkJDQ9utzMmxFwnQm0wmAG0r1paWFlWb/nCR\nO7WVW9vBzQZylDHGfaG1KCbupC2zd3NCjsCzZs1CdnY2syIl+Pn5ISkpSbSYaLXHOsC/62Rn0ZEj\nTrncC5zBJybbt2/Hl19+iezsbComLuAzO5SWlhYm/hEUFCQq44qsSi0WC4xGI9N3QyiTi3wvWaWz\nnU2VNidko3ZygCOPMZ1OJ0n1u1zIFeAm4vLLL79gypQp+O2335gFSVBQEMLDw3H06FFe63ru92g1\neQEQf4TJ3uFarVbGCkYuF22CyWTqICY7duxAUVERdu7cqcl7qmV8TlDENsVie3IZjUbo9XqHmVx8\nK38+c0KpOuyJQQ2bFzFjYmeMAWCSA7QwPjZKeZrdunULH374IXbu3AmbzYbU1FRkZmYiIiLCocBq\n2eoF8CwepoQVDFdMACA3Nxeff/458vLyHLaloPDjM4JC2v+K6WFChIdUtZM/4/PkEmNSCAinVcp1\ndsw+89ei9bzdbmd8z/R6vWa6UhLUikmI9V3Tcn0TIG1yhStedGJhv7vk3SgoKMC2bduQn58v2JKC\n4hgqKBy4mVyAY08udyZrdnaUs5x9d5CiQlpO+Fb+fPdEjfN0QDvHSOx7QgwKySRKjjC1eL5PxESO\nXafQPXHFCoZPTHbv3o0PP/wQBQUForPqKB3xOUFx1BSLZHIZDAYmBZRPTEgAUYrJmrwgZAVGXhB3\nJ1ItW88D4tyMpcgY83R8Wlv5k3tCjjABMM+J3PfEFeQUEy7knvA1mBNKiCGZhOyU/r1792LDhg0o\nKCiA0WiUdcydHZ8TFKGmWI4yudgGj3JO1p5OpFq2ngfcP6aRsysl3/i0aAcCtD9GIpmE7BiD0tY4\nXEg8Ua14mLNWv3xicvDgQbz99tsoLCyUrPGeL+MzgsJO2SS1BIB7mVxKHYNwe4M7WpF6y5m6p5O1\nlF0p+canxYJKwPH4hKxxlEr+ANQXEy7cuAv5sy5dujD3paysDK+99hoKCws97pHkrKcJAGRlZaGk\npAQGgwFbtmxBTEyMR9fUIj4nKOxKZxIYttvtzKrF1UwupeCKC5lIAwICmCpkrU6GcqUtS+UxpnZa\ntTNcmaxd8dRSY3xqYDabYTKZEBAQgFOnTmHevHm47777cO7cOezfv99t23k2hw8fRmhoKB5++GFe\nQSkuLsaGDRtQXFyMiooKLF26FOXl5R5fV2toK/VHAUgcpLW1FXV1ddDpdDAajYzNvCNPLjWPQYi9\nR2hoKIxGIyMkdXV1aG5uRmBgoOYyuYDfX2Y5PM2k8BiTc3xS4Opk7cxTq7m5mTlOVWN8SmOxWJhj\nLoPBgNGjR+O//uu/cOPGDfTo0QNDhgxBamoqjh8/7tF14uPjHe5yioqKsGDBAgBAXFwcbt++jZqa\nGo+uqUW09wbJDImF1NXVISgoiMn2EsrkstlsmvPkIvUsRPzIRFpfX6+JQkqgfQ2MEvfPVY8xpcfn\nDp5a0XA9tVxxLxCDN4gJd3wnTpzAu+++i/z8fERERODWrVsoLi7uEFOVmitXriAqKor57z59+uDy\n5cuIiIiQ9bpK4zOCws7fJ1XZYjK5PG03Kwds63myuyJ/zm4IpXQhJXt8arQ6JgiZE7ItT4joaFVM\nSNGdlONz1MvE1cJBrYsJOQZmj+/kyZN4/vnnsWvXLmYi79atG+bNm6fImLi7Qq3NK1LgM4ICtL2k\nZrOZeanUyOTyFHYHQ27asrNVuhJFg+76XskFn8dYU1MTYy1vMplU70rJhs+oUA4cdabU6/UODRu1\nbOIJ8Kcuf/fdd1i2bBl27dqFXr16KT6myMhIXLp0ifnvy5cvIzIyUvFxyI32lmYywV5RAeiQyaXT\n6WC1WtHQ0MAUNWphgmHDFjtn4yOrdPZZOtl5NTQ0oLm5mSkMk3p8UtXoSA2Jien1eoSFhcFoNMLf\n35+JRbnSx0TO8cktJlzIYsNgMMBoNDJu2o2NjUzchTwr7NRbbxGTs2fPYunSpdi5c6dqk3hKSgq2\nbdsGACgvL0fXrl073XEX4ENZXq2trcxkUV9fz6yeyaQntxuvp0iVtsxX6+JJISVB6zs7Z+4BUmWM\neTI+bnMnteE+K0RoSWq6FsbIhi+1+ty5c1iyZAk+//xz9O/fX7Zrs3uaREREdOhpAgBPPvkkSktL\nERISgs2bNyM2Nla28aiFzwgKWV2R4DU7vkAClVrfwsshdmy7E3cr0rViVSKEq47BcnhHObueq71W\nlIZkwwUFBTFFwloopiTwicn58+eRkZGB7OxsDBw4UNXx+Qo+Iyitra1MxzigbRK0WCxM0ROxnlf7\nxeCiZI2EK4WUBK0XVHq6c5LbY4yICXFv0KqYcL2vyI5OqCpdSfh61F+8eBGLFi3C9u3bMWjQIEXH\n48toa/aUkS+++AIpKSn46KOP8Ouvv6KxsRHLli1DfX09goODGYfhhoYGmM1m1c7RCeQIhOyclKiR\n4Na68PVJZ68/SH/w4OBgTYsJaXDlzmTNjUWRSZ/bK92ddRk7W0+rYmIymTqICfB7DVBISAhTA0Tu\nN6kBkjpGxwefmFRXV2PRokXYunUrFROF8Zkdit1ux40bN5Cfn4/s7GxUVVVh1KhReO2119C3b18m\nXZjbv0SoH7jcY9WS9Tyf3YlOp2OCx1osCFTiGM4TjzEiJsSoVKti4mqCgJDZqStuwGLhE5NLly5h\n/vz5+PjjjzF06FDJrkURh88ICuGbb75BSkoKHn/8cURGRiI/Px/19fWYOnUqUlNT24kLn8W83OLi\nDdbzZKIBoJlCSjZqHMO54jEmVxdIKZEq20wuY08+I8+rV69i7ty5+OCDDzB8+HC3v5viPj4lKHa7\nHcnJyVi8eDFmzJjB/HltbS2++OIL5OXl4caNG5gyZQpSU1Nx1113ORUXKYO03pApxW7XS1Kt1d7R\nsdGCY7CjjDEAaGpqYupitPg7lqsOhk903enCyPc7vnbtGubMmYP33nsPI0aMkGzMFNfwKUEBwBQx\nClFfX489e/YgLy8PV69excSJE5GWloZBgwY5FBdPzfe0bj3vLBNJKdF1hBYdg7nHqHa7nRETpRuH\nOUOpokpyLaHFiKPnhbwnbDH59ddfkZ6ejnfeeQd//vOfZRszxTk+Jyiu0NjYiJKSEuTl5aG6uhrj\nxo3DjBkzMGTIEOj1eslqOrSeKeXqMZxQVz05uy9q3QqEJH2w409qdqXkoqSY8F1bTCYdn5jcuHED\n6enpeOuttzB69GjFxkzhhwqKSJqbm7Fv3z7k5eXhxx9/xJgxYzBjxgzcc889HomL1q3T2VYv7pz3\ny1VIyUbrViDkKJPsPgF1u1Jy4R5lqm0qyndf/Pz8OrQ9vnnzJmbPno21a9di7Nixqo2Z8jtUUNzA\nYrHg4MGDyM3NxenTpzF69GikpaVhxIgRzMvILRjkTqJ2u52x1tb6RBgQECDZMRx759La2urRJKrm\nqlosYrPNlOpKyUVLYsIHaXtssVgAABcuXMDp06cxZswYLFmyBKtXr8bEiRMluVZpaSmefvpp2Gw2\nPProo3juuefa/f2hQ4eQmpqKAQMGAABmzpyJF198UZJrdxaooHhIS0sLysrKkJOTg1OnTmHUqFFI\nS0tDXFwcIxLsyYJMolp3u1Ui7ZavkNKVtFstT4SA+/3p5epKyUWLdi9c2PfQ398fX3/9Nd566y18\n+eWXGDhwIBYuXNhukvfkOoMGDcKBAwcQGRmJe++9F9nZ2Rg8eDDzmUOHDmH9+vUoKiry9MfqtGjv\nLfQyAgICMGnSJLz//vs4duwYZs2ahYKCAkyYMAHLli3DV199BbvdzhQMkt7WJLZA0jO1pOtWq5V5\nieW0UuEWUoo1atRyrxqCu2IC/O4ETIoGAwICYLVaUV9fL1nhrbeJCXGxGDx4MJqamrB9+3asXbsW\nZ8+exV/+8hccOHDAo2tVVlZi4MCB6NevHwICApCeno7CwsIOn9PSe6pFtHdo78X4+/tj3LhxGDdu\nHGw2G44fP47c3Fy89NJLuOeeezB58mS8/fbbmDVrFp544gkmvZTd8EiNM3Q2amVKce3Uyc6lubm5\nXdqtTqfTlD0+H1KmLpOKdD6beXcz6bxRTIC2JJm5c+di6dKlSEtLAwAkJSU57copBr4GWBUVFe0+\no9PpcOzYMQwbNgyRkZFYt24dhgwZ4tF1OxtUUGTCz88P9913H+677z60traisLAQjz76KAYPHowf\nfvgB+/btw7hx45gjJXL8Y7FY0NTU1K5nvFIvvFYypYQmUZPJBAC8vWC0gpx1MK52peTDG4woSeyO\nLSZNTU2YN28elixZwogJQYpnVcx9iI2NxaVLl2AwGFBSUoK0tDScP3/e42t3JrR3VtAJOXXqFJ54\n4gmsWbMGX331FZYuXYoTJ04gISEBGRkZ2L17N8xmM4KCghASEtKhZzyfj5aUcH3DtJQgQCbRLl26\nMLUKfn5+7TyjpFihSgHxNmNnIsmFOx5j3iImDQ0NjFkr0JZhOX/+fCxevBizZs2S5brcBliXLl1C\nnz592n2G3GcASEhIQEtLC27evCnLeLwVGpRXgLNnz+LChQtITU1t9+d2ux1nzpxBTk7Dwr5tAAAY\nl0lEQVQODhw4gD59+iAtLQ1TpkxhHlyuq6vUAVpvCG7zZZtpoZCSjZaKKoUyxojAaFlMuOnVZrMZ\n8+fPR3p6Oh566CHZrm21WjFo0CAcPHgQvXv3xqhRozoE5WtqanDnnXdCp9OhsrISDz74IKqrq2Ub\nkzdCBUUj2O12VFVVITc3F3v37sWdd96J1NRUTJs2DUajkfkMV1zcsa5gX5O43Wp1khGTbSZkSKhU\nwaBWjgr5IEepZrO5Q62LlhYPfGJisVjwyCOPIDU1FY888ojsv8eSkhImbXjx4sVYuXIl3n//fQBt\nTbI2btyITZs2wd/fHwaDAevXr6eV+RyooGgQu92OCxcuIC8vD8XFxejWrRuSk5Mxffp0dO3alfkM\nmUDd6TBIDAq12q4XcC9TSqiQUg63W0DbYgJ0dK62Wq2qdaUUgk9MWlpasGjRIkydOhUZGRmafD4p\nHaGConHsdjuqq6uRl5eHPXv2wGAwIDk5GUlJSejWrZug7b6jiULrJpSAdHY0fDVAUmXSab1C31Hz\nLqW7UgrB7VkDtP3uMzIyMGbMGPztb3/T5PNJ4YcKihdht9tx+fJl7Nq1C0VFRfD390dycjKSk5PR\no0cPUT1dbDYbk6KsRRNKQL6Wx9xCSk8y6YiYaLUOxpVOkHJ3pRSCT0xsNhsef/xxjBo1CllZWZp8\nPinCUEHxUux2O2pqarBr1y4UFhbCZrMhKSkJKSkpiIiIEAxct7a2IigoiHmBtYZSwW13q9G9we7F\nk546SnmM8SVa2Gw2PPnkk/jTn/6E5cuXUzHxQjqdoOTk5GD16tWoqqrCiRMnEBsby/u5fv36ISws\njDlHrqysVHik0sHuRllQUACTyYTp06cjJSUFkZGR0Ol0OH78OO666y6EhITAZrOpnhXFh1rxCG6y\ng1BswRsy4qRu0CaHx5jdbmecl8mRa2trK55++mkMGDAAK1eu1MTzSHGdTicoVVVV0Ov1yMzMxNtv\nvy0oKP3798c333yD7t27KzxC+bl58yYKCwuxa9cu1NXVITo6Gnl5eSgoKEBsbKzmUm4B7cQjhOJR\n/v7+sFgssNlsmmjLzIfc3T6l8BgjySDsBmOtra1Yvnw5evXqhZdeeomKiRfT6QSFMH78eKeC8vXX\nX+OOO+5QeGTK8uabb+L111/HxIkTce3aNcFulGql3Gr5CImbSQcAQUFBmtrVEeQWE77rCXWlFPod\nConJypUrERYWhldffVVT95TiOj5rvaLT6TBp0iT4+fkhMzMTGRkZag9JctavX4+PP/4YJ0+eRL9+\n/ZhulK+88gquXLmCSZMmMd0o/f3921nAkICunOLC9ZTSkpgAv1ejt7S0QK/Xo0uXLoxxplSdOqWA\niIlOp1OsR72rHmNCYvLSSy8hODgYr7zyChWTToBX7lAmT56Ma9eudfjztWvXIjk5GYDzHcovv/yC\nXr164fr165g8eTLeffddxMfHyzpupblw4QLCw8PRs2fPDn/X2NiI0tJS5Obm4n//938xfvz4dt0o\nAec9XTzBG2xAhFb9SjQNc3WMSoqJs/HwZYyR40NyH+12O9asWQOz2Yz169dLsphw1s8EALKyslBS\nUgKDwYAtW7YgJibG4+tSfscrBUUMzgSFzcsvv4zQ0FAsW7ZMgZFpD75ulGlpaRg2bFgHcZGqMZaS\nxzPuIHaManZeJKt+d7tpyg0RF+LGoNPpsG7dOsTFxeHUqVOora3Fu+++K4mYiOlnUlxcjA0bNqC4\nuBgVFRVYunQpysvLPb425Xe0dcYgMUJa2dTUhPr6egBtK/V9+/Zh6NChSg5NUwQHByM1NRXbtm3D\n4cOHMWHCBHzyySeYMGECXnjhBZw4cQI6nQ5dunRBaGhou74uQkaEQnhDhb4rY9TpdMwxjtFobHdv\n6urqXLo37oxRq2JCMJlM8Pf3R1hYGLp06YLw8HCsXbsW69evx40bN5CTk8O8i54gpp9JUVERFixY\nAACIi4vD7du3UVNT4/G1Kb/T6QQlPz8fUVFRKC8vR2JiIhISEgAAV69eRWJiIgDg2rVriI+Px/Dh\nwxEXF4ekpCRMmTJFzWFrhsDAQCQkJODjjz/G0aNHkZiYiM8++wzjx4/HihUrcOzYsXYNw1yZQImT\nrJ+fn2YnQU8nam7TMPa9kco12hvEhOzw2GMku7bhw4fj4sWLmDhxIrZu3YoHHnjA4+vx9TO5cuWK\n089cvnzZ42tTfqfTBeVnzJiBGTNmdPjz3r17Y8+ePQCAAQMG4Ntvv1V6aF4H6UY5adIkWK1WHDly\nBLm5uVi5ciVGjhyJ1NRU/PWvf+3Q04U0DGNXopNJUMsV+lJb0hBxIfeGBK6bm5vdNmn0JjFhx3Xs\ndjs2bdqEH374AVu2bIGfnx8ee+wxPPbYYx53nwTE9TMhY3Pn31HE0el2KGqQk5ODP/7xj/Dz88PJ\nkycFP1daWoro6GjcfffdeOONNxQcoeeQbpQbNmxAeXk55s2bh9LSUkycOBFZWVn45z//CZvN1m51\nzu7pUl9fDz8/P82LCbEBkXqMUrT19SYxAdBOTD766COcPHkSmzdv7lBnJEUMRUw/E+5nLl++jMjI\nSI+vTfkdKigSMHToUOTn52PMmDGCnyG2EqWlpfjhhx+QnZ2Nc+fOKThK6SDdKN955x1UVFQgIyMD\nZWVlmDx5MpYsWYK9e/eipaUFgYGBqKqqwrlz55hdirN+8Wogt5hwISm3BoMBYWFhCAoKgs1mQ0ND\nAxoaGphUajbstFtvEBN2NteWLVtw9OhRbN26VTY7nZEjR+Knn35CdXU1LBYLPv/8c6SkpLT7TEpK\nCrZt2wYAKC8vR9euXRERESHLeHyVTnfkpQbR0dFOP8MOGgJggobsLBRvRK/XIy4uDnFxcWhtbcV3\n332HnJwcvPHGG7jjjjtQUVHRrm8Et1+8pz1dPEVMvxU5cdbWlxyLkXulVXdokgYOtBeTTz/9FAcP\nHsSOHTtk7WLp7++PDRs2YOrUqUw/k8GDB7frZzJ9+nQUFxdj4MCBCAkJwebNm2Ubj69CBUUh+AKC\nFRUVKo5IevR6PWJiYhATE4M9e/Zg/vz5uP/++/E///M/2L17N9LS0jB58mSEhITw9otXuj+H2mLC\nhdRsEOFgiwvBZrOpXkjJRcjZeMeOHdi9ezdycnI8akEgloSEBCYJh5CZmdnuvzds2CD7OHwZKigi\nEVNM6QgtTQByc/ToUSxevBglJSWIi4tr141y48aNiIiIaNeNkqzO2dXWznq6eIo7zbuURKfTQa/X\nw2q1IiAgAIGBgbBarYo4GLiCkJjk5uZi165dyMvL04RYU5SBCopI9u/f79G/FxM07CyMGjUKR48e\nxV133QWgbXIcPHgw/v73v+PFF19kulE+8MADHbpROhIXYnPiKaR5l9T9VqSEL+OMu3MxmUySNw1z\nBSG3g4KCAnz22WfIz8/XbJsEijx02kp5NRg/fjzWrVuHESNGdPg7q9WKQYMG4eDBg+jduzdGjRrV\noZLX1xDbjVLIGdkdcfEmMRGTYs1tGkbujRJV+nxisnv3bnz44YcoKChASEiIbNenaBMqKBKQn5+P\nrKws3LhxA+Hh4YiJiUFJSQmuXr2KjIwMpv6lpKSE8RpavHgxVq5cqfLItYPYbpSe2O4r1bzLE1wR\nE75/S+xx2PbynvQu4YNr6km+e+/evXj33XdRWFgIo9Eo2fUo3gMVFIrm4OtGmZiYiNTUVIfdKB2J\nS2cXEy7cpmFSZdMJicnBgwfx9ttvo7CwEOHh4W5/P8W7oYJC0TRiulE66+lC4g3eIiZSxx24fV3c\nzaYTEpOysjKsXbsWRUVF6Natm6Rjp3gXVFC8mJs3b2L27Nn417/+hX79+mHnzp3o2rVrh891pnbH\n3G6U06ZNQ2pqKvr27cuICzuuQIonScxEi9l2cooJF76OlGTn4igmxW5/HBoaytzHI0eOYM2aNSgs\nLOz0zeoozqGC4sWsWLECPXr0wIoVK/DGG2/g1q1beP311zt8rrO2O66trcUXX3yBvLw8XL9+nelG\nOXDgQOh0OuTn52P06NEwGo2wWq2aSrclKCkmXMQeGwp11Tx+/Dj+/ve/o7CwkLfnDsX3oILixURH\nR6OsrAwRERG4du0axo0bh6qqqg6f84V2x6QbZV5eHlNEevz4cZSWljLuBFL2dJECIiaBgYGq12qw\nxYUrvuTP2GJy4sQJPP/88ygoKJDcvsQXd96dBSooXky3bt1w69YtAG0TQvfu3Zn/ZjNgwACEh4d3\n6nbHbF566SV89NFHGD9+PC5evMjbjZJ7LKa0uGhJTLiwjw2J3X5AQADOnTuHoUOH4uzZs1i2bBny\n8/PRq1cvya/v6ztvb0abEUoKg1CF/j/+8Y92/63T6QQnwqNHj7ZrdxwdHd3p2h0T3nrrLezatQsn\nT57EH/7wB6Yb5YYNGzp0oxSy3Ze7loP0hdGK5QsX0jSMHIMZDAa0tLTg2WefxY8//gij0YjVq1fL\nFoAvKipCWVkZAGDBggUYN24cr6AAwk30KOpAdyheTHR0NA4dOoQ//OEP+OWXXzB+/HjeIy82nb3d\n8YULF9C1a1f06NGjw99ZLBYcPHgQubm5OH36NEaPHo3U1FSMHDmSd+dis9kkr+XQupgQzGYzLBZL\nu2Ous2fPYsWKFRg7diwOHTqEb7/9FvPmzcPGjRslvTbdeXsvdIfixaSkpGDr1q147rnnsHXrVqSl\npXX4TFNTE2w2G4xGI9PueNWqVSqMVhkGDhwo+HekG2VCQgJaWlpQVlaG7OxsPPvss4iLi0NaWhri\n4uKcNsVyV1y0ZkYpBJ+YnDt3Dn/729/w+eefY8CAAQCAX3/91ekCRgi68+6c0B2KF3Pz5k08+OCD\n+Pe//90ueMmu0P/5559x//33A2izHZk3bx6t0OfA7kZZUVGBESNGIC0tDX/961+ZuhW+QkFXOi5q\n3YySYDabYTabERoayvxc58+fR0ZGBj777DPcfffdso+B7ry9FyooFAoLm82G48ePIzc3F0ePHsU9\n99yDtLQ0jBkzhvH+crUK3ZvF5OLFi1i0aBG2b9+OQYMGKTKOFStW4I477sBzzz2H119/Hbdv3+4Q\nQ+HuvKdMmYJVq1ZhypQpioyRwg8VFApFgNbWVpw4cQK5ubkoKyvD4MGDkZaWhnHjxjFHVs6q0L1F\nTCwWC0wmE0JCQpgCx+rqaixYsABbt27FkCFDFBsL3Xl7L1RQKKIpLS1lzC0fffRRPPfccx0+k5WV\nhZKSEhgMBmzZsgUxMTEqjFR62N0o//nPf2LAgAFIS0vDxIkTERwcDKCjuOj1erS2tiIoKEjTNu58\nYnL58mXMmzcPn3zyCYYOHaryCCneAhUUiihsNhsGDRqEAwcOIDIyEvfee28H+/3i4mJs2LABxcXF\nqKiowNKlS1FeXq7iqOXBbrfjzJkzyMnJwYEDB9CnTx+kpqZiypQpjGX7+fPncccddzDBfal7ukgF\nn5hcvXoVc+fOxfvvv99pFgQUZVC+iTfFK6msrMTAgQPRr18/BAQEID09HYWFhe0+U1RUhAULFgAA\n4uLicPv2bdTU1KgxXFnR6XQYOnQo1qxZg6NHj+Lll1/Gzz//jLS0NDz00EPYuHEjpk6diu+//x6h\noaEwGo3o0qULU8xYX1/PmCyqCZ+YXLt2DfPmzcN7771HxYTiMlRQKKIgdiaEPn364MqVK04/c/ny\nZcXGqAbsbpRHjhzBggULsGbNGgwfPhzvv/8+PvvsM9TW1sLf3x/BwcEwGo0IDg6G3W7vIC5KHhYQ\nB2a2mPz666+YO3cu3nnnHYwcOVKxsVA6D7QOhSIKsXUX3ElRCwaMSnHq1ClkZmZiy5YtuP/++5lu\nlPPmzWO6USYmJqJ79+4d2vk2Nja63DDMXUhdDVtMbty4gblz52LdunX4y1/+Ist1KZ0fKigUUURG\nRuLSpUvMf1+6dAl9+vRx+JnLly8jMjJSsTGqTVBQED744AOkpKQAaPOaWr58OZYtW8Z0o3zkkUeY\nbpRJSUno2bNnB3FpamqSzRmZT0xu3ryJuXPnYu3atbjvvvskuQ7FN6FBeYoorFYrBg0ahIMHD6J3\n794YNWqUw6B8eXk5nn766U4ZlPcEdjfKgoIC2Gw2JCUldehGybaAkUpc+LpW3r59G7Nnz8aqVasw\nadIkKX9Uig9CBYUimpKSEiZtePHixVi5ciXef/99AEBmZiYA4Mknn0RpaSlCQkKwefNmxMbGqjlk\nTcPXjTIhIQEpKSno06cPIxzsniXuigufmNTV1SE9PR3PP/88pk2bJtvPSfEdqKBQKBrBWTdKwL2e\nLlarFU1NTe3EpKGhAenp6fjP//xPJCUlKfYzUjo3VFAoFA3irBslIK6nC5+YNDY2Ys6cOXjiiScw\nY8YM1X5GSueDCgqFonG43SgnTpyItLQ0REdH84qLzWZjMsXMZjNCQkIYMWlqasLcuXORkZGBBx54\nQPKx5uTkYPXq1aiqqsKJEycEjzzFuC5QvA9ah0LxCkpLSxEdHY27774bb7zxRoe/P3ToEMLDwxET\nE4OYmBi8+uqrKoxSHoxGI9LT05GTk4P9+/dj+PDhWLduHSZOnIhXXnkFZ86cAdCWZUYKKYE2s0eg\nrY/Jjh07cP36dcyfPx8LFy6URUwAYOjQocjPz8eYMWMEP2Oz2ZhY2w8//IDs7GycO3dOlvFQlIWm\nDVM0D5mA2LYvKSkp7TLMAGDs2LEoKipSaZTKEBISgpkzZ2LmzJmC3SjNZjNWrFiBvXv3IigoCE1N\nTdi+fTueeuopDB48GDabDbW1tQgPD5d8fNHR0U4/w3ZdAMC4LnB/nxTvg+5QKJpHjO0L4HvtYIOD\ng5Gamopt27bh8OHDmDBhAt58802mC+Xp06cBACNGjEBYWBhef/11PPXUU9i5cyeioqKQnZ2tyrjF\nuC5QvBO6Q6FoHr4JqKKiot1ndDodjh07hmHDhiEyMhLr1q1T1HJdbQIDA9GrVy9UVFRgy5YtCA8P\nR3Z2NpYvX46GhgY888wzeOyxx6DT6bBgwQLU1dW57SUm1G1x7dq1SE5Odvrvfck9wdeggkLRPGIm\noNjYWFy6dAkGgwElJSVIS0vD+fPnFRiddvjHP/6BjRs3YubMmQCASZMmwWq1orS0FImJie3uY1hY\nmNvX2b9/v0fjFOO6QPFO6JEXRfOImYCMRiMMBgMAMD3jb968qeg41Wbnzp2MmBD8/f2RlJSkyq5A\n6Ahy5MiR+Omnn1BdXQ2LxYLPP/+csauheDdUUCiaR8wEVFNTw0xglZWVsNvt6N69uxrDVQ0tHCXl\n5+cjKioK5eXlSExMREJCAoC2HiuJiYkA2kRuw4YNmDp1KoYMGYLZs2fTgHwngdahULwCZ7YvGzdu\nxKZNm+Dv7w+DwYD169fjz3/+s8qjplB8CyooFAqFQpEEeuRFoVAoFEmggkKhOGHRokWIiIjA0KFD\nBT+TlZWFu+++G8OGDcOpU6cUHB2Foh2ooFAoTli4cCFKS0sF/764uBgXLlzATz/9hA8++ABLlixR\ncHQUinaggkKhOCE+Ph7dunUT/PuioiIsWLAAABAXF4fbt2+jpqZGqeFRKJqBCgqF4iF8lfyXL19W\ncUQUijpQQaFQJICbLKmFmhAKRWmooFAoHsKt5L98+TIiIyNVHBGFog5UUCgUD0lJScG2bdsAAOXl\n5ejatSsiIiJUHhWFojzUHJJCccKcOXNQVlaGGzduICoqCi+//DJaWloAtFXpT58+HcXFxRg4cCBC\nQkKwefNmlUfsHmK7Lfbr1w9hYWHw8/NDQEAAKisrFR4pRavQSnkKhQIAqKqqgl6vR2ZmJt5++21B\nQenfvz+++eYbn/NKoziH7lAoFAoAcd0WCXQdSuGDxlAoFA3jrEr/0KFDCA8PR0xMDGJiYvDqq6/K\nPiadTodJkyZh5MiR+PDDD2W/HsV7oDsUCkXDLFy4EE899RQefvhhwc+MHTsWRUVFor7P026LAHD0\n6FH06tUL169fx+TJkxEdHY34+HhR/5bSuaGCQqFomPj4eFRXVzv8jCvHT552WwSAXr16AQB69uyJ\nGTNmoLKykgoKBQA98qJQvBqdTodjx45h2LBhmD59On744QdJvldIpJqamlBfXw8AaGxsxL59+xya\nZlJ8CyooFIoXExsbi0uXLuG7777DU089hbS0NLe/S0y3xWvXriE+Ph7Dhw9HXFwckpKSMGXKFEl+\nFor3Q9OGKRSNU11djeTkZJw+fdrpZ2lKL0VN6A6FQvFiampqmOOpyspK2O12KiYU1aBBeQpFwzir\n0s/NzcWmTZvg7+8Pg8GAHTt2qDxiii9Dj7woFAqFIgn0yItCoVAokkAFhUKhUCiSQAWFQqFQKJJA\nBYVCoVAokkAFhUKhUCiSQAWFQqFQKJLw/wG01aU/LOMn1wAAAABJRU5ErkJggg==\n", - "text": [ - "" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "point_x = np.array([[0],[0],[0]])\n", - "X_all = np.vstack((X_inside,X_outside))\n", - "\n", - "print('p(x) =', parzen_estimation(X_all, point_x, h=1))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "p(x) = 0.3\n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Sample data and `timeit` benchmarks" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#Sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the section below, we will create a random dataset from a bivariate Gaussian distribution with a mean vector centered at the origin and a identity matrix as covariance matrix. " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import numpy as np\n", - "\n", - "np.random.seed(123)\n", - "\n", - "# Generate random 2D-patterns\n", - "mu_vec = np.array([0,0])\n", - "cov_mat = np.array([[1,0],[0,1]])\n", - "x_2Dgauss = np.random.multivariate_normal(mu_vec, cov_mat, 10000)" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 13 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The expected probability of a point at the center of the distribution is ~ 0.15915 as we can see below. \n", - "And our goal is here to use the Parzen-window approach to predict this density based on the sample data set that we have created above. \n", - "\n", - "\n", - "In order to make a \"good\" prediction via the Parzen-window technique, it is - among other things - crucial to select an appropriate window with. Here, we will use multiple processes to predict the density at the center of the bivariate Gaussian distribution using different window widths." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from scipy.stats import multivariate_normal\n", - "var = multivariate_normal(mean=[0,0], cov=[[1,0],[0,1]])\n", - "print('actual probability density:', var.pdf([0,0]))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "actual probability density: 0.159154943092\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[Sebastian Raschka](http://sebastianraschka.com) \n", + "\n", + "- [Open in IPython nbviewer](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/multiprocessing_intro.ipynb?create=1) \n", + "\n", + "- [Link to this IPython notebook on Github](https://github.com/rasbt/python_reference/blob/master/tutorials/multiprocessing_intro.ipynb) \n", + "\n", + "- [Link to the GitHub Repository python_reference](https://github.com/rasbt/python_reference)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Last updated: 20/06/2014\n" ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Benchmarking functions" + } + ], + "source": [ + "import time\n", + "print('Last updated: %s' %time.strftime('%d/%m/%Y'))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "I would be happy to hear your comments and suggestions. \n", + "Please feel free to drop me a note via\n", + "[twitter](https://twitter.com/rasbt), [email](mailto:bluewoodtree@gmail.com), or [google+](https://plus.google.com/+SebastianRaschka).\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Parallel processing via the `multiprocessing` module" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "CPUs with multiple cores have become the standard in the recent development of modern computer architectures and we can not only find them in supercomputer facilities but also in our desktop machines at home, and our laptops; even Apple's iPhone 5S got a 1.3 Ghz Dual-core processor in 2013.\n", + "\n", + "However, the default Python interpreter was designed with simplicity in mind and has a thread-safe mechanism, the so-called \"GIL\" (Global Interpreter Lock). In order to prevent conflicts between threads, it executes only one statement at a time (so-called serial processing, or single-threading).\n", + "\n", + "In this introduction to Python's `multiprocessing` module, we will see how we can spawn multiple subprocesses to avoid some of the GIL's disadvantages." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Sections" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- [An introduction to parallel programming using Python's `multiprocessing` module](#An-introduction-to-parallel-programming-using-Python's-`multiprocessing`-module)\n", + " - [Multi-Threading vs. Multi-Processing](#Multi-Threading-vs.-Multi-Processing)\n", + "- [Introduction to the `multiprocessing` module](#Introduction-to-the-multiprocessing-module)\n", + " - [The `Process` class](#The-Process-class)\n", + " - [How to retrieve results in a particular order](#How-to-retrieve-results-in-a-particular-order)\n", + " - [The `Pool` class](#The-Pool-class)\n", + "- [Kernel density estimation as benchmarking function](#Kernel-density-estimation-as-benchmarking-function)\n", + " - [The Parzen-window method in a nutshell](#The-Parzen-window-method-in-a-nutshell)\n", + " - [Sample data and `timeit` benchmarks](#Sample-data-and-timeit-benchmarks)\n", + " - [Benchmarking functions](#Benchmarking-functions)\n", + " - [Preparing the plotting of the results](#Preparing-the-plotting-of-the-results)\n", + "- [Results](#Results)\n", + "- [Conclusion](#Conclusion)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Multi-Threading vs. Multi-Processing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Depending on the application, two common approaches in parallel programming are either to run code via threads or multiple processes, respectively. If we submit \"jobs\" to different threads, those jobs can be pictured as \"sub-tasks\" of a single process and those threads will usually have access to the same memory areas (i.e., shared memory). This approach can easily lead to conflicts in case of improper synchronization, for example, if processes are writing to the same memory location at the same time. \n", + "\n", + "A safer approach (although it comes with an additional overhead due to the communication overhead between separate processes) is to submit multiple processes to completely separate memory locations (i.e., distributed memory): Every process will run completely independent from each other.\n", + "\n", + "Here, we will take a look at Python's [`multiprocessing`](https://docs.python.org/dev/library/multiprocessing.html) module and how we can use it to submit multiple processes that can run independently from each other in order to make best use of our CPU cores." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![](https://raw.githubusercontent.com/rasbt/python_reference/master/Images/multiprocessing_scheme.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Introduction to the `multiprocessing` module" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The [multiprocessing](https://docs.python.org/dev/library/multiprocessing.html) module in Python's Standard Library has a lot of powerful features. If you want to read about all the nitty-gritty tips, tricks, and details, I would recommend to use the [official documentation](https://docs.python.org/dev/library/multiprocessing.html) as an entry point. \n", + "\n", + "In the following sections, I want to provide a brief overview of different approaches to show how the `multiprocessing` module can be used for parallel programming." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### The `Process` class" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The most basic approach is probably to use the `Process` class from the `multiprocessing` module. \n", + "Here, we will use a simple queue function to generate four random strings in parallel." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['BJWNs', 'GOK0H', '7CTRJ', 'THDF3']\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#Sections)]" + } + ], + "source": [ + "import multiprocessing as mp\n", + "import random\n", + "import string\n", + "\n", + "random.seed(123)\n", + "\n", + "# Define an output queue\n", + "output = mp.Queue()\n", + "\n", + "# define a example function\n", + "def rand_string(length, output):\n", + " \"\"\" Generates a random string of numbers, lower- and uppercase chars. \"\"\"\n", + " rand_str = ''.join(random.choice(\n", + " string.ascii_lowercase \n", + " + string.ascii_uppercase \n", + " + string.digits)\n", + " for i in range(length))\n", + " output.put(rand_str)\n", + "\n", + "# Setup a list of processes that we want to run\n", + "processes = [mp.Process(target=rand_string, args=(5, output)) for x in range(4)]\n", + "\n", + "# Run processes\n", + "for p in processes:\n", + " p.start()\n", + "\n", + "# Exit the completed processes\n", + "for p in processes:\n", + " p.join()\n", + "\n", + "# Get process results from the output queue\n", + "results = [output.get() for p in processes]\n", + "\n", + "print(results)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### How to retrieve results in a particular order " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The order of the obtained results does not necessarily have to match the order of the processes (in the `processes` list). Since we eventually use the `.get()` method to retrieve the results from the `Queue` sequentially, the order in which the processes finished determines the order of our results. \n", + "E.g., if the second process has finished just before the first process, the order of the strings in the `results` list could have also been\n", + "`['PQpqM', 'yzQfA', 'SHZYV', 'PSNkD']` instead of `['yzQfA', 'PQpqM', 'SHZYV', 'PSNkD']`\n", + "\n", + "If our application required us to retrieve results in a particular order, one possibility would be to refer to the processes' `._identity` attribute. In this case, we could also simply use the values from our `range` object as position argument. The modified code would be:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[(0, 'h5hoV'), (1, 'fvdmN'), (2, 'rxGX4'), (3, '8hDJj')]\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Below, we will set up benchmarking functions for our serial and multiprocessing approach that we can pass to our `timeit` benchmark function. \n", - "We will be using the `Pool.apply_async` function to take advantage of firing up processes simultaneously: Here, we don't care about the order in which the results for the different window widths are computed, we just need to associate each result with the input window width. \n", - "Thus we add a little tweak to our Parzen-density-estimation function by returning a tuple of 2 values: window width and the estimated density, which will allow us to to sort our list of results later." + } + ], + "source": [ + "# Define an output queue\n", + "output = mp.Queue()\n", + "\n", + "# define a example function\n", + "def rand_string(length, pos, output):\n", + " \"\"\" Generates a random string of numbers, lower- and uppercase chars. \"\"\"\n", + " rand_str = ''.join(random.choice(\n", + " string.ascii_lowercase \n", + " + string.ascii_uppercase \n", + " + string.digits)\n", + " for i in range(length))\n", + " output.put((pos, rand_str))\n", + "\n", + "# Setup a list of processes that we want to run\n", + "processes = [mp.Process(target=rand_string, args=(5, x, output)) for x in range(4)]\n", + "\n", + "# Run processes\n", + "for p in processes:\n", + " p.start()\n", + "\n", + "# Exit the completed processes\n", + "for p in processes:\n", + " p.join()\n", + "\n", + "# Get process results from the output queue\n", + "results = [output.get() for p in processes]\n", + "\n", + "print(results)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And the retrieved results would be tuples, for example, `[(0, 'KAQo6'), (1, '5lUya'), (2, 'nj6Q0'), (3, 'QQvLr')]` \n", + "or `[(1, '5lUya'), (3, 'QQvLr'), (0, 'KAQo6'), (2, 'nj6Q0')]`\n", + "\n", + "To make sure that we retrieved the results in order, we could simply sort the results and optionally get rid of the position argument:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['h5hoV', 'fvdmN', 'rxGX4', '8hDJj']\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def parzen_estimation(x_samples, point_x, h):\n", - " k_n = 0\n", - " for row in x_samples:\n", - " x_i = (point_x - row[:,np.newaxis]) / (h)\n", - " for row in x_i:\n", - " if np.abs(row) > (1/2):\n", - " break\n", - " else: # \"completion-else\"*\n", - " k_n += 1\n", - " return (h, (k_n / len(x_samples)) / (h**point_x.shape[1]))" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 15 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "def serial(samples, x, widths):\n", - " return [parzen_estimation(samples, x, w) for w in widths]\n", - "\n", - "def multiprocess(processes, samples, x, widths):\n", - " pool = mp.Pool(processes=processes)\n", - " results = [pool.apply_async(parzen_estimation, args=(samples, x, w)) for w in widths]\n", - " results = [p.get() for p in results]\n", - " results.sort() # to sort the results by input window width\n", - " return results" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 16 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Just to get an idea what the results would look like (i.e., the predicted densities for different window widths):" + } + ], + "source": [ + "results.sort()\n", + "results = [r[1] for r in results]\n", + "print(results)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**A simpler way to to maintain an ordered list of results is to use the `Pool.apply` and `Pool.map` functions which we will discuss in the next section.**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### The `Pool` class" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Another and more convenient approach for simple parallel processing tasks is provided by the `Pool` class. \n", + "\n", + "There are four methods that are particularly interesing:\n", + "\n", + " - Pool.apply\n", + " \n", + " - Pool.map\n", + " \n", + " - Pool.apply_async\n", + " \n", + " - Pool.map_async\n", + " \n", + "The `Pool.apply` and `Pool.map` methods are basically equivalents to Python's in-built [`apply`](https://docs.python.org/2/library/functions.html#apply) and [`map`](https://docs.python.org/2/library/functions.html#map) functions." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Before we come to the `async` variants of the `Pool` methods, let us take a look at a simple example using `Pool.apply` and `Pool.map`. Here, we will set the number of processes to 4, which means that the `Pool` class will only allow 4 processes running at the same time." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "def cube(x):\n", + " return x**3" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1, 8, 27, 64, 125, 216]\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "widths = np.arange(0.1, 1.3, 0.1)\n", - "point_x = np.array([[0],[0]])\n", - "results = []\n", - "\n", - "results = multiprocess(4, x_2Dgauss, point_x, widths)\n", - "\n", - "for r in results:\n", - " print('h = %s, p(x) = %s' %(r[0], r[1]))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "h = 0.1, p(x) = 0.016\n", - "h = 0.2, p(x) = 0.0305\n", - "h = 0.3, p(x) = 0.045\n", - "h = 0.4, p(x) = 0.06175\n", - "h = 0.5, p(x) = 0.078\n", - "h = 0.6, p(x) = 0.0911666666667\n", - "h = 0.7, p(x) = 0.106\n", - "h = 0.8, p(x) = 0.117375\n", - "h = 0.9, p(x) = 0.132666666667\n", - "h = 1.0, p(x) = 0.1445\n", - "h = 1.1, p(x) = 0.157090909091\n", - "h = 1.2, p(x) = 0.1685\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Based on the results, we can say that the best window-width would be h=1.1, since the estimated result is close to the actual result ~0.15915. \n", - "Thus, for the benchmark, let us create 100 evenly spaced window width in the range of 1.0 to 1.2." + } + ], + "source": [ + "pool = mp.Pool(processes=4)\n", + "results = [pool.apply(cube, args=(x,)) for x in range(1,7)]\n", + "print(results)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1, 8, 27, 64, 125, 216]\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" + } + ], + "source": [ + "pool = mp.Pool(processes=4)\n", + "results = pool.map(cube, range(1,7))\n", + "print(results)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `Pool.map` and `Pool.apply` will lock the main program until all a process is finished, which is quite useful if we want to obtain resuls in a particular order for certain applications. \n", + "In contrast, the `async` variants will submit all processes at once and retrieve the results as soon as they are finished. \n", + "One more difference is that we need to use the `get` method after the `apply_async()` call in order to obtain the `return` values of the finished processes." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1, 8, 27, 64, 125, 216]\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "widths = np.linspace(1.0, 1.2, 100)" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 18 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import timeit\n", - "\n", - "mu_vec = np.array([0,0])\n", - "cov_mat = np.array([[1,0],[0,1]])\n", - "n = 10000\n", - "\n", - "x_2Dgauss = np.random.multivariate_normal(mu_vec, cov_mat, n)\n", - "\n", - "benchmarks = []\n", - "\n", - "benchmarks.append(timeit.Timer('serial(x_2Dgauss, point_x, widths)', \n", - " 'from __main__ import serial, x_2Dgauss, point_x, widths').timeit(number=1))\n", - "\n", - "benchmarks.append(timeit.Timer('multiprocess(2, x_2Dgauss, point_x, widths)', \n", - " 'from __main__ import multiprocess, x_2Dgauss, point_x, widths').timeit(number=1))\n", - "\n", - "benchmarks.append(timeit.Timer('multiprocess(3, x_2Dgauss, point_x, widths)', \n", - " 'from __main__ import multiprocess, x_2Dgauss, point_x, widths').timeit(number=1))\n", - "\n", - "benchmarks.append(timeit.Timer('multiprocess(4, x_2Dgauss, point_x, widths)', \n", - " 'from __main__ import multiprocess, x_2Dgauss, point_x, widths').timeit(number=1))\n", - "\n", - "benchmarks.append(timeit.Timer('multiprocess(6, x_2Dgauss, point_x, widths)', \n", - " 'from __main__ import multiprocess, x_2Dgauss, point_x, widths').timeit(number=1))" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 19 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" + } + ], + "source": [ + "pool = mp.Pool(processes=4)\n", + "results = [pool.apply_async(cube, args=(x,)) for x in range(1,7)]\n", + "output = [p.get() for p in results]\n", + "print(output)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Kernel density estimation as benchmarking function" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the following approach, I want to do a simple comparison of a serial vs. multiprocessing approach where I will use a slightly more complex function than the `cube` example, which he have been using above. \n", + "\n", + "Here, I define a function for performing a Kernel density estimation for probability density functions using the Parzen-window technique. \n", + "I don't want to go into much detail about the theory of this technique, since we are mostly interested to see how `multiprocessing` can be used for performance improvements, but you are welcome to read my more detailed article about the [Parzen-window method here](http://sebastianraschka.com/Articles/2014_parzen_density_est.html). " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "def parzen_estimation(x_samples, point_x, h):\n", + " \"\"\"\n", + " Implementation of a hypercube kernel for Parzen-window estimation.\n", + "\n", + " Keyword arguments:\n", + " x_sample:training sample, 'd x 1'-dimensional numpy array\n", + " x: point x for density estimation, 'd x 1'-dimensional numpy array\n", + " h: window width\n", + " \n", + " Returns the predicted pdf as float.\n", + "\n", + " \"\"\"\n", + " k_n = 0\n", + " for row in x_samples:\n", + " x_i = (point_x - row[:,np.newaxis]) / (h)\n", + " for row in x_i:\n", + " if np.abs(row) > (1/2):\n", + " break\n", + " else: # \"completion-else\"*\n", + " k_n += 1\n", + " return (k_n / len(x_samples)) / (h**point_x.shape[1])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "**A quick note about the \"completion else**\n", + "\n", + "Sometimes I receive comments about whether I used this for-else combination intentionally or if it happened by mistake. That is a legitimate question, since this \"completion-else\" is rarely used (that's what I call it, I am not aware if there is an \"official\" name for this, if so, please let me know). \n", + "I have a more detailed explanation [here](http://sebastianraschka.com/Articles/2014_deep_python.html#else_clauses) in one of my blog-posts, but in a nutshell: In contrast to a conditional else (in combination with if-statements), the \"completion else\" is only executed if the preceding code block (here the `for`-loop) has finished.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### The Parzen-window method in a nutshell" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So what this function does in a nutshell: It counts points in a defined region (the so-called window), and divides the number of those points inside by the number of total points to estimate the probability of a single point being in a certain region.\n", + "\n", + "Below is a simple example where our window is represented by a hypercube centered at the origin, and we want to get an estimate of the probability for a point being in the center of the plot based on the hypercube." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAGUCAYAAAASxdSgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXeUVOX9/9/3Tp/ZQpG6LCxNQUXEgCJIEVgWUIkRCwqK\nDdFEjTExNiwYG/zUX+QY2/fYYn5BiFEhAZYOFiKgIUG/iqgUkaZI2d2pt/3+WJ/rnbv3ztyZuW1m\nn9c5niO7s3eeO+V5P5/OSJIkgUKhUCiUAmGdXgCFQqFQSgMqKBQKhUIxBSooFAqFQjEFKigUCoVC\nMQUqKBQKhUIxBSooFAqFQjEFKigUCoVCMQUqKBQKhUIxBSooFAqFQjEFKigUCoVCMQUqKBQKhUIx\nBSooFAqFQjEFKigUCoVCMQUqKBQKhUIxBSooFAqFQjEFKigUCoVCMQUqKBQKhUIxBSooFAqFQjEF\nKigUCoVCMQUqKBQKhUIxBSooFAqFQjEFKigUCoVCMQUqKBQKhUIxBSooFAqFQjEFKigUCoVCMQUq\nKBQKhUIxBSooFAqFQjEFKigUCoVCMQUqKBQKhUIxBSooFAqFQjEFr9MLoFD0kCQJqVQKPM/D7/fD\n4/GAYRgwDOP00igUigaMJEmS04ugUNSIogiO4+T/iIiIoohAICALDMtSI5tCcQvUQqG4CkmSIAgC\nGhoa4Pf7wbKs/J8kSYjH42AYBhzHAQBYloXX64XP56MCQ6E4DBUUimuQJAkcx0EQBNnNpYRYKcT1\nRYzrVCqFVCoFgAoMheIkVFAorkAURaRSKUiSJMdJRFFEPB6HIAjwer3weDxpf6MUGKBZkEjchQoM\nhWI/NIZCcRTi4iJxEiISx44dgyRJspVCHicIAliWhcfjkf/TC9ITgVF+xFmWhc/nkwWKCgyFYh5U\nUCiOQawJURRlMSFxkkQigVAoBL/fD47j5I2/qakJgUCACgyF4kKoy4viCFouLkEQ0NTUlCYQahiG\nSdv4lcJCxElPYNQpx0RckskkkskkACowFEohUEGh2IokSeB5HjzPg2EYecNOpVKIRqMIBoMIBoNo\namoydD2GYeD1euH1euXrmykwHo9Hjr94vV5aA0OhZIAKCsU2SG2J2sUVi8XAcRzKy8tlYSDkuoEb\nFRilBZJJYERRRGNjIwDIwqK0YKjAUCg/QQWFYjnKwDvw08bN8zyi0Sg8Hg8qKyst2ZwzCUwymYQo\nimnWi5bAkP9YloUoikgkEvL1qcBQKD9BBYViKWoXF7FKEokE4vE4wuEw/H6/bRtxPgKj/FstC4YK\nDIXSDBUUimXo1ZZEo1GIooiKigrNwDvBjgREIwJDrBOSUZbNRUYFhtJaoYJCMR11bQk55XMch2g0\nCp/Ph7Kysoyba6bfWSk0WgKTSCTkYL0RF5lynVRgKK0JKigUU9GrLUkkEkgkEohEIi1aquSC3Rsw\nEUSGYeD3+yGKIkRRBM/z4DgOkiTlLDCkHxlABYZSWlBBoZgGyYiSJAnBYFB2cZEU4MrKyqKv6yCN\nKokFI4qi7CIzKjDKGhoqMJRSggoKpWCUgXdRFAE0b57q2pJS3ByJwPh8PgAtBYY8RikQRgVGEAT4\nfD74/X4qMJSigAoKpSC0XFyiKCIWiyGVSqGsrEzebPO5drGRSWBIw0p1kaWewKRSKVlYyGNIfIcK\nDMWNUEGh5A2JIwBIE5NUKgWv14uKioq8XVylslEWIjDAT0kCQMtkBwBpnZSpwFCchgoKJWe0aksA\nyC1LvF5v1iyu1opSYEirFz2BUVtoWi4yMjuGQATG6/WmxW8oFDuggkLJCb32KdFoFDzPIxgMynUn\nZlGqm6JSILQERhRFJJNJ8DxvuNCSCIwkSXIPMyowFLuggkIxhLp9CtnYeJ5HU1MTvF4vKisrkUwm\nIQiCk0stWtQCE4vF5IaUPM8jmUzK3ZZzFRjye2UMhgoMxWyooFCyohzNq7RKksmk3D4lEAjYup7W\nABEX4sYiWWBEJPIRGHXciwoMxUyooFAykmv7FCI2haJ3nda84SnFA0BGgdHKAqMCQ7EaKigUTfTm\nlpD2KX6/nwbeLSabMGcSGI7jkEgkMk6z1BOYeDwOAHLshQoMxShUUCgtyDSaN5lMFtw+JZ/1tNaN\nLJf7NktgyPvNMAw4jmthwZA0ZSowFDVUUChpaNWWCIKAaDQKIHv7FLNcXsrr0U0rP8wQGKU7k8TS\nqMBQ9KCCQgGgX1vSGtqnGKEUEgGMCgx5rNoyNCIwyj5kVGBaH1RQKHIDR5JRRDaTTKN5rcZsS4fS\nEj2BIW36o9FozhZMKpWSkwOUAkM+V1RgShsqKK0YZW1JKpWSJycKgoCmpiZ4PJ6C2qdQigulwBAx\nUFbxi6KYt8AAkOtrqMCULlRQWimZaktisRhCoRACgUDOX/hStCxK8Z6MoEwjBtKnWRYqMEoLhsRg\nqMAUP1RQWiFatSUA5JOkEy6uTLTmLC83YURg9GbBkL9XuteA5hgd6WGmbhVDBab4cM+uQbEcvdoS\nnuflDsHl5eWu+xKrN6XWaC24kUwCY2RcMoAWAkPa+JDHq7PIKO6GCkorIdtoXq/XK8dQCsHMSnky\nrItSHJghMADSxENtwVCBcTdUUFoByvG06vYpkiShoqICyWTSlSd/0t2YbiD2QToVF0o+AqP8W6Cl\nBUMFxt1QQSlhMrVPaWpqQiAQQCgUcp2LiyAIAhoaGsCyrFzrQKBB3OIjk8AkEglZNEh35GwuMmJ1\nKwVGXQdDsRcqKCWK3twS0j6lkNG8VkM2Cp7nUV5eLt+DKIpIJBLy3HUAuidcivtRCkwgEJBHRxNX\nrCRJGV1k6j5kJEtRK02Zfj7sgQpKiaGeW6Jsn0KKF7Xap1jdJdgopM2LKIrw+/3wer1pJ1CSCeT1\netMsMJKKSjYPOg63+CCC4ff7wbJs2rhk4rKlAuNuqKCUEFq1JUDxtE9RrpNhmLTRtmrI/ZEmlbn2\nqSoGWnu6tHJcMoAWAgOgxfubi8CQFGVq4ZoHFZQSQau2JNf2KU4F5bVcceRLbxS9NiIkJZoU4dE+\nU9lxMjkjk4hmEhhixeYiMMSFSlAWWpI6GEpuUEEpcjLVlkSjUXg8HlRWVmb9cjj15SF9xIDsnYxz\nQUtgjKawUopjkJlSYIgFUojAJBIJcBwnH7yURZbFaOE6ARWUIkavtkQ5mteM2pJcyCWGko8rLt8Y\njZEMI7Lx0Crt4oO8X7kIjF6assfj0bRgqMBkhwpKkSIIAmKxmOwmUtaWaI3mzYadFehuyDbTyjAi\nm486g8yN9TmliBVzdHIRGK2/V66NCkx2qKAUGUoXF/k3wzDyaF6fz+fq0by5uLjs3MgzuU+Ur7XS\ngqFYgxWvrZbAkEMEyRIkkPdZbcFQgckOFZQiIlNtSSKRsH00rxaZLB1SUGnExeXkl1G9+ZAuAizL\nyptPsWeQtXa0YmyxWCztPVY+hgqMMaigFAF6tSXKnxca0LbS5eUGF1chkI2glFOUlbRGFx/5TpHN\nX8uCydaqX0tg4vF4Wnym1AWGCorLyTaal2EYV3YIJliVxeUkmTLIjLRxLwacWK+b6m700tCNHiKU\nVq7y70tdYKiguBi92pJ4PI5UKoVwOJz2AXUTRAiLoWdYoWTKIKMpysVDJkGzWmDIcweDwaIWGCoo\nLkTpylJ+CJXtUyoqKkzPijGr9QoAU1xcxep6UQtMtgrvUrDaWhtmC4yyjxl53Pz583H//ffbf3MF\nQD/JLoPUlhAxIR+uZDKJhoYGBAIBlJWVyadct226ZIYJz/OorKzMW0wync7cds/ZIMH9YDCISCSC\nUCgEj8cjpyhHo1G5qI7OgHGOQlxuRGD8fj9CoRAikYg8QptkYJI0f57nNT/DyhgOy7JYuXJlobdk\nO9RCcRF6Lq5oNCp33rVyNG+hGzXJ4gIgi54ZqE92xSYoatQpynrBX5K+3FpwUwylUIzE2ZQWjPq+\nBUEoSsuVCooLyNQ+hYxE1WqfYubmWsgXWTn5MRKJIBqNmrKm1kAm1wnQ7Dq0O4OslDZ2o1gt3Jni\nbERggGZPxM6dO9G+fXuEQiFL12QFxSeBJYZy9ofSKkkkEmhsbEQoFCqKQkWSuux0HUyxo3SdAJDb\n5wA/ZfaRpAxBEFqVBWMHdn3PiMAEAgGEw+G0uqyHHnoIp512GrZv346HHnoI7777bsZmqddeey06\ndeqEAQMGaP5+/fr1qKysxKBBgzBo0CA8/PDDltwTQAXFMYhVQgZGETEhG3QymURFRQUCgYChaxVK\nPtYOx3FoaGiAx+NBeXm56SY63SxbbjyRSER2lSWTSSowJQTLsggEAliwYAFWrVqFvn37oqmpCb/9\n7W/RvXt32WpVc80116C+vj7jtUeNGoWtW7di69atmD17thXLB0BdXo6gV1tCgnd+v9+QVeKU1aJ2\ncVlhlbjVInMaPdcJz/PyECr1kLFieS1bo6tND5Zl0bNnT8ybNw9As+tTrzffiBEjsHv37ozXs+ug\nQS0UmyG1CWoXVywWQ1NTE8LhMMLhsGu/WEoXV0VFhaaYmB04p6dufYjAkAyycDiclkEWi8VoBpkB\nnBYz9fPHYjGEw2H534XEUxiGwcaNGzFw4EBMmjQJn332WUFrzQS1UGyCnCRJxlZZWRmAn0beAvlV\nkiuLogrBiAgoLahSLlQsZvSaXKr7UxVz8VxrIB6PIxKJmHKtM844A3v37kU4HMby5ctx4YUXYseO\nHaZcWw21UGxAXVtCSKVSaGhogM/nsyQGYRakOr8YLCjKTygbXJLaiGAwCJZlM9ZGOH1adwKn71n9\n/NFoNM1CKYTy8nL5WhMnTgTHcThy5Igp11ZDLRSL0aotIXNLOI4ruFmi1XUZhcxYobiLTCnKytoI\noNlyttuCcXpTdxNkQJ4ZHDp0CB07dgTDMNi8eTMkSUK7du1MubYaKigWoVdbQuack/YpbrFKtISJ\n1MEYTRLIdK1816OMMykFmVI4SoHx+/2yeyyRSJRMk8tiQf19ycXldfnll2PDhg04fPgwqqurMWfO\nHLnFz6xZs/Dmm2/iueeeg9frRTgcxhtvvGH6+glUUCxAbzRvKpWSC9UikYgpX04rLBQ7srgo7oME\n+IGfgsCtZUyyG6wjtcurU6dOhv5uwYIFGX//q1/9Cr/61a8KWptRqKCYDEnfBJB2oo7FYhAEAeFw\nGIlEwvEPrx5ktDB1cVGUKcrZxiSb0eTSDZu6W4jH40VZKU8FxST0akuI28jn86GiokK3OKnQ5y4U\nst7GxsaCxwiXQr+t1kqm9y3TmGT1jHY6Jjk3yERQQiwWkzNBiwkqKCagN5pXy21k9mZrxpeWVF0D\nza4OI9X5lNLGSFGtMoss1wmHbsNt1pGZQXk7oYJSAOrRvMrAezQahSRJtriNChEoZRYXANeM5yXC\nS2JPSv9+a4C8p27a5DJR6HyQ1k62wsZiofV8Q01GkiRwHAdBEFq0T8k0pdBNForSHVdWVoZjx46Z\nti4zkCQJDQ0N8v+TwjyGYeT23nRTcidG2rer4y9OWgluc9FSC6UVkWk0b6FTCu2AbM4kNdHsLC4z\nRJNYfWRIEYF0ZlaP1i21rKNSI1P7dvJeEheaU4cFNxU20hhKK0CvtkQ5mjdb+xQrLJRcrqfMOFO7\n49wQTFcKMwAEg8E08SZuk2AwaHnWEcU61AIjiiKSyaQcewTQwj3Wmg4L1OVV4mjVlgDNA3FisRiC\nwWDaTAMj17P7C6LOOHPbF5Q0ngSa20U0Nja2eIxS9LSyjojgF1tQuLVD3kuGYeD3+9MOC+oMMisO\nC04H5dXPb2YvLzuhgmIAskmpXVyxWAwcx+U0mtfsD60Rq0Lp4gqHw5ZnceVj6Sir8kn+fS7XIO8L\ncd9ptRWhVd/ZcTqOQYSitR8WOI4ryoJiKigZIB/iY8eOpc1I53ke0WgUHo9HczSv0Wvb8SUgM+m1\nXFxqnHB56cVzzGjdotVWROmzV3fdLbVNqVTIdFgolQwyrf2g2O4BoIKii7K2hBQjqk/6fr8/rzfd\nzA9KJhFwu4srF7ErFC2fPS3KK070UpR5nk9rckkOC0asUXVhodM4HcvMFyooKjLVlsTjcVNaklht\nCRTi4rLrg0wSGTweT1axs+L1ysWlUqxf7mIjX6s9U4qyOhvQje5O9eermD9vVFAU6NWWAM0tSXLt\numsH6s22kFO/WfeVTQBSqRSi0ahcle/066nnUlGeeMlj3LghUdLRS1FWjkl245Ax5TqK1QVLBeVH\n9GpLSJfVUChkWrM2qyyUYnBxxeNxpFIpw4kMTpzW1CdecspVfh6Uc9vd5CoplGI+HethxN1JHqec\nCWMXWpZZsb4PrV5QMs0tISmsxDXiVkgOP8ldzzeLy0pXHHk9GYYxNAfGTWJIPheBQKBF111l/MVt\nJ958Kfb1Z0PL3RmPx2VXNzlQOPV+8jxftF2+W7Wg6NWWEJcMqS1pbGx0tBgxGzzP2xLYzhfSjibX\nWh23ot6QSi3jyCmcSFkm33uGYRAIBMCyrO3vp3oviMViRVmDArRiQSEfGL3aEmX7FDdUkGvB87w8\nW8VNLi7yelkxqMtt74WRjKN8AsJOF9q1VvTeT/WYZGLBmBVPU7ddKcYqeaAVCoqR9ilWj+Y1Y1Mk\nLi6l6LlhXQRJktDU1NTqBnVlyjjSailSSvGXUsRoPZOZGWTFOlwLaGWCojW3BPhpc9bLOnLTqZhk\ncfE8j/Ly8rQUZ7dAXmc3ZsXZjTIg3BriL8WKUYtQL4NMS2CMNizVagxJXV4uRl1bonRxKTdnvawj\nswUl3+spazdIhT7JPnILyWQSqVQKPp+v4C+Fm4TcLIzGX0g7d7tx8vUuRjdfpgyyfBuWUpeXi9Gr\nLSEptl6vN+/2KfmSz0apzOLKt0LfinURlPEnN9SWFAOZ3GPk8BOPx20vyKPvXf4oDwxA5o4MenNg\nqKC4FL3aklyryJ08KWdrQumGU7w6/kTakFNyQ3naJWMGfD6fXJAH0PiLVVhlHelZpMqODMokFoZh\nilpQSvITSQLvZKYGedNILUQymURFRYVjLUmMioAgCGhoaIAkSaisrLRlBG6u98lxHBoaGuR4SWvb\n5FauXIna2lrU1NTgzDPPxOuvvy6PUy4UIjDBYBCRSAShUAgejweCICAWiyEajSKZTMqdsCnuhlik\npKN2JBKR9yBJkvD9999j3LhxWLp0KQ4cOCC7zPS49tpr0alTJwwYMED3Mbfeeiv69u2LgQMHYuvW\nrabejxYl9+0XRRGJREIuUCKnDrLxkd5RTrQkyYVkMomGhgYEAgFEIhHdNZhpoeRyn6QYrKmpCWVl\nZWnjjq2IOTmN1v3Mnz8fV111FTZt2oQjR45g+/btuOOOO3DttddassGTky4RGFLTw3EcotEoYrEY\nkskkBEEoSoFxKobi1GuldHl6vV60adMG9957LwRBwLJly9ChQweMHTsWr7zyiubfX3PNNaivr9e9\n/rJly/DVV1/hyy+/xIsvvoibbrrJqluRKSmXF6kYP3bsGNq2bStvbGQCYL61EMS6MYtMG26+c1bs\nRBRFRKNR2XKyyipxgzuPrEPNDz/8gIcfflhOBSbEYjHU19fjww8/xNlnn23pmoq5IaIbcer1IULq\n9/tx7rnnYseOHZg0aRIuuOACvPvuu3K3czUjRozA7t27da+7ZMkSzJgxAwBw1lln4dixYzh06BA6\ndepkxW0AKCFBUfflIT+LRqMAUPDGZ8fGppXFZSdGNnD1ICw3rtEOli1bpvt5isfjWLBggaWCoiZb\nQ0TAWPylGDOtSg0S362oqMD555+f93X27duH6upq+d/dunXDt99+SwXFCOQEpmyfks9oXi3M/oJp\nWTzZamEyXcuODVZvEJaTa3ISMspAC5KO7iR66axunXjYmtOV1bNYzKxDUb+uVt9nyQgKkL6RxePx\ntPYpZl3XbIrBxWXnIKxiYcSIEbpfzrKyMowfP97mFWXGSP2L1+uVs42cwmlhcwNmZXlVVVVh7969\n8r+//fZbVFVVFXzdTJRUUJ5kRQEwTUysgAgUWS9pT5KPmJgdlFdfS/maOikmbrN4+vfvj5EjRyIY\nDKb93OfzoX379rjwwgsdWll2tLKNSFsR0miUjBlwW+FsKaK2kIjLq1AmT56MP//5zwCADz/8EG3a\ntLHU3QWUkIUiSRIaGhoQCoUQj8dNPelYYaGQjdotQ6a0cHoQlttdZ6+//jp+//vf44033oDX6wXH\ncRg5ciSee+65vEcIEOx0wyjdYyzLgud5eL3egqq9iwmnXV5qiFs5G5dffjk2bNiAw4cPo7q6GnPm\nzJHjZbNmzcKkSZOwbNky9OnTB5FIRDdbzExKRlBYlkWbNm3AMIzphXVmN01MpVKy+6hQF5cVm65y\nEFY+lp7bhcAsgsEg5s+fj0cffRT79u3DCSecgPbt2zu9rIJhGAY+ny9tXojV8Re3bep2ov6uRKNR\nQ4KyYMGCrI955pln8l5XPpSMoABIa2Pgxg2NZHERl4Pb4iUkWaCxsREALO+6XCqUlZXhpJNOcnoZ\npqDe2Emii1b8RdnOnTS3pOnJ+WGFy8sJ3LWjmYRbmjkqUbqPWJZtUb9QKGac8EiQNhgMOpISrIfT\ngWLKTxht567snuyWz5EebrOOjLq83EhJCorZmNU0kWRxmdkqwyx3QzKZRDKZhMfjMeV0ZNb9ET++\nJEmOduGlaJOp265eM0RKOmpB4zjOtQlF2SgpQSEbv1tcXnYN7VLed64oU4JDoZAps1XMOu0RMSYB\nbrJZAc2plWZPzaMUjta8djLQLlP8xUkrwW0WClC86dMlJSgEN7i81HPp1X5ptwheY2MjvF4vKioq\nXDOoS5KaRweLoohwOAyfzweO4+Q6iWg0Cr/fr+tmoadgd0DcXaQIViv+ohQWN3wnnMCNgpYvVFBy\nwMgbr8yQsrNQsZD5KsQCcMOXWtknTNmrSk02NwsRFzdUgVOayRR/4ThO/u60poOB+vumHLVRjJSk\noJiN0TfXqIvLyW68dlTm53t/xGLy+XwIh8Nytlk2jFaB0yyk7DhV/+LxeJBMJuX6F3X8hYzTtQI3\nWAjK53f6UFcIJSUoVrVPV15T74OXycXlFsg8GIZhXJcSTF4/o0PP9DDShVdpvbjpNWjtkENBpmFU\nbuo/RmlJSQkKwex28wQtkcqnCNCJGA/HcWhqasooeE64vLK5CAtdT6YspGQyKf+eblLuQutgIIoi\neJ5vEX8pZsuzlDK8gBIWFCssFDWkPX6+J347TG0S4E4kEq7rb6aMl2i9fla8NnrusVLapEqRTJZn\nIpGAJEl5W55ucHkRiJVerJSUoFj5oVCLVCEuLiva4WsJKNmwSfNJuxo7FsNcFSBzkJgUnio3MIp1\n5LqpKy3PQCCgW/+iLLB0I1qNIUOhkIMrKoySEhSC1e3mC+lzRSikdsQIZMP2+XwoKysz9Dx2uby0\nMszcgN4mxXEcRFGUa1/scI9RAcsNI4kZxRB/KeYqeYAKSk7XFAQBsVjMdUFt9f26dcM2I6XazkI4\nskkBzQJNal/sco85semphz0VI7nGX0iihhOoP8dmzUJxCiooBiHptmZlcVm5xnxTgs1ak9Z18s0w\nc8tJXc89pjVi18oUV0ruGIm/kM+Z05l/NIbiIqz4EpNTNWlN4kb/JrGe4vE4WJZ1ZB59JvKNl7jp\nHtQo3WN2tXgvZZyqfwkEAojFYmBZ1pHCWKuGazlFSQkKwayTNjlVA82T+Mw8uZhpoYiiKHcJdlsN\nDHG/ZZtDX8yQyma1D1/LxUKsFze9R60d9eFAL/5iR984M+fJOwEVFB3UdRuxWMw17hcCSQnmeR6B\nQKBg68lMkSM9tziOKzjDrNg2Xy0Xi3K0LlAcGUitESOFsWbGzmgMpQgoZGMkLq5kMmlp3Uahm7ey\nhsPv9zs2610Lcl8kXbnYg7yFwjAtJyCS2IvdJ+BsuO3QZAeZ3G3qwthMsTMz4i9UUFyE+kORq19W\n6eKqrKxM+3BYFUTPB3VMIhaLmb6ufDc1YtkBMJyunG0tdvDRgY8Q42IY2X2kpc+j1YFX6wTsZKNO\np7LLisFSs7rzQjweL+ox0iUlKIR8PphkIySuI/U1nGzoSCCDsEiuOtmUzMzOyhfl2sLhsNxBwKn1\n5MLOYzvx87//HDEuhtM6noaxNWMxrsc4DOkyBD6PtZ0F9DYoUvsSjUape8zFGK1/0bM+aWFjkWC0\ncNCp1iS5ioByEJadVe9GIOnKPM/LLi7ijnP7Brjhmw24btl1GNV9FKrLq3F+n/OxZvca3LX+Luw6\nvgvndDsHo6tHY1TVKPQL9rN8PWSDYhgGqVQKgUCAdk62GLM+p7nEX/RSy2lQ3kVoqX8mMrm4tK5t\nRcNJI5C2+B6PBxUVFZZbT/msjbTst2ODM6PLgCRJ+J///g/mfTgPL096Gf/57j84GD2IEdUjMKJ6\nBB4c8SC+j32PtXvWYtXOVZi3aR7KA+UY22MsxtWMw4jqESjzl5l4Vy0xskGVSufkUiioVKMVf1En\nZwCQiytZli36GEppvYMKsm02HMfh+PHj8Hq9KC8vN/RhtrtDMNDcM6yhoQGBQACRSMTyDTsXceI4\nDg0NDfD7/abES+wiJaRw2+rb8PJ/X8aqqaswsvtIMGh53x3CHXBZ/8vw3Pjn8MnVn+DP5/8Z1RXV\nePbfz+LEF07EpEWT8OTmJ/GfQ/+BKFl/2CAbVCAQQDgcRjgchsfjkTs4RKNRJJNJ8DzfKoPr+WKX\nJU2SM4LBIMLhsOxaF0URy5cvx+DBg7Fjxw58/PHHhmYB1dfXo1+/fujbty/mzp3b4vfr169HZWUl\nBg0ahEGDBuHhhx+24rbSKCkLBcg+V17p4sqlNsLuzTKXNiV2W0/KeInbOhhn43DsMKb/YzraBNtg\n1eWrUO4vB/Dj5wb6mzDLsDit42k4reNpuG3IbYhyUby39z2s2b0G1y67FseTx3Fu93MxtmYsxvQY\ng06RTpbfSzb/fT7prVSI7IEkZxCRqaurQ8eOHTF37lz89a9/xT333INBgwZhzpw5GDNmTIu/FwQB\nN998M1YioTvAAAAgAElEQVSvXo2qqioMGTIEkydPRv/+/dMeN2rUKCxZssSu2yo9QSHotf8gvv1s\nLi4j1zN7fQSlK87utNts92k0lmOGW8rs1/yT7z/BFYuvwCX9L8HsYbPBMumvay7PFfFFMKHXBEzo\nNQEAsOf4HqzdsxZLv1qKO9fdieqKaoztMRZja8ZiaNehCHit7amWrb0IYDy9tVgszVLC6/ViyJAh\niEQiePnll9G2bVu899576Natm+bjN2/ejD59+qCmpgYAMHXqVCxevLiFoNh9QChZQQHSX0yO4xCN\nRgtql27Hm5Mt20wLu2Io2WI5bmbxjsW4bc1teGLME5hy0pQWv89moWSjR2UPXHPaNbjmtGvAizw+\nOvARVu9ejQfffxA7juzA2VVny/GXPm37GEoWKVSM9dq7u7E1jFMJHE5bZFqFjZFIBOFwGHV1dbp/\nt2/fPlRXV8v/7tatGzZt2pT2GIZhsHHjRgwcOBBVVVV44okncPLJJ5t/EwpKVlDIm5Svi0vvemah\nFgG9lGC3QIQuFAohEAjY/uXP9/lEScTcD+fi9U9fx1sXvYVBnQZpX18jhpIvXtaLoVVDMbRqKGYP\nn40j8SNY/816rNm9Bk9/9DS8rFe2XkZ1H4XKQKUpz5sJo4PFlI0SWxNOCyrBaFDeyHrPOOMM7N27\nF+FwGMuXL8eFF16IHTt2mLFMXUpOUJSuFuI6kiTJlPYfVs5YKTQl2Ky1aQmdWyc+ZqMp1YSbVtyE\nA00HsO6KdRnjGgys21DahdrhopMuwkUnXQRJkrD9h+1Ys2cNXt72Mm6svxGndDhFFpgzOp0BD2tt\nSrjSPabunEze71LJHnM7agtFEARDXcKrqqqwd+9e+d979+5t4R4rLy+X/3/ixIn45S9/iSNHjqBd\nu3YmrFybkhMUAglq5+I6shMieIIgoLGxET6fL283klX3VojQOZnKDDTHNC5ffDkGdhqIpZcsNRTD\nKMTlZRSGYdD/hP7of0J/3PyzmxHn4ti4byPW7FmDm1fejIPRgzi3+7kYXT0aI6tGolewly1rIu6x\nWCwmHxpaQ+dkt9VKGW0cOnjwYHz55ZfYvXs3unbtioULF2LBggVpjzl06BA6duwIhmGwefNmSJJk\nqZgAJSgoREg4joPf7zctp9uKDVIQBDQ0NLhuEBbgjnhJvq/5xm83YsbSGbhtyG345aBfuioOpSbk\nC2FsTbN1glHA/sb9zbUvu1bhwQ8eRMdIR9l6GV41HCGftVXUkiTJVomdnZPdtrHbhfK+c/n8eb1e\nPPPMM6irq4MgCLjuuuvQv39/vPDCCwCAWbNm4c0338Rzzz0Hr9eLcDiMN954w5J7UMJIJeYwPXr0\nKDiOk1sdmNXGQBRFHD9+HG3bti34WpIkobGxUa4sL3RaHMdxiMfjqKioKHhtDQ0N8Pl8SCQSBcVL\njh07hvLy8oLcjPF4HJIkIRgMguM4eR2xWAyBQEDz2q9uexV/2PgHvDjhxeZN2iAvbH0BXxz5Ak+N\nfarF7ziOgyAICAaDed9LrnAchxSXwufHP8eaPWuwZvcafPr9pziz65kYVzMOY3qMQf/2/U3fhKPR\nKEKhkK6bS+keEwQBgDmDxTK9p1ZCsuCcqk5vamqS68skScLEiRPxwQcfOLIWMyg5C4UMwSKT2NyG\nMq6jrKJ1A+Q0aka8xKwTP2nrkkqlZL++1nU5gcPdG+7Guj3rUH9ZPfq27Zv7em1weeWCh/VgcJfB\nGNxlMO4ceieOJ4/j3W/exZo9a/DC1hfAiRzG9BiDsTVjMbr7aLQPWd9UUOkeU3ZOVrvH3NA52ShO\nrdGN+1OhuGc3Mwmv1wtBEEwv9jNjg1TOWGFZVp4O54a1kRodURQRDoddEXyXJEkWklAoJLtelIFj\nr9eLY8ljuHrp1fB7/Fh7xdq8sqYYMHCZnrSgMlCJC/pegAv6XgBJkvDVsa+wZvcavPHZG7h11a3o\n27Zvc2PLmubGll7W2q+30c7JRtxjrdXlBaQLWrG/BiUnKFaTzwdfK1OK4zjXnFCUiQHkZOk0yhNv\nJBIBx3HweDzw+XyIRqOyf/+/B/6LGctn4Pze5+OB4Q/A78s/LdxtFkomGIZB37Z90bdtX9w46EYk\n+SQ27d+ENXvW4I61d+Cbhm8wonpEc3ymx1j0qOxhy5qy9a5yW+dkNwlZKpVyxUGuEEpOUMiHww3t\n5oHCqvONUsi9plIpRKNROTHASA8hqyFjg30+n+aplqS9rty9Er9c+Us8MvIRXHLiJXJPq3yyksys\nQ3GCgDeAkd1HYmT3kZgzYg4ORQ9h7Z61WLtnLR7Z+Agq/BVy8H9EN+sbWwItB4tptXbP5MYsddRi\nRr6HxUzJCQrBiqydXNuJkEFYPp8P4XC4hWnr5JdIr1eYWevK5zrqNSkDv+rHPbXlKby07SUsunAR\nhnQZAgBZi/YyWV9uOaWaRadIJ1x+8uW4/OTLIUoiPvn+E6zZvQbPfPQMrlt6Hc7ofAZ6VPTA0Kqh\nuPLUK+W/s+rEnq1zMtB8kFC25m9tkFlCxQwVlBwxek1yyrYjJTjXe1VaTW4Z0au1Jp7nWzwuxsVw\n05qbsKdhD9ZevhZdy7um/V6raE/tdtGbqFdMLq9cYBkWAzsOxMCOA3H7mbejKdWEl7e9jAffexD/\ne/h/0wTFLtTuMZKiTg4CgP77ZCZOurzUz00FpZVhtFtrLBYDx3GGmifaTSarySmUMZxMa9rXuA9X\nLLkCvSp6YeklS1EWyO62yeZ2kVuOiJItLejdwLo96/B/t/xfnNfnPAzsONDp5cgQF2c291ixZI/l\nCnV5uRCrYihGrqksBqysrLT1Q2/kXo1YTWa+bkbnvZDah0x1Hpv3b8ZV/7wKN51xE2aePBNBb+41\nIXpuF5L2yvN8WtsRJzctq07Of/r3nzB/y3y8ddFbeOuLtyzPBMuHbJ2TScp9sbeG0WoMSQXFpdjt\n8lJujEaKAc1cn5HOtUZnq5iFkTVl6xFGXqPXP3kd96y7B8/WPYsJvSbIBY9mrFHuyOsPgPU0N1BU\nn4pLoWGiIAq4e8PdWP/Neqy6fBW6V3THos8XwcO4Z5S0HlZ2TnZTlhdpDFvMUEHJ8ZpqlJt1LsWA\nVqxP68vh5GwVPYz2CONFHrPfm41V36zCskuWod8J1s10J7NRtGoqlLUvhVaEO0GMi+G6ZdehMdWI\nlZetRJtgGwCAIAlpnwenRJM8r9HX1GjnZLe7x2iWVytHLQJu2az1vjAkXpLLDBirYzuiKKKxsTFr\nj7CjiaOY9s40CKKAd698F2Ue6+e3K4PyylMxSRDweDxFVxH+XfQ7XPrOpTip/Ul47fzX4Pf8VKcj\niAK8TMstwK33ooVe52Sjg8XcZHmWQlDe+eOqyVgZQ1HC8zwaGhpymkmvhVVrTCaTaGxslGeP271J\naL3+HMfh+PHj8Pv9cv8iLXb8sAMj/zwSJ7U7CQsvWIh2IWs7pALZ29eT4H4oFEIkEpFjUMlkEtFo\nVG5Iauco5mx88cMXGPfGOIzvOR7P1z2fJiZAs4Vidat8uyEHgUAggEgkglAoJB8EYrEYYrEYksmk\nbHWSv3ECrRgKdXm5FGUHT7M+MKSdSyKRKHgQltkfYuUGTrLM8o2XWCFyRl+zFV+vwPVLr8dDox7C\nFf2uAMdxpq9FD6P3rQ4au3Ea4vt738eMpTPw0IiHMO2UaZqPEUShKGIohaDlHlN2TmYYBizLQhAE\nxy3NeDyODh06OPb8ZlCyggKYM9dcDSnCKnRgF2D++kRRRCwWA8MwebvgzLbsjKZRS5KEpzc/jae3\nPI2FFy3EsG7DkEwmbXNJFNJ6JdumZaSw0kwWfb4Id62/Cy+f9zJGdx+t+zhBElyR5WVXYFwre4wk\neKjdY3bEybQsFLO6ozuF858mk7HqQ0By4lmWde089cbGRlcNFCNt+rMJXIJP4Ff1v8Kn332KDVdu\nQPfK7gDsd0WYlTmm3rSMFlYWiiRJeGLzE3h126v45yX/xMknZJ4fzou8nIzQGiHWCREQpzsnx+Nx\nlJVZ3xLHSkpOUJSYddomKcFmn1zMWh/JzQ+HwwXP7CBuvUIhp79sAneg6QAue+syVFdUY+30tYj4\nnfEhZ7NQ8n2fjBZWFpqRxAkcfrPmN9j23Tasvnw1upR1yfo3glT6Li+jkJ5xyiw/Ymnm2jnZKJIk\npR2yaB2KS1G6kgrZsNX1G27qEAyku5NIzYQbSKVShiZmfnTgI1z21mW4/vTrcdewuxy1qjI1hzTz\nAKFXWEliRcrTslEakg246p9Xwct6sezSZYYbP6pdXk7VZLip/QnBiKVpdudkKigupxBBISnBSneN\n2QHiQtfX2NgIlmVRWVmJhoYGU9eWD0oBJq3w9Zj+znQs3rEYdw+7G78b+rucvpCW1BjB/vb1ytRk\nUjxJxIXM9CEbm571sq9xHy5++2IM7ToU/2fM/8kpJiKIpZflZRVqS1P5XpEi2FzdY7SXVytBOQgr\nGAympSK7IS1Ub31OdQkmz00mUVZUVGStZi/3l+Ok9idh6VdL8fSWpzG6x2jU9a5DXa86VJVXpV3X\nDpzqraZ8fqXLhbhZMgWMt323DZe9cxluHHQjbh18a86nZKuzvARBwBdffAGGYXDSSSe5oqhWTT7v\nuZZ7TGuwWK6dk2kMxeXkukko24Fopbeavenks75kMqmZfuuku4j0MPN6vXLNS7b1nNzhZIR9YTxZ\n+yS+i36HVbtWof7resxeNxtdy7tiQu8JGNt9LE5re5ot95CtDsVuSMA4EAiktRshPv0N+zbglrW3\nYN7oeZjSb0pe77+VWV6LFi3CnXfeKYthJBLBU089hcmTJ1vyfIVQ6HdHaWkC6WnkmTonq7/7tFLe\npeQTQyEnbFEUTUkJNkKu6zPSrsRuiLVktIcZwct6wUvN7ek7Rjpi2qnTMO3U5sr4LQe2oP7retyz\n4R58ffRrnFtzLsb1GIfamtoW7erNxE3t69XuEGVq8ivbXsEjGx/BqxNfxeCOgxGNRvNqlmhVltey\nZctwyy23yLEGoHmznDlzJsrKyjBmzJi0x7upn5YZ6LWG0eoRp6QUXF7us0FNxOiGzfM8jh8/LqcE\nu63lvCAIcoxEb31mrc3odYg119TUhLKysjTXmxE8jAeC2HJ4lof1YGjVUDw48kG8O/1dbLxiIy7o\newHW7VmHs18/G8P+PAx/+NcfsHHfRnCCeTGtQupQ7EKURMx5fw6e/uhp1F9Wj5E1I+VOCGSWiF41\nuBbqLC+zPtv33XdfmpgQ4vE4HnjgAVOewyysFjMSAyPtj4hngcRhEokE1qxZg1deeQXBYNDQQbG+\nvh79+vVD3759MXfuXM3H3Hrrrejbty8GDhyIrVu3mn1bupSkhZILuQ7CstvlpRcvcRKSXcbzfN4C\n52E9EKSWgqKmY7jZernkxEsgSAI+Pvgxln+5HLPfm409DXswqvsojO85HuNqxhlKldWDAQM360mS\nT+KmFTfhm4ZvsHrqapwQPkH+nZHCSi1/viiJLVxehX6+4vE4du7cqfv7bdu2lZxFkgtK9xjP8wgE\nAvB4PFi/fj02btyIU045BXV1dRg/fjzGjBnTogxAEATcfPPNWL16NaqqqjBkyBBMnjwZ/fv3lx+z\nbNkyfPXVV/jyyy+xadMm3HTTTfjwww9tub+StFCM9PMiLqR4PI7y8nJDYmLnl4BkTBELIFuxopnW\nU6brkOyyQl2DHsYDXmw5kTHTWrysF2d1PQt3nXUX1k5diy1Xb8GEXhOwZvcanPXaWRj++nA8+N6D\n2PjtRkPXVuK0hcJu2QLPu+9q/u5I/Ah+/vefgxd5/OPif6SJiRpyIg4EAgiHw4hEIvB6vXK6azQa\nla0XXuRND8qTIVl6+P3+VismWrAsi9GjR+PVV1/FwIED8frrr6NTp06YN28evvvuuxaP37x5M/r0\n6YOamhr4fD5MnToVixcvTnvMkiVLMGPGDADAWWedhWPHjuHQoUO23E9JWyh6mywJIhMXl1Gfs11B\neSfjJZm+7KR7cSAQKNha8rDaLi+jawGa56ZPO2Uapp0yDbzI46MDH2Hl7pW4c/2d2HN8D0Z3H43a\nnrWGrJdMdSiWI4oIXXMNEIsh+sUXgGIEwq5ju3Dx2xdjYq+JeGjkQznHPPQKK1OpFFJ8CjzXbMnk\nWvuih9frRW1tLVasWNEiI9Lj8eDnP/95i79xYx2KE8/NMAwGDx6MwYMH4+6779b8m3379qG6ulr+\nd7du3bBp06asj/n222/RqVMnk++gJSVpoSjR6njb0NAAv9+PsrIy16UyGomXaGF1fEfZvdhoa5dM\n6/GyXkMuL0K25/OyXgytGor7h9+P96a/hy1Xb0FdrzrZejnn9XMw5/05+Ne+f2laL05aKN4lS8D8\n8AOYeBy+v/5V/vnHBz9G3cI63DjoRjw86uGCA+hKf344HAYYIOBvziCLx+Nyymu22Es25s6dizZt\n2qRlIfr9frRr1w4PPfRQQfdQKmi9vka+U0bFT319u0Sz5C0UgjIlOJdBWOrrWWmh5Dr10QrUa1J3\nC9AqVvzmm2+wcuVKSJKE8ePHo0ePHlnXrheUz2eNWqitly0HtmDVrlX4/brfY8/xPTi3x7morWm2\nXjqXdXYubVgUEZg9G0w0CgDwz5kD7oorsHTnUvx23W/x7IRnMbHXREuemhd5+L1+BINBuVCPdDko\nZI57TU0N/vWvf2H+/PlYvHgxGIbBlClTcMstt7iqm64bul7kWkNWVVWFvXv3yv/eu3cvunXrlvEx\n3377LaqqqmAHJSko6hiKKIqIRqOQJAmVlZV5WyVWWQFuFDsAaa+blmtQkiTcfvvteOWVV+Takzvu\nuANXXXUVHn/88YzXztVCKQQv68XZVWfj7Kqzcf859+Ng00Gs3r0aq3avwj0b7kGPyh7oXtEdRxJH\nwIu8rR14iXVCYOJxvPfYTNzVaSMWTl6IM7udadlzi5Iox1DI+8cwDEKhUFqxXj6deLt06YLHHnsM\njz32WNZ1OB2kd0NMJ5VKGRqFMXjwYHz55ZfYvXs3unbtioULF2LBggVpj5k8eTKeeeYZTJ06FR9+\n+CHatGlji7sLKFFBIZDKduLicksXXgJZH6l/KUTszEYQBDQ2NsLn8+kO6Hr++efx2muvyRsO4S9/\n+Qtqamowa9Ys3esbDcoDP/VRItlMhdK5rDOmnzod00+dDl7ksXn/Zvzp33/CJ999gl7P9cKYHmPk\n2EuniIVfRJV1AgBMNIqznl+MZR9tRPcTelv33NAubFQexrTmuBfbxEq3otW63shwLa/Xi2eeeQZ1\ndXUQBAHXXXcd+vfvjxdeeAEAMGvWLEyaNAnLli1Dnz59EIlE8Morr1h2Hy3WZ9sz2YwkSeA4DjzP\no6ysLO9BWErMtgJEUZRPJmVlZaZ0Ly0UpQhnS6WeN28eYrFYi5/HYjH88Y9/xMyZM3X/1mhQXim4\n5P5IFbkZJ1sv68WwbsNwOH4YkiThybFPYvXu1VixcwXuXn83aiprMLbHWIyuGo3hNcNNtV7U1gmh\nrRSAf/lGpK60VlByyfJSpyarW43kU1jpNE5bRkpymYUyceJETJyY7gZVH96eeeYZ09aWCyUpKCRL\niswBN0NM1Ncv9IOYSqWQTCbh9XpNGftphtiR1i6SJKG8vDyj643neRw8eFD394cPH5bbTmhhxOUl\nCAIkSZLfQyIwyWQSgiCkjRQodCMjzSG7lHXBladeiStPvRKcwGHzgc1Y8fUK3PXeXdhfv1+OvdTW\n1KJjpGPezwcAgQceAGIxSCwLUWrOiGIZFkwsjsgjjyA1fXpB189GviOAM7UaccvESrejZaEUe5U8\nUKKCQjaySCSieYLOFzO+GMogdzAYNLXZZKGt+kmqMkk1zYTH40FZWRkaGxs1fx8KhTIKeTaXF0lQ\nYBgG4XAYqVRKzlIim5TP55Nbihe6kWllefk8PgzvNhxndT4Ld595N47yR7F692rU76zH3evvRs82\nPTGupnlm++DOg3PenFO3347D33yOv372V5zWYSBGdx8lr5kLBgGLN2Kzug3nW1hJcJOl4BRUUFxM\nMBgEy7JpbhKzUPYJyxV1kJvjONMEpZAvJKnLISJhpBU+wzCYOXMmnn322RYxlGAwiKuvvjrjmvQq\n5ZUNMMPhsGYLD+Ua1DUWuWxkadcyUIfStbwrrhpwFa4acBU4gcOm/Zuwavcq/Gb1b7Cvad9PsZce\n4wxZL+vG9MaMpQ/hodmPYfgp06BsJJNMJi3PO7NiwJZS9IH0OSKZGiU6gZtqUIzGUNxOSQoKkHs6\nXi7XzeeapChQGeR2qjeYEnVrl1zWc99992Hjxo349NNP0dTUBAAoKytD//79cd9992VuvaJhoahb\nuuSCeiPTc8PoBZFzrUPxeXw4p/ocnFN9DuaMmIP9jfuxevdqLPtqGe5cdyd6tenV7BrrWatpvSz8\nfCHuXn+37tx3SZIsj0Wo29dbscFmKqwkok/cmq3ZUqEWiotRZqq4gVz7heVDPuKUSCQ0W+EbvU4o\nFMKaNWuwatUqvPnmmxBFERdffLGcgZJMJnX/Vm2hqAeakXiJcpPJZcPRc8PoBZELrUPRsl5W7lqJ\n21bfhgNNB2TrZWyPsXjt09fw2ievGZr7biVWtq/XQin6pEEiEReSQGP2FES3ov4sl0KnYaBEBYVg\nhQWQyzWzFQU6ZaEQS4DjuIJbu3g8HkyYMAETJkxI+7kgZA64e1mv7O4jKcqZUruVr1Wur5ue9aJM\ngSXuRzNOyUrr5aGRD2Ff4z6s3r0a//zqn/jVil8h5Avh46s/RueyzgU9T6FY0csrF0hwn+f5tIaJ\nhRZWGsVNFhF1eRURZn9wjGxm5MQNIKd+YflidJPVGm3sxHqIy4sE36203tRopcAyDANBFNJmixgp\n4DNCVXkVZgyYgRkDZuAP7/8BxxLHHBcTIP8sLysgqeBaUxDzKawsNqLRKMrLy51eRsGUtKBY8aEz\nck0SL8lWTGm3hWJ0XYD1pzcP4wEncIhGo3l3BzADckr2+XxgWRbhcLiF9UJqXsx4TYK+ICqQW3zI\nKqweAVwIpV5Yqf4sJRIJdO7s/CGjUEpSUNQdPM3cHLOJgB3xknzWZdQSsOOLKUkSuCQHTijc5WYW\npA5Fy3oh7rBYLJZ2Sg7eeSe4Sy+FOHiw4eeRJMk144bdZKFkw4rCSre5vGgMpQiwywpQxiX0mig6\nsTYjzR3tRHa5gQEYZBQTOy04recip2RCIBBoniPC8xA++gjlL7wAZtMmRNeuNXxKliDBJXpiS5aX\nEXJ93lIorNQKytMYiotRWiZWzzApJC5h5trU15IkCU1NTbrNHfUww6rTep2UwfeKsgrbmkMagVgo\nmVD6+IM/Nj30fvEFhLVrkRg2zFCGktssFDuzvKwi38JKaqGYT/F/mgxgpaDkEpfQupaZ61JCihW9\nXq9uc0c7IfUuxOXmTXhznqpoJbm8Pux//wvvpk1gJAlSLIbKRx5BdO3atAwldQBZTn2GewTF6Swv\nK8ilsNLJGjB1nREVlCLByo2UxEvUdRxGscqlQzZvJ+eqKCH1Lsrgu9GZ8nZitLAxcN99wI+ZRwwA\nz/bt8G3cCPacc5qv86OPn+d5udKfiIubTsVuiaFY+ZpkK6wkYq8WfruhLi+XY6XLi7RQMaOOw+x1\naW3e+VzLjNdM2aRT/Trl0r7eDhgwMKIn7H//C8+P1olMLIbA7NmIrV/ffC2Fj1+5iXEch2QqCQ/r\nkcfuOrWJiZIIBkzBUyCLCXVhJUlHJhMrARhyW5oBbb1SpFhhBZAuwZWVlaY1jCz0OiStNZlMukbk\nRFGEKIpy5bsSD+uRO+xmQytYbmZTTXJNIxaK0jqR/xYAu307PO+/D+FHK0V5XaULxufzgQGTtok5\n0duKF3lXWCdOQsScVO0T95hdhZVKqMurFUI+aF6v15T5JWZ9QInFBEBz886VQkWYxG8A6L5OXtZr\naB6KXRhpDsns2gXv+vWQysshqnuBJRLwP/kk4ipBUSNBgpf1yn3TtHpb2eHf16pBcZM7zm6U4gJY\nX1ipVYdCBaUIMMNCUXbAJTUcZte15Hs9ZVIAqfh2EmWzyWQyqbse17m8DFgoUnU1YsuXA7z2ukXV\nbG/Na+Cn91qrtxUJIAuCIFt4VlgvbsrwcjJdWS/z0e7CSjuagdqBOz5RFqD80po1J6SiokI2id2A\nMinA5/O1aCNvN8r4jcfjybieXIPyVtekiKKIpKDfzBIA4PVCGD7csjUoA8ixWEyus8inHX82SjHD\ny0rMLqxUi2ipWIclKyiEQjYi5ZwQ4kridU6ndq5Pq1jR6lqbbOtRN5vMFuPwMu5JGxYlEX/c8kds\n3r8ZV/7jSozvOR61NbXW9NuSYChtmPS28nq9LawXM4r3BEloVQF5LfLdxM0urHR6hIWZlLyg5It6\nTohZFk+hqId0qU9Ddp908i3qdEvacJyL48YVNyIhJLBpxiZ8fPBjrNy1EvduuBc1lTUY33M8xnYf\niwHtBpjyfEqXVy5opb/mO0wMaBZRt7i8ip18CivV31MnU5bNpOQ/UblmBEmShEQigUQioZt665Q1\nQCrNlUO6lNexm0zryYaRoDxgrYAfjh3G1MVT0b2iO5ZcvARBbxD92vfDtFOmpc00+fWaX+P72PcY\n13Mc6nrWYUyPMWgXapfXc5pRKa/OHMt1mBjgriyvUnH3AMYLK8nv5ILXErFSSlZQ8rEo1PESrdRb\nKz74RtZntLmjGV9OI6+ZsngyGAzmfA2ng/JfHvkSU96egov7XYzZw2a3cP8oZ5rcP+x+7DyyE+8e\neBeLti/Cr1f/Gqd2OBXje45HXc86nHLCKYZf83wtlEzkOkwM0B7/WyqBYaPYIWR6liXQnCr8yiuv\nQBRF2a1pdD1HjhzBZZddhj179qCmpgaLFi1CmzZtWjyupqZG3st8Ph82b95s6v2pKflPj1FBEQRB\nnjZC2BQAACAASURBVKWeqY7DikLJTJB4CWnz7nSnYKA5+N7U1ISysjJNMTECy7CQIBmuRTGT9/e+\njwmLJuCOs+7A/cPvNxRLqC6vxvUDr8eiCxfhq1lf4Xdn/g4Hmg7giiVX4OT/ORm/XvVrLP1qKZpS\nTRmvY3UvL3JCDgQCCIfDCIfD8Hg84HkesVgMsVgMyWQSHM9Rl5fNkPeGpCZHIhH069cPX3zxBT76\n6CPU1NRg1qxZePvtt7N6VR5//HHU1tZix44dGDt2LB5//HHd51y/fj22bt1quZgAJWyh5AI5/TvR\nqiSTQCktpsrKSsdPj1rB93xhGAYexgNBFMB6cruvQkT9jc/ewD0b7sFLk17CuT3OzesaIV8ItT2b\n58VLkoQvj36JlbtW4vmtz2Pm8pkY0nUI6nrWYXzP8ejTtk/a39rdy0svOymWiIGRGLnvmFNdqEvF\n1ZMPDMOgtrYWgwYNwrFjxzBv3jzU19fj7bffxoUXXpjxb5csWYINGzYAAGbMmIHRo0frioqdr3HJ\nCooRl5eReInWde14g7QyzOxam9Z18p1AmcmMJ4F5H6wfriVJEuZ+OBd/+d+/YOklS9H/hP6mXJdh\nGJzY7kSc2O5E3Pyzm9GQbMD6b9Zj5a6V+OOWPyLiizS7xnrVYXjVcEfjBcrsJH/AD6/HK1svyWRz\nyjRxe9k9tMqpOhQ3PC+pku/fvz/69zf2uTx06BA6deoEAOjUqRMOHTqk+TiGYTBu3Dh4PB7MmjUL\nM2fOLPwGMlCygkLQ22RJa3dRFHM6/Vvh8lJfTy/DzCnyCb4beYzRavlCX++UkMKtq27F5z98jjWX\nr0GnSKeCrpeJikAFJvedjMl9J0OSJGz7fhtW7FyBRzc+iu0/bEf7UHsM6DAA+xr3oaq8yrJ1ZIMU\nNir9+6QVTGsYuesm9BpD1tbW4uDBgy1+/sgjj6T9O1OG2AcffIAuXbrg+++/R21tLfr164cRI0aY\ns3ANWqWgKFu7m9FCxUxIcWA+HYytsFCyBd8LIZfAvCiKeZ0ojyaOYvqS6agIVGDZpcsQ8dnXgI9h\nGAzsOBADOw7E74f+Hj/Ef8ANy2/AruO7MOz1YehW3k0O7A/uMtjWmIa6sJFsSmQcMgkeKyvD7epr\nZRdOudv0LBQ1q1at0r1Gp06dcPDgQXTu3BkHDhxAx44dNR/XpUsXAECHDh3wi1/8Aps3b7ZUUEo+\nKK8mlUqhoaEBgUAAkUgk5y+GVRYKiZckEglUVFTk1Q7fbMwIvmfCwxirRSExLhJU5nlefs0ysevY\nLtS+UYsBHQfgLxf8xVYx0aJ9qD1ObHcipvafiq9v/BpPjnkSDBj8du1v0fv53rhm6TV447M38EP8\nB8vXote6nnwfyDCxUCgkH26IizgWiyGRSMjvQyE4nTLsBmEk2Zu5MHnyZLz22msAgNdee00z5hKL\nxdDY2Cg/x8qVKzFggDn1VHqUrIWijqEQkz6ZTBbU2p1g5hdBkiQ0NjbmXByoxiyxkyRJLsoqJPie\nrU+Zl/VmFBSSZqlsnCeKYosZ71rtxrcc2IIrllyB3535O8waNCuv9VsBSRv2sl4MrRqKoVVDcf85\n92N/436s3LUSS75cgt+t/R36tu2L8T3HY2LviRjYcaDpG58gGu/llRZ7UVTtZxsmRtFG/Z2Ix+M5\nC8pdd92FSy+9FC+99JKcNgwA+/fvx8yZM7F06VIcPHgQF110EYDmnn/Tpk3D+PHjzbsRDUpWUAhk\nUyOjcAvNljL7y0JOfYFAIOeJj1agzJMvRNyM4GH1XV7EYgN+6lgsCEJaUVgwGNSsSP7nzn/i9rW3\n49m6ZzGx10TL1p8PeoLftbwrrj7talx92tVI8kms27kOa79di2uXXYumVBNqa2pR16sOo7uPRkWg\nouB18CKfV+sVIhjqrrxaw8TcOs8dcFd2WT7Dtdq1a4fVq1e3+HnXrl2xdOlSAECvXr3wn//8x5Q1\nGqXkBUUQmk/ALMuaNgo328nbKKlUCqlUSg52m7WufCHBd1KMZXWasl5QXhRFNDY2pvnriT+ftHYn\nva78fr98auY4DvM/mo8Xt72IBZMWYFDnQRAEwXU+/2xrCXgDGNltJGp712KeZx6+Pvo1Vu5aiZe3\nvYwb62/EGZ3PkNOST2x3Yl73JkqiKc0hldaL1kwRt1svbsjyysfl5VZKWlCI7x2AqXPVC924lc0d\n3TCiF0gPvpPRqFbDMmwLC4WIGvHfNzQ0yKJAxIS0dud5Xk5xFSQBd757Jz7c/yFWX74aXSNdNavF\nrchYYvbvh//pp5F8/HEgW6GqwTHDSnq37Y2b2t6Em864CVEuig3fbMDKXStx4d8vhM/jk62XEd1G\nIOQLGbqmFe3rjVgv6mFiTsdQ3EAsFkNlZaXTyzCFkhUUsmmXl5ejsbHRNR9cpfutoqICqVRKtqLM\nun6uqMcGx+Nxy+pZlKiD8kTUSHsZ8rfxeFxOb+U4DoIgwO/3y26wo7GjmLliJiRIWH7JcrQJNbeg\nUPe6UmcsmXVq9j/8MHx/+Qv4sWMhZPFRF1opH/FFMKn3JEzqPQmSJOGzw59hxa4VeGrzU7hm6TUY\nVjUMdb2arZfuFd11r6PVvt5sN5DaetEaJsayrCPuJyf3A/VzJxIJVFU5l0JuJiUrKCzLygWBdtSO\nGEGZrmymxaRcVy6YWfmeD17WK7deUYsacZ2EQiHZnUUKK5XWxrcN3+Lity7Gzzr/DHNHzoXP40Mq\nlZItF+V/ymrxTKfmXGC+/Ra+N98EAzTPla+tzWilmFkpzzAMTulwCk7pcApuP/N2HE0cxdo9a7Fi\n5wo8svERdAh3kF1jQ7sOhc/zUyJKtiwvs1E2TSQuSkEQwHGcHC9zYhSyG4jFYgiFjFmWbqdkBQWA\nfPqxoro91+vp1XPYVXmvRm0pabXBtxoP6wEncIjFYkilUrKoEZcWiZNIkiRbFqFQSO6qu+mbTbhm\nxTW44fQbcPtZt8tzWMjfkzYjANLiMdlOzbm0gfc/+ijwY98ldu9eeFatymilWHkybhtsiyknTcGU\nk6ZAEAX8+9C/sXLXSsx+dzZ2HduF0d1Ho65XHWprajVHANsJeR8Yprn9SzAYLOh9KCa06lByDcq7\nlZIWFKvIZUMgm6Hy9G3luow2wsxkKdkVa/IyXjRGG8EHeNmaVIoJwzByejDLsnK2l9frxbp963DD\n8hvwxLlP4Pye5yMajcrJBMr0VjJGVykuRFiUg5AyDbHSuw/ZOvmxLTkTjWa1Uuzq5eVhPRjSZQiG\ndBmCe4fdi0PRQ1i1axVW7FyBu9ffjTJfGTjJ+cmjpNWLkffBTOvFLS5wIL+0YbfSKgTFKZeXsrlj\npnb4dlooVla+54IoioDU7HopLy+Xf6bMyhIEAdFoFH6/Py154cWtL+Lxfz2Ov/3ibzir6iwALQPA\nkiTJlghxdSktEqBZWImwkOfUajVO3DKJRCItHVZpnRCyWSlWtK83QqdIJ0w/dTqmnzod7+99H5ct\nvgwjq0favg4j6L0PpWK9EBElUAulSFBmkdjtViKpr8pYjtVku08ygz6bpWT168XzfLOF5GluUgg0\nb+7ki8YwDDiOQzweRzAYlLOGBFHAvRvuxYqdK7DmijXo2aZn2pqJgASDQbkAklyHzINQurvIc2az\nXjwejxyXIemwvoMHUaawTuR1ZLNSDI4AtorlO5fjlyt+iT+f/2eMrRnr2DqMooy9APkNE9PCTXUo\neq1XipGSFhQldlooPM+jsbHRUHNHO8ROmabsRPBdiXJQmN/jhyAJ8sZO3FypVEqujieFjDEuhuuW\nXoejiaNYc8WarBMTWZZFIBCQs8VIHQtxjRHLRVk/QdxtAFrUr6jTYf0vvgjwPMSyMvz4AFkmPNu3\nw7NxI4Thw1usyykLBQD+3//+Pzzw3gNYdOEiDOkypMXvnXAD5fqc+QwT08NNLi9qoRQRVmRT6YkA\nsQLyae5oxbqyBd/tXI86k4tlWCS5pGyZEOHjeR6RSEQWvkPRQ7j07UvRt21fvHr+qwh49YeM6a2D\nuFCU1ksikZCr74m4sCybFtgn/082L7nQcuZMSMOHt3ClkXsR+vWD58fHKyk0bThf5n80Hy9sfQFL\nL1mKk9qfZPvzW4Ge9aJMD8/HerEaGpQvcuy2AsrLyw0PLLJybfmmKZu9Jq30ZEFozjISJVEWk1gs\nBkmSEIlE5I3488OfY8pbUzDtlGm4Z9g9BW8KWpsQiZMQ15hSYIjvnqyZiIanVy8IvXunCYYH6TPE\nkz8mEyg3NbstFEmScP9796N+Zz1WTF2BbuXdbHtuu9EbJqZV3OqmoHwikaBpw8WA0l1hpcsr3+FT\nZkOyooD04LuT1fhqC0mZyUUGbCkzuZTCt27POlz9z6vx6KhHMe3UaZasT92+hdRGEHGTJAl+vx/B\nYFDXNZYpsE82NTJjhOf5vFvx5wov8rhl1S3YcWQH6i+rR/tQe0ufz00oY2pAS+uFuFedaM2jfu/d\nJG6FUtKCosQqQcln+JTetczCSbebmlgsJs+dAdIzuTxMcx1KU1NTi0yu1z99HfdtuA+vX/A6Rna3\nJxtJuQklk0kkEgn4/X4IgoCGhoa0rDG1a0xd8wIgrSI/EAg0CwkjQRRERKPRtD5XZh9C4lwcVy+9\nGpzIYcnFSxxv3a+HXZup2npJpVLged41w8SooBQRVrmVlAHmQCA3vz7B7LWRzCYz2s4XAgmC+/1+\n2T+szuTyMB5EY9G0TC5JkvCHD/6AhZ8tRP3UevRr36+gdeQK2WzImAPyGpJqfeUJN1PNC9kolVlj\nLMvCw3oQ8DfP4slUsV/IRns0cRRTF09FdXk1nqt7Lq1CnpI+TIwIvZ3DxJTvbSlZJ0ArEhTiojAL\njuOQTCZzipdYCSmglKTCW/QXChFaUqgGQDOTCxLg9XvlxyT5JG6svxG7ju3Cumnr0DGiPYXOKkit\nCc/zKCsrS3sNSZaX0jWWT80LaTWTrWIfaBblXK2XA00HcNFbF2Fk9Ug8NvqxnFrUl9rmZhTi9gSg\n6aa0uh1/Kb3uzu+EFmJFDIWcYHOdRa+HGWsjwXeySZkhJvmsSdkVoLy8XN5seZ5Pa6OSSCTAcRwC\nvgBIwtMP8R9w+TuXo0O4A5Zfttxw11yzUCYFZBsLXUjNi1I4yAalrhQnMSXyOKMn5q+OfoWL3roI\nMwbMwO1Dbi+ZTcoK9D7fyvdWab2o2/EXYr2UkoCoKWlBUWKGoFixcReKMvgun/wLJN8vCRnPq3S3\nkRb9yrRgURQRiUTgZb3gRR5fH/0aU/4+Bef1OQ9/GPWHvAY/FYJeUoBRcql5YVgGPq9P7jsGQJ7z\nog7uk5iSkRPzfw79B5e+cynuHXYvZgyYYe4LZCFObq5GnlfLeiECAxRuvair5oudViEoZnxgycYd\nDAbBsqwpGzfw09ry+WKpg+9mrSlXlJlc5eXl8ibo8/lk9xexxDweD8LhsByU//yHz/Gb1b/BvcPv\nxfWnX2/72kWxOUDu8/lMyYbLVvPC8zwkUcpY86K+XrYT8wcHPsANK27A/Nr5OL/P+QWtn6KP2k1J\nDg+5DBNTH2xJN4hSoaQFxSyXFynIU27cTrZu0Kt8N8u1l8t11LUuwE+ZXORkzvO8bAGQFGufz4dP\nv/8Uy3cux6vnv4oL+l5Q8LpzhayLWBdmo1XzwrBM2kRKdcW+KIry50vpKlRaL8oT89tfvI3frfsd\nXhj3AoZ1GYZkMum6Qj43UqhlQAQjl2Fi6r8HSqvtClDigkLId6PVKsgj17NifUau62Tluxp1ixmg\nZSYX2bRJJpeyXUbXSFcwEoPrl16PYVXDcF6f8zCpzyR0Le9q+dpJvCMUClnaAVqJ0pVVUVHRouaF\nrIPjOIRCobR2/EDLmpdXPnkFc/81F+9MeQcDOgzQbUNiJBXWiQPSwYMH8f777yMcDmPMmDFFfVLP\nlmShF3ehgtJKICdphmFQWVmZ9iGwo/JeCyNt5+1aF3FlEatNGXhWZnKpe3IpT+3LLl8GURTxQ/QH\nrNy5Est3LseD7z2I7hXdMbH3RJzX5zwM6jzIdAHXWpddkPb16sI7EiPh+eaRyKTDMXGfKdOReZ7H\nk1uexILPF2DpxUvRq20vQ21IjAT27bBqeJ7HbbfdhoULF8Ln88mf26effhqXXHKJ5c9vNcr3Qp0V\nSNzSyWQSX3zxBQDkLCh/+9vf8OCDD2L79u3YsmULzjjjDM3H1dfX47bbboMgCLj++utx5513FnZj\nBmgVgpLrRku64ZK55lZ/yYysz87K90zrIVlaiURCTpnWy+RKpVJpPbm0YFkWHco7YNrAabjitCuQ\n5JJ4/5v3sXznclz9j6sR5aOY0HMCzut7Hs7tcW5B2V8kC43juKzrsgotS5TUuIiiKMegiG9eXfPC\neljcteEubNy3EfWX1qNDqIOua0yrDYldqbCZeOCBB/C3v/0NyWQSyWRS/vnNN9+M6upqDB061PI1\n2JkMoDw8KOuY5syZgw8//BBdu3bF888/j0mTJqF7d/2xzYQBAwbg7bffxqxZs3QfIwgCbr75Zqxe\nvRpVVVUYMmQIJk+ejP79+5t5ay0onfQCDfKJoaRSKTQ2NiIUCulm/JhtCWS7XjKZRFNTEyKRSMbu\nxVZbKMQFSGI3Xq9XPnkRq4TEd0gtRy6bNsMwCPqDGNdnHJ6ofQJbr9uKxb9YjJryGjz14VOo+VMN\nprw5BS/95yUcaDqQ89q1Gk/ajXrAlnpdyvYt4XAY5eXlcp+n403HcdU7V2Hbd9vwjyn/QLc23eQO\nA6QYkrjRSIsX4KcNLRAIIBwOIxQKya34o9Eo4vG4nLVkNbFYDC+99JIcZ1ASj8fx+OOP27IOp1DG\nXv7+97/jpZdewoknnogPPvgAP/vZzzB9+vSs1+jXrx9OPPHEjI/ZvHkz+vTpg5qaGvh8PkydOhWL\nFy826zZ0oRbKjygD3dmKFe1yLeWyJqtRugArKioAQHe6IsMwiEQiBZ0Aidvg1C6n4tQup+K3w36L\n75u+x4qvV6B+Zz3uf/d+1FTWYFLvSTivz3kY2Gmg7vMRIQRQ8LoKRdkc0si6iBgkxASuWXUNQt4Q\n/n7h3+GFFw0NDYbmvJDsOqUVowwmk2aWQPOGb2WH3j179mSM+23bts3U53Mb6n2DZVkMHjwY999/\nPwRBwHfffWfK8+zbtw/V1dXyv7t164ZNmzaZcu1MtApBIeiZuU4HurUEKp81WZXllSmTSzldkfTt\nyjYDJh9YlkWnik64atBVuPL0KxFPxvH+3vex/OvlmL54OpJiUnaNje4xGkFvUF5nNBq1bF25IknN\nFookNU/zZFk2q1v1cOwwprw1BaeccArmj58PL+uVr5XrnBee59NcYkp3Gs/zCAQCeQf2jdC2bduM\n1lDbtm0Lfg4juKX+RRmU93g86NKlCwCgtrYWBw8ebPG3jz76KC64IHtGpFP31ioEJdOLm0+Ld6st\nFLImj8eTtWrbakgmFxkZrDwB62VyWQ3DMAgHwxjfdzxq+9RCEAR89t1nWP71cszbOA9X//NqjOg2\nAhN7T8TIziPRrU03Rzsut0CC/JnLJnJ7G/bi53/7OS7oewEeHPFgi+SQfOe8qJtZks+zGYH9THTu\n3Bmnn346tmzZ0qIdUigUwg033JDzNYsZvSyvVatWFXTdqqoq7N27V/733r170a2b9aMLSlpQtDKz\nlD8rdL66WaccpUApCyjzOVGbKXTqwslMmVx2pt8qIafy07qehtO6noY7ht+B7xq/Q/3X9aj/uh6z\nN8xG77a9ZdfYgI4DHBUWURKRTCYNFVJ+fvhzXPjmhbhl8C24efDNGa+rleVFrBetOS/qZpZ67fgz\nBfYz1Vlk4oUXXsDYsWMRi8XkWEokEsHPfvYzXHvttYavUwhOWSjq543FYmjXLvP00WzX02Lw4MH4\n8ssvsXv3bnTt2hULFy7EggUL8n4eo5S0oChRbtrKnlPZ5qvrXcsKCm07b/a6YrGYKZlcdsKyLNqF\n2uGiPhdh2oBpSAkpvP/N+1j29TJMfWcqeJGXU5JHdh8pu8bsgOd58BwvWxSZ2LRvE6a+MxWPnfsY\npp48NefnyjbnhYiLz+eT3ZUkPRnQnvNC4jSk35i6zkJpvWSiV69e+Pe//43XXnsNy5YtQ3l5Oa66\n6iqcd955rmi0aickfT0X3n77bdx66604fPgwzjvvPAwaNAjLly/H/v37MXPmTCxduhRerxfPPPMM\n6urqIAgCrrvuOsszvACAkZws+bYBUnV87NgxlJeXg2VZRKNRCIKQcxaSkqNHj5rW1bexsREA5DXl\n+6WSJAlHjx5F27Zt8xYX4ttPpVLy/ZGTrDqTSxRFuY2KGyCNO5PJZAuRI5vqp999iuVfL8eKXSuw\n/eh2jKoehUl9JmFi74mWdjcmhZQ3rb0Jv+j3C1zc72Ldx67YuQI3LL8BL058EXW96kxfi7IfFXF7\neb1eOftLPfYYQIvAvhJlYJ/EaIwG9kmnArsPJNFoVL5fOyH7EenMMHfuXAwbNgyTJk2ydR1W0WqO\nAyRwTGITZHpgIdczQ4uVJ/9CEwIKtVCUmVzKn6nFhASAnc6YUkIsJq3W88BPrrHTu56O07uejjuH\n34lDjYew/KvlWLZjGe5adxdObHciJvWehEl9JuHUDqeadm/KQkqGYTLOlH/jszdw97q7sejCRTir\n6ixTnl+NsucUqbciSSDKIL1eYF+ZjPH/2zvz6KiqdO0/VZlIJZUAgmkI+RjES6AbIQFJd2OYp5AR\nQQkgImCMtBr0gihLWxBtnJDlvYJcR4aFBklCBiEJU0tkSoKCCkhE8KabQSIIZK6qVKW+P3L38eTk\nnKpTVWeq1P6t1auXUNTZOTlnP3vv932fl69LJbtinwiRms2r+FAzKM+mubmZVsp7K42NjW7HJuSA\n7V5MHHnVHAu78+Tt27fb1TGQtGAtZUwRSPqt3e7cep6g1+vRK7wXFo1YhIWxC9FkbsJX//oKJT+X\n4IFdbdXa5GgsPioeQf7ueX2R4j2yY3LUU37D1xvw7tfvYs/sPRjSY4hb1xMLSaQwGAzMkS/Xj4oc\njZHjMfIMsM0syWKIHah3FNjXorgoCVfIqKB4GTqdjsl66dKlC1MkJsX3erJDYftgkfNqKcflyvdx\nkxPIz2UymdqllMpppOgunlrPA233LKRLCBIGJWDaf0yDzWbD6ZrTKL5YjFcOv4Lzt85j3P8bh8SB\niZh611T0NPR0+p1COyaSNsz97OrDq1H0UxEOzD2AqLAovq+UDCEfM3acRGyfF3bGGDk+c1axzzZQ\nJN+hpJmllk75Scy0s9DpBaWxsZFxYJU64Ofug8kNvpPVtRoIZXIZDAam5zbZqZAgr1aQ2noe+H1S\njYmMQUxkDFbetxK/1P2C0oulKKwqxPJ/LsfgOwa3ZY3dnYjBdwzucF12jIlUvzN/x6mUt7ZakbUv\nC2eun8H+OfvRw9DD45/BEa74mInp88Jugcx3NCYU2CdCQqr0ye5FbGBfCtTK8mL/bNQc0ssglhNS\nT9ruPIxCle9S1rWI/S6ygma3MWbHc8iLDbSJTlBQEGw2G+rq6todg6h1TKfUjkmv1yOyayQWj1iM\nRbGL0GhqRNm/ylDycwnSctLgr/dHwoAEJN6diPui7kOAPsBh9Tt792iymtr8yloaUTy7GKGBobL9\nHEDH4zdXEKp5IQsSsTUv7N0LCfKT41MS2Cc1L3JW7GsFkmnaWej0gkKaEkldjOjq96ldjc8dC8l0\nI8kJXBsVIn42m43JjiP/lm1cSIrdiLgo8eKrYT0PtP3OQ4NDkRidiOmDpsNms+G7a9+h+EIxVpWt\nwsXaixgTOQZT+09FcnQyQnQdjzLIDqXWXIvZ+bMRERKBbSnbEOgn785PyhRvd2pe2LsXIqok/Zw8\nc3yBfS2YWUoJXx0KPfLyIsgvT47qdrHfx26oxBc0JsFOKXD2c/J5cjnK5OKOl/vi8/X0IDsYOV58\nNa3n2ZBd3Ig+IzCizwistK7Ev278CwcuHcDui7ux8vBK/LHHH5mjsUHdB7XdW9hRa67F1OypGN1n\nNN6a+JasLY+dZb9JgSs1L0RciGAAbQsErh0MESxHfd3dbcOtlQwvoE3otRST9JROX4dCttHEtFCq\noDzpOujsYeA2oeJ7kEnSgBQrldra2rZ+7TyTLcnkIrb8QEcxcTeTi0wSxOmWtABmZwh5AilGbWlp\ngcFg0EwhJdB2XxsbG9vFGxpMDfiy+kuU/lyK/f/ajyD/ICQMSMCRK0dQ01CDx2Iew3N/eU7WiU0L\n9ULcmhf2YoNMpmSnQnYvABzWvJDvZNfQuFKxT2I3auwMuHU3CQkJOHz4sGYEzlM6/Q6FoMaRl9jK\nd6nHxvddfJlcXBsVT+ISQscg3Awhd+IujoLcasPnY6bT6WAMNiJlcAqSo5NhtVrx7bVvUXyxGD/e\n+BET+k7AsnuXyTou7j1Ta8Ji7zTIcanFYmFideT5c8XM0llnRGeBfS3tUDobPiUoUh0rOUMo+K4E\nfC8KETZiM8MnJlLHJbjHIEINo5ytKkmNCaC+9TwXMfeM/Kz3Rt2Le6PuxQvxL8BmbZsASTBb6gQH\nrd4zMg6SRUgWMWJqXrhmltyjMbYdjJRmllLDFjMioJ2JTi8ocsVQhL6PxB9aW1sVt53nGwsRtrCw\nMMZVlpxdk6MGT7J/xMAXd+FOJERguFX6WiykBNyP5fj7+cPfz7/dit0doRWCPH9ibPGVhggw+565\nWvPiKGtMbJdKraGl35GnaO/uegl8IsAOvpNWrmqNiytsQplccgds+cbHLp5jryjZ6ad6vR5NTU1M\nR0KtvHREgKXImHJXaIXwBgEWumdia164gX0iLI5qXriBffJvLBaL24F9d+Eet2npdyQFPiMocu0C\nCGKC70qNjQibXq+H0Whk/owrJuRYRM2eK3zZPBaLpZ1fFDkbVxs5BVioSl3s0ZgcRZ5S4UxMV40U\noQAAIABJREFUuLhS80IckrldKoGOuxcS4yI7IRKcB9y34vcE4hDQmej0giLnkReJyXhqOw9IawfR\n3NyMoKAgyTO55Ia8XCQrCQBvN0I1ahHYQW4lBJhvxS50NEZ+n1qzxQE8K6YEXKt5IUe4YswsSUEl\nO4WZBPal7lJJ4L7jzc3NbvVh0jKdXlDYyCEozc3N7arN3f0uKSArr8DAQBgMBt7gOzvFNTAwUDNi\nYrfzW89zV6nuHgd5OjYpg9y1tbX4+eefERERgd69ezv9vKOjMa3a4gBgjgal3M25UvPCDewT4WDP\nA3yCJXdgn3xHZytqBHxIUKSedNirICls5z0VO5PJhObm5nbVyXJnckmFs6Mk9kvvznGQJxDzSXJt\nT54jk8mEZ555Bjt37kRgYCDMZjNGjBiBTz75BFFR4gwh2Udj/v7+zDFXa2urZmxx2DVDcqZ5s+8F\nAN54HFtgiFg0NzdDr9ejpaUFdnv7Pi9iA/tS7JKbmpokq4vTCj4lKFLtUFpbW2EymWC32xEeHq7q\nKp+byUXGJZTJpXaFORey+rfbXbOeZx8HkWJKqa1gpI5LPPzwwzh48CBMJhMzQVVUVGDcuHH4/vvv\nXVqtksUBu4hVjqwxV2EvDpSuGeKreWHfC+KaTQL1AESbWXLT392p2OezXelMxpCADwiK1DEUq9WK\nhoYG+Pv7S2Y77+7YuP5g5HssFku7YjGlM7nEIpX1PN8RSGNjIwAwq1NXJ1Ru9bunnD9/nhET7nXq\n6+uxY8cOLF68WNR3CaUs8x2NKXlMSJ414vqg5rPGvRdsy3yy2BJT88KNvZBjRfKdxIXDHTPLztYL\nBfABQSFIISgWiwWNjY3MOTp5QNWA6w9G/owcZZGdCvB//T40VmEup/U8N1OKTHJirWBI9buUR4PH\njx8XvP+NjY3Yu3evKEERG+R25ThIiudCK5X5QpjNZiYex95pOKt54ZpZsv9fqEulUGCfu0Mhc0ln\nwmcEheCO7QJZebGD79zgnie4KnZklxQUFMRkiZCHnzzEbBNInU6H+vr6DgFLtVDCel4oO8iZFQxf\n8Z0UOPLS0ul+N+oUgh2XcGenyT0OYh8Teno0pmUxIfVY7BgYd1fLrnkB0G7hIbbmRUxgn/ue0yMv\nL4R95OUO5IEkVu/tmiVJXNciRuzILslgMDCTg5hMLim9tTxBrcQAMVYw5LgwNDRU8rqXqVOnMkct\nXIKDg/HQQw8J/lup4xJCx4TuHI1p1eYFEFfo6WnNC/mdignskyQAk8mEiooK1NfXuywoOTk5WL16\nNaqqqnDixAnExsbyfq5fv36MO0ZAQAAqKytdv4Fu0OkFhQ1ZIYh96NnHSiRGwf4uKcclBpLJ5Y4n\nl5gJVe6eJlqynueer5vNZmblSSqopYw1hIWFYf369Vi+fDkzAQNtO5dp06Zh7NixvP9O7voXMUdj\n7MZZ3LGRn8XdGJhcuFNrJUXNi9VqbScu7PtLMsssFgvWrl2LM2fOoH///ggNDUViYiL69OnjdIxD\nhw5Ffn4+MjMznf4shw4dQvfu3UXcLenwCUFhbzXF7iq4x0rcB1LqQklHkBe3paVF0JMLgOhMLqHg\nLbuniZQFhNw0Ui1UvbMhx5dGo7GdwDibUF1lwYIFGDhwIN58802cOXMGEREReOKJJzBnzhze+6zG\n6l/oaMxkMrXLoNPpdEwwWmueYVLF5zyteeGaWZLvDAsLw969e/Hee+/h3//+N44cOYIXXngBzzzz\nDF544QWHY4qOjhY9fqXmJzY+ISgEsQ8WO/iuVLGY0O6JL5NLSk8u9gqKnBWTQDYJLnqSGcQ9X9dS\nYoBQyjJfYydu8NZdURw9ejQKCwtFjY04BKi1+hc6GmtqamJsQ7SUgg7IZ0EjtJPjq4UiR2PsjDHy\nP/KO6fV6WK1WjB8/HrNmzYLNZkNDQ4MkYyXjnTRpEvz8/JCZmYmMjAzJvtsR2noaZMbZroIv+O7u\nd0kxNqFMLj5PLlfqOByNgbvl5xYQurJa1/L5OpmwHaUs8x0TKmEFw06n1srqn/y85NiGHPtYLBY0\nNzdLupNzFyX9zMTUvAQEBLQTY4vFAj8/P0ZcfvvtNyapxs/PD+Hh4QCAyZMn49q1ax2uuXbtWiQn\nJ4sa39GjR9GrVy9cv34dkydPRnR0NOLj46W7AQJQQfk/HAXfHeFO1pgYHGVyETEhL5Cfn58sq1ih\nAkIxq3Wt+oUB7p+v8wVvpa7x8Ib7xnWAdhZrUOJnYIuJ0v5YfEfIbNdoIiKBgYHMs/Prr79i9+7d\nmDBhQofv279/v8dj6tWrFwCgZ8+emDFjBiorK6mgSIWzGIqj4Luj75RrjNwjN0eZXErZuztKteSm\nnQpNPFpAivvG3skJWcG4s1rXsmOwownbWayBXeMhx8+kpphw4dZCkRR5nU6H27dv45FHHkF8fDz2\n7t2LDz74AOPGjXP7WkKL46amJthsNhiNRjQ2NmLfvn1YtWqV29dxBe0caCsA38NstVpRV1eHwMBA\nl49l5AjMm0wmNDY2wmg0CooJqQR3xypfCoiABAcHw2g0Mn5Ezc3NqK+vR0NDgyYnRSKAUt83spML\nCQlBWFgYAgICmB1mQ0MDU1jp6FkhZ+hkFaul+8YdmyPIhBocHIzQ0FAmbmY2m1FXV4fGxkbG1VcK\ntCQmXIh5bGBgIIxGI7p3746MjAwcOXIEly5dwqJFi5CVlYWTJ0+K/s78/HxERUWhvLwciYmJSEhI\nAABcvXoViYmJAIBr164hPj4ew4cPR1xcHJKSkjBlyhRZfkYuOrsaqQAKQ3ofsCc6wPPg++3bt2E0\nGiXJWqqtrYVer2fSQz3N5FIDcp7OztcXW50uN2rUv7BX6y0tLQD4rWD4+tJrBbKjk2Js7CQHkl7r\nydEYdyesJfh2m7W1tUhPT8cLL7yAyZMn48yZM9i9ezf+9Kc/iY6NaB2fEhQSbwgKCmKC76GhoW5P\nzFIJit1ux+3bt5mGWCQ+IpTJZTAYNJV6SwoCuZYg3AlELSdcLdS/sDPorFYrk0FHVu+k3cAXX3yB\nH3/8EZGRkZgxY4bTCno5kVJMuLCPTdliK/ZojCwQtdgDhmRmssWkvr4ec+bMwfLlyzF9+nS1hygb\nPiEoxMSNZPWQLAuj0ejRxFZbW9vO7dUdyHGC3W5HcHAwAgMDHWZyObLwUAOxVdzsTBir1SqpK7Aj\nPG3wJBetra1MvxAAuHDhAu6//36YTCY0NDQwHk+ffvopJk+erPj45PAzE4IrtjabzWEcSutiwrV6\naWxsRHp6OrKyspCamqr2EGXF5wTFYrEgICBAkjTWuro6j144dtvglpYWBAUFMT5c7EwuraWQEthC\n58r95B4FyZGCyy2m1JIIA+3b4ra2tmLQoEGoqanp8DmDwcAUQSqFkmLCh6OjMQCa7U7JJyZNTU2Y\nO3cuMjMzMXPmTLWHKDvaestkhBQh6fV6TdREWCwW1NfXIyQkBMHBwczOiS0mZPdCgpxqj5kNOULU\n6XRuJTOQn8loNDIpzySoT1wB3F3rkGJKNXpyiMFsNrfrsX7w4MF2dixsbDYbPv74Y4/uhyuQ7CyD\nwaBaEzaSNUaSHEjaemNjIxoaGhireC2thfnEpLm5GfPnz8fixYt9QkwAH0kbJpM3CQxLWT3r6kNN\njohMJhNTPGm326HX65mjI7YFvRYDtVKmtwql4LprfaL1Yko+x+ALFy4wR19czGYzqqqqZLGC4SKX\n07InkIxCUkRJdiXclgRqFlTyiYnZbMaCBQvw0EMPYfbs2aqMSw208dTIjE6ng9FoZI6+pMQVQSGT\nndVq7eDJRfL4ST2DzWZjDOiIVYMWkNt6nl1M6ar1idaPB4ViTX379mVaAnMJCgpCdHQ0QkNDZbGC\nIWghcUEIclxNYowER/dDqYJKtuMCEROLxYJHHnkEs2bNwty5c2Ufg5bwiRgK20GVrA6lgJuG7Ah2\nfxJHNipkjMHBwe2q09nVuEq9LFzU7EnPDepziynJi63FCnOunxl3bC0tLbjrrrvw22+/dfi3wcHB\n+P7779G7d+8O38nOkvIkDsWO52gpcQEQn2km5f0QC1tMyAKmpaUFixYtwrRp0/Doo49q6jlUAm0t\nRWRGCf8tPtixENL/wFEmF3sFy3UElttHSgi1V7DO7C1IRbYWxcTZEVxAQAAKCwuRmJjYrvhSp9Ph\n448/7iAmQEcrGO79EGsFo9UsOMC1tGUhaxy2yamU9VDk98oWE6vVioyMDEyYMMEnxQTwkR0KebjI\nCluq3H72uakQJJMrODiYaT/K58kl9qiGnWJJArVy9gpn75q0Vv8C/F79TmJRWiqm5FvBOqKxsRG5\nubk4ffo0+vbti/T0dPTs2dPl67KfD0cpuJ1FTJzBlzXmyVEhEROdTtdOTB5//HHExcUhKyvLJ8UE\noILiEeyHig8lPLnIypRMHlJOpuyjGq3VvwD8R3BaKaYkiwR2oFYN2MemLS0t7VpEu9PuQAmULKh0\ndbfP3nGS7ESbzYYnn3wSQ4cOxbJly3xWTAAfExSymiU20Z5Cjhe4bTzZNvikEp8tJuQFltpyg28y\ndTcjiO/F0RJijuDUKqbUqskjuR/s7pRSN1PzFHYAXsmCSvZuX2hBxvdOtLa2YunSpRg4cCCef/55\nTdxDNaExFInhs8EnL7JOp2MmdjliElzXVz67eTErdS1bqJMjOIvF4vSohi/uInccikyIWiy8A37v\nTkkSQ+SMM7iKkmICCKesC2WNNTc3A2gvJsuWLUPfvn2pmPwfPrFDIV5Tra2tqK2tRbdu3ST5XpIL\nT2wyXM3kUiomIZQhxbdSV9oW3xXE2ryI+R454lByHtV4irNMM/YuXo2jQrWr87lw3xlyTM1Omnn+\n+efRtWtXvPLKKx69J4sWLcKePXtw55134vTp0x3+/tChQ0hNTcWAAQMAADNnzsSLL77o9vXkxKd2\nKFLD3vHYbDameNJRJpca7XDFrtTJ+LQ+IUrZmVKKYkpAexMiG2diAnRspsbtQChnyroW7x07LZ1k\nX/r5+WHz5s147bXXMGTIEHTv3h2vvvqqx/dj4cKFeOqpp/Dwww8Lfmbs2LEoKiry6DpK4FOCIteR\nV0tLCxoaGkRncqlZwU0EhBxnkcmUvDRkhU5WZFpA7up3McWUjlbqatbnOMOdeye0AJGjYZYWxYRA\nhJjtVbdkyRL88ssv+Omnn2A2mxEVFYW4uDhs2bIFffr0ces68fHxqK6udjoWb8AnBIU89OT/pZos\n2X5bzjK5mpqaNBekJTEdMh6DwcC44JLxqp1+q3T1O18feUcrdaliYS0tLfjmm29gt9sRGxsrSfxF\nisQK9gIEaF8k7KkVjDeICXtXZ7fb8dprr8FsNqOgoAB6vR4NDQ3Yv38/7rzzTtnGotPpcOzYMQwb\nNgyRkZFYt24dhgwZItv1PMEnBIWNVKtvEpchwXelMrmkhB2TYKeP8q3U5fSQEkLtbClnK3Vi6Olp\nC4NPP/0Uzz77LLOjtdvtWLNmDR577DG3v9PVGhixkKNCd6xx2GhdTEiiAltM1q1bh+vXr2PTpk3M\nOxAaGooZM2bIOp7Y2FhcunQJBoMBJSUlSEtLw/nz52W9prv4RFAeaMuqstvtuHXrFsLDwz2aFMnL\nSgLc4eHhTIdCsish19SqPxK3Mt9ZMSW3lkFsxpi7aDlbikw4xL3ak6B+aWkpHnroISaDiBAcHIz3\n3nsPDz74oFvjk0NMnF2TW9/BFhf2GIiYaPW9YCfbEDH57//+b1y4cAEffPCBLIk01dXVSE5O5g3K\nc+nfvz+++eYbdO/eXfJxeIq2KpoUwNM4SmtrK+rr65mJGADTsIsdfCeOwp6uXuXAVet5nU6HwMBA\nGAwGxk6cHPXV19eL6pnuCqReKDg4WJNiYjabYbVaYTQaYTQamZbNFovF5b7pq1at6iAmQFuN06pV\nq1y+p+zOpEoaZBIBIS0JSLEvtyUB2x5fa++FkJi89957OHfunGxi4oyamhrmOaisrITdbtekmAA+\nfOTlDiSTKzAwEMHBwcwkSpyBuZlcWqxC9vQYSe7aDi1aqBO4Ew753XIzpLj1P+x7wv2+s2fPCl7v\nypUraGpqYhYuzlD7iJAglPhBjpH8/PyYpBWtvB/c41/yLn/00Uf49ttvsXXrVtnEZM6cOSgrK8ON\nGzcQFRWFl19+mWmLnJmZidzcXGzatInxAtyxY4cs45ACnzvyqq2tdat5EF8mFzmWIX5J/v7+zDGI\nFqvL5bSel6K2Q8veUmJSb/n+jTObj549ewo21woICMD169dFPataERMh2Jlw7GQHtuCq5aLNrg0j\nCwW73Y7Nmzfj8OHD2L59u+biPFpFW0tAGfEkGE8yWkJDQ9utzMmxFwnQm0wmAG0r1paWFlWb/nCR\nO7WVW9vBzQZylDHGfaG1KCbupC2zd3NCjsCzZs1CdnY2syIl+Pn5ISkpSbSYaLXHOsC/62Rn0ZEj\nTrncC5zBJybbt2/Hl19+iezsbComLuAzO5SWlhYm/hEUFCQq44qsSi0WC4xGI9N3QyiTi3wvWaWz\nnU2VNidko3ZygCOPMZ1OJ0n1u1zIFeAm4vLLL79gypQp+O2335gFSVBQEMLDw3H06FFe63ru92g1\neQEQf4TJ3uFarVbGCkYuF22CyWTqICY7duxAUVERdu7cqcl7qmV8TlDENsVie3IZjUbo9XqHmVx8\nK38+c0KpOuyJQQ2bFzFjYmeMAWCSA7QwPjZKeZrdunULH374IXbu3AmbzYbU1FRkZmYiIiLCocBq\n2eoF8CwepoQVDFdMACA3Nxeff/458vLyHLaloPDjM4JC2v+K6WFChIdUtZM/4/PkEmNSCAinVcp1\ndsw+89ei9bzdbmd8z/R6vWa6UhLUikmI9V3Tcn0TIG1yhStedGJhv7vk3SgoKMC2bduQn58v2JKC\n4hgqKBy4mVyAY08udyZrdnaUs5x9d5CiQlpO+Fb+fPdEjfN0QDvHSOx7QgwKySRKjjC1eL5PxESO\nXafQPXHFCoZPTHbv3o0PP/wQBQUForPqKB3xOUFx1BSLZHIZDAYmBZRPTEgAUYrJmrwgZAVGXhB3\nJ1ItW88D4tyMpcgY83R8Wlv5k3tCjjABMM+J3PfEFeQUEy7knvA1mBNKiCGZhOyU/r1792LDhg0o\nKCiA0WiUdcydHZ8TFKGmWI4yudgGj3JO1p5OpFq2ngfcP6aRsysl3/i0aAcCtD9GIpmE7BiD0tY4\nXEg8Ua14mLNWv3xicvDgQbz99tsoLCyUrPGeL+MzgsJO2SS1BIB7mVxKHYNwe4M7WpF6y5m6p5O1\nlF0p+canxYJKwPH4hKxxlEr+ANQXEy7cuAv5sy5dujD3paysDK+99hoKCws97pHkrKcJAGRlZaGk\npAQGgwFbtmxBTEyMR9fUIj4nKOxKZxIYttvtzKrF1UwupeCKC5lIAwICmCpkrU6GcqUtS+UxpnZa\ntTNcmaxd8dRSY3xqYDabYTKZEBAQgFOnTmHevHm47777cO7cOezfv99t23k2hw8fRmhoKB5++GFe\nQSkuLsaGDRtQXFyMiooKLF26FOXl5R5fV2toK/VHAUgcpLW1FXV1ddDpdDAajYzNvCNPLjWPQYi9\nR2hoKIxGIyMkdXV1aG5uRmBgoOYyuYDfX2Y5PM2k8BiTc3xS4Opk7cxTq7m5mTlOVWN8SmOxWJhj\nLoPBgNGjR+O//uu/cOPGDfTo0QNDhgxBamoqjh8/7tF14uPjHe5yioqKsGDBAgBAXFwcbt++jZqa\nGo+uqUW09wbJDImF1NXVISgoiMn2EsrkstlsmvPkIvUsRPzIRFpfX6+JQkqgfQ2MEvfPVY8xpcfn\nDp5a0XA9tVxxLxCDN4gJd3wnTpzAu+++i/z8fERERODWrVsoLi7uEFOVmitXriAqKor57z59+uDy\n5cuIiIiQ9bpK4zOCws7fJ1XZYjK5PG03Kwds63myuyJ/zm4IpXQhJXt8arQ6JgiZE7ItT4joaFVM\nSNGdlONz1MvE1cJBrYsJOQZmj+/kyZN4/vnnsWvXLmYi79atG+bNm6fImLi7Qq3NK1LgM4ICtL2k\nZrOZeanUyOTyFHYHQ27asrNVuhJFg+76XskFn8dYU1MTYy1vMplU70rJhs+oUA4cdabU6/UODRu1\nbOIJ8Kcuf/fdd1i2bBl27dqFXr16KT6myMhIXLp0ifnvy5cvIzIyUvFxyI32lmYywV5RAeiQyaXT\n6WC1WtHQ0MAUNWphgmHDFjtn4yOrdPZZOtl5NTQ0oLm5mSkMk3p8UtXoSA2Jien1eoSFhcFoNMLf\n35+JRbnSx0TO8cktJlzIYsNgMMBoNDJu2o2NjUzchTwr7NRbbxGTs2fPYunSpdi5c6dqk3hKSgq2\nbdsGACgvL0fXrl073XEX4ENZXq2trcxkUV9fz6yeyaQntxuvp0iVtsxX6+JJISVB6zs7Z+4BUmWM\neTI+bnMnteE+K0RoSWq6FsbIhi+1+ty5c1iyZAk+//xz9O/fX7Zrs3uaREREdOhpAgBPPvkkSktL\nERISgs2bNyM2Nla28aiFzwgKWV2R4DU7vkAClVrfwsshdmy7E3cr0rViVSKEq47BcnhHObueq71W\nlIZkwwUFBTFFwloopiTwicn58+eRkZGB7OxsDBw4UNXx+Qo+Iyitra1MxzigbRK0WCxM0ROxnlf7\nxeCiZI2EK4WUBK0XVHq6c5LbY4yICXFv0KqYcL2vyI5OqCpdSfh61F+8eBGLFi3C9u3bMWjQIEXH\n48toa/aUkS+++AIpKSn46KOP8Ouvv6KxsRHLli1DfX09goODGYfhhoYGmM1m1c7RCeQIhOyclKiR\n4Na68PVJZ68/SH/w4OBgTYsJaXDlzmTNjUWRSZ/bK92ddRk7W0+rYmIymTqICfB7DVBISAhTA0Tu\nN6kBkjpGxwefmFRXV2PRokXYunUrFROF8Zkdit1ux40bN5Cfn4/s7GxUVVVh1KhReO2119C3b18m\nXZjbv0SoH7jcY9WS9Tyf3YlOp2OCx1osCFTiGM4TjzEiJsSoVKti4mqCgJDZqStuwGLhE5NLly5h\n/vz5+PjjjzF06FDJrkURh88ICuGbb75BSkoKHn/8cURGRiI/Px/19fWYOnUqUlNT24kLn8W83OLi\nDdbzZKIBoJlCSjZqHMO54jEmVxdIKZEq20wuY08+I8+rV69i7ty5+OCDDzB8+HC3v5viPj4lKHa7\nHcnJyVi8eDFmzJjB/HltbS2++OIL5OXl4caNG5gyZQpSU1Nx1113ORUXKYO03pApxW7XS1Kt1d7R\nsdGCY7CjjDEAaGpqYupitPg7lqsOhk903enCyPc7vnbtGubMmYP33nsPI0aMkGzMFNfwKUEBwBQx\nClFfX489e/YgLy8PV69excSJE5GWloZBgwY5FBdPzfe0bj3vLBNJKdF1hBYdg7nHqHa7nRETpRuH\nOUOpokpyLaHFiKPnhbwnbDH59ddfkZ6ejnfeeQd//vOfZRszxTk+Jyiu0NjYiJKSEuTl5aG6uhrj\nxo3DjBkzMGTIEOj1eslqOrSeKeXqMZxQVz05uy9q3QqEJH2w409qdqXkoqSY8F1bTCYdn5jcuHED\n6enpeOuttzB69GjFxkzhhwqKSJqbm7Fv3z7k5eXhxx9/xJgxYzBjxgzcc889HomL1q3T2VYv7pz3\ny1VIyUbrViDkKJPsPgF1u1Jy4R5lqm0qyndf/Pz8OrQ9vnnzJmbPno21a9di7Nixqo2Z8jtUUNzA\nYrHg4MGDyM3NxenTpzF69GikpaVhxIgRzMvILRjkTqJ2u52x1tb6RBgQECDZMRx759La2urRJKrm\nqlosYrPNlOpKyUVLYsIHaXtssVgAABcuXMDp06cxZswYLFmyBKtXr8bEiRMluVZpaSmefvpp2Gw2\nPProo3juuefa/f2hQ4eQmpqKAQMGAABmzpyJF198UZJrdxaooHhIS0sLysrKkJOTg1OnTmHUqFFI\nS0tDXFwcIxLsyYJMolp3u1Ui7ZavkNKVtFstT4SA+/3p5epKyUWLdi9c2PfQ398fX3/9Nd566y18\n+eWXGDhwIBYuXNhukvfkOoMGDcKBAwcQGRmJe++9F9nZ2Rg8eDDzmUOHDmH9+vUoKiry9MfqtGjv\nLfQyAgICMGnSJLz//vs4duwYZs2ahYKCAkyYMAHLli3DV199BbvdzhQMkt7WJLZA0jO1pOtWq5V5\nieW0UuEWUoo1atRyrxqCu2IC/O4ETIoGAwICYLVaUV9fL1nhrbeJCXGxGDx4MJqamrB9+3asXbsW\nZ8+exV/+8hccOHDAo2tVVlZi4MCB6NevHwICApCeno7CwsIOn9PSe6pFtHdo78X4+/tj3LhxGDdu\nHGw2G44fP47c3Fy89NJLuOeeezB58mS8/fbbmDVrFp544gkmvZTd8EiNM3Q2amVKce3Uyc6lubm5\nXdqtTqfTlD0+H1KmLpOKdD6beXcz6bxRTIC2JJm5c+di6dKlSEtLAwAkJSU57copBr4GWBUVFe0+\no9PpcOzYMQwbNgyRkZFYt24dhgwZ4tF1OxtUUGTCz88P9913H+677z60traisLAQjz76KAYPHowf\nfvgB+/btw7hx45gjJXL8Y7FY0NTU1K5nvFIvvFYypYQmUZPJBAC8vWC0gpx1MK52peTDG4woSeyO\nLSZNTU2YN28elixZwogJQYpnVcx9iI2NxaVLl2AwGFBSUoK0tDScP3/e42t3JrR3VtAJOXXqFJ54\n4gmsWbMGX331FZYuXYoTJ04gISEBGRkZ2L17N8xmM4KCghASEtKhZzyfj5aUcH3DtJQgQCbRLl26\nMLUKfn5+7TyjpFihSgHxNmNnIsmFOx5j3iImDQ0NjFkr0JZhOX/+fCxevBizZs2S5brcBliXLl1C\nnz592n2G3GcASEhIQEtLC27evCnLeLwVGpRXgLNnz+LChQtITU1t9+d2ux1nzpxBTk7Dwr5tAAAY\nl0lEQVQODhw4gD59+iAtLQ1TpkxhHlyuq6vUAVpvCG7zZZtpoZCSjZaKKoUyxojAaFlMuOnVZrMZ\n8+fPR3p6Oh566CHZrm21WjFo0CAcPHgQvXv3xqhRozoE5WtqanDnnXdCp9OhsrISDz74IKqrq2Ub\nkzdCBUUj2O12VFVVITc3F3v37sWdd96J1NRUTJs2DUajkfkMV1zcsa5gX5O43Wp1khGTbSZkSKhU\nwaBWjgr5IEepZrO5Q62LlhYPfGJisVjwyCOPIDU1FY888ojsv8eSkhImbXjx4sVYuXIl3n//fQBt\nTbI2btyITZs2wd/fHwaDAevXr6eV+RyooGgQu92OCxcuIC8vD8XFxejWrRuSk5Mxffp0dO3alfkM\nmUDd6TBIDAq12q4XcC9TSqiQUg63W0DbYgJ0dK62Wq2qdaUUgk9MWlpasGjRIkydOhUZGRmafD4p\nHaGConHsdjuqq6uRl5eHPXv2wGAwIDk5GUlJSejWrZug7b6jiULrJpSAdHY0fDVAUmXSab1C31Hz\nLqW7UgrB7VkDtP3uMzIyMGbMGPztb3/T5PNJ4YcKihdht9tx+fJl7Nq1C0VFRfD390dycjKSk5PR\no0cPUT1dbDYbk6KsRRNKQL6Wx9xCSk8y6YiYaLUOxpVOkHJ3pRSCT0xsNhsef/xxjBo1CllZWZp8\nPinCUEHxUux2O2pqarBr1y4UFhbCZrMhKSkJKSkpiIiIEAxct7a2IigoiHmBtYZSwW13q9G9we7F\nk546SnmM8SVa2Gw2PPnkk/jTn/6E5cuXUzHxQjqdoOTk5GD16tWoqqrCiRMnEBsby/u5fv36ISws\njDlHrqysVHik0sHuRllQUACTyYTp06cjJSUFkZGR0Ol0OH78OO666y6EhITAZrOpnhXFh1rxCG6y\ng1BswRsy4qRu0CaHx5jdbmecl8mRa2trK55++mkMGDAAK1eu1MTzSHGdTicoVVVV0Ov1yMzMxNtv\nvy0oKP3798c333yD7t27KzxC+bl58yYKCwuxa9cu1NXVITo6Gnl5eSgoKEBsbKzmUm4B7cQjhOJR\n/v7+sFgssNlsmmjLzIfc3T6l8BgjySDsBmOtra1Yvnw5evXqhZdeeomKiRfT6QSFMH78eKeC8vXX\nX+OOO+5QeGTK8uabb+L111/HxIkTce3aNcFulGql3Gr5CImbSQcAQUFBmtrVEeQWE77rCXWlFPod\nConJypUrERYWhldffVVT95TiOj5rvaLT6TBp0iT4+fkhMzMTGRkZag9JctavX4+PP/4YJ0+eRL9+\n/ZhulK+88gquXLmCSZMmMd0o/f3921nAkICunOLC9ZTSkpgAv1ejt7S0QK/Xo0uXLoxxplSdOqWA\niIlOp1OsR72rHmNCYvLSSy8hODgYr7zyChWTToBX7lAmT56Ma9eudfjztWvXIjk5GYDzHcovv/yC\nXr164fr165g8eTLeffddxMfHyzpupblw4QLCw8PRs2fPDn/X2NiI0tJS5Obm4n//938xfvz4dt0o\nAec9XTzBG2xAhFb9SjQNc3WMSoqJs/HwZYyR40NyH+12O9asWQOz2Yz169dLsphw1s8EALKyslBS\nUgKDwYAtW7YgJibG4+tSfscrBUUMzgSFzcsvv4zQ0FAsW7ZMgZFpD75ulGlpaRg2bFgHcZGqMZaS\nxzPuIHaManZeJKt+d7tpyg0RF+LGoNPpsG7dOsTFxeHUqVOora3Fu+++K4mYiOlnUlxcjA0bNqC4\nuBgVFRVYunQpysvLPb425Xe0dcYgMUJa2dTUhPr6egBtK/V9+/Zh6NChSg5NUwQHByM1NRXbtm3D\n4cOHMWHCBHzyySeYMGECXnjhBZw4cQI6nQ5dunRBaGhou74uQkaEQnhDhb4rY9TpdMwxjtFobHdv\n6urqXLo37oxRq2JCMJlM8Pf3R1hYGLp06YLw8HCsXbsW69evx40bN5CTk8O8i54gpp9JUVERFixY\nAACIi4vD7du3UVNT4/G1Kb/T6QQlPz8fUVFRKC8vR2JiIhISEgAAV69eRWJiIgDg2rVriI+Px/Dh\nwxEXF4ekpCRMmTJFzWFrhsDAQCQkJODjjz/G0aNHkZiYiM8++wzjx4/HihUrcOzYsXYNw1yZQImT\nrJ+fn2YnQU8nam7TMPa9kco12hvEhOzw2GMku7bhw4fj4sWLmDhxIrZu3YoHHnjA4+vx9TO5cuWK\n089cvnzZ42tTfqfTBeVnzJiBGTNmdPjz3r17Y8+ePQCAAQMG4Ntvv1V6aF4H6UY5adIkWK1WHDly\nBLm5uVi5ciVGjhyJ1NRU/PWvf+3Q04U0DGNXopNJUMsV+lJb0hBxIfeGBK6bm5vdNmn0JjFhx3Xs\ndjs2bdqEH374AVu2bIGfnx8ee+wxPPbYYx53nwTE9TMhY3Pn31HE0el2KGqQk5ODP/7xj/Dz88PJ\nkycFP1daWoro6GjcfffdeOONNxQcoeeQbpQbNmxAeXk55s2bh9LSUkycOBFZWVn45z//CZvN1m51\nzu7pUl9fDz8/P82LCbEBkXqMUrT19SYxAdBOTD766COcPHkSmzdv7lBnJEUMRUw/E+5nLl++jMjI\nSI+vTfkdKigSMHToUOTn52PMmDGCnyG2EqWlpfjhhx+QnZ2Nc+fOKThK6SDdKN955x1UVFQgIyMD\nZWVlmDx5MpYsWYK9e/eipaUFgYGBqKqqwrlz55hdirN+8Wogt5hwISm3BoMBYWFhCAoKgs1mQ0ND\nAxoaGphUajbstFtvEBN2NteWLVtw9OhRbN26VTY7nZEjR+Knn35CdXU1LBYLPv/8c6SkpLT7TEpK\nCrZt2wYAKC8vR9euXRERESHLeHyVTnfkpQbR0dFOP8MOGgJggobsLBRvRK/XIy4uDnFxcWhtbcV3\n332HnJwcvPHGG7jjjjtQUVHRrm8Et1+8pz1dPEVMvxU5cdbWlxyLkXulVXdokgYOtBeTTz/9FAcP\nHsSOHTtk7WLp7++PDRs2YOrUqUw/k8GDB7frZzJ9+nQUFxdj4MCBCAkJwebNm2Ubj69CBUUh+AKC\nFRUVKo5IevR6PWJiYhATE4M9e/Zg/vz5uP/++/E///M/2L17N9LS0jB58mSEhITw9otXuj+H2mLC\nhdRsEOFgiwvBZrOpXkjJRcjZeMeOHdi9ezdycnI8akEgloSEBCYJh5CZmdnuvzds2CD7OHwZKigi\nEVNM6QgtTQByc/ToUSxevBglJSWIi4tr141y48aNiIiIaNeNkqzO2dXWznq6eIo7zbuURKfTQa/X\nw2q1IiAgAIGBgbBarYo4GLiCkJjk5uZi165dyMvL04RYU5SBCopI9u/f79G/FxM07CyMGjUKR48e\nxV133QWgbXIcPHgw/v73v+PFF19kulE+8MADHbpROhIXYnPiKaR5l9T9VqSEL+OMu3MxmUySNw1z\nBSG3g4KCAnz22WfIz8/XbJsEijx02kp5NRg/fjzWrVuHESNGdPg7q9WKQYMG4eDBg+jduzdGjRrV\noZLX1xDbjVLIGdkdcfEmMRGTYs1tGkbujRJV+nxisnv3bnz44YcoKChASEiIbNenaBMqKBKQn5+P\nrKws3LhxA+Hh4YiJiUFJSQmuXr2KjIwMpv6lpKSE8RpavHgxVq5cqfLItYPYbpSe2O4r1bzLE1wR\nE75/S+xx2PbynvQu4YNr6km+e+/evXj33XdRWFgIo9Eo2fUo3gMVFIrm4OtGmZiYiNTUVIfdKB2J\nS2cXEy7cpmFSZdMJicnBgwfx9ttvo7CwEOHh4W5/P8W7oYJC0TRiulE66+lC4g3eIiZSxx24fV3c\nzaYTEpOysjKsXbsWRUVF6Natm6Rjp3gXVFC8mJs3b2L27Nn417/+hX79+mHnzp3o2rVrh891pnbH\n3G6U06ZNQ2pqKvr27cuICzuuQIonScxEi9l2cooJF76OlGTn4igmxW5/HBoaytzHI0eOYM2aNSgs\nLOz0zeoozqGC4sWsWLECPXr0wIoVK/DGG2/g1q1beP311zt8rrO2O66trcUXX3yBvLw8XL9+nelG\nOXDgQOh0OuTn52P06NEwGo2wWq2aSrclKCkmXMQeGwp11Tx+/Dj+/ve/o7CwkLfnDsX3oILixURH\nR6OsrAwRERG4du0axo0bh6qqqg6f84V2x6QbZV5eHlNEevz4cZSWljLuBFL2dJECIiaBgYGq12qw\nxYUrvuTP2GJy4sQJPP/88ygoKJDcvsQXd96dBSooXky3bt1w69YtAG0TQvfu3Zn/ZjNgwACEh4d3\n6nbHbF566SV89NFHGD9+PC5evMjbjZJ7LKa0uGhJTLiwjw2J3X5AQADOnTuHoUOH4uzZs1i2bBny\n8/PRq1cvya/v6ztvb0abEUoKg1CF/j/+8Y92/63T6QQnwqNHj7ZrdxwdHd3p2h0T3nrrLezatQsn\nT57EH/7wB6Yb5YYNGzp0oxSy3Ze7loP0hdGK5QsX0jSMHIMZDAa0tLTg2WefxY8//gij0YjVq1fL\nFoAvKipCWVkZAGDBggUYN24cr6AAwk30KOpAdyheTHR0NA4dOoQ//OEP+OWXXzB+/HjeIy82nb3d\n8YULF9C1a1f06NGjw99ZLBYcPHgQubm5OH36NEaPHo3U1FSMHDmSd+dis9kkr+XQupgQzGYzLBZL\nu2Ous2fPYsWKFRg7diwOHTqEb7/9FvPmzcPGjRslvTbdeXsvdIfixaSkpGDr1q147rnnsHXrVqSl\npXX4TFNTE2w2G4xGI9PueNWqVSqMVhkGDhwo+HekG2VCQgJaWlpQVlaG7OxsPPvss4iLi0NaWhri\n4uKcNsVyV1y0ZkYpBJ+YnDt3Dn/729/w+eefY8CAAQCAX3/91ekCRgi68+6c0B2KF3Pz5k08+OCD\n+Pe//90ueMmu0P/5559x//33A2izHZk3bx6t0OfA7kZZUVGBESNGIC0tDX/961+ZuhW+QkFXOi5q\n3YySYDabYTabERoayvxc58+fR0ZGBj777DPcfffdso+B7ry9FyooFAoLm82G48ePIzc3F0ePHsU9\n99yDtLQ0jBkzhvH+crUK3ZvF5OLFi1i0aBG2b9+OQYMGKTKOFStW4I477sBzzz2H119/Hbdv3+4Q\nQ+HuvKdMmYJVq1ZhypQpioyRwg8VFApFgNbWVpw4cQK5ubkoKyvD4MGDkZaWhnHjxjFHVs6q0L1F\nTCwWC0wmE0JCQpgCx+rqaixYsABbt27FkCFDFBsL3Xl7L1RQKKIpLS1lzC0fffRRPPfccx0+k5WV\nhZKSEhgMBmzZsgUxMTEqjFR62N0o//nPf2LAgAFIS0vDxIkTERwcDKCjuOj1erS2tiIoKEjTNu58\nYnL58mXMmzcPn3zyCYYOHaryCCneAhUUiihsNhsGDRqEAwcOIDIyEvfee28H+/3i4mJs2LABxcXF\nqKiowNKlS1FeXq7iqOXBbrfjzJkzyMnJwYEDB9CnTx+kpqZiypQpjGX7+fPncccddzDBfal7ukgF\nn5hcvXoVc+fOxfvvv99pFgQUZVC+iTfFK6msrMTAgQPRr18/BAQEID09HYWFhe0+U1RUhAULFgAA\n4uLicPv2bdTU1KgxXFnR6XQYOnQo1qxZg6NHj+Lll1/Gzz//jLS0NDz00EPYuHEjpk6diu+//x6h\noaEwGo3o0qULU8xYX1/PmCyqCZ+YXLt2DfPmzcN7771HxYTiMlRQKKIgdiaEPn364MqVK04/c/ny\nZcXGqAbsbpRHjhzBggULsGbNGgwfPhzvv/8+PvvsM9TW1sLf3x/BwcEwGo0IDg6G3W7vIC5KHhYQ\nB2a2mPz666+YO3cu3nnnHYwcOVKxsVA6D7QOhSIKsXUX3ElRCwaMSnHq1ClkZmZiy5YtuP/++5lu\nlPPmzWO6USYmJqJ79+4d2vk2Nja63DDMXUhdDVtMbty4gblz52LdunX4y1/+Ist1KZ0fKigUUURG\nRuLSpUvMf1+6dAl9+vRx+JnLly8jMjJSsTGqTVBQED744AOkpKQAaPOaWr58OZYtW8Z0o3zkkUeY\nbpRJSUno2bNnB3FpamqSzRmZT0xu3ryJuXPnYu3atbjvvvskuQ7FN6FBeYoorFYrBg0ahIMHD6J3\n794YNWqUw6B8eXk5nn766U4ZlPcEdjfKgoIC2Gw2JCUldehGybaAkUpc+LpW3r59G7Nnz8aqVasw\nadIkKX9Uig9CBYUimpKSEiZtePHixVi5ciXef/99AEBmZiYA4Mknn0RpaSlCQkKwefNmxMbGqjlk\nTcPXjTIhIQEpKSno06cPIxzsniXuigufmNTV1SE9PR3PP/88pk2bJtvPSfEdqKBQKBrBWTdKwL2e\nLlarFU1NTe3EpKGhAenp6fjP//xPJCUlKfYzUjo3VFAoFA3irBslIK6nC5+YNDY2Ys6cOXjiiScw\nY8YM1X5GSueDCgqFonG43SgnTpyItLQ0REdH84qLzWZjMsXMZjNCQkIYMWlqasLcuXORkZGBBx54\nQPKx5uTkYPXq1aiqqsKJEycEjzzFuC5QvA9ah0LxCkpLSxEdHY27774bb7zxRoe/P3ToEMLDwxET\nE4OYmBi8+uqrKoxSHoxGI9LT05GTk4P9+/dj+PDhWLduHSZOnIhXXnkFZ86cAdCWZUYKKYE2s0eg\nrY/Jjh07cP36dcyfPx8LFy6URUwAYOjQocjPz8eYMWMEP2Oz2ZhY2w8//IDs7GycO3dOlvFQlIWm\nDVM0D5mA2LYvKSkp7TLMAGDs2LEoKipSaZTKEBISgpkzZ2LmzJmC3SjNZjNWrFiBvXv3IigoCE1N\nTdi+fTueeuopDB48GDabDbW1tQgPD5d8fNHR0U4/w3ZdAMC4LnB/nxTvg+5QKJpHjO0L4HvtYIOD\ng5Gamopt27bh8OHDmDBhAt58802mC+Xp06cBACNGjEBYWBhef/11PPXUU9i5cyeioqKQnZ2tyrjF\nuC5QvBO6Q6FoHr4JqKKiot1ndDodjh07hmHDhiEyMhLr1q1T1HJdbQIDA9GrVy9UVFRgy5YtCA8P\nR3Z2NpYvX46GhgY888wzeOyxx6DT6bBgwQLU1dW57SUm1G1x7dq1SE5Odvrvfck9wdeggkLRPGIm\noNjYWFy6dAkGgwElJSVIS0vD+fPnFRiddvjHP/6BjRs3YubMmQCASZMmwWq1orS0FImJie3uY1hY\nmNvX2b9/v0fjFOO6QPFO6JEXRfOImYCMRiMMBgMAMD3jb968qeg41Wbnzp2MmBD8/f2RlJSkyq5A\n6Ahy5MiR+Omnn1BdXQ2LxYLPP/+csauheDdUUCiaR8wEVFNTw0xglZWVsNvt6N69uxrDVQ0tHCXl\n5+cjKioK5eXlSExMREJCAoC2HiuJiYkA2kRuw4YNmDp1KoYMGYLZs2fTgHwngdahULwCZ7YvGzdu\nxKZNm+Dv7w+DwYD169fjz3/+s8qjplB8CyooFAqFQpEEeuRFoVAoFEmggkKhOGHRokWIiIjA0KFD\nBT+TlZWFu+++G8OGDcOpU6cUHB2Foh2ooFAoTli4cCFKS0sF/764uBgXLlzATz/9hA8++ABLlixR\ncHQUinaggkKhOCE+Ph7dunUT/PuioiIsWLAAABAXF4fbt2+jpqZGqeFRKJqBCgqF4iF8lfyXL19W\ncUQUijpQQaFQJICbLKmFmhAKRWmooFAoHsKt5L98+TIiIyNVHBGFog5UUCgUD0lJScG2bdsAAOXl\n5ejatSsiIiJUHhWFojzUHJJCccKcOXNQVlaGGzduICoqCi+//DJaWloAtFXpT58+HcXFxRg4cCBC\nQkKwefNmlUfsHmK7Lfbr1w9hYWHw8/NDQEAAKisrFR4pRavQSnkKhQIAqKqqgl6vR2ZmJt5++21B\nQenfvz+++eYbn/NKoziH7lAoFAoAcd0WCXQdSuGDxlAoFA3jrEr/0KFDCA8PR0xMDGJiYvDqq6/K\nPiadTodJkyZh5MiR+PDDD2W/HsV7oDsUCkXDLFy4EE899RQefvhhwc+MHTsWRUVFor7P026LAHD0\n6FH06tUL169fx+TJkxEdHY34+HhR/5bSuaGCQqFomPj4eFRXVzv8jCvHT552WwSAXr16AQB69uyJ\nGTNmoLKykgoKBQA98qJQvBqdTodjx45h2LBhmD59On744QdJvldIpJqamlBfXw8AaGxsxL59+xya\nZlJ8CyooFIoXExsbi0uXLuG7777DU089hbS0NLe/S0y3xWvXriE+Ph7Dhw9HXFwckpKSMGXKFEl+\nFor3Q9OGKRSNU11djeTkZJw+fdrpZ2lKL0VN6A6FQvFiampqmOOpyspK2O12KiYU1aBBeQpFwzir\n0s/NzcWmTZvg7+8Pg8GAHTt2qDxiii9Dj7woFAqFIgn0yItCoVAokkAFhUKhUCiSQAWFQqFQKJJA\nBYVCoVAokkAFhUKhUCiSQAWFQqFQKJLw/wG01aU/LOMn1wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from mpl_toolkits.mplot3d import Axes3D\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from itertools import product, combinations\n", + "fig = plt.figure(figsize=(7,7))\n", + "ax = fig.gca(projection='3d')\n", + "ax.set_aspect(\"equal\")\n", + "\n", + "# Plot Points\n", + "\n", + "# samples within the cube\n", + "X_inside = np.array([[0,0,0],[0.2,0.2,0.2],[0.1, -0.1, -0.3]])\n", + "\n", + "X_outside = np.array([[-1.2,0.3,-0.3],[0.8,-0.82,-0.9],[1, 0.6, -0.7],\n", + " [0.8,0.7,0.2],[0.7,-0.8,-0.45],[-0.3, 0.6, 0.9],\n", + " [0.7,-0.6,-0.8]])\n", + "\n", + "for row in X_inside:\n", + " ax.scatter(row[0], row[1], row[2], color=\"r\", s=50, marker='^')\n", + "\n", + "for row in X_outside: \n", + " ax.scatter(row[0], row[1], row[2], color=\"k\", s=50)\n", + "\n", + "# Plot Cube\n", + "h = [-0.5, 0.5]\n", + "for s, e in combinations(np.array(list(product(h,h,h))), 2):\n", + " if np.sum(np.abs(s-e)) == h[1]-h[0]:\n", + " ax.plot3D(*zip(s,e), color=\"g\")\n", + " \n", + "ax.set_xlim(-1.5, 1.5)\n", + "ax.set_ylim(-1.5, 1.5)\n", + "ax.set_zlim(-1.5, 1.5)\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "p(x) = 0.3\n" ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Preparing the plotting of the results" + } + ], + "source": [ + "point_x = np.array([[0],[0],[0]])\n", + "X_all = np.vstack((X_inside,X_outside))\n", + "\n", + "print('p(x) =', parzen_estimation(X_all, point_x, h=1))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Sample data and `timeit` benchmarks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the section below, we will create a random dataset from a bivariate Gaussian distribution with a mean vector centered at the origin and a identity matrix as covariance matrix. " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "np.random.seed(123)\n", + "\n", + "# Generate random 2D-patterns\n", + "mu_vec = np.array([0,0])\n", + "cov_mat = np.array([[1,0],[0,1]])\n", + "x_2Dgauss = np.random.multivariate_normal(mu_vec, cov_mat, 10000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The expected probability of a point at the center of the distribution is ~ 0.15915 as we can see below. \n", + "And our goal is here to use the Parzen-window approach to predict this density based on the sample data set that we have created above. \n", + "\n", + "\n", + "In order to make a \"good\" prediction via the Parzen-window technique, it is - among other things - crucial to select an appropriate window with. Here, we will use multiple processes to predict the density at the center of the bivariate Gaussian distribution using different window widths." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "actual probability density: 0.159154943092\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#Sections)]" + } + ], + "source": [ + "from scipy.stats import multivariate_normal\n", + "var = multivariate_normal(mean=[0,0], cov=[[1,0],[0,1]])\n", + "print('actual probability density:', var.pdf([0,0]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Benchmarking functions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Below, we will set up benchmarking functions for our serial and multiprocessing approach that we can pass to our `timeit` benchmark function. \n", + "We will be using the `Pool.apply_async` function to take advantage of firing up processes simultaneously: Here, we don't care about the order in which the results for the different window widths are computed, we just need to associate each result with the input window width. \n", + "Thus we add a little tweak to our Parzen-density-estimation function by returning a tuple of 2 values: window width and the estimated density, which will allow us to to sort our list of results later." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "def parzen_estimation(x_samples, point_x, h):\n", + " k_n = 0\n", + " for row in x_samples:\n", + " x_i = (point_x - row[:,np.newaxis]) / (h)\n", + " for row in x_i:\n", + " if np.abs(row) > (1/2):\n", + " break\n", + " else: # \"completion-else\"*\n", + " k_n += 1\n", + " return (h, (k_n / len(x_samples)) / (h**point_x.shape[1]))" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "def serial(samples, x, widths):\n", + " return [parzen_estimation(samples, x, w) for w in widths]\n", + "\n", + "def multiprocess(processes, samples, x, widths):\n", + " pool = mp.Pool(processes=processes)\n", + " results = [pool.apply_async(parzen_estimation, args=(samples, x, w)) for w in widths]\n", + " results = [p.get() for p in results]\n", + " results.sort() # to sort the results by input window width\n", + " return results" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Just to get an idea what the results would look like (i.e., the predicted densities for different window widths):" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "h = 0.1, p(x) = 0.016\n", + "h = 0.2, p(x) = 0.0305\n", + "h = 0.3, p(x) = 0.045\n", + "h = 0.4, p(x) = 0.06175\n", + "h = 0.5, p(x) = 0.078\n", + "h = 0.6, p(x) = 0.0911666666667\n", + "h = 0.7, p(x) = 0.106\n", + "h = 0.8, p(x) = 0.117375\n", + "h = 0.9, p(x) = 0.132666666667\n", + "h = 1.0, p(x) = 0.1445\n", + "h = 1.1, p(x) = 0.157090909091\n", + "h = 1.2, p(x) = 0.1685\n" ] - }, + } + ], + "source": [ + "widths = np.arange(0.1, 1.3, 0.1)\n", + "point_x = np.array([[0],[0]])\n", + "results = []\n", + "\n", + "results = multiprocess(4, x_2Dgauss, point_x, widths)\n", + "\n", + "for r in results:\n", + " print('h = %s, p(x) = %s' %(r[0], r[1]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Based on the results, we can say that the best window-width would be h=1.1, since the estimated result is close to the actual result ~0.15915. \n", + "Thus, for the benchmark, let us create 100 evenly spaced window width in the range of 1.0 to 1.2." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "widths = np.linspace(1.0, 1.2, 100)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "import timeit\n", + "\n", + "mu_vec = np.array([0,0])\n", + "cov_mat = np.array([[1,0],[0,1]])\n", + "n = 10000\n", + "\n", + "x_2Dgauss = np.random.multivariate_normal(mu_vec, cov_mat, n)\n", + "\n", + "benchmarks = []\n", + "\n", + "benchmarks.append(timeit.Timer('serial(x_2Dgauss, point_x, widths)', \n", + " 'from __main__ import serial, x_2Dgauss, point_x, widths').timeit(number=1))\n", + "\n", + "benchmarks.append(timeit.Timer('multiprocess(2, x_2Dgauss, point_x, widths)', \n", + " 'from __main__ import multiprocess, x_2Dgauss, point_x, widths').timeit(number=1))\n", + "\n", + "benchmarks.append(timeit.Timer('multiprocess(3, x_2Dgauss, point_x, widths)', \n", + " 'from __main__ import multiprocess, x_2Dgauss, point_x, widths').timeit(number=1))\n", + "\n", + "benchmarks.append(timeit.Timer('multiprocess(4, x_2Dgauss, point_x, widths)', \n", + " 'from __main__ import multiprocess, x_2Dgauss, point_x, widths').timeit(number=1))\n", + "\n", + "benchmarks.append(timeit.Timer('multiprocess(6, x_2Dgauss, point_x, widths)', \n", + " 'from __main__ import multiprocess, x_2Dgauss, point_x, widths').timeit(number=1))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Preparing the plotting of the results" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#Sections)]" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "import platform\n", + "\n", + "def print_sysinfo():\n", + " \n", + " print('\\nPython version :', platform.python_version())\n", + " print('compiler :', platform.python_compiler())\n", + " \n", + " print('\\nsystem :', platform.system())\n", + " print('release :', platform.release())\n", + " print('machine :', platform.machine())\n", + " print('processor :', platform.processor())\n", + " print('CPU count :', mp.cpu_count())\n", + " print('interpreter:', platform.architecture()[0])\n", + " print('\\n\\n')" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "\n", + "def plot_results():\n", + " bar_labels = ['serial', '2', '3', '4', '6']\n", + "\n", + " fig = plt.figure(figsize=(10,8))\n", + "\n", + " # plot bars\n", + " y_pos = np.arange(len(benchmarks))\n", + " plt.yticks(y_pos, bar_labels, fontsize=16)\n", + " bars = plt.barh(y_pos, benchmarks,\n", + " align='center', alpha=0.4, color='g')\n", + "\n", + " # annotation and labels\n", + " \n", + " for ba,be in zip(bars, benchmarks):\n", + " plt.text(ba.get_width() + 2, ba.get_y() + ba.get_height()/2,\n", + " '{0:.2%}'.format(benchmarks[0]/be), \n", + " ha='center', va='bottom', fontsize=12)\n", + " \n", + " plt.xlabel('time in seconds for n=%s' %n, fontsize=14)\n", + " plt.ylabel('number of processes', fontsize=14)\n", + " t = plt.title('Serial vs. Multiprocessing via Parzen-window estimation', fontsize=18)\n", + " plt.ylim([-1,len(benchmarks)+0.5])\n", + " plt.xlim([0,max(benchmarks)*1.1])\n", + " plt.vlines(benchmarks[0], -1, len(benchmarks)+0.5, linestyles='dashed')\n", + " plt.grid()\n", + "\n", + " plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Results" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#Sections)]" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "collapsed": false, - "input": [ - "import platform\n", - "\n", - "def print_sysinfo():\n", - " \n", - " print('\\nPython version :', platform.python_version())\n", - " print('compiler :', platform.python_compiler())\n", - " \n", - " print('\\nsystem :', platform.system())\n", - " print('release :', platform.release())\n", - " print('machine :', platform.machine())\n", - " print('processor :', platform.processor())\n", - " print('CPU count :', mp.cpu_count())\n", - " print('interpreter:', platform.architecture()[0])\n", - " print('\\n\\n')" - ], - "language": "python", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAowAAAIACAYAAAAIQT11AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8TPf6B/DPmZBVElmERGWzFQlFaFGyqL3V2kKqIfYt\nqm7Rlt4mVAVxKbXUls3FrSD2NRJL0LpibWuXxBZLbElIJJHz+8NvzjVmJjPImJP4vF8vr3bOnDnn\nmfPM8uScZ75fQRRFEUREREREWiiMHQARERERyRsLRiIiIiIqEQtGIiIiIioRC0YiIiIiKhELRiIi\nIiIqEQtGIiIiIioRC0YCAOzduxcKhQKxsbGvvA2FQoEBAwaUYlRln5+fHzw8PPRePyQkBAoF35a6\npKenQ6FQYPLkycYORW/u7u7w9/c3dhikhaE+v8ria7U0lYXnHxMTA4VCgX379hk7FFnjN5MMXb58\nGUOHDsW7774LKysr2Nvbo379+ggJCcHevXsNtl9BECAIwmtvQ+6URZlCoUBqaqrGdebMmSOt8zpF\nNKB+TGJiYjB37lyt65aFYygXZelYGSq37u7u0mtVoVDAzMwMHh4eGDJkCK5du1bq+yvPDPl6Kkuv\n1ZeVnp6O8PBwnDx5Uus6xn7+e/fuxeTJk/Hw4UO1+5TvTWPHKHcVjB0AqTp69Ch8fX1hZmaGfv36\noUGDBsjLy8P58+exa9cu2NjYwM/Pr9T36+vri7y8PFSo8Pa8JMzNzREdHY2mTZuq3RcdHQ1zc3Pk\n5+eX+odITEwMMjIyMGbMGLX7li5disWLF5fq/sojd3d35Ofnw8TExNih6O38+fMG+0KqUaMGIiIi\nAAA5OTlITk5GVFQUtm3bhlOnTsHBwcEg+y1PytrrSU7S09MxZcoUeHp6olGjRir3yeW9unfvXkyZ\nMgUDBgyAra2tyn3BwcEICgpCxYoVjRRd2fD2VAdlxOTJk5Gfn4/ff/8d3t7eavffunWrVPeXk5MD\na2trCIIAU1PTUt223HXr1g2rV6/G7NmzVZ77f//7X/z555/4/PPPsWrVKoPsW1vhYKiCPTc3F5Uq\nVTLIto2lrL1eDfllZGtri88//1y6PWzYMDg5OWH+/PmIjo7GuHHjXnsfys+K8qqsvZ7kSNvEcXI6\ntppiVCgUsopRrnhJWmYuXLgABwcHjcUiAFStWlVtWWJiItq3bw87OztYWFigUaNGGs9SKXuojh8/\njg4dOqBy5crSX4OaehhFUcRPP/2ENm3awNnZGWZmZnBzc8PIkSNx7969V3p+Z86cgUKhwNdff63x\n/qCgIJiZmeHu3bsAgKtXr2LgwIFwc3ODubk5qlatilatWiEuLu6V9v+8AQMG4P79+9iwYYPK8ujo\naDg5OeHjjz9We4yy12X//v1q9+nTr+ju7o79+/dLfT3Kf8rtaephVC7LyspCv3794OjoiEqVKuGj\njz7C8ePHVdZ9vl/ot99+Q9OmTWFpaYnRo0dL6yxbtgxNmjSBpaUlKleujA4dOuDgwYMa401OTkaX\nLl3g4OAACwsL1KxZE4MHD5byo/Tbb7/hww8/hI2NDaysrPDBBx9g3bp1atvbunUrfH19UaVKFVha\nWsLNzQ09evTAhQsXpHX0ybmmvqjnl23ZsgXNmjWDhYUFXFxcMGHCBDx9+lQtnnXr1qFRo0awsLCA\nm5sbpkyZgsTERL1aEb755hsoFAqcPn1a7b6HDx/CwsIC3bp1k5Zp6mHctWsXevfuDU9PT1haWsLO\nzg4dOnTQ+Pp6We3btwcAXLp06aX3pXwtp6WloWfPnrC3t5fOyrx4Cfz5fy8+v6NHj6Jbt26oUqUK\nzM3N8e6772LatGlquVDuLzMzE0FBQbC3t4eVlRU6duyo8tooyYABA2BhYYEnT55Iyw4fPgyFQgEH\nBweVQmH79u1QKBSIj4+XlmnqYVQuO3z4MHx9fVGpUiU4OjpiyJAhePTokVoMKSkpaNWqFSwtLVGt\nWjWMHj0aubm5GuN99OgRvvvuO9SsWRPm5uZwdnZG//79ceXKFWmdJ0+ewMLCAiEhISqPHTZsGBQK\nBb766iuV5b1794atrS2Ki4t1Hq8LFy4gODhY+mz38PDAhAkT8PjxY5X1dL0fY2JiEBAQAOBZDl58\nLeh6r65duxbvvfceLC0tUatWLSxbtgwAkJGRgZ49e8LBwQE2NjYIDg5WO5Znz57FyJEj0aBBA+mz\nx8fHB8uXL1dZLyQkBFOmTAEAeHh4SDEql2n7XM/KysKoUaNQo0YNmJmZwdXVFaGhoWrff8rHJycn\nY9asWVJO69atWyrfVXLBM4wyU6tWLWzbtg0JCQkqXzbaLFmyBMOHD0fLli3x/fffw8rKCrt27cKI\nESNw6dIlzJw5U1pXEARcuXIFbdu2RWBgIHr16qX2Bnz+zNeTJ08wa9Ys9OzZE926dYOVlRWOHDmC\n5cuXIyUlBampqS991qRevXpo1qwZVq1ahcjISJXiKDs7Gxs3bkTnzp3h4OCAoqIitGvXDjdu3MCo\nUaNQp04dPHz4ECdPnkRKSgr69ev3Uvt+8Xk2btwY7733HqKiohAYGAjg2WWp1atXY9CgQa90RkjX\nJce5c+fiu+++Q1ZWFn7++Wdpeb169XRuo2PHjnBwcMDkyZORmZmJ+fPnw9fXF4cPH0aDBg1U1t2w\nYQOuXLmCkSNHYuTIkbCxsQHwrMiJjIzE+++/j4iICGRnZ2PJkiXw9/fHxo0b0alTJ2kbixcvxogR\nI1CjRg2MGjUKbm5uyMjIwJYtW3D9+nXpMuf333+PadOmoVOnTpg6dSoUCgXWr1+PXr16Yf78+Rg5\nciQAYN++fejatSsaNmyIiRMnonLlyrh+/Tr27NmDS5cuoXbt2i+dc03Hatu2bVi4cCFGjBiBwYMH\nY8OGDZg1axbs7Ozw3XffSev99ttvCAoKQu3atREeHg4TExPExsZi8+bNeuUyJCQEkZGRiIuLQ2Rk\npMp9a9aswZMnT1S+6DX1SMXGxuLBgwcICQnBO++8g2vXrmHZsmVo27YtkpOT8eGHH5YYQ0mUhZaj\no+NL70sQBOTm5sLX1xcffvghIiIicPv2bQDPXsMvFku///475s+fj2rVqknLtm7diu7du6NOnToY\nN24c7O3tcejQIfzwww84ceIE1qxZo7K/R48eoU2bNmjRogUiIiJw+fJlzJ07F59++in+/PNPnT8G\na9u2LWJjY3Hw4EGpgNmzZw8UCgUePHiA48ePo0mTJgCApKQkjQWuppyfOHECn3zyCQYOHIgvvvgC\nycnJWL58ORQKhcof5n/88Qc++ugj2Nra4ttvv4WtrS3+85//aPxjrLCwEB06dMChQ4fQq1cvjB8/\nHufPn8eiRYuwa9cuHD16FNWrV4eZmRlatWqF5ORklccrn1dSUpK0TBRF7N27F23atNF5rFJTUxEQ\nEAB7e3uMGDEC1atXx4kTJzBv3jwcPHgQ+/btQ4UKFfR6P/r6+mLixImYNm0ahg0bhtatWwNQP7mh\n6dhu2bIFv/76K0aNGgV7e3ssW7YMQ4cOhYmJCcLCwtCuXTtERETgyJEjiIqKgrm5OZYuXSo9ft++\nfThw4AC6du0KDw8PPHr0CGvWrMGQIUNw584dfPvttwCA4cOHIycnBwkJCfj555+l90TDhg21HqOH\nDx+iZcuWuHTpEgYNGoQmTZrg2LFjWLRoEZKSknDkyBG1qzYTJ05Efn4+RowYAVNTUyxatAghISGo\nVasWWrZsWWJOygSRZOXw4cOiqampKAiCWLt2bXHAgAHiokWLxDNnzqite+PGDdHMzEzs27ev2n1j\nxowRTUxMxMuXL0vL3NzcREEQxOXLl6utn5ycLAqCIMbGxqosz8/PV1t3+fLloiAI4po1a1SWC4Ig\nDhgwQOdzXLBggSgIgrht2zaV5cuWLRMFQRATEhJEURTFkydPioIgiJGRkTq3+TL69+8vCoIgZmVl\nib/88otoYmIiXrt2TRRFUVy5cqUoCIL4119/ifHx8WrHJDo6WhQEQdy3b5/adn19fUUPD49XWvZi\nbJqW9ejRQ2V5amqqqFAoxI4dO0rL0tLSREEQRFNTU/Hs2bMq6589e1YUBEFs3bq1WFhYKC2/ceOG\nWLlyZdHd3V18+vSpKIqiePXqVdHU1FRs0KCB+PDhQ7U4i4uLpRgEQRAnTZqkts5nn30m2tjYiLm5\nuaIoiuLYsWNFQRDEO3fuaHzuoqh/zpXPc/LkyWrLKlWqJGZkZKis7+XlJTo7O0u3CwsLRRcXF7Fa\ntWrigwcPpOW5ubmip6enxveCJs2aNRNdXFyk46b04YcfilWqVFE5zm5ubqK/v7/Keo8ePVLb5q1b\nt0RHR0exc+fOOvev3G69evXErKws8c6dO+Lly5fFqKgo0dbWVjQ1NRX/+uuvl96Xr6+vKAiC+M9/\n/lPn/tPS0kQnJyexdu3a4r1790RRFMW8vDyxatWqoq+vr9qxmTNnjigIgrh37161/b2Y98jISFEQ\nBHHnzp0647h27Zraa9Hf31/89NNPRRsbG3HmzJnS8iZNmogNGzZUebymzy9BEEQTExPxyJEjKsu7\ndOkiVqxYUeWYtmjRQjQzMxMvXLggLSsoKBCbN2+u9lpdsmSJKAiC+M0336hsd+vWraIgCGJwcLC0\nbOrUqaIgCNJ2MzIypHUEQRBv3boliqIonjp1ShQEQZw9e7bOY9WwYUOxXr160ntTKSEhQRQEQYyJ\niRFFUf/3o7bvD1HU/V69cuWKtPzOnTuiubm5KAiCOGfOHJXtdO/eXTQ1NVU55ppe08XFxaKfn59o\na2ur8v4LCwsTBUFQ+2wQRc2f6xMnThQFQRAXLVqksq7y++v594by8U2aNFHZ5/Xr10UzMzMxKChI\nbZ9lES9Jy8wHH3yA1NRU9O/fH9nZ2YiJicHIkSNRv359+Pr6Ii0tTVp37dq1KCgowMCBA5GVlaXy\n7+OPP0ZxcTESExNVtu/g4PBSQ0eYmZkBAJ4+fYoHDx4gKytL+qv8yJEjr/Qcg4KCYGpqqnaqPi4u\nDg4ODtKlYOUlsKSkJNy5c+eV9lUSQRDw+eefo2LFitLlx+joaDRv3hz169cv9f29rgkTJqjcbtKk\nCdq1a4fExES1y0hdunRB3bp1VZZt3LhR2s7zvZLOzs4YMGAAMjIycOLECQBAfHw8CgsLERYWJp2d\nfJ7ybMHKlSshCAL69eun9hr85JNPkJOTg8OHDwMAKleuDODZ67aoqEjjcyyNnH/22WdwdXVVWebn\n54ebN29Kxyk1NRWZmZkICQlRaYC3srLC8OHD9d5X//79kZmZid27d0vL0tLScOjQIQQFBensSbW0\ntJT+Pzc3F3fv3oVCoUDz5s3xxx9/6B3H2bNnUaVKFTg5OaFmzZoYNGgQnJycsHHjRum1/LL7EgRB\nZ+/jw4cP8fHHH6OoqAhbt26FnZ0dAGD37t24ffs2QkJCcO/ePZXXhfIs9q5du1S2ZWJigi+//FJl\nmfKz5uLFizqPQfXq1VGnTh3prJuyF7xjx47w9fXFnj17AAAPHjzAyZMnpbOQurRo0QLNmjVTi6uo\nqAjp6ekAgNu3b+P333/Hp59+ilq1aknrVaxYEWPHjlXbZkJCAkxMTFTOeANA586d0ahRI+m9Cjw7\ncwpAel5JSUmoUKECwsPDIQiCdPZR+V9dz+v06dM4ffo0goKCkJeXp5Ib5eV0ZW4M/Rn82WefoUaN\nGtJtR0dH1KlTBxUqVMCoUaNU1v3www9RWFgoHXNA9TWdn5+Pu3fv4u7du2jXrh2ys7Nx7ty5V44t\nISEBTk5OGDp0qMryYcOGoUqVKkhISFB7zMiRI1Xe8y4uLqhTp45er9+ygAWjDHl5eSE6Oho3b95E\neno6YmNj0bp1axw4cACffvopCgsLATzrBwSAjz76CE5OTir/2rdvD0EQpMtISjVr1nypX2quWbMG\n77//PiwtLWFvby99IQHA/fv3X+n52dnZ4eOPP8bGjRuRk5MD4FlPS0pKCvr06SO94dzc3DBp0iTs\n2rULzs7O8PHxwTfffIOjR4++0n41sbe3R9euXaVfLicnJ8t2LMnnL1s/v+zp06fIyMhQWV6nTh21\ndZV/bLx4+RqAVFRcvnwZwP8uZzZu3LjEmM6cOQNRFPHuu++qvQYHDx4MQRCkH2qFhoaicePGGDly\nJBwcHNClSxf88ssvyMrKkrZXGjn39PRUW6a8fK7svVQeixeLakDzsdNG0x8/cXFxEEVRr5aJS5cu\noU+fPrCzs4ONjY1U9G3fvh0PHjzQOw4PDw8kJiYiMTER+/fvx8WLF3H+/Hl07NjxlfdVpUoVjX8s\nKBUVFaFXr164ePEi1q1bh9q1a0v3KT+bBg4cqPa6qFevnsbPJhcXF7UfHryYt+LiYty8eVPlX3Z2\ntrS+v78/jh49itzcXBw6dAj5+fkICAiAv78/UlJSUFhYiL1796K4uFjvglGf15PyffPuu++qravp\nfZuWlgYXFxe1X+sCz96fOTk50vvCx8cH1tbWUkGYlJQEHx8feHp6wtvbWyqEk5KS4ODgoPYr5Rcp\ncxMWFqaWm6pVq+Lx48dSbgz9Gazp2NrZ2cHZ2VmtJUj5x8jz/dO5ubkYN24cXF1dYWlpKb2mv//+\newCv/h0FPMtR3bp11S7vm5iYoHbt2ionb0p6Pvb29mo932UVexhlztXVFcHBwQgODkbr1q1x8OBB\n/Pe//0XLli2lJu4VK1bA2dlZ4+Nf/BHG83+R6bJ+/Xr06dMH77//PubNm4caNWrA3NwcRUVF6Nix\no16N1dr069cP69evx5o1azBo0CCsWLECoiiif//+Kuv9+OOPGDhwILZu3YoDBw5g2bJliIyMxIQJ\nEzB9+vRX3v/zBg4ciE6dOmHIkCEwMzNDUFCQ1nVLKra1nTUzhpfJ8+sQRRGCIGDHjh1ah81QFqP2\n9vb473//iwMHDmD37t3Yv38/xo4di7CwMGzbtg0ffPABgNfPeUnDd4hafsX5quzt7dG5c2ds2LAB\njx49gpWVFVasWIH69etrHK7pebm5uWjTpg3y8vIwduxYeHt7w9raGgqFAtOmTVPrWyuJlZVViQXQ\nq+xL12to5MiRSExMxPLly9WG+lIe51mzZuG9997T+HgXFxeV2/rk7cqVK2pfyiEhIYiKigLw7Gzc\n4sWLsX//fhw6dEg665iXl4evv/4av//+O5KSkmBiYgJfX98Sn9/LxGVIFSpUQOvWrVUKRmVvrL+/\nPzZt2gRRFLFv3z589NFHOrenjHncuHEqf1A8T1mcAYb9DNZ2bPU95p9//jm2bt2KYcOGoU2bNnBw\ncICJiQm2bt2KOXPmvNZ31KvQFvebeJ28CSwYy5DmzZvj4MGDuH79OoD/nQlxcHDQ+6/ll7FixQpY\nWFggOTkZ5ubm0vKzZ8++9rY7d+4MR0dHrFixQioY69WrBx8fH7V1PTw8EBoaitDQUDx58gQdOnTA\nzJkzMW7cOKl5+XW0b98e77zzDhITE9G3b98Sz6rY29sDgMZfiaelpUmX8EvyqmPx/f3333j//ffV\nllWoUAFubm46H688M/znn3+q/SHx999/A/jfX8jKM2/Hjx9XucT2ojp16mDnzp2oUaOGxrMrL1Io\nFPD19ZW+rE+fPo2mTZti6tSp2LJli7SeoXPu7u4OQPNr+WUvY/Xv3x8bNmzAmjVrUKdOHVy+fBkz\nZszQ+bg9e/YgMzMT0dHRan8oTZw48aVieNP7ioyMxLJly/DNN99oPCOv/GyytLQs1c8mZ2dntTab\n5wtPPz8/CIKAPXv24PDhw9K+GzZsCEdHR+zZswfJyclo0qRJie/zl6V8PynP3j1P+d56nqenJ3bu\n3ImHDx+qnWX8+++/YWtrq/I6DwgIwLZt2xAfH48bN25Il6nbtm2LuXPnYt26dXj48KFex1qZG4VC\noXdudL0fjTHg9YMHD7Blyxb0798fCxcuVLnvxXYH4OU/dz09PXH27Fk8ffpUpRAsKirC+fPnNZ5N\nLO94SVpmdu/erXH4j7y8POzatQuCIEhnbAIDA2FmZoawsDDk5+erPebhw4coKCh45ViUb5Ln4xFF\nEVOnTn3lbSpVqFABn3/+OQ4cOIBVq1bh4sWLal9k2dnZ0uV3JTMzM6kwef5yw9mzZ6XLQi9LEAQs\nWLAA4eHh+Oabb0pcV/lh+3zPGgCsXr0amZmZeu2vUqVKJQ5LpO2D7flfvAPAsWPHkJiYiLZt2+p1\nRrFr164QBAGRkZEqZ0OVhYS7u7t0Cbpnz54wNTXF5MmTpbYBTYKDgwE8Kzo0/TX//Lihmi7L1K1b\nF+bm5lIuXybnr6NZs2ZwdnZGTEyMyuXY3Nxc/Prrry+1rS5dusDR0RFxcXGIi4uDQqHAF198ofNx\nyvfXi8dt165dr9wf/Cb2lZCQgG+//Rbdu3eXBgt/UYcOHeDk5ITp06drzFleXp7W4WZKYmZmhoCA\nAJV/z/+h4ujoCG9vb2zZsgVHjx6VCiJBEODv74/4+Hj8/fffpf4HdtWqVfHBBx9g48aNKsMAFRQU\nYM6cOWrrd+vWDcXFxWpn6LZv344TJ06ga9euKsuV8YaHh8Pc3BytWrUCALRp0wYmJiYIDw9XWa8k\njRs3hpeXF3799VeNl1WLiope+v2o/LXwm7z0amJiAkEQ1F7TmZmZWLZsmdrn6MvG2K1bN9y5c0ca\n5kdp6dKlyMrK0msUk/KGZxhlZuzYsbh37x66du0KLy8vWFpa4urVq1i1ahUuXLiA/v37Sz1o1atX\nx6JFizB48GDUq1cPwcHBcHV1xZ07d3D69Gls3LgRZ86cUfsBgL569eqF9evXIyAgAMHBwSgsLMSG\nDRuQl5dXKs+1f//+mDdvHkaMGAETExO1L9mkpCQMHToUPXv2RJ06dVCpUiWkpqZi+fLl+OCDD1R6\npurXrw83NzeNH4D6+OSTT/DJJ5/oXK9u3br46KOPsHjxYoiiiEaNGuHEiRPYsGEDatWqpfbhCqhf\njmjRogW2bt2K0NBQtGjRAiYmJmjbti2qVKmicX2lK1euoEOHDvjkk0+kYXWsrKzUhnTRpk6dOhg/\nfjxmzpyJNm3aIDAwEDk5OViyZAkeP36M1atXSx+y1atXx88//4xRo0bB29sb/fr1g6urK65fv45N\nmzYhKioKjRo1go+PD8LDwxEeHo733nsPvXr1grOzMzIzM5Gamort27dL4+INHjwY169fR/v27eHq\n6oq8vDz89ttvePTokdTv9zI5fx0mJiaYNWsW+vbti+bNm2PQoEEwMTFBTEwMHBwckJ6ervcZiQoV\nKiAoKAjz589Hamoq2rVrp7VF5HmtW7dGtWrV8PXXXyM9PV0a2uTf//43vL29NY7v+KpeZV+aXod3\n797FF198AUtLS3To0AH//ve/Ve6vVq0aPvroI1haWiIuLg6fffYZ6tati4EDB6JmzZp48OABzp49\ni4SEBGzYsAFt2rQpcX+vIiAgAD///DMEQVApoAICAqRxFw1xRWb27Nnw8/NDq1atMGrUKGlYHU0n\nAEJCQhAbG4sZM2YgPT0drVu3xsWLF7Fw4UJUq1YN06ZNU1n/vffeg52dHc6cOQN/f3+p19PGxgY+\nPj74448/4OLiorEnV5MVK1YgICAADRs2xMCBA1G/fn08fvwYFy9eREJCAqZPn45+/frp/X5s0KAB\nrK2tsXDhQlhaWsLW1hZVq1Z95bnT9XktWFtbo3379vj3v/8NCwsL+Pj4ICMjA0uWLIGnp6dan2WL\nFi0APBta7PPPP4e5uTm8vb019nQDz34cGB8fj1GjRuHYsWN47733cPz4cURFReHdd99V+xHi6z6f\nMuGN/iabdNq1a5c4atQosVGjRqKjo6NYoUIF0dHRUQwICBCjo6M1PubgwYNit27dRCcnJ9HU1FR0\ncXERAwICxNmzZ6sMi+Pu7q42rIdScnKyqFAo1IZFWLp0qVi/fn3R3NxcdHZ2FocNGybeu3dP6xAU\n+gyr8zxvb29RoVCI7du3V7svLS1NHD58uFivXj3RxsZGtLKyEuvXry+GhYWJ2dnZavvWNlTNi0JC\nQkSFQiHevXu3xPXi4+M1HpObN2+KvXr1Em1sbMRKlSqJnTt3Fs+ePSv6+fmpxaBp2ePHj8VBgwaJ\nVatWFU1MTESFQiEN56CM7Xn9+/cXFQqFmJWVJQYHB4sODg6ipaWl2LZtW/HYsWMq62oawuJFS5cu\nFRs3biyam5uLNjY2Yvv27cWUlBSN6+7atUts166daGtrK5qbm4s1a9YUhw4dqnbstm7dKnbo0EG0\nt7cXzczMRFdXV7Fz587i4sWLpXXWr18vdu3aVXznnXdEMzMzsUqVKqKfn5+4fv16lfj1yXlJQ3Vo\neu7h4eGiQqFQG1IjPj5ebNiwoRRzWFiYNLRIfHy81mP4IuXwQgqFQly1apXGdTS9/06dOiV27NhR\ntLOzE62trUV/f38xJSVF4+tAG3d3d9Hb21vnei+zL02vW1H83zFWKBSiIAhq/158fn/++af4xRdf\niNWrVxdNTU3FqlWriq1atRKnTp0qDcGjz/5Kej2/aPPmzaIgCGKtWrVUll+4cEEUBEE0MzMT8/Ly\n1B73Mp9p0dHRKu9bpf3794stW7YUzc3NxWrVqomhoaHin3/+qfE5PHr0SPzuu+9ET09P6dj069dP\nZZiZ5/Xo0UNUKBTi1KlTVZZPmjRJVCgU4hdffKH9oGiQkZEhDh8+XHR3dxdNTU1FBwcH0cfHR5w4\ncaI0zNjLfAZv27ZNbNKkiTQsjvK18LLvVW2vBU3HPCsrSxw8eLDo4uIimpubiw0bNhSXLVsmxsTE\naMzPzJkzRU9PT7FixYqiQqGQ9q8tn3fu3BFHjhwpvvPOO2LFihXFGjVqiKGhoWqff9oeX9LzKYsE\nUSwvpS9R+RQSEoK4uLg33sD9tvrXv/6F8ePH4/fff0fz5s2NHQ4RkSywh5GoDDBGU3l5V1hYqHa5\nMDc3FwsWLICjo6M0KwgREbGHkahM4IWA0nfp0iV06tQJQUFBcHd3R2ZmJmJjY5GRkYFFixbpHHSb\niOhtwk9xJtkgAAAgAElEQVREIpnTNAcxvT4nJye0aNECK1euxO3bt1GhQgU0bNgQM2fORM+ePY0d\nHhGRrLCHUYf33nsPJ0+eNHYYRERERDr5+vpi7969pb5dFow6CILAy4EyoxzGheSFeZEn5kWemBd5\nUX7Xl4e8GKpu4Y9eqMx5fvJ5kg/mRZ6YF3liXuSJedGOBSMRERG91cLCwowdguyxYKQyJyQkxNgh\nkAbMizwxL/LEvMiL8jI086Idexh1YA8jERERlRXsYST6f4b49Re9PuZFnpgXeWJe5Il50Y4FIxER\nERGViJekdeAlaSIiIioreEmaiIiIyADK+tiLbwILRipz2GMiT8yLPDEv8sS8yMvkyZMBMC8lYcFI\nRERERCViD6MO7GEkIiIq38rTdz17GImIiIjIKFgwUpnDHhN5Yl7kiXmRJ+ZFnpgX7VgwEhER0VuN\nc0nrxh5GHcpTXwMRERGVb+xhJCIiIiKjYMFIZQ57TOSJeZEn5kWemBd5Yl60Y8FIRERERCViD6MO\n7GEkIiKisoI9jEREREQGwLmkdWPBSGUOe0zkiXmRJ+ZFnpgXeeFc0rqxYCQiIiKiErGHUQf2MBIR\nEZVv5em7nj2MRERERGQULBipzGGPiTwxL/LEvMgT8yJPzIt2LBiJiIjorca5pHVjD6MO5amvgYiI\niMo39jASERERkVGwYKQyhz0m8sS8yBPzIk/MizwxL9qxYCQiIiKiErGHUQf2MBIREVFZwR5GIiIi\nIgPgXNK6sWCkMoc9JvLEvMgT8yJPzIu8cC5p3VgwEhEREVGJ2MOoA3sYiYiIyrfy9F3PHkYiIiIi\nMgoWjFTmsMdEnpgXeWJe5Il5kSfmRTsWjERERPRW41zSurGHUYfy1NdARERE5Rt7GImIiIjIKFgw\nUpnDHhN5Yl7kiXmRJ+ZFnpgX7VgwEhEREVGJ2MOoA3sYiYiIqKxgDyMRERGRAXAuad1YMFKZwx4T\neWJe5Il5kSfmRV44l7RuLBiJiIiIqETsYdSBPYxERETlW3n6rmcPIxEREREZBQtGKnPYYyJPzIs8\nMS/yxLzIE/OiHQtGIiIieqtxLmnd2MOoQ3nqayAiIqLyjT2MRERERGQULBipzGGPiTwxL/LEvMgT\n8yJPzIt2LBiJiIiIqETsYdSBPYxERERUVrCHkYiIiMgAOJe0biwYqcxhj4k8MS/yxLzIE/MiL5xL\nWjcWjERERERUIvYw6sAeRiIiovKtPH3Xs4eRiIiIiIyCBSOVOewxkSfmRZ6YF3liXuSJedGOBSMR\nERG91TiXtG7sYdShPPU1EBERUfnGHkYiIiIiMgoWjFTmsMdEnpgXeWJe5Il5kSfmRTsWjERERERU\nIvYw6sAeRiIiIior2MNIREREZACcS1o3FoxU5rDHRJ6YF3liXuSJeZEXziWtGwtGIiIiIioRexh1\nYA8jERFR+VaevuvZw0hERERERsGCkcoc9pjIE/MiT8yLPDEv8sS8aMeCkYiIiN5qnEtaN/Yw6iAI\nAibOmGjsMIjKBCcbJ4wZPsbYYRARvbUM1cNYodS3WA65tXUzdghEZULGngxjh0BERAbAS9JU5pw7\nes7YIZAGzIs8sSdLnpgXeWJetGPBSEREREQlYg+jDoIgYPHRxcYOg6hMyNiTgZ8m/GTsMIiI3loc\nh5GIiIjIADiXtG4sGKnMYa+cPDEv8sSeLHliXuSFc0nrxoKRiIiIiErEHkYd2MNIpD/2MBJRWcS5\npHXjGUYiIiIiKhELRipz2CsnT8yLPLEnS56YF3liXrRjwUhERERvNc4lrRt7GHVgDyOR/tjDSERk\nXOxhJCIiIiKjYMFIZQ575eSJeZEn9mTJE/MiT8yLdiwYiYiIiKhELBipzKnrU9fYIZAGr5uXgoIC\nDBo0CO7u7rCxsUHjxo2xY8cOtfWmTJkChUKBpKQkaVlRURFGjx4NZ2dnODg4oGvXrrhx44bG/fz+\n++9o164dHBwc4OTkhMDAQNy8eVOvbRUVFaFPnz6ws7NDp06dkJOTIz1u2rRpmDNnzmsdA0Pw8/Mz\ndgikAfMiT8yLdiwYiUgWioqK4Orqiv379yM7OxtTp05FYGAgMjIypHUuXbqEtWvXwsXFReWxCxcu\nxIEDB3Dq1CncuHEDdnZ2GD16tMb9PHjwAMOHD0dGRgYyMjJgbW2NAQMG6LWt9evXw8TEBHfv3oWt\nrS2WLFkCAEhLS8PmzZsxZsyY0j4sRPQGcC5p3VgwUpnDXjl5et28WFpaIiwsDK6urgCALl26wMPD\nA8eOHZPWCQ0NxYwZM1CxYkWVx/7111/o0KEDqlSpAjMzMwQGBuKvv/7SuJ+OHTuiR48eqFSpEiws\nLDBq1CgcPHhQr22lp6fD19cXCoUCfn5+uHz5MgDgyy+/xOzZs6FQyO8jlT1Z8sS8yAvnktZNfp9u\nREQAbt26hfPnz6NBgwYAgPj4eJibm6NTp05q67Zv3x7bt29HZmYmHj9+jJUrV6Jz58567Wf//v3w\n8vLSa1teXl5ISkrCkydPkJycDC8vLyQkJMDJyQktWrQohWdNRCRPFYwdANHLYg+jPNX1qYuMPRm6\nV9RDYWEh+vbti5CQENSpUwc5OTmYNGkSEhMTNa7fo0cPbNq0CdWrV4eJiQkaNmyIBQsW6NzPqVOn\n8OOPP2LTpk16batz5844cOAAmjdvjhYtWqB3795o27YtEhMTMWnSJKSkpMDLyws///yz2llQY2FP\nljwxL/LEvGj31p5h3LZtG9q0aQNra2vY2tqiWbNmSE5ONnZYRG+94uJiBAcHw9zcHPPnzwfwrL8o\nODhYulwNQGVg2nHjxiEnJwf37t3Do0eP0K1bN41nIp938eJFdO7cGfPmzUOrVq303lZERAROnjyJ\nX3/9FRERERgxYgT++OMPpKamYt++fSgoKEBUVFRpHQ4iIll4KwvGxYsX47PPPkOzZs2wYcMGxMfH\nIzAwEHl5ecYOjfTAHkZ5Ko28iKKIQYMG4c6dO1i3bh1MTEwAAElJSZg3bx6cnZ3h7OyMq1evIjAw\nEJGRkQCAHTt2YMCAAahcuTJMTU0RGhqKI0eO4N69exr3k5GRgXbt2uGHH35A3759Ve7Td1unT5/G\n4cOHMWTIEJw+fRpNmzYFAPj4+ODUqVOvfSxKC3uy5Il5kSfmRbu37pJ0eno6vvrqK8yaNQtffvml\ntLx9+/ZGjIqIAGDEiBE4e/YsEhMTYWZmJi3fs2cPioqKADwrKps1a4Y5c+ZIZ/4aNmyI2NhY+Pr6\nwsLCAgsXLkT16tVhb2+vto/r168jICAAoaGhGDp0qNr9+mxLFEWMHj0av/zyCwRBgKenJ+bPn4+C\nggLs27cPPj4+pX1oiMiAOJe0bm/dGcaoqChUqFABw4cPN3Yo9IrYwyhPr5uXjIwMLFmyBCdPnkS1\natVgbW0Na2trrF69Gvb29nBycoKTkxOqVq0KExMT2NnZwdLSEgAwZ84cKBQK1KxZE05OTtixYwcS\nEhKkbXt5eWH16tUAgGXLliEtLQ3h4eHSPmxsbKR1dW0LAGJiYuDt7Y3GjRsDALp37w4XFxc4OTnh\n/v37GgtRY2FPljwxL/KiHFaHedFOEA0xQ7WMBQQEIDs7G6Ghofjxxx9x5coVuLu7Y+zYsRg5cqTa\n+oIgYPHRxUaIlKjsydiTgZ8m/GTsMIiI3lqCIMAQpd1bd4bxxo0buHDhAiZMmICJEydi9+7daNeu\nHUJDQzFv3jxjh0d6YA+jPDEv8sSeLHliXuSJedHurethLC4uRk5ODmJjY/HZZ58BeHYKOj09HRER\nESp9jUrRYdFwdHEEAFhUskCNujWky2/KL0nefnO3r567Kqt4ePt/tzMuZWDv3r3SZR3lhy9vG+/2\niRMnZBUPb/O2nG+XxfeL8v/T09NhSG/dJekWLVrgyJEjyM7OhpWVlbR8zpw5+Prrr5GZmYmqVatK\ny3lJmkh/vCRNRGRcvCRdSho0aGCQA0lERERlE+eS1u2tKxi7d+8O4NlYa8/bsWMHatSooXJ2keSJ\nvXLyxLzI0/OXrUg+mBd54VzSur11PYydO3eGv78/hg0bhqysLHh4eCA+Ph67d+9GTEyMscMjIiIi\nkp23rocRAHJycvDdd99h7dq1uH//PurVq4dvv/0Wffr0UVuXPYxE+mMPIxGVRYbq+zMGQz2Xt+4M\nIwBYW1tj/vz50jy1RERERKTdW9fDSGUfe+XkiXmRJ/ZkyRPzIk/Mi3YsGImIiOitxrmkdXsrexhf\nBnsYifTHHkYiIuPiOIxEREREZBQsGKnMYa+cPDEv8sSeLHliXuSJedGOBSMRERERlYg9jDqwh5FI\nf+xhJCIyLvYwEhERERkA55LWjQUjlTnslZMn5kWe2JMlT8yLvHAuad1YMBIRERFRidjDqAN7GIn0\nxx5GIiqLOJe0bjzDSEREREQlYsFIZQ575eSJeZEn9mTJE/MiT8yLdiwYiYiI6K3GuaR1Yw+jDuxh\nJNIfexiJiIyLPYxEREREZBQsGKnMYa+cPDEv8sSeLHliXuSJedGOBSMRERERlYg9jDqwh5FIf+xh\nJCIyLvYwEhERERkA55LWjQUjlTnslZMn5kWe2JMlT8yLvHAuad0qGDuAsiBjT4axQ6Dn3Lp0C+YP\nzY0dBr3g1qVbaNa4mbHDICIiA2APow7laX5JIiIiUleevuvZw0hERERERsGCkcoc9pjIE/MiT8yL\nPDEv8sS8aMeCkYiIiN5qnEtaN/Yw6lCe+hqIiIiofGMPIxEREREZBQtGKnPYYyJPzIs8MS/yxLzI\nE/OiHQtGIiIiIioRexh1YA8jERERlRXsYSQiIiIyAM4lrRsLRipz2GMiT8yLPDEv8sS8yAvnktaN\nBSMRERERlYg9jDqwh5GIiKh8K0/f9YZ6LhVKfYvl0KSZk4wdAlGZ4GTjhDHDxxg7DCIiKmUsGPXg\n1tbN2CHQc84dPYe6PnWNHQa94NzRc7j98Laxw6AX7N27F35+fsYOg17AvMgT86IdexiJiIjorca5\npHVjD6MOgiBg8dHFxg6DqEzI2JOBnyb8ZOwwiIjeWhyHkYiIiIiMggUjlTnnjp4zdgikAfMiTxxX\nTp6YF3liXrRjwUhEREREJdKrh/Hp06cAABMTEwBAZmYmtm7dinr16qFVq1aGjdDI2MNIpD/2MBIR\nGZdRexi7dOmC+fPnAwByc3PRrFkzjB8/Hr6+voiNjS31oIiIiIjeFM4lrZteBWNqair8/f0BAOvX\nr4e1tTVu376NZcuW4V//+pdBAyR6EXvl5Il5kSf2ZMkT8yIvnEtaN70KxtzcXNjZ2QEAdu3ahW7d\nuqFixYrw9/fHxYsXDRogERERERmXXgVjjRo1kJKSgtzcXOzcuRPt2rUDANy7dw+WlpYGDZDoRZzl\nRZ6YF3nirBXyxLzIE/OinV5TA3799dfo168frKys4ObmhjZt2gAA9u/fj4YNGxo0QCIiIiIyLr3O\nMA4bNgyHDx9GVFQUDh48KP1aumbNmvjxxx8NGiDRi9grJ0/MizyxJ0uemBd5Yl600+sMIwD4+PjA\nx8dHZdnHH39c6gERERERvUmcS1o3vc4wiqKIBQsWoEGDBrCwsMDly5cBANOnT8eaNWsMGiDRi9gr\nJ0/MizyxJ0uemBd5UQ6rw7xop1fBOHfuXEydOhVDhgxRWe7i4iKNz0hE9DoKCgowaNAguLu7w8bG\nBo0bN8aOHTvU1psyZQoUCgX27NkjLevUqROsra2lf2ZmZlr7q1euXKmyrpWVFRQKBY4fPw7g2RdH\nxYoVpfttbGyQnp4OACgqKkKfPn1gZ2eHTp06IScnR9rutGnTMGfOnFI8IkRE8qFXwbho0SIsXboU\nX331FSpU+N9V7CZNmuDPP/80WHBEmrBXTp5eNy9FRUVwdXXF/v37kZ2djalTpyIwMBAZGRnSOpcu\nXcLatWvh4uICQRCk5du3b0dOTo70r2XLlggMDNS4n759+6qsu3DhQtSsWRONGzcG8GyWhKCgIOn+\n7OxsuLu7A3g2Dq2JiQnu3r0LW1tbLFmyBACQlpaGzZs3Y8yYMa91DAyBPVnyxLzIE/OinV4F45Ur\nV+Dt7a22vGLFisjLyyv1oIjo7WNpaYmwsDC4uroCeDbDlIeHB44dOyatExoaihkzZqBixYpat5Oe\nno4DBw6gX79+eu03JiZGZV1RFLVOq5Weng5fX18oFAr4+flJ7TlffvklZs+eDYVCr49UIqIyR69P\nNw8PD6Smpqot3759O+rXr1/qQRGVhL1y8lTaebl16xbOnz+PBg0aAADi4+Nhbm6OTp06lfi4uLg4\ntGnTRio8S5KRkaFWXAqCgM2bN8PBwQFeXl749ddfpfu8vLyQlJSEJ0+eIDk5GV5eXkhISICTkxNa\ntGjxis/UsNiTJU/MizwxL9rpVTCOHz8eoaGhWLlyJYqLi3Ho0CGEh4dj4sSJGD9+vKFjNKiOHTtC\noVDgn//8p7FDIaL/V1hYiL59+yIkJAR16tRBTk4OJk2ahLlz5+p8bFxcHEJCQvTaj7K4dHNzk5YF\nBgbi7NmzyMrKwtKlSzFlyhT85z//AQB07twZHh4eaN68Oezs7NC7d29MmTIFM2fOxKRJk+Dr64tR\no0ahsLDwlZ43ERkH55LWTa+CccCAAZg8eTK+++475OXloV+/fli2bBl++eUX9OnTx9AxGszq1atx\n6tQpAFDphyJ5Yw+jPJVWXoqLixEcHAxzc3PpR3Xh4eEIDg5WOWuo6bJxSkoKbt26hZ49e+q1r7i4\nOPTv319lWb169VCtWjUIgoAWLVpgzJgxWLt2rXR/REQETp48iV9//RUREREYMWIE/vjjD6SmpmLf\nvn0oKChAVFTUqzx1g2BPljwxL/LCuaR107vhZsiQIbhy5Qpu3bqFzMxMXLt2DYMGDTJkbAZ1//59\n/OMf/+CvGolkRBRFDBo0CHfu3MG6deukSQKSkpIwb948ODs7w9nZGVevXkVgYCAiIyNVHh8bG4se\nPXroNWXpwYMHkZmZqXdx+aLTp0/j8OHDGDJkCE6fPo2mTZsCeDZmrfIPUSKi8kKvgvHp06d4+vQp\nAKBKlSooLi7GsmXLcPDgQYMGZ0jffPMNvL290bt3b2OHQi+JPYzyVBp5GTFiBM6ePYtNmzbBzMxM\nWr5nzx789ddfOHnyJE6cOAEXFxcsWbIEI0eOlNbJy8tDfHy83pejY2Nj0bNnT1hZWaks37hxI+7f\nvw9RFHHkyBHMmzcPn376qco6oihi9OjR+OWXXyAIAjw9PZGSkoKCggLs27cPNWvWfPWDUMrYkyVP\nzIs8MS/a6VUwdunSRbo0lJubi2bNmmH8+PHw9fVFbGysQQM0hJSUFKxYsQILFiwwdihE9P8yMjKw\nZMkSnDx5EtWqVZPGQVy9ejXs7e3h5OQEJycnVK1aFSYmJrCzs1Mp9jZs2AA7OzuNH/heXl5YvXq1\ndDs/Px/x8fFql6MB4LfffkPt2rVhY2OD/v3747vvvkNwcLDKOjExMfD29paG4unevTtcXFzg5OSE\n+/fvY+jQoaV0VIiI5EEQtY0f8ZwqVapgz549aNiwIeLi4hAREYFTp05h5cqVmD17dpm6/FJQUIDG\njRujR48emDJlCgBAoVDg+++/l24/TxAELD66+E2HSSU4d/QczzLK0Lmj52D+0Bw/TfjJ2KHQc/bu\n3cuzJjLEvMiLIAgQRbFc5EX5XEqbXmcYc3NzYWdnBwDYtWsXunXrhooVK8Lf3x8XL14s9aAMaebM\nmXjy5AkmTZpk7FCIiIhIBjiXtG4VdK8C1KhRAykpKfjkk0+wc+dOaf7oe/fu6dVcLhdXrlzBTz/9\nhOXLlyMvL09l0PH8/Hw8fPgQ1tbWaoPvRodFw9HFEQBgUckCNerWkM5wKX8Zyttv9raSXOLh7bqo\n61MX+5fsV/kLXfmLQ9427m0lucTD237w8/OTVTxv++3w8PAy+35R/r9yClND0euS9OLFixEaGgor\nKyu4ubnh2LFjMDExwdy5c7Fx40YkJSUZNMjSsnfvXgQEBJS4zokTJ1TmoOUlaSL9ZezJ4CVpIiIj\nMuol6WHDhuHw4cOIiorCwYMHpaEuatasiR9//LHUgzKUxo0bY+/evSr/kpOTAQDBwcHYu3evrH7d\nSJpxHEZ5Yl7k6cWzJiQPzIs8MS/a6XVJGng2tpiPj490u7CwEB9//LFBgjIUW1tbtGnTRuN9bm5u\nWu8jIiIiepvpdYZx7ty5WLdunXR74MCBMDc3R506dXDuHM8q0JvFX0jLE/MiT8p+J5IX5kWemBft\n9CoY582bB0fHZz/62L9/P+Lj47Fq1So0btwYX3/9tUEDfBOKi4s1DqlDRERE5R/nktZNr4Lxxo0b\n8PT0BABs3rwZPXv2RO/evREeHo7Dhw8bNECiF7FXTp6YF3liT5Y8MS/ywrmkddOrYLSxscGtW7cA\nALt370bbtm0BABUqVEB+fr7hoiMiIiIio9PrRy/t27fHkCFD0KRJE1y8eBGdOnUCAPz999/w8PAw\naIBEL2KvnDzV9amLjD0Zxg6DXsCeLHliXuSJedFOrzOM8+fPx4cffoisrCysXbsWDg4OAIDU1FR8\n/vnnBg2QiIiIiIxLr4G732YcuFt+OJe0PHEuaXnaWw7mxi2PmBd54VzSuul1hhEAbt68icjISIwY\nMQJZWVkAgJSUFKSlpZV6UERERERvCueS1k2vM4ypqakICAiAp6cn/vzzT5w7dw6enp4ICwvDhQsX\nsGrVqjcRq1HwDCOR/jg1IBGRcRn1DOPXX3+NMWPG4Pjx4zA3N5eWd+zYESkpKaUeFBERERHJh14F\n47FjxxASEqK2vFq1atJwO0RvCsf7kyfmRZ44rpw8MS/yxLxop1fBaGFhgXv37qktP3fuHJycnEo9\nKCIiIiKSD70Kxk8//RSTJ09WGaQ7LS0NEyZMQI8ePQwWHJEm/IW0PDEv8lTWf/FZXjEv8sS8aKdX\nwRgZGYn79++jSpUqePz4MT788EPUqlULlStXxtSpUw0dIxEREZHBcC5p3fQqGG1tbXHgwAFs3LgR\n06dPx5gxY7Bz507s378flSpVMnSMRCrYKydPzIs8sSdLnpgXeeFc0rrpNTUg8Oxn2gEBAQgICDBk\nPEREREQkM3qdYQwJCcGcOXPUls+ePRuDBw8u9aCISsJeOXliXuSJPVnyxLzIE/OinV4F444dO+Dv\n76+2PCAgAFu3bi31oIiIiIhIPvQqGB88eKCxV9HS0lLjcDtEhsReOXliXuSJPVnyxLzIE/OinV4F\nY+3atbFlyxa15du2bUOtWrVKPSgiIiKiN4VzSeum11zSsbGxGD58OMaOHYu2bdsCABITE/Hzzz9j\nwYIFGDhwoMEDNRbOJU2kP84lTURkXIaaS1qvX0n3798f+fn5+PHHHzF9+nQAQPXq1TFnzpxyXSwS\nERERkZ6XpAFg2LBhuHbtGm7evImbN2/i6tWrGD58uCFjI9KIvXLyxLzIE3uy5Il5kSfmRTu9x2EE\ngMuXL+Pvv/+GIAioV68ePD09DRUXEREREcmEXj2M2dnZGDhwINavXw+F4tlJyeLiYvTo0QNRUVGw\ntrY2eKDGIggCJs6YaOwwiMoEJxsnjBk+xthhEBG9tQzVw6hXwThgwAAcOnQIS5YsQYsWLQAAhw4d\nwrBhw9CqVStERUWVemByYagDT0RERPIQHh5ebuaTNlTdolcP46ZNm7B06VL4+vrC1NQUpqam8PPz\nw9KlS7Fhw4ZSD4qoJOwxkSfmRZ6YF3liXuSFc0nrplfBmJeXBwcHB7Xl9vb2yM/PL/WgiIiIiEg+\n9Lok/dFHH8HGxgYrVqyAlZUVACA3Nxf9+vVDdnY2EhMTDR6osfCSNBERUflWnr7rjdrDePr0aXTo\n0AGPHz9Go0aNIIoiTp8+DUtLS+zcuRNeXl6lHphclKcXEREREakrT9/1Ru1h9Pb2xoULFxAZGYmm\nTZvCx8cHkZGRuHjxYrkuFkme2GMiT8yLPDEv8sS8yBPzop3OcRgLCgrg6uqKPXv2YMiQIW8iJiIi\nIqI3hnNJ66bXJel33nkHu3btQv369d9ETLJSnk5TExERUflm1EvSo0ePRkREBAoLC0s9ACIiIiKS\nN70KxpSUFGzcuBHvvPMO2rZti08++UT617VrV0PHSKSCPSbyxLzIE/MiT8yLPDEv2uk1l7SDgwO6\nd++u8T5BEEo1ICIiIiKSF716GN9m7GEkIiKissJQdYteZxiVLl26hDNnzgAA6tWrh5o1a5Z6QHI0\naeYkY4dAVG442ThhzPAxxg6DiEhSnuaSNhS9zjDevXsXAwcOxObNm6FQPGt7LC4uxscff4zo6GiN\n0waWF4IgYPHRxcYOg55z7ug51PWpa+ww6AX65iVjTwZ+mvDTG4iIgGc9WX5+fsYOg17AvMiL8qxc\neciLUX8lPXjwYFy6dAkHDhxAXl4e8vLycODAAaSlpWHw4MGlHhQRERERyYdeZxgtLS2RmJiIli1b\nqiw/fPgw2rZti8ePHxssQGPjGUai0sUzjEQkN+Xp9wpGPcPo6OgIKysrteWWlpZwdHQs9aCIiIiI\nSD70Khh/+OEHjB07FteuXZOWXbt2Df/4xz/www8/GCw4Ik3OHT1n7BBIA+ZFnjiunDwxL/LEvGin\n16+k586di/T0dLi7u6N69eoAgOvXr8PCwgK3b9/G3LlzATw7DXrq1CnDRUtERERUyjiXtG56FYw9\nevTQa2McxJveBP5CWp6YF3kq67/4LK+YF3lRDqnDvGinV8HIsYmIiIiI3l569TASyQl75eSJeZEn\n9mTJE/MiT8yLdiwYiYiIiKhEnEtaB47DSFS6OA4jEZHhGHUcRiIiIqLyir/V0E1rwWhiYoLbt28D\nAAYOHIjs7Ow3FhRRSdgrJ0/MizyxJ0uemBd5mTx5MgDmpSRaC0YLCwvk5OQAAGJiYpCfn//GgiIi\nIp2VIUAAACAASURBVCIi+dA6rE7Lli3RrVs3NGnSBAAwZswYWFhYqKwjiiIEQUBUVJRhoyR6Dsf7\nkyfmRZ44rpw8MS/yxLxop7VgjIuLw6xZs3Dx4kUAwN27d2FqaqoyOLeyYCQiIiKi8kvrJelq1aph\n1qxZ2LBhA1xdXbFq1Sps2bIFmzdvlv4pbxO9SeyVk6c3kZeCggIMGjQI7u7usLGxQePGjbFjxw4A\nwN9//w0fHx/Y29ujcuXKaNWqFVJSUqTHdurUCdbW1tI/MzMzNGzYUON+Vq5cqbKulZUVFAoFjh8/\nLq1z7NgxtGnTBtbW1qhWrRrmzZsHACgqKkKfPn1gZ2eHTp06Sa09ADBt2jTMmTPHEIdGK/ZkyRPz\nIk/Mi3Z6/Uo6PT0djo6Oho6FiKhERUVFcHV1xf79+5GdnY2pU6ciMDAQGRkZqF69OuLj43H37l3c\nv38fffr0Qc+ePaXHbt++HTk5OdK/li1bIjAwUON++vbtq7LuwoULUbNmTTRu3BgAkJWVhU6dOmHE\niBG4d+8eLl26hPbt2wMA1q9fDxMTE9y9exe2trZYsmQJACAtLQ2bN2/GmDFjDHyUiOhlcS5p3fQe\nVmfLli1o3bo1HBwc4OjoCF9fX2zdutWQsRFpxF45eXoTebG0tERYWBhcXV0BAF26dIGHhweOHTsG\nW1tbeHh4QBAEPH36FAqFAs7Ozhq3k56ejgMHDqBfv3567TcmJkZl3dmzZ6Njx44ICgpCxYoVYWVl\nhXfffVfatq+vLxQKBfz8/HD58mUAwJdffonZs2dDoXizo5mxJ0uemBd54VzSuun1ybVs2TJ0794d\ntWrVwowZMzB9+nR4eHigW7duWL58uaFjJCLS6NatWzh//jwaNGggLatcuTIsLCwwc+ZMrF27VuPj\n4uLi0KZNG6nwLElGRoZacfnHH3/Azs4OrVq1QtWqVdG1a1dcvXoVAODl5YWkpCQ8efIEycnJ8PLy\nQkJCApycnNCiRYvXfMZERMahV8E4Y8YMzJ49G9HR0Rg8eDAGDx6MmJgY/Otf/8KMGTMMHWOp2rlz\nJwICAuDs7Axzc3PUqFEDvXv3xpkzZ4wdGumJPYzy9KbzUlhYiL59+yIkJAR16tSRlj948AAPHz5E\nnz590KtXL40zHsTFxSEkJESv/SiLSzc3N2nZ1atXERsbi3nz5uHKlSvw8PBAUFAQAKBz587w8PBA\n8+bNYWdnh969e2PKlCmYOXMmJk2aBF9fX4waNQqFhYWvdwD0xJ4seWJe5Il50U6vgvHKlSvo2LGj\n2vKOHTsiPT29tGMyqPv376NZs2ZYsGABdu/ejYiICPz111/44IMPpDMERCRvxcXFCA4Ohrm5OebP\nn692v6WlJaZPn47z58/j9OnTKvelpKTg1q1bKv2NJYmLi0P//v3Vtt+9e3c0bdoUZmZmCAsLw6FD\nh6QfuERERODkyZP49ddfERERgREjRuCPP/5Aamoq9u3bh4KCAg5HRkRlil4FY40aNbBr1y615bt3\n71b5q7ss6NOnD2bMmIHu3bujdevW+OKLL7B+/Xrk5ORovXxF8sIeRnl6U3kRRRGDBg3CnTt3sG7d\nOpiYmGhc7+nTpyguLoalpaXK8tjYWPTo0UNtuSYHDx5EZmamWnGp7dfVLzp9+jQOHz6MIUOG4PTp\n02jatCkAwMfHB6dOndJrG6+LPVnyxLzIE/OinV4F4/jx4/HVV19h8ODBiI6ORnR0NAYNGoSvvvoK\n48aNM3SMBmdvbw8AWr94iEg+RowYgbNnz2LTpk0wMzOTlicmJuLEiRN4+vQpsrOz8Y9//AN169ZF\nrVq1pHXy8vIQHx+v9+Xo2NhY9OzZE1ZWVirLBwwYgISEBJw8eRKFhYX48ccf0bp1a1hbW0vriKKI\n0aNH45dffoEgCPD09ERKSgoKCgqwb98+1KxZ8/UOBBGVGs4lrZteBeOwYcPw22+/4cyZMxg3bhzG\njRuHc+fOIT4+HsOGDTN0jAbx9OlTFBQU4MKFCxg2bBiqVq2KPn36GDss0gN7GOXpTeQlIyMDS5Ys\nwcmTJ1GtWjVpnMRVq1bhwYMHCAoKQuXKlVG3bl3cuXMHmzZtUnn8hg0bYGdnp/EsgpeXF1avXi3d\nzs/PR3x8vNrlaADw9/fHtGnT0KVLF1StWhWXL1/GqlWrVNaJiYmBt7e3NBRP9+7d4eLiAicnJ9y/\nfx9Dhw4thSOiG3uy5Il5kRfOJa2bIGrqCH8L+Pj44NixYwAANzc3bN26FfXr11dbTxAELD66+E2H\nRyU4d/QcL0vL0P+1d+dxVdX5/8Bf5yoICAgpICAi4C6oCDlp7pOm5JKaS5qKmlt9zZrMMiaFHFya\nEXNpcsnUxiWdxFzGVFJBEZVwRQwtA1FUFGUUcGH7/P7oxx2vcBeNy/3ce1/Px4NHnOWe8768vfHm\nc97nfAzNy+X9lxE9I7oaIiLg91+AvMwmH+ZFLoqiQAhhEXkpfy9VflxrLRjT09ORn5+PS5cu4R//\n+AdycnKQmJhYoSeTBSNR1WLBSESyMVaRZQosGI3o7t27aNSoEYYPH44vv/xSY5uiKHjhlRdQz+v3\nmW7sHe3h08xHPZJSfhmOy1zmsmHLOSdzsH7FegD/u/xT/hc9l7nMZS6bYllRFBw8eFCaeJ5mufz7\n8qfWrFu3jgWjMZXPQfvk3eAcYZQPL0nLiZek5RRvAZfYLBHzIhdektaveueoklROTg7S09N51yIR\nEZEV4lzS+ukdYSwqKkLnzp3xzTffoFkz8x/VGThwIEJCQhAUFARnZ2dcvHgRixYtws2bN5GcnKzx\nCA6AI4xEVY0jjERExmOsEcaa+nawtbVFRkYGFEWp8pObQocOHbBlyxYsXLgQRUVF8PHxQffu3TFz\n5kyD5pUlIiIisjYGXZIePXo0Vq1aZexYqsWMGTOQkpKCvLw8FBYWIj09HV9++SWLRTPC5zDKiXmR\n0+ON8SQP5kVOzIt2ekcYAeD+/ftYv3494uLiEBISop71QAgBRVGwZMkSowZJRERERKZj0F3ST94x\nVH55urxgLL8V3RKxh5GoarGHkYjIeEzWwwhwiJaIiIgsV2RkJOeT1uOpHquTm5uL48eP4+HDh8aK\nh0gv9srJiXmRE//glxPzIhfOJa2fQQVjfn4+hgwZAnd3d3Ts2BHXrl0DAEyePJkVOREREZGFM6hg\n/PDDD5GdnY2TJ0/C3t5evb5v376IjY01WnBEleEsL3JiXuRk7rNWWCrmRU7Mi3YG9TDu2LEDsbGx\naNu2rcbzGJs3b47ffvvNaMERERERkekZNMKYl5eHunXrVlifn5+PGjVqVHlQRLqwV05OzIuc2JMl\nJ+ZFTsyLdgYVjKGhodixY0eF9StXrkTHjh2rPCgiIiKi6sK5pPUz6DmMSUlJePnllzFs2DCsX78e\nEyZMwLlz55CcnIxDhw4hJCSkOmI1CT6Hkahq8TmMRETGY6znMBo0wtixY0ckJSWhqKgIAQEB2L9/\nP7y9vXHs2DGLLhaJiIiI6CmewxgUFIRvvvkGaWlpOH/+PNavX4+goCBjxkZUKfbKyYl5kRN7suTE\nvMiJedHOoLukAeDBgwfYuHEjfv75ZwBAixYtMGLECI3H7BARERGR5TGoh/HkyZPo27cvHjx4gKCg\nIAghkJaWhlq1amHXrl0WfVmaPYxEVYs9jERExmPSHsaJEyeiU6dOuHr1Kg4dOoTDhw/jypUr6NKl\nCyZNmlTlQRERERFVF85ap59BBWNaWhpmz56N2rVrq9fVrl0bs2bNwrlz54wWHFFl2CsnJ+ZFTuzJ\nkhPzIhfOJa2fQQVjs2bN1PNHP+769eto1ozTgRERERFZMq09jHfu3FF/f/ToUUyfPh2zZs1Chw4d\n1Ouio6Mxf/589O3bt3qiNQH2MBJVLfYwEpFsjNX3ZwrGei9a75KuV69ehXUjR46ssG7AgAEoLS2t\n2qiIiIiISBpaC8YDBw5UZxxEBruQcgHNQtkKIRvmRU7x8fHo1q2bqcOgJzAvcmJetNNaMPIHRkRE\nRNaAc0nrZ9BzGAHg0aNHSEtLw82bN1FWVqaxLSwszCjByUBRFHy84GNTh0FkMdyd3TFt8jRTh0FE\nZJGM1cNoUMF44MABjBw5Ejk5OZVuf7KAtCSW1AhLREREls2kD+6eMmUKXnnlFWRkZKCwsBD379/X\n+CKqTnxOlpyYFzkxL3JiXuTEvGhn0FzS165dw8cffwxfX19jx0NEREREkjHokvTQoUPRv39/vPHG\nG9URk1R4SZqIiIjMhUl7GPPy8vD666+jefPmCAoKgo2Njcb20aNHV3lgsmDBSEREZNkiIyMtZj5p\nkxaMW7ZsQXh4OB4+fAgHBwcoiqKxPT8/v8oDkwULRvnwOVlyYl7kxLzIiXmRS/nvekvIi0lvepk+\nfTreeust5Ofno6CgAPn5+RpfRERERGS5DBphdHZ2xqlTpxAQEFAdMUmFI4xERESWzZJ+15t0hHHQ\noEGIi4ur8pMTERERkfwMeqxOQEAAIiIicPjwYbRu3brCTS9/+ctfjBIcUWUsocfEEjEvcmJe5MS8\nyIl50c6ggnH16tVwcnLCkSNHkJSUVGE7C0YiIiIyV5xLWj+D55K2VpbU10BERESWzaQ9jERERERk\nvQy6JD116tQKz1583JIlS6osIBlFfBZh6hDoMZcvXYZvAKeplA3zIqfqyIu7szumTZ5m1HNYGvbK\nyYl50c6ggjE1NVWjYCwqKkJ6ejpKS0sRHBxstOBk4ftn/hKUycM6D+EbypzIhnmRU3Xk5fL+y0Y9\nPhGZnkEFY3x8fIV1Dx8+xLhx49ClS5eqjolIp2ahzUwdAlWCeZET8yInjmLJiXnR7pl7GO3s7BAR\nEYHo6OiqjIeIiIioWlnKPNLG9IduesnNzeXUgFTtLqRcMHUIVAnmRU7Mi5wqu3JHphMVFQWAedHF\noEvSCxcu1OhhFELg2rVr2LBhA8LCwowWHBERERGZnkHPYWzUqJFGwahSqeDm5oYePXpg5syZcHJy\nMmqQpqQoClakrDB1GERE0rq8/zKiZ7A9icyXJT1z2VjvxaARxszMzCo/MRERERGZBz64m8wOe7Lk\nxLzIiXmRE3vl5MS8aGfQCKMQAps3b8b+/ftx8+ZNlJWVqbcpioIdO3YYLUAiIiIiY+Jc0voZ1MP4\nwQcf4PPPP0f37t3h6emp0c+oKArWrFlj1CBNiT2MRES6sYeRSB4m7WH85ptvsHHjRgwZMqTKAyAi\nIiIiuRnUw1hWVmYVUwCSeWBPlpyYFzkxL3Jir5ycmBftDCoYJ0yYgPXr1xs7FiIiIiKSkEGXpO/e\nvYsNGzYgLi4OrVu3ho2NDYDfb4ZRFAVLliwxapBEj+PcuHJiXuTEvMiJcxbLiXnRzqCCMS0tDW3b\ntgUApKenq9eXF4xERERE5ioyMpLzSeth0CXp+Ph49dfBgwfVX+XLRNWJPVlyYl7kJHteli1bhtDQ\nUNjZ2WHs2LHq9ZmZmVCpVHByclJ/RUf/707sRYsWISAgAM7OzvDw8MDYsWORn5+v9Tz379/HW2+9\nBTc3N7i4uKBr164a20+ePIkuXbrAyckJ9evXV185KykpwfDhw+Hq6oo+ffponGPu3LlYtGjRM71v\n9srJhXNJ68cHdxMRkcl4e3vjk08+wbhx4yrdfu/ePeTn5yM/Px8RERHq9QMGDEBKSgru3buH9PR0\nZGVlaRSUT5o4cSL++9//Ij09HXl5efj888/V23Jzc9GnTx9MmTIFd+7cwaVLl9CrVy8AQGxsLGrU\nqIHbt2+jTp06WLlyJQAgIyMDO3fuxLRp06rix0AkPYMuSRPJhD1ZcmJe5CR7XgYOHAgASElJwdWr\nVytsLysrQ40aNSqs9/f319hHpVLB09Oz0nOkp6dj586dyM7OhqOjIwBoPPkjJiYGvXv3xuuvvw4A\nsLGxQfPmzQH8PtLZtWtXqFQqdOvWDampqQCAd955BzExMVCpnm3chb1ycmJetOMIIxERmZy2Bw37\n+vrCx8cH48aNw+3btzW2bdy4EXXq1IGbmxvc3Ny0jvYlJyfD19cXs2bNgpubG1q3bo3Y2Fj19uPH\nj8PV1RUvvvgiPDw80L9/f1y5cgUAEBgYiAMHDuDRo0c4ePAgAgMDsW3bNri7u6NDhw5V9O6J5MeC\nkcyO7D1Z1op5kZO55OXJGyjd3NyQkpKCrKwsnDhxAvn5+Rg5cqTGPiNGjMDdu3dx8eJF/Pzzz1r7\nCa9evYpz587BxcUF169fx7JlyzBmzBhcuPD7z+bKlStYt24dlixZgqysLPj5+alHG8PCwuDn54f2\n7dvD1dUVw4YNw6efforPPvsMERER6Nq1K95++20UFxc/1ftlr5ycmBftrK5g/O677/Dqq6+iYcOG\ncHBwQPPmzfHxxx+joKDA1KEREVmtJ0cYa9eujXbt2kGlUsHd3R3Lli3Dvn37UFhYWOG1jRs3xkcf\nfYRvvvmm0mPb29vDxsYGf/3rX1GzZk106dIF3bt3x969ewEADg4OGDRoEEJCQlCrVi3Mnj0bSUlJ\n6htc5s2bhzNnzmD58uWYN28epkyZguPHj+PEiRNISEhAUVERvv766yr+iVB14lzS+lldwbhw4ULY\n2Nhg/vz52LNnD6ZMmYIvv/wSPXv2NMrci1T1ZO/JslbMi5zMJS+GPqKtrKys0vXFxcVwcHCodFvr\n1q0BVCxKy89Zvl2f1NRUHD16FBMmTEBqaipCQkIAAKGhoTh79qxBxyjHXjm5lD9Sh3nRzuoKxl27\nduHf//43RowYgS5dumDatGlYsmQJjh8/zqFoIqJqVlpaiocPH6KkpASlpaV49OgRSkpKkJycjAsX\nLqCsrAy3b9/GO++8g+7du8PJyQkA8NVXX+HWrVsAgPPnz2P+/PkYPHhwpefo2rUrGjZsiHnz5qGk\npARHjhxBfHw8Xn75ZQDA2LFjsW3bNpw5cwbFxcWYM2cOOnfurD4X8HuxOXXqVCxduhSKosDf3x+J\niYkoKipCQkICAgICjPyTIjItqysY69atW2FdaGgoAODatWvVHQ49A3PpybI2zIucZM/LnDlz4ODg\ngAULFmD9+vWwt7fH3Llz8dtvv6FPnz5wdnZGUFAQ7O3tsWnTJvXrkpKSEBQUBCcnJwwcOBCjR4/G\ne++9p94eGBio3r9mzZrYvn07du/eDRcXF0yaNAn/+te/0LRpUwBA9+7dMXfuXLzyyivw8PDAb7/9\nho0bN2rEuXbtWgQFBanvrh40aBC8vLzg7u6OvLw8TJw48aneNwco5MS8aKcIXofF8uXL8dZbbyEl\nJQXt2rXT2KYoClakrDBRZFSZCykXzOYymzVhXuRUHXm5vP8yomdofwYiVRQfH8/LnxKyhLwoimKU\nFjurLxizs7MRHByM4OBgdQP041gwEhHpxoKRSB7GKhit+sHdBQUFGDBgAGxtbbFmzRqt+62ZvQb1\nvOoBAOwd7eHTzEf9F3v55R4uc5nLXLbWZTvYAfjf5bzyERouc9lcliMjI9XrZYjnaZbLv8/MzIQx\nWe0I44MHDxAWFobU1FQkJCSgVatWle7HEUb58NKnnJgXOfGStJws4dKnJSkflbOEvHCEsQoVFxfj\ntddew8mTJxEXF6e1WCQiIiIiKywYy8rKMHLkSMTHx2PXrl1o3769qUOip8RRLDkxL3JiXuRk7qNY\nlop50c7qCsa3334b3333HSIiImBvb49jx46pt/n4+MDb29uE0RERERHJx+qew7hnzx4oioLo6Gh0\n7NhR42v16tWmDo8MIPtz5awV8yIn5kVOfN6fnJgX7axuhDEjI8PUIRAREZFEOJe0flZ7l7SheJc0\nEZFuvEuaSB7Gukva6i5JExEREdHTYcFIZoc9WXJiXuTEvMiJvXJyYl60Y8FIRERERDqxh1EP9jAS\nEenGHkYiebCHkYiIiMgIIiMjTR2C9FgwktlhT5acmBc5MS9yYq+cXKKiogAwL7qwYCQiIiIindjD\nqAd7GImIdGMPI5k7Y/X9mQJ7GImIiIjIJFgwktlhT5acmBc5MS9yYq+cnJgX7VgwEhERkVXjXNL6\nsYdRD/YwEhHpxh5GInmwh5GIiIiITIIFI5kd9mTJiXmRE/MiJ/bKyYl50Y4FIxERERHpxB5GPdjD\nSESkG3sYieTBHkYiIiIiI+Bc0vqxYCSzw54sOTEvcmJe5MReOblwLmn9WDASERERkU7sYdSDPYxE\nRLqxh5HMHeeS1q9mlR/RAl3ef9nUIRARScvd2d3UIRCRkXGEUQ9L+qvDUsTHx6Nbt26mDoOewLzI\niXmRE/Mil/Lf9ZaQF94lTURERGQEnEtaP44w6sERRiIiIjIXHGEkIiIiIpNgwUhmh8/JkhPzIifm\nRU7Mi5yYF+1YMBIRERGRTuxh1IM9jERERGQu2MNIREREZAScS1o/FoxkdthjIifmRU7Mi5yYF7lw\nLmn9WDASERERkU7sYdSDPYxERESWzZJ+17OHkYiIiIhMggUjmR32mMiJeZET8yIn5kVOzIt2NU0d\ngDmI+CzC1CHQYy5fuoy45DhTh0FPYF7kxLzIiXmRy8uvvGzqEKTHHkY9FEXBipQVpg6DiIiIjOTy\n/suInhFt6jCqBHsYiYiIiMgkWDCS2bmQcsHUIVAlmBc5MS9yYl7kxB5G7VgwEhEREZFOLBjJ7DQL\nbWbqEKgSzIucmBc5MS9y6tatm6lDkBYLRiIiIrJqh+IOmToE6bFgJLPD3h85MS9yYl7kxLzIJfHH\nRADsYdSFBSMRERER6cTnMOrB5zASERFZtkmhkziXtB4cYSQiIiIinVgwktlh74+cmBc5MS9yYl7k\nxB5G7VgwEhERkVXr9FInU4cgPfYw6sEeRiIiIsvGuaT14wgjEREREenEgpHMDnt/5MS8yIl5kRPz\nIif2MGrHgpGIiIjoGS1btgyhoaGws7PD2LFjNbbt378fzZs3R+3atdGjRw9kZWVpbP/www9Rr149\n1KtXDx999JHO8xh6LAAaxyopKcHw4cPh6uqKPn36ID8/X71t7ty5WLRokUHvkwUjmR3OwSon5kVO\nzIucmBc5Pctc0t7e3vjkk08wbtw4jfW5ubkYPHgwoqOjkZeXh9DQUAwbNky9fcWKFdi+fTvOnj2L\ns2fPYufOnVixovJ7Jp7mWAA0jhUbG4saNWrg9u3bqFOnDlauXAkAyMjIwM6dOzFt2jSD3icLRiIi\nIrJqf2Qu6YEDB2LAgAGoW7euxvrY2FgEBgZi8ODBsLW1RWRkJM6cOYOLFy8CANatW4fp06fDy8sL\nXl5emD59OtauXVvpOZ7mWAA0jpWZmYmuXbtCpVKhW7du+O233wAA77zzDmJiYqBSGVYKsmAks8Pe\nHzkxL3JiXuTEvMilKuaSfvLO5LS0NLRp00a97ODggMaNGyMtLQ0AcP78eY3trVu3Vm970h85VmBg\nIA4cOIBHjx7h4MGDCAwMxLZt2+Du7o4OHToY/P4sqmAMDw+Hn5/fU78uPj4eKpUKhw49+18YRERE\nZL0URdFYLiwshLOzs8Y6Z2dndQ9hQUEB6tSpo7GtoKCg0mP/kWOFhYXBz88P7du3h6urK4YNG4ZP\nP/0Un332GSIiItC1a1e8/fbbKC4u1vn+LKpgnDVrFr7//ntTh0FGxt4fOTEvcmJe5MS8yOlZehjL\nPTnC6OjoiHv37mmsu3v3LpycnCrdfvfuXTg6OlZ67D96rHnz5uHMmTNYvnw55s2bhylTpuD48eM4\nceIEEhISUFRUhK+//lrn+7OIgvHRo0cAAH9/f40hWSIiIqLq8OQIY6tWrXDmzBn1cmFhIS5duoRW\nrVqpt58+fVq9/cyZMwgMDKz02FV1rNTUVBw9ehQTJkxAamoqQkJCAAChoaHqG2a0qdaC8eLFixg4\ncCA8PDxgb28PX19fDB06FKWlpQCAW7duYfLkyWjQoAHs7OzQokULrFq1SuMYa9euhUqlwuHDhzFk\nyBC4urqqr8FXdkl69uzZaNeuHerUqQM3Nzf8+c9/xvHjx6vnDZNRsPdHTsyLnJgXOTEvcnqWHsbS\n0lI8fPgQJSUlKC0txaNHj1BaWoqBAwfi3LlziI2NxcOHDxEVFYW2bduiadOmAIDRo0cjJiYG165d\nQ3Z2NmJiYhAeHl7pOZ7mWAAqPZYQAlOnTsXSpUuhKAr8/f2RmJiIoqIiJCQkICAgQOf7rNaC8ZVX\nXsH169exfPly7Nu3D/Pnz4ednR2EELh37x46deqEPXv2ICoqCrt370a/fv0wZcoULFu2rMKxRo4c\niYCAAGzduhXz589Xr3+yws/Ozsa7776LHTt2YN26dXB3d0eXLl1w7tw5o79fIiIikt8fmUt6zpw5\ncHBwwIIFC7B+/XrY29sjOjoa9erVw9atWxEREYHnnnsOKSkp+Pbbb9WvmzRpEvr164egoCC0bt0a\n/fr1w8SJE9XbAwMDsWnTJgB4qmMBqHAs4PcBt6CgIAQHBwMABg0aBC8vL7i7uyMvL6/C/k+qtrmk\nc3Nz4e7ujh07dqBv374Vts+ZMwdz587FuXPnNKrciRMnYtu2bcjJyYFKpcLatWsxbtw4vPfee1i4\ncKHGMcLDw5GQkICMjIxKYygtLYUQAoGBgejduzc+//xzAL//RdGjRw/Ex8ejS5cuGq/hXNJERESW\njXNJ61dtI4z16tWDv78/PvzwQ3z11Vf45ZdfNLbv2bMHL7zwAho1aoSSkhL1V69evXD79m2cP39e\nY/+BAwcadN4ff/wR3bt3R7169WBjYwNbW1tcvHhR/ewiIiIiItKtZnWeLC4uDpGRkZg5cyZu374N\nPz8/fPDBB5g8eTJu3ryJS5cuwcbGpsLrFEXB7du3NdZ5enrqPd/JkycRFhaGPn364Ouvv4anpydU\nKhXefPNNPHz40OC418xeg3pev0+3Y+9oD59mPuo73Mr7ULhcfctXLlzBSyNfkiYeLv++/HhPgnjy\nNAAAFuBJREFUlgzxcJmfF5mX+XmRbzk+Ph6nT5/Gu+++q14G/nfntKzL5d9nZmbCmKrtkvSTzpw5\ng2XLlmH16tXYvXs3oqKiULNmTSxevLjS/Zs2bQpHR0f1Jelff/0V/v7+Gvs8eUk6IiICixcvxt27\nd1GjRg31fr6+vggICMCBAwcA8JK0ubmQcoGPpJAQ8yIn5kVOzItcyi9Jx8fH/6FH68jAWJekq3WE\n8XFt2rTBwoULsXr1aqSlpaF3795YunQpfHx84ObmViXnuH//foUpbw4cOIArV67ovRuI5MX/ycqJ\neZET8yIn5kVO5l4sGlO1FYxnz57FtGnTMHz4cAQEBKC0tBRr166FjY0NevTogYCAAGzevBmdO3fG\ne++9h6ZNm6KwsBDp6elITEx8pgdy9+nTB4sXL0Z4eDjCw8Nx8eJF/O1vf4O3t7dRqm8iIiIyP4fi\nDgEzTB2F3KrtphdPT0/4+voiJiYGAwYMwIgRI3Djxg3s2rULwcHBcHZ2RlJSEsLCwrBgwQL07t0b\n48ePx86dO9GjRw+NYz356JzH1z++rVevXliyZAmOHDmCfv36Ye3atfjXv/6Fxo0bVziGtmOSfB7v\n/SF5MC9yYl7kxLzIpSrmkrZ0JuthNBfsYZQPe3/kxLzIiXmRE/Mil0mhkyCEYA+jruOyYNSNBSMR\nEZFlKy8YLYHZP4eRiIiIiMwTC0YyO+z9kRPzIifmRU7Mi5zYw6gdC0YiIiKyan9kLmlrwR5GPdjD\nSEREZNk4l7R+HGEkIiIiIp1YMJLZYe+PnJgXOTEvcmJe5MQeRu1YMBIRERGRTiwYyezwYbdyYl7k\nxLzIiXmRk7k/tNuYWDASERGRVTsUd8jUIUiPBSOZHfb+yIl5kRPzIifmRS6cS1o/FoxEREREpBOf\nw6gHn8NIRERk2TiXtH4cYSQiIiIinVgwktlh74+cmBc5MS9yYl7kxB5G7VgwEhERkVXjXNL6sYdR\nD/YwEhERWTbOJa0fRxiJiIiISCcWjGR22PsjJ+ZFTsyLnJgXObGHUTsWjERERESkEwtGMjucg1VO\nzIucmBc5MS9y4lzS2rFgJCIiIqvGuaT1q2nqAMzB5f2XTR0CPebypcvwDfA1dRj0BOZFTsyLnJgX\nuTw+lzRHGSvHx+roYazb0+nZ8QMtJ+ZFTsyLnJgXuZT/rreEvBirbmHBqAcLRiIiIstmSb/r+RxG\nIiIiIjIJFoxkdvicLDkxL3JiXuTEvMiJedGOBSMRERFZtdmzZ5s6BOmxh1EPS+prICIiIsvGHkYi\nIiIiMgkWjGR22GMiJ+ZFTsyLnJgXOTEv2rFgJCIiIiKd2MOoB3sYiYiIyFywh5GIiIjICCIjI00d\ngvRYMJLZYY+JnJgXOTEvcmJe5BIVFQWAedGFBSMRERER6cQeRj3Yw0hERGTZLOl3PXsYiYiIiMgk\nWDCS2WGPiZyYFzkxL3JiXuTEvGjHgpGIiIisGueS1o89jHpYUl8DERERWTb2MBIRERGRSbBgJLPD\nHhM5MS9yYl7kxLzIiXnRjgUjEREREenEHkY92MNIRERE5oI9jERERERGwLmk9WPBSGaHPSZyYl7k\nxLzIiXmRC+eS1o8FIxERERHpxB5GPdjDSEREZNks6Xc9exiJiIiIyCRYMJLZYY+JnJgXOTEvcmJe\n5MS8aMeCkYiIiKwa55LWjz2MelhSXwMRERFZNvYwEhEREZFJsGAks8MeEzkxL3JiXuTEvMiJedGO\nBSMRERER6cQeRj3Yw0hERETmgj2MREREREbAuaT1Y8FIZoc9JnJiXuTEvMiJeZEL55LWjwUjmZ3T\np0+bOgSqBPMiJ+ZFTsyLnJgX7Vgwktn573//a+oQqBLMi5yYFzkxL3JiXrRjwUhEREREOrFgJLOT\nmZlp6hCoEsyLnJgXOTEvcmJetONjdfRo27Ytzpw5Y+owiIiIiPTq2rWrUW7eYcFIRERERDrxkjQR\nERER6cSCkYiIiIh0YsFIRERERDqxYNRiz549aN68OZo0aYIFCxaYOhz6/xo1aoTWrVsjODgY7du3\nN3U4VmvcuHHw8PBAUFCQet2dO3fQs2dPNG3aFL169eLzzEygsrxERkaiQYMGCA4ORnBwMPbs2WPC\nCK3PlStX0L17d7Rq1QqBgYFYsmQJAH5eTE1bXvh50Y43vVSitLQUzZo1w48//ghvb288//zz2LRp\nE1q0aGHq0Kyen58fTpw4geeee87UoVi1w4cPw9HREaNHj0ZqaioAYMaMGahXrx5mzJiBBQsWIC8v\nD/PnzzdxpNalsrxERUXByckJf/nLX0wcnXW6ceMGbty4gbZt26KgoAAhISH4/vvvsWbNGn5eTEhb\nXrZs2cLPixYcYaxEcnIyGjdujEaNGsHGxgbDhw/H9u3bTR0W/X/8G8f0OnfuDFdXV411O3bswJgx\nYwAAY8aMwffff2+K0KxaZXkB+Jkxpfr166Nt27YAAEdHR7Ro0QLZ2dn8vJiYtrwA/Lxow4KxEtnZ\n2fDx8VEvN2jQQP0PiUxLURS89NJLCA0NxapVq0wdDj0mJycHHh4eAAAPDw/k5OSYOCIqt3TpUrRp\n0wbjx4/npU8TyszMxKlTp/CnP/2JnxeJlOflhRdeAMDPizYsGCuhKIqpQyAtjhw5glOnTuGHH37A\nF198gcOHD5s6JKqEoij8HEliypQpyMjIwOnTp+Hp6Yn333/f1CFZpYKCAgwePBiLFy+Gk5OTxjZ+\nXkynoKAAr732GhYvXgxHR0d+XnRgwVgJb29vXLlyRb185coVNGjQwIQRUTlPT08AgJubGwYOHIjk\n5GQTR0TlPDw8cOPGDQDA9evX4e7ubuKICADc3d3VBcmbb77Jz4wJFBcXY/DgwRg1ahReffVVAPy8\nyKA8L2+88YY6L/y8aMeCsRKhoaH45ZdfkJmZiaKiImzevBn9+/c3dVhW7/79+8jPzwcAFBYWYt++\nfRp3g5Jp9e/fH+vWrQMArFu3Tv0/YDKt69evq7/ftm0bPzPVTAiB8ePHo2XLlnj33XfV6/l5MS1t\neeHnRTveJa3FDz/8gHfffRelpaUYP348Zs6caeqQrF5GRgYGDhwIACgpKcHIkSOZFxN5/fXXkZCQ\ngNzcXHh4eODTTz/FgAEDMHToUGRlZaFRo0bYsmULXFxcTB2qVXkyL1FRUYiPj8fp06ehKAr8/Pyw\nYsUKde8cGV9iYiK6dOmC1q1bqy87z5s3D+3bt+fnxYQqy8vcuXOxadMmfl60YMFIRERERDrxkjQR\nERER6cSCkYiIiIh0YsFIRERERDqxYCQiIiIinVgwEhEREZFOLBiJiIiISCcWjERWKjMzEyqVCidP\nnqz2c69du7bC9GjWIjc3FyqVCocOHXrmY2zfvh1NmjSBjY0Nxo0bV4XRERFVjgUjkRXo1q0bpk6d\nqrGuYcOGuHHjBtq0aVPt8QwfPhwZGRnVfl5LMX78eAwZMgRZWVlYvHixqcPRa+XKlejevTtcXFyg\nUqmQlZVVYZ+8vDyMGjUKLi4ucHFxwejRo3H37l2NfbKystCvXz84OjrCzc0N06ZNQ3FxscY+qamp\n6Nq1KxwcHNCgQQPMmTOnwrkSEhIQEhICe3t7BAQEYMWKFVX7hoksEAtGIiulUqng7u6OGjVqVPu5\n7ezsUK9evWo/ryXIy8vDnTt30KtXL3h6ej7zSG1RUVEVR6bdgwcP0Lt3b0RFRWndZ8SIETh9+jT2\n7t2LPXv24OTJkxg1apR6e2lpKV555RUUFhYiMTERmzZtwnfffYf3339fvc+9e/fQs2dPeHp6IiUl\nBYsXL8bf//53xMTEqPfJyMhAWFgYOnXqhNOnT2PmzJmYOnUqYmNjjfPmiSyFICKLNmbMGKEoisbX\n5cuXRUZGhlAURZw4cUIIIcTBgweFoijihx9+EMHBwcLe3l507txZXL16Vezfv18EBQUJR0dH0a9f\nP3Hnzh2Nc3z99deiRYsWws7OTjRt2lQsWrRIlJWVaY1pzZo1wtHRUb08e/ZsERgYKDZt2iT8/f2F\nk5OTePXVV0Vubq7O9xYVFSV8fX1FrVq1RP369cXo0aM1ti9YsEAEBAQIe3t7ERQUJNavX6+xPTs7\nW4wYMULUrVtXODg4iLZt24qDBw+qty9fvlwEBAQIW1tb0bhxY7Fq1SqN1yuKIlauXClee+01Ubt2\nbeHv71/hHMnJyaJdu3bCzs5OBAcHi127dglFUURCQoIQQoiioiIxdepU4eXlJWrVqiV8fHzERx99\nVOn7Lc/R41/lx9m6dasIDAxUHyM6Olrjtb6+viIyMlKMHTtWuLi4iKFDh1Z6jjFjxoi+ffuKzz//\nXHh7ewtXV1cxduxYcf/+fS1ZMNxPP/2k/vf3uPPnzwtFUURSUpJ6XWJiolAURVy8eFEIIcTu3buF\nSqUSV69eVe+zfv16YWdnJ/Lz84UQQvzzn/8UderUEQ8fPlTv87e//U14e3url2fMmCGaNm2qcf43\n33xTdOjQ4Q+/PyJLxoKRyMLdvXtXdOzYUYwfP17k5OSInJwcUVpaqrVg/NOf/iQSExPF2bNnRWBg\noOjYsaPo3r27SE5OFikpKcLPz09MmzZNffyVK1cKT09PsXXrVpGZmSl27twp6tevL5YtW6Y1psoK\nRkdHRzFo0CCRmpoqjh49Knx9fcWkSZO0HuO7774Tzs7OYvfu3eLKlSsiJSVFfPHFF+rtH3/8sWje\nvLnYu3evyMzMFBs3bhS1a9cW//nPf4QQQhQUFIjGjRuLTp06icTERJGRkSG2b9+uLhhjY2OFjY2N\n+OKLL8Qvv/wili5dKmxsbMTOnTvV51AURTRo0EBs2LBBXLp0ScycOVPY2tqKrKwsIYQQ+fn5ws3N\nTQwdOlSkpaWJvXv3iubNm2sUev/4xz+Ej4+POHz4sLhy5YpISkoSa9eurfQ9FxUVqYurbdu2iZyc\nHFFUVCRSUlJEjRo1RGRkpPjll1/Ehg0bhKOjo1i6dKn6tb6+vsLZ2Vn8/e9/F5cuXRK//vprpecY\nM2aMqFOnjpg4caJIT08X+/btEy4uLmLevHnqfaKjo4Wjo6POr8TExArH1lYwrl69Wjg5OWmsKysr\nE46OjuqfxSeffCICAwM19rl586ZQFEXEx8cLIYQYNWqU6Nu3r8Y+ycnJQlEUkZmZKYQQonPnzuL/\n/u//NPbZsmWLsLGxESUlJZX+TIiIBSORVejWrZuYOnWqxjptBeO+ffvU+yxbtkwoiiJOnTqlXhcZ\nGanxi9vHx6fCqNqiRYtEy5YttcZTWcFoZ2cn7t27p14XHR0tGjdurPUYCxcuFM2aNRPFxcUVthUU\nFAh7e/sKRcu0adNEWFiYEOL3QtfJyUncvn270uOXF9mPCw8PF506dVIvK4oiPv74Y/VySUmJcHBw\nEBs2bBBCCLFixQrh4uIiCgsL1fusX79eo2B85513xJ///Get7/NJt27d0ni9EEKMGDGiwjEiIyNF\ngwYN1Mu+vr6if//+eo8/ZswY0bBhQ40R4gkTJoiXXnpJvXznzh1x6dIlnV8PHjyocGxtBWN0dLTw\n9/evsL+/v7+YP3++OoYn32NZWZmoWbOm+Pbbb4UQQvTs2bNCzi5fviwURRHHjh0TQgjRtGlTMWfO\nHI19EhIShKIo4saNG3p/PkTWqqapL4kTkVxat26t/t7d3R0AEBQUpLHu5s2bAIBbt27h6tWrmDhx\nIiZPnqzep6Sk5KnP6+vrq9GP5+npqT5PZYYOHYolS5bAz88PL7/8Mnr37o3+/fvD1tYW58+fx8OH\nD/Hyyy9DURT1a4qLi+Hn5wcAOHXqFNq0aYPnnnuu0uOnp6fjzTff1Fj34osvYseOHRrrHv951ahR\nA25ubuq4f/75Z7Rp0wYODg7qfV544QWN14eHh6Nnz55o2rQpevXqhbCwMPTp00cjbn3S09PRt2/f\nCrFGRUWhoKAAjo6OUBQFoaGhBh2vZcuWGuf39PTE8ePH1cuurq5wdXU1OL6qIoTQuf1pfmZE9HRY\nMBKRBhsbG/X35b+AH78xRlEUlJWVAYD6vytWrEDHjh2r7LxPnqcyDRo0wIULF7B//378+OOPeP/9\n9xEVFYXjx4+rX7dr1y40bNhQ63n0FSCVebIo0Re3vnMEBwcjMzMTe/fuxf79+zFmzBi0adMGcXFx\nT1UAaTvP48eoXbu2QceqWVPzV8OT72nu3LmYN2+ezmPs2bMHL774okHnq1+/Pm7duqWxTgiBmzdv\non79+up9kpKSNPbJzc1FaWmpxj43btzQ2CcnJ0e9Tdc+NWvW5I1YRDrwLmkiK2Bra/tMo376eHh4\nwMvLC7/++iv8/f0rfBlbrVq1EBYWhpiYGPz0009IS0tDUlISWrVqhVq1aiEzM7NCTD4+PgCAdu3a\n4ezZs7h9+3alx27RogUSExM11iUmJqJVq1YGx9eyZUukpqbi/v376nXHjh2rsJ+joyMGDx6Mf/7z\nn/jPf/6DAwcO4NKlSwafp0WLFjhy5EiFWH18fAwuEh+nr1CdMmUKzpw5o/MrJCTE4PN16NABBQUF\nOHr0qHrd0aNHUVhYqP5DpGPHjvj555+RnZ2t3icuLg61atVSn6tDhw44fPgwHj16pLGPt7c3fH19\n1fvExcVpnD8uLg7PP/+8SZ4YQGQuOMJIZAUaNWqE5ORkXL58GbVr10bdunWr7NhRUVGYOnUqXFxc\n0KdPHxQXF+PkyZO4du0aPvrooyo7z5PWrl2L0tJStG/fHo6Ojti8eTNsbW3RpEkTODo6Yvr06Zg+\nfTqEEOjcuTMKCgpw7Ngx1KhRAxMmTMCIESMwf/58DBgwAPPnz4eXlxfOnTsHZ2dndOvWDR988AGG\nDBmCkJAQ9OzZE3v27MHGjRuxbds2g2McMWIEIiIiMG7cOMyaNQvZ2dmIjo7W2CcmJgZeXl5o06YN\nbGxssGHDBtSpUwcNGjQw+Dzvv/8+nn/+eURFReH111/HTz/9hJiYGL2jgNroGxV92kvSN27cwI0b\nN3Dx4kUAQFpaGu7cuQNfX1+4urqiRYsW6N27NyZNmoSVK1dCCIFJkyahX79+aNKkCQCgV69eaNWq\nFUaPHo2FCxciNzcXM2bMwMSJE+Ho6Ajg9593VFQUwsPD8de//hUXLlzAggULEBkZqY5l8uTJWLZs\nGd577z1MnDgRR44cwbp16/Dtt98+5U+JyMqYrn2SiKrLxYsXRYcOHYSDg4NQqVTqx+qoVCqNm15U\nKpXGTSD//ve/hUql0jjW8uXLhZubm8a6TZs2qR8d4+rqKjp37iw2b96sNZ41a9Zo3BUbGRkpgoKC\ndO7zpO+//1506NBBuLi4iNq1a4v27dur74Aut3TpUtGyZUtRq1Yt4ebmJnr16iV+/PFH9farV6+K\nYcOGCRcXF+Hg4CDatWuncTPJ8uXLRePGjYWNjY1o0qSJ+OqrrzSOryiK2Lp1q8a6Ro0aiYULF6qX\njx8/Ltq1aydq1aol2rZtK3bu3ClUKpX6PKtWrRLt2rUTTk5OwtnZWXTr1k0cPXpU6/u+deuWxuvL\nxcbGiqCgIGFraysaNmwo5s6dqzMubcLDw0W/fv001lWWn6cxe/Zs9WOAVCqV+r/r1q1T75OXlyfe\neOMN4ezsLJydncWoUaPE3bt3NY6TlZUl+vbtKxwcHETdunXFtGnTRFFRkcY+qampokuXLsLOzk54\neXmJTz/9tEI8CQkJ6pz4+/uLFStWPPN7I7IWihDP0MRDRERERFaDPYxEREREpBMLRiIiIiLSiQUj\nEREREenEgpGIiIiIdGLBSEREREQ6sWAkIiIiIp1YMBIRERGRTiwYiYiIiEin/wdr/eoLv1plMAAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, "metadata": {}, - "outputs": [], - "prompt_number": 20 + "output_type": "display_data" }, { - "cell_type": "code", - "collapsed": false, - "input": [ - "from matplotlib import pyplot as plt\n", - "import numpy as np\n", - "\n", - "def plot_results():\n", - " bar_labels = ['serial', '2', '3', '4', '6']\n", + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - " fig = plt.figure(figsize=(10,8))\n", + "Python version : 3.4.1\n", + "compiler : GCC 4.2.1 (Apple Inc. build 5577)\n", "\n", - " # plot bars\n", - " y_pos = np.arange(len(benchmarks))\n", - " plt.yticks(y_pos, bar_labels, fontsize=16)\n", - " bars = plt.barh(y_pos, benchmarks,\n", - " align='center', alpha=0.4, color='g')\n", + "system : Darwin\n", + "release : 13.2.0\n", + "machine : x86_64\n", + "processor : i386\n", + "CPU count : 4\n", + "interpreter: 64bit\n", "\n", - " # annotation and labels\n", - " \n", - " for ba,be in zip(bars, benchmarks):\n", - " plt.text(ba.get_width() + 2, ba.get_y() + ba.get_height()/2,\n", - " '{0:.2%}'.format(benchmarks[0]/be), \n", - " ha='center', va='bottom', fontsize=12)\n", - " \n", - " plt.xlabel('time in seconds for n=%s' %n, fontsize=14)\n", - " plt.ylabel('number of processes', fontsize=14)\n", - " t = plt.title('Serial vs. Multiprocessing via Parzen-window estimation', fontsize=18)\n", - " plt.ylim([-1,len(benchmarks)+0.5])\n", - " plt.xlim([0,max(benchmarks)*1.1])\n", - " plt.vlines(benchmarks[0], -1, len(benchmarks)+0.5, linestyles='dashed')\n", - " plt.grid()\n", - "\n", - " plt.show()" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 25 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Results" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#Sections)]" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "plot_results()\n", - "print_sysinfo()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAowAAAIACAYAAAAIQT11AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8TPf6B/DPmZBVElmERGWzFQlFaFGyqL3V2kKqIfYt\nqm7Rlt4mVAVxKbXUls3FrSD2NRJL0LpibWuXxBZLbElIJJHz+8NvzjVmJjPImJP4vF8vr3bOnDnn\nmfPM8uScZ75fQRRFEUREREREWiiMHQARERERyRsLRiIiIiIqEQtGIiIiIioRC0YiIiIiKhELRiIi\nIiIqEQtGIiIiIioRC0YCAOzduxcKhQKxsbGvvA2FQoEBAwaUYlRln5+fHzw8PPRePyQkBAoF35a6\npKenQ6FQYPLkycYORW/u7u7w9/c3dhikhaE+v8ria7U0lYXnHxMTA4VCgX379hk7FFnjN5MMXb58\nGUOHDsW7774LKysr2Nvbo379+ggJCcHevXsNtl9BECAIwmtvQ+6URZlCoUBqaqrGdebMmSOt8zpF\nNKB+TGJiYjB37lyt65aFYygXZelYGSq37u7u0mtVoVDAzMwMHh4eGDJkCK5du1bq+yvPDPl6Kkuv\n1ZeVnp6O8PBwnDx5Uus6xn7+e/fuxeTJk/Hw4UO1+5TvTWPHKHcVjB0AqTp69Ch8fX1hZmaGfv36\noUGDBsjLy8P58+exa9cu2NjYwM/Pr9T36+vri7y8PFSo8Pa8JMzNzREdHY2mTZuq3RcdHQ1zc3Pk\n5+eX+odITEwMMjIyMGbMGLX7li5disWLF5fq/sojd3d35Ofnw8TExNih6O38+fMG+0KqUaMGIiIi\nAAA5OTlITk5GVFQUtm3bhlOnTsHBwcEg+y1PytrrSU7S09MxZcoUeHp6olGjRir3yeW9unfvXkyZ\nMgUDBgyAra2tyn3BwcEICgpCxYoVjRRd2fD2VAdlxOTJk5Gfn4/ff/8d3t7eavffunWrVPeXk5MD\na2trCIIAU1PTUt223HXr1g2rV6/G7NmzVZ77f//7X/z555/4/PPPsWrVKoPsW1vhYKiCPTc3F5Uq\nVTLIto2lrL1eDfllZGtri88//1y6PWzYMDg5OWH+/PmIjo7GuHHjXnsfys+K8qqsvZ7kSNvEcXI6\ntppiVCgUsopRrnhJWmYuXLgABwcHjcUiAFStWlVtWWJiItq3bw87OztYWFigUaNGGs9SKXuojh8/\njg4dOqBy5crSX4OaehhFUcRPP/2ENm3awNnZGWZmZnBzc8PIkSNx7969V3p+Z86cgUKhwNdff63x\n/qCgIJiZmeHu3bsAgKtXr2LgwIFwc3ODubk5qlatilatWiEuLu6V9v+8AQMG4P79+9iwYYPK8ujo\naDg5OeHjjz9We4yy12X//v1q9+nTr+ju7o79+/dLfT3Kf8rtaephVC7LyspCv3794OjoiEqVKuGj\njz7C8ePHVdZ9vl/ot99+Q9OmTWFpaYnRo0dL6yxbtgxNmjSBpaUlKleujA4dOuDgwYMa401OTkaX\nLl3g4OAACwsL1KxZE4MHD5byo/Tbb7/hww8/hI2NDaysrPDBBx9g3bp1atvbunUrfH19UaVKFVha\nWsLNzQ09evTAhQsXpHX0ybmmvqjnl23ZsgXNmjWDhYUFXFxcMGHCBDx9+lQtnnXr1qFRo0awsLCA\nm5sbpkyZgsTERL1aEb755hsoFAqcPn1a7b6HDx/CwsIC3bp1k5Zp6mHctWsXevfuDU9PT1haWsLO\nzg4dOnTQ+Pp6We3btwcAXLp06aX3pXwtp6WloWfPnrC3t5fOyrx4Cfz5fy8+v6NHj6Jbt26oUqUK\nzM3N8e6772LatGlquVDuLzMzE0FBQbC3t4eVlRU6duyo8tooyYABA2BhYYEnT55Iyw4fPgyFQgEH\nBweVQmH79u1QKBSIj4+XlmnqYVQuO3z4MHx9fVGpUiU4OjpiyJAhePTokVoMKSkpaNWqFSwtLVGt\nWjWMHj0aubm5GuN99OgRvvvuO9SsWRPm5uZwdnZG//79ceXKFWmdJ0+ewMLCAiEhISqPHTZsGBQK\nBb766iuV5b1794atrS2Ki4t1Hq8LFy4gODhY+mz38PDAhAkT8PjxY5X1dL0fY2JiEBAQAOBZDl58\nLeh6r65duxbvvfceLC0tUatWLSxbtgwAkJGRgZ49e8LBwQE2NjYIDg5WO5Znz57FyJEj0aBBA+mz\nx8fHB8uXL1dZLyQkBFOmTAEAeHh4SDEql2n7XM/KysKoUaNQo0YNmJmZwdXVFaGhoWrff8rHJycn\nY9asWVJO69atWyrfVXLBM4wyU6tWLWzbtg0JCQkqXzbaLFmyBMOHD0fLli3x/fffw8rKCrt27cKI\nESNw6dIlzJw5U1pXEARcuXIFbdu2RWBgIHr16qX2Bnz+zNeTJ08wa9Ys9OzZE926dYOVlRWOHDmC\n5cuXIyUlBampqS991qRevXpo1qwZVq1ahcjISJXiKDs7Gxs3bkTnzp3h4OCAoqIitGvXDjdu3MCo\nUaNQp04dPHz4ECdPnkRKSgr69ev3Uvt+8Xk2btwY7733HqKiohAYGAjg2WWp1atXY9CgQa90RkjX\nJce5c+fiu+++Q1ZWFn7++Wdpeb169XRuo2PHjnBwcMDkyZORmZmJ+fPnw9fXF4cPH0aDBg1U1t2w\nYQOuXLmCkSNHYuTIkbCxsQHwrMiJjIzE+++/j4iICGRnZ2PJkiXw9/fHxo0b0alTJ2kbixcvxogR\nI1CjRg2MGjUKbm5uyMjIwJYtW3D9+nXpMuf333+PadOmoVOnTpg6dSoUCgXWr1+PXr16Yf78+Rg5\nciQAYN++fejatSsaNmyIiRMnonLlyrh+/Tr27NmDS5cuoXbt2i+dc03Hatu2bVi4cCFGjBiBwYMH\nY8OGDZg1axbs7Ozw3XffSev99ttvCAoKQu3atREeHg4TExPExsZi8+bNeuUyJCQEkZGRiIuLQ2Rk\npMp9a9aswZMnT1S+6DX1SMXGxuLBgwcICQnBO++8g2vXrmHZsmVo27YtkpOT8eGHH5YYQ0mUhZaj\no+NL70sQBOTm5sLX1xcffvghIiIicPv2bQDPXsMvFku///475s+fj2rVqknLtm7diu7du6NOnToY\nN24c7O3tcejQIfzwww84ceIE1qxZo7K/R48eoU2bNmjRogUiIiJw+fJlzJ07F59++in+/PNPnT8G\na9u2LWJjY3Hw4EGpgNmzZw8UCgUePHiA48ePo0mTJgCApKQkjQWuppyfOHECn3zyCQYOHIgvvvgC\nycnJWL58ORQKhcof5n/88Qc++ugj2Nra4ttvv4WtrS3+85//aPxjrLCwEB06dMChQ4fQq1cvjB8/\nHufPn8eiRYuwa9cuHD16FNWrV4eZmRlatWqF5ORklccrn1dSUpK0TBRF7N27F23atNF5rFJTUxEQ\nEAB7e3uMGDEC1atXx4kTJzBv3jwcPHgQ+/btQ4UKFfR6P/r6+mLixImYNm0ahg0bhtatWwNQP7mh\n6dhu2bIFv/76K0aNGgV7e3ssW7YMQ4cOhYmJCcLCwtCuXTtERETgyJEjiIqKgrm5OZYuXSo9ft++\nfThw4AC6du0KDw8PPHr0CGvWrMGQIUNw584dfPvttwCA4cOHIycnBwkJCfj555+l90TDhg21HqOH\nDx+iZcuWuHTpEgYNGoQmTZrg2LFjWLRoEZKSknDkyBG1qzYTJ05Efn4+RowYAVNTUyxatAghISGo\nVasWWrZsWWJOygSRZOXw4cOiqampKAiCWLt2bXHAgAHiokWLxDNnzqite+PGDdHMzEzs27ev2n1j\nxowRTUxMxMuXL0vL3NzcREEQxOXLl6utn5ycLAqCIMbGxqosz8/PV1t3+fLloiAI4po1a1SWC4Ig\nDhgwQOdzXLBggSgIgrht2zaV5cuWLRMFQRATEhJEURTFkydPioIgiJGRkTq3+TL69+8vCoIgZmVl\nib/88otoYmIiXrt2TRRFUVy5cqUoCIL4119/ifHx8WrHJDo6WhQEQdy3b5/adn19fUUPD49XWvZi\nbJqW9ejRQ2V5amqqqFAoxI4dO0rL0tLSREEQRFNTU/Hs2bMq6589e1YUBEFs3bq1WFhYKC2/ceOG\nWLlyZdHd3V18+vSpKIqiePXqVdHU1FRs0KCB+PDhQ7U4i4uLpRgEQRAnTZqkts5nn30m2tjYiLm5\nuaIoiuLYsWNFQRDEO3fuaHzuoqh/zpXPc/LkyWrLKlWqJGZkZKis7+XlJTo7O0u3CwsLRRcXF7Fa\ntWrigwcPpOW5ubmip6enxveCJs2aNRNdXFyk46b04YcfilWqVFE5zm5ubqK/v7/Keo8ePVLb5q1b\nt0RHR0exc+fOOvev3G69evXErKws8c6dO+Lly5fFqKgo0dbWVjQ1NRX/+uuvl96Xr6+vKAiC+M9/\n/lPn/tPS0kQnJyexdu3a4r1790RRFMW8vDyxatWqoq+vr9qxmTNnjigIgrh37161/b2Y98jISFEQ\nBHHnzp0647h27Zraa9Hf31/89NNPRRsbG3HmzJnS8iZNmogNGzZUebymzy9BEEQTExPxyJEjKsu7\ndOkiVqxYUeWYtmjRQjQzMxMvXLggLSsoKBCbN2+u9lpdsmSJKAiC+M0336hsd+vWraIgCGJwcLC0\nbOrUqaIgCNJ2MzIypHUEQRBv3boliqIonjp1ShQEQZw9e7bOY9WwYUOxXr160ntTKSEhQRQEQYyJ\niRFFUf/3o7bvD1HU/V69cuWKtPzOnTuiubm5KAiCOGfOHJXtdO/eXTQ1NVU55ppe08XFxaKfn59o\na2ur8v4LCwsTBUFQ+2wQRc2f6xMnThQFQRAXLVqksq7y++v594by8U2aNFHZ5/Xr10UzMzMxKChI\nbZ9lES9Jy8wHH3yA1NRU9O/fH9nZ2YiJicHIkSNRv359+Pr6Ii0tTVp37dq1KCgowMCBA5GVlaXy\n7+OPP0ZxcTESExNVtu/g4PBSQ0eYmZkBAJ4+fYoHDx4gKytL+qv8yJEjr/Qcg4KCYGpqqnaqPi4u\nDg4ODtKlYOUlsKSkJNy5c+eV9lUSQRDw+eefo2LFitLlx+joaDRv3hz169cv9f29rgkTJqjcbtKk\nCdq1a4fExES1y0hdunRB3bp1VZZt3LhR2s7zvZLOzs4YMGAAMjIycOLECQBAfHw8CgsLERYWJp2d\nfJ7ybMHKlSshCAL69eun9hr85JNPkJOTg8OHDwMAKleuDODZ67aoqEjjcyyNnH/22WdwdXVVWebn\n54ebN29Kxyk1NRWZmZkICQlRaYC3srLC8OHD9d5X//79kZmZid27d0vL0tLScOjQIQQFBensSbW0\ntJT+Pzc3F3fv3oVCoUDz5s3xxx9/6B3H2bNnUaVKFTg5OaFmzZoYNGgQnJycsHHjRum1/LL7EgRB\nZ+/jw4cP8fHHH6OoqAhbt26FnZ0dAGD37t24ffs2QkJCcO/ePZXXhfIs9q5du1S2ZWJigi+//FJl\nmfKz5uLFizqPQfXq1VGnTh3prJuyF7xjx47w9fXFnj17AAAPHjzAyZMnpbOQurRo0QLNmjVTi6uo\nqAjp6ekAgNu3b+P333/Hp59+ilq1aknrVaxYEWPHjlXbZkJCAkxMTFTOeANA586d0ahRI+m9Cjw7\ncwpAel5JSUmoUKECwsPDIQiCdPZR+V9dz+v06dM4ffo0goKCkJeXp5Ib5eV0ZW4M/Rn82WefoUaN\nGtJtR0dH1KlTBxUqVMCoUaNU1v3www9RWFgoHXNA9TWdn5+Pu3fv4u7du2jXrh2ys7Nx7ty5V44t\nISEBTk5OGDp0qMryYcOGoUqVKkhISFB7zMiRI1Xe8y4uLqhTp45er9+ygAWjDHl5eSE6Oho3b95E\neno6YmNj0bp1axw4cACffvopCgsLATzrBwSAjz76CE5OTir/2rdvD0EQpMtISjVr1nypX2quWbMG\n77//PiwtLWFvby99IQHA/fv3X+n52dnZ4eOPP8bGjRuRk5MD4FlPS0pKCvr06SO94dzc3DBp0iTs\n2rULzs7O8PHxwTfffIOjR4++0n41sbe3R9euXaVfLicnJ8t2LMnnL1s/v+zp06fIyMhQWV6nTh21\ndZV/bLx4+RqAVFRcvnwZwP8uZzZu3LjEmM6cOQNRFPHuu++qvQYHDx4MQRCkH2qFhoaicePGGDly\nJBwcHNClSxf88ssvyMrKkrZXGjn39PRUW6a8fK7svVQeixeLakDzsdNG0x8/cXFxEEVRr5aJS5cu\noU+fPrCzs4ONjY1U9G3fvh0PHjzQOw4PDw8kJiYiMTER+/fvx8WLF3H+/Hl07NjxlfdVpUoVjX8s\nKBUVFaFXr164ePEi1q1bh9q1a0v3KT+bBg4cqPa6qFevnsbPJhcXF7UfHryYt+LiYty8eVPlX3Z2\ntrS+v78/jh49itzcXBw6dAj5+fkICAiAv78/UlJSUFhYiL1796K4uFjvglGf15PyffPuu++qravp\nfZuWlgYXFxe1X+sCz96fOTk50vvCx8cH1tbWUkGYlJQEHx8feHp6wtvbWyqEk5KS4ODgoPYr5Rcp\ncxMWFqaWm6pVq+Lx48dSbgz9Gazp2NrZ2cHZ2VmtJUj5x8jz/dO5ubkYN24cXF1dYWlpKb2mv//+\newCv/h0FPMtR3bp11S7vm5iYoHbt2ionb0p6Pvb29mo932UVexhlztXVFcHBwQgODkbr1q1x8OBB\n/Pe//0XLli2lJu4VK1bA2dlZ4+Nf/BHG83+R6bJ+/Xr06dMH77//PubNm4caNWrA3NwcRUVF6Nix\no16N1dr069cP69evx5o1azBo0CCsWLECoiiif//+Kuv9+OOPGDhwILZu3YoDBw5g2bJliIyMxIQJ\nEzB9+vRX3v/zBg4ciE6dOmHIkCEwMzNDUFCQ1nVLKra1nTUzhpfJ8+sQRRGCIGDHjh1ah81QFqP2\n9vb473//iwMHDmD37t3Yv38/xo4di7CwMGzbtg0ffPABgNfPeUnDd4hafsX5quzt7dG5c2ds2LAB\njx49gpWVFVasWIH69etrHK7pebm5uWjTpg3y8vIwduxYeHt7w9raGgqFAtOmTVPrWyuJlZVViQXQ\nq+xL12to5MiRSExMxPLly9WG+lIe51mzZuG9997T+HgXFxeV2/rk7cqVK2pfyiEhIYiKigLw7Gzc\n4sWLsX//fhw6dEg665iXl4evv/4av//+O5KSkmBiYgJfX98Sn9/LxGVIFSpUQOvWrVUKRmVvrL+/\nPzZt2gRRFLFv3z589NFHOrenjHncuHEqf1A8T1mcAYb9DNZ2bPU95p9//jm2bt2KYcOGoU2bNnBw\ncICJiQm2bt2KOXPmvNZ31KvQFvebeJ28CSwYy5DmzZvj4MGDuH79OoD/nQlxcHDQ+6/ll7FixQpY\nWFggOTkZ5ubm0vKzZ8++9rY7d+4MR0dHrFixQioY69WrBx8fH7V1PTw8EBoaitDQUDx58gQdOnTA\nzJkzMW7cOKl5+XW0b98e77zzDhITE9G3b98Sz6rY29sDgMZfiaelpUmX8EvyqmPx/f3333j//ffV\nllWoUAFubm46H688M/znn3+q/SHx999/A/jfX8jKM2/Hjx9XucT2ojp16mDnzp2oUaOGxrMrL1Io\nFPD19ZW+rE+fPo2mTZti6tSp2LJli7SeoXPu7u4OQPNr+WUvY/Xv3x8bNmzAmjVrUKdOHVy+fBkz\nZszQ+bg9e/YgMzMT0dHRan8oTZw48aVieNP7ioyMxLJly/DNN99oPCOv/GyytLQs1c8mZ2dntTab\n5wtPPz8/CIKAPXv24PDhw9K+GzZsCEdHR+zZswfJyclo0qRJie/zl6V8PynP3j1P+d56nqenJ3bu\n3ImHDx+qnWX8+++/YWtrq/I6DwgIwLZt2xAfH48bN25Il6nbtm2LuXPnYt26dXj48KFex1qZG4VC\noXdudL0fjTHg9YMHD7Blyxb0798fCxcuVLnvxXYH4OU/dz09PXH27Fk8ffpUpRAsKirC+fPnNZ5N\nLO94SVpmdu/erXH4j7y8POzatQuCIEhnbAIDA2FmZoawsDDk5+erPebhw4coKCh45ViUb5Ln4xFF\nEVOnTn3lbSpVqFABn3/+OQ4cOIBVq1bh4sWLal9k2dnZ0uV3JTMzM6kwef5yw9mzZ6XLQi9LEAQs\nWLAA4eHh+Oabb0pcV/lh+3zPGgCsXr0amZmZeu2vUqVKJQ5LpO2D7flfvAPAsWPHkJiYiLZt2+p1\nRrFr164QBAGRkZEqZ0OVhYS7u7t0Cbpnz54wNTXF5MmTpbYBTYKDgwE8Kzo0/TX//Lihmi7L1K1b\nF+bm5lIuXybnr6NZs2ZwdnZGTEyMyuXY3Nxc/Prrry+1rS5dusDR0RFxcXGIi4uDQqHAF198ofNx\nyvfXi8dt165dr9wf/Cb2lZCQgG+//Rbdu3eXBgt/UYcOHeDk5ITp06drzFleXp7W4WZKYmZmhoCA\nAJV/z/+h4ujoCG9vb2zZsgVHjx6VCiJBEODv74/4+Hj8/fffpf4HdtWqVfHBBx9g48aNKsMAFRQU\nYM6cOWrrd+vWDcXFxWpn6LZv344TJ06ga9euKsuV8YaHh8Pc3BytWrUCALRp0wYmJiYIDw9XWa8k\njRs3hpeXF3799VeNl1WLiope+v2o/LXwm7z0amJiAkEQ1F7TmZmZWLZsmdrn6MvG2K1bN9y5c0ca\n5kdp6dKlyMrK0msUk/KGZxhlZuzYsbh37x66du0KLy8vWFpa4urVq1i1ahUuXLiA/v37Sz1o1atX\nx6JFizB48GDUq1cPwcHBcHV1xZ07d3D69Gls3LgRZ86cUfsBgL569eqF9evXIyAgAMHBwSgsLMSG\nDRuQl5dXKs+1f//+mDdvHkaMGAETExO1L9mkpCQMHToUPXv2RJ06dVCpUiWkpqZi+fLl+OCDD1R6\npurXrw83NzeNH4D6+OSTT/DJJ5/oXK9u3br46KOPsHjxYoiiiEaNGuHEiRPYsGEDatWqpfbhCqhf\njmjRogW2bt2K0NBQtGjRAiYmJmjbti2qVKmicX2lK1euoEOHDvjkk0+kYXWsrKzUhnTRpk6dOhg/\nfjxmzpyJNm3aIDAwEDk5OViyZAkeP36M1atXSx+y1atXx88//4xRo0bB29sb/fr1g6urK65fv45N\nmzYhKioKjRo1go+PD8LDwxEeHo733nsPvXr1grOzMzIzM5Gamort27dL4+INHjwY169fR/v27eHq\n6oq8vDz89ttvePTokdTv9zI5fx0mJiaYNWsW+vbti+bNm2PQoEEwMTFBTEwMHBwckJ6ervcZiQoV\nKiAoKAjz589Hamoq2rVrp7VF5HmtW7dGtWrV8PXXXyM9PV0a2uTf//43vL29NY7v+KpeZV+aXod3\n797FF198AUtLS3To0AH//ve/Ve6vVq0aPvroI1haWiIuLg6fffYZ6tati4EDB6JmzZp48OABzp49\ni4SEBGzYsAFt2rQpcX+vIiAgAD///DMEQVApoAICAqRxFw1xRWb27Nnw8/NDq1atMGrUKGlYHU0n\nAEJCQhAbG4sZM2YgPT0drVu3xsWLF7Fw4UJUq1YN06ZNU1n/vffeg52dHc6cOQN/f3+p19PGxgY+\nPj74448/4OLiorEnV5MVK1YgICAADRs2xMCBA1G/fn08fvwYFy9eREJCAqZPn45+/frp/X5s0KAB\nrK2tsXDhQlhaWsLW1hZVq1Z95bnT9XktWFtbo3379vj3v/8NCwsL+Pj4ICMjA0uWLIGnp6dan2WL\nFi0APBta7PPPP4e5uTm8vb019nQDz34cGB8fj1GjRuHYsWN47733cPz4cURFReHdd99V+xHi6z6f\nMuGN/iabdNq1a5c4atQosVGjRqKjo6NYoUIF0dHRUQwICBCjo6M1PubgwYNit27dRCcnJ9HU1FR0\ncXERAwICxNmzZ6sMi+Pu7q42rIdScnKyqFAo1IZFWLp0qVi/fn3R3NxcdHZ2FocNGybeu3dP6xAU\n+gyr8zxvb29RoVCI7du3V7svLS1NHD58uFivXj3RxsZGtLKyEuvXry+GhYWJ2dnZavvWNlTNi0JC\nQkSFQiHevXu3xPXi4+M1HpObN2+KvXr1Em1sbMRKlSqJnTt3Fs+ePSv6+fmpxaBp2ePHj8VBgwaJ\nVatWFU1MTESFQiEN56CM7Xn9+/cXFQqFmJWVJQYHB4sODg6ipaWl2LZtW/HYsWMq62oawuJFS5cu\nFRs3biyam5uLNjY2Yvv27cWUlBSN6+7atUts166daGtrK5qbm4s1a9YUhw4dqnbstm7dKnbo0EG0\nt7cXzczMRFdXV7Fz587i4sWLpXXWr18vdu3aVXznnXdEMzMzsUqVKqKfn5+4fv16lfj1yXlJQ3Vo\neu7h4eGiQqFQG1IjPj5ebNiwoRRzWFiYNLRIfHy81mP4IuXwQgqFQly1apXGdTS9/06dOiV27NhR\ntLOzE62trUV/f38xJSVF4+tAG3d3d9Hb21vnei+zL02vW1H83zFWKBSiIAhq/158fn/++af4xRdf\niNWrVxdNTU3FqlWriq1atRKnTp0qDcGjz/5Kej2/aPPmzaIgCGKtWrVUll+4cEEUBEE0MzMT8/Ly\n1B73Mp9p0dHRKu9bpf3794stW7YUzc3NxWrVqomhoaHin3/+qfE5PHr0SPzuu+9ET09P6dj069dP\nZZiZ5/Xo0UNUKBTi1KlTVZZPmjRJVCgU4hdffKH9oGiQkZEhDh8+XHR3dxdNTU1FBwcH0cfHR5w4\ncaI0zNjLfAZv27ZNbNKkiTQsjvK18LLvVW2vBU3HPCsrSxw8eLDo4uIimpubiw0bNhSXLVsmxsTE\naMzPzJkzRU9PT7FixYqiQqGQ9q8tn3fu3BFHjhwpvvPOO2LFihXFGjVqiKGhoWqff9oeX9LzKYsE\nUSwvpS9R+RQSEoK4uLg33sD9tvrXv/6F8ePH4/fff0fz5s2NHQ4RkSywh5GoDDBGU3l5V1hYqHa5\nMDc3FwsWLICjo6M0KwgREbGHkahM4IWA0nfp0iV06tQJQUFBcHd3R2ZmJmJjY5GRkYFFixbpHHSb\niOhtwk9xJtkgAAAgAElEQVREIpnTNAcxvT4nJye0aNECK1euxO3bt1GhQgU0bNgQM2fORM+ePY0d\nHhGRrLCHUYf33nsPJ0+eNHYYRERERDr5+vpi7969pb5dFow6CILAy4EyoxzGheSFeZEn5kWemBd5\nUX7Xl4e8GKpu4Y9eqMx5fvJ5kg/mRZ6YF3liXuSJedGOBSMRERG91cLCwowdguyxYKQyJyQkxNgh\nkAbMizwxL/LEvMiL8jI086Idexh1YA8jERERlRXsYST6f4b49Re9PuZFnpgXeWJe5Il50Y4FIxER\nERGViJekdeAlaSIiIioreEmaiIiIyADK+tiLbwILRipz2GMiT8yLPDEv8sS8yMvkyZMBMC8lYcFI\nRERERCViD6MO7GEkIiIq38rTdz17GImIiIjIKFgwUpnDHhN5Yl7kiXmRJ+ZFnpgX7VgwEhER0VuN\nc0nrxh5GHcpTXwMRERGVb+xhJCIiIiKjYMFIZQ57TOSJeZEn5kWemBd5Yl60Y8FIRERERCViD6MO\n7GEkIiKisoI9jEREREQGwLmkdWPBSGUOe0zkiXmRJ+ZFnpgXeeFc0rqxYCQiIiKiErGHUQf2MBIR\nEZVv5em7nj2MRERERGQULBipzGGPiTwxL/LEvMgT8yJPzIt2LBiJiIjorca5pHVjD6MO5amvgYiI\niMo39jASERERkVGwYKQyhz0m8sS8yBPzIk/MizwxL9qxYCQiIiKiErGHUQf2MBIREVFZwR5GIiIi\nIgPgXNK6sWCkMoc9JvLEvMgT8yJPzIu8cC5p3VgwEhEREVGJ2MOoA3sYiYiIyrfy9F3PHkYiIiIi\nMgoWjFTmsMdEnpgXeWJe5Il5kSfmRTsWjERERPRW41zSurGHUYfy1NdARERE5Rt7GImIiIjIKFgw\nUpnDHhN5Yl7kiXmRJ+ZFnpgX7VgwEhEREVGJ2MOoA3sYiYiIqKxgDyMRERGRAXAuad1YMFKZwx4T\neWJe5Il5kSfmRV44l7RuLBiJiIiIqETsYdSBPYxERETlW3n6rmcPIxEREREZBQtGKnPYYyJPzIs8\nMS/yxLzIE/OiHQtGIiIieqtxLmnd2MOoQ3nqayAiIqLyjT2MRERERGQULBipzGGPiTwxL/LEvMgT\n8yJPzIt2LBiJiIiIqETsYdSBPYxERERUVrCHkYiIiMgAOJe0biwYqcxhj4k8MS/yxLzIE/MiL5xL\nWjcWjERERERUIvYw6sAeRiIiovKtPH3Xs4eRiIiIiIyCBSOVOewxkSfmRZ6YF3liXuSJedGOBSMR\nERG91TiXtG7sYdShPPU1EBERUfnGHkYiIiIiMgoWjFTmsMdEnpgXeWJe5Il5kSfmRTsWjERERERU\nIvYw6sAeRiIiIior2MNIREREZACcS1o3FoxU5rDHRJ6YF3liXuSJeZEXziWtGwtGIiIiIioRexh1\nYA8jERFR+VaevuvZw0hERERERsGCkcoc9pjIE/MiT8yLPDEv8sS8aMeCkYiIiN5qnEtaN/Yw6iAI\nAibOmGjsMIjKBCcbJ4wZPsbYYRARvbUM1cNYodS3WA65tXUzdghEZULGngxjh0BERAbAS9JU5pw7\nes7YIZAGzIs8sSdLnpgXeWJetGPBSEREREQlYg+jDoIgYPHRxcYOg6hMyNiTgZ8m/GTsMIiI3loc\nh5GIiIjIADiXtG4sGKnMYa+cPDEv8sSeLHliXuSFc0nrxoKRiIiIiErEHkYd2MNIpD/2MBJRWcS5\npHXjGUYiIiIiKhELRipz2CsnT8yLPLEnS56YF3liXrRjwUhERERvNc4lrRt7GHVgDyOR/tjDSERk\nXOxhJCIiIiKjYMFIZQ575eSJeZEn9mTJE/MiT8yLdiwYiYiIiKhELBipzKnrU9fYIZAGr5uXgoIC\nDBo0CO7u7rCxsUHjxo2xY8cOtfWmTJkChUKBpKQkaVlRURFGjx4NZ2dnODg4oGvXrrhx44bG/fz+\n++9o164dHBwc4OTkhMDAQNy8eVOvbRUVFaFPnz6ws7NDp06dkJOTIz1u2rRpmDNnzmsdA0Pw8/Mz\ndgikAfMiT8yLdiwYiUgWioqK4Orqiv379yM7OxtTp05FYGAgMjIypHUuXbqEtWvXwsXFReWxCxcu\nxIEDB3Dq1CncuHEDdnZ2GD16tMb9PHjwAMOHD0dGRgYyMjJgbW2NAQMG6LWt9evXw8TEBHfv3oWt\nrS2WLFkCAEhLS8PmzZsxZsyY0j4sRPQGcC5p3VgwUpnDXjl5et28WFpaIiwsDK6urgCALl26wMPD\nA8eOHZPWCQ0NxYwZM1CxYkWVx/7111/o0KEDqlSpAjMzMwQGBuKvv/7SuJ+OHTuiR48eqFSpEiws\nLDBq1CgcPHhQr22lp6fD19cXCoUCfn5+uHz5MgDgyy+/xOzZs6FQyO8jlT1Z8sS8yAvnktZNfp9u\nREQAbt26hfPnz6NBgwYAgPj4eJibm6NTp05q67Zv3x7bt29HZmYmHj9+jJUrV6Jz58567Wf//v3w\n8vLSa1teXl5ISkrCkydPkJycDC8vLyQkJMDJyQktWrQohWdNRCRPFYwdANHLYg+jPNX1qYuMPRm6\nV9RDYWEh+vbti5CQENSpUwc5OTmYNGkSEhMTNa7fo0cPbNq0CdWrV4eJiQkaNmyIBQsW6NzPqVOn\n8OOPP2LTpk16batz5844cOAAmjdvjhYtWqB3795o27YtEhMTMWnSJKSkpMDLyws///yz2llQY2FP\nljwxL/LEvGj31p5h3LZtG9q0aQNra2vY2tqiWbNmSE5ONnZYRG+94uJiBAcHw9zcHPPnzwfwrL8o\nODhYulwNQGVg2nHjxiEnJwf37t3Do0eP0K1bN41nIp938eJFdO7cGfPmzUOrVq303lZERAROnjyJ\nX3/9FRERERgxYgT++OMPpKamYt++fSgoKEBUVFRpHQ4iIll4KwvGxYsX47PPPkOzZs2wYcMGxMfH\nIzAwEHl5ecYOjfTAHkZ5Ko28iKKIQYMG4c6dO1i3bh1MTEwAAElJSZg3bx6cnZ3h7OyMq1evIjAw\nEJGRkQCAHTt2YMCAAahcuTJMTU0RGhqKI0eO4N69exr3k5GRgXbt2uGHH35A3759Ve7Td1unT5/G\n4cOHMWTIEJw+fRpNmzYFAPj4+ODUqVOvfSxKC3uy5Il5kSfmRbu37pJ0eno6vvrqK8yaNQtffvml\ntLx9+/ZGjIqIAGDEiBE4e/YsEhMTYWZmJi3fs2cPioqKADwrKps1a4Y5c+ZIZ/4aNmyI2NhY+Pr6\nwsLCAgsXLkT16tVhb2+vto/r168jICAAoaGhGDp0qNr9+mxLFEWMHj0av/zyCwRBgKenJ+bPn4+C\nggLs27cPPj4+pX1oiMiAOJe0bm/dGcaoqChUqFABw4cPN3Yo9IrYwyhPr5uXjIwMLFmyBCdPnkS1\natVgbW0Na2trrF69Gvb29nBycoKTkxOqVq0KExMT2NnZwdLSEgAwZ84cKBQK1KxZE05OTtixYwcS\nEhKkbXt5eWH16tUAgGXLliEtLQ3h4eHSPmxsbKR1dW0LAGJiYuDt7Y3GjRsDALp37w4XFxc4OTnh\n/v37GgtRY2FPljwxL/KiHFaHedFOEA0xQ7WMBQQEIDs7G6Ghofjxxx9x5coVuLu7Y+zYsRg5cqTa\n+oIgYPHRxUaIlKjsydiTgZ8m/GTsMIiI3lqCIMAQpd1bd4bxxo0buHDhAiZMmICJEydi9+7daNeu\nHUJDQzFv3jxjh0d6YA+jPDEv8sSeLHliXuSJedHurethLC4uRk5ODmJjY/HZZ58BeHYKOj09HRER\nESp9jUrRYdFwdHEEAFhUskCNujWky2/KL0nefnO3r567Kqt4ePt/tzMuZWDv3r3SZR3lhy9vG+/2\niRMnZBUPb/O2nG+XxfeL8v/T09NhSG/dJekWLVrgyJEjyM7OhpWVlbR8zpw5+Prrr5GZmYmqVatK\ny3lJmkh/vCRNRGRcvCRdSho0aGCQA0lERERlE+eS1u2tKxi7d+8O4NlYa8/bsWMHatSooXJ2keSJ\nvXLyxLzI0/OXrUg+mBd54VzSur11PYydO3eGv78/hg0bhqysLHh4eCA+Ph67d+9GTEyMscMjIiIi\nkp23rocRAHJycvDdd99h7dq1uH//PurVq4dvv/0Wffr0UVuXPYxE+mMPIxGVRYbq+zMGQz2Xt+4M\nIwBYW1tj/vz50jy1RERERKTdW9fDSGUfe+XkiXmRJ/ZkyRPzIk/Mi3YsGImIiOitxrmkdXsrexhf\nBnsYifTHHkYiIuPiOIxEREREZBQsGKnMYa+cPDEv8sSeLHliXuSJedGOBSMRERERlYg9jDqwh5FI\nf+xhJCIyLvYwEhERERkA55LWjQUjlTnslZMn5kWe2JMlT8yLvHAuad1YMBIRERFRidjDqAN7GIn0\nxx5GIiqLOJe0bjzDSEREREQlYsFIZQ575eSJeZEn9mTJE/MiT8yLdiwYiYiI6K3GuaR1Yw+jDuxh\nJNIfexiJiIyLPYxEREREZBQsGKnMYa+cPDEv8sSeLHliXuSJedGOBSMRERERlYg9jDqwh5FIf+xh\nJCIyLvYwEhERERkA55LWjQUjlTnslZMn5kWe2JMlT8yLvHAuad0qGDuAsiBjT4axQ6Dn3Lp0C+YP\nzY0dBr3g1qVbaNa4mbHDICIiA2APow7laX5JIiIiUleevuvZw0hERERERsGCkcoc9pjIE/MiT8yL\nPDEv8sS8aMeCkYiIiN5qnEtaN/Yw6lCe+hqIiIiofGMPIxEREREZBQtGKnPYYyJPzIs8MS/yxLzI\nE/OiHQtGIiIiIioRexh1YA8jERERlRXsYSQiIiIyAM4lrRsLRipz2GMiT8yLPDEv8sS8yAvnktaN\nBSMRERERlYg9jDqwh5GIiKh8K0/f9YZ6LhVKfYvl0KSZk4wdAlGZ4GTjhDHDxxg7DCIiKmUsGPXg\n1tbN2CHQc84dPYe6PnWNHQa94NzRc7j98Laxw6AX7N27F35+fsYOg17AvMgT86IdexiJiIjorca5\npHVjD6MOgiBg8dHFxg6DqEzI2JOBnyb8ZOwwiIjeWhyHkYiIiIiMggUjlTnnjp4zdgikAfMiTxxX\nTp6YF3liXrRjwUhEREREJdKrh/Hp06cAABMTEwBAZmYmtm7dinr16qFVq1aGjdDI2MNIpD/2MBIR\nGZdRexi7dOmC+fPnAwByc3PRrFkzjB8/Hr6+voiNjS31oIiIiIjeFM4lrZteBWNqair8/f0BAOvX\nr4e1tTVu376NZcuW4V//+pdBAyR6EXvl5Il5kSf2ZMkT8yIvnEtaN70KxtzcXNjZ2QEAdu3ahW7d\nuqFixYrw9/fHxYsXDRogERERERmXXgVjjRo1kJKSgtzcXOzcuRPt2rUDANy7dw+WlpYGDZDoRZzl\nRZ6YF3nirBXyxLzIE/OinV5TA3799dfo168frKys4ObmhjZt2gAA9u/fj4YNGxo0QCIiIiIyLr3O\nMA4bNgyHDx9GVFQUDh48KP1aumbNmvjxxx8NGiDRi9grJ0/MizyxJ0uemBd5Yl600+sMIwD4+PjA\nx8dHZdnHH39c6gERERERvUmcS1o3vc4wiqKIBQsWoEGDBrCwsMDly5cBANOnT8eaNWsMGiDRi9gr\nJ0/MizyxJ0uemBd5UQ6rw7xop1fBOHfuXEydOhVDhgxRWe7i4iKNz0hE9DoKCgowaNAguLu7w8bG\nBo0bN8aOHTvU1psyZQoUCgX27NkjLevUqROsra2lf2ZmZlr7q1euXKmyrpWVFRQKBY4fPw7g2RdH\nxYoVpfttbGyQnp4OACgqKkKfPn1gZ2eHTp06IScnR9rutGnTMGfOnFI8IkRE8qFXwbho0SIsXboU\nX331FSpU+N9V7CZNmuDPP/80WHBEmrBXTp5eNy9FRUVwdXXF/v37kZ2djalTpyIwMBAZGRnSOpcu\nXcLatWvh4uICQRCk5du3b0dOTo70r2XLlggMDNS4n759+6qsu3DhQtSsWRONGzcG8GyWhKCgIOn+\n7OxsuLu7A3g2Dq2JiQnu3r0LW1tbLFmyBACQlpaGzZs3Y8yYMa91DAyBPVnyxLzIE/OinV4F45Ur\nV+Dt7a22vGLFisjLyyv1oIjo7WNpaYmwsDC4uroCeDbDlIeHB44dOyatExoaihkzZqBixYpat5Oe\nno4DBw6gX79+eu03JiZGZV1RFLVOq5Weng5fX18oFAr4+flJ7TlffvklZs+eDYVCr49UIqIyR69P\nNw8PD6Smpqot3759O+rXr1/qQRGVhL1y8lTaebl16xbOnz+PBg0aAADi4+Nhbm6OTp06lfi4uLg4\ntGnTRio8S5KRkaFWXAqCgM2bN8PBwQFeXl749ddfpfu8vLyQlJSEJ0+eIDk5GV5eXkhISICTkxNa\ntGjxis/UsNiTJU/MizwxL9rpVTCOHz8eoaGhWLlyJYqLi3Ho0CGEh4dj4sSJGD9+vKFjNKiOHTtC\noVDgn//8p7FDIaL/V1hYiL59+yIkJAR16tRBTk4OJk2ahLlz5+p8bFxcHEJCQvTaj7K4dHNzk5YF\nBgbi7NmzyMrKwtKlSzFlyhT85z//AQB07twZHh4eaN68Oezs7NC7d29MmTIFM2fOxKRJk+Dr64tR\no0ahsLDwlZ43ERkH55LWTa+CccCAAZg8eTK+++475OXloV+/fli2bBl++eUX9OnTx9AxGszq1atx\n6tQpAFDphyJ5Yw+jPJVWXoqLixEcHAxzc3PpR3Xh4eEIDg5WOWuo6bJxSkoKbt26hZ49e+q1r7i4\nOPTv319lWb169VCtWjUIgoAWLVpgzJgxWLt2rXR/REQETp48iV9//RUREREYMWIE/vjjD6SmpmLf\nvn0oKChAVFTUqzx1g2BPljwxL/LCuaR107vhZsiQIbhy5Qpu3bqFzMxMXLt2DYMGDTJkbAZ1//59\n/OMf/+CvGolkRBRFDBo0CHfu3MG6deukSQKSkpIwb948ODs7w9nZGVevXkVgYCAiIyNVHh8bG4se\nPXroNWXpwYMHkZmZqXdx+aLTp0/j8OHDGDJkCE6fPo2mTZsCeDZmrfIPUSKi8kKvgvHp06d4+vQp\nAKBKlSooLi7GsmXLcPDgQYMGZ0jffPMNvL290bt3b2OHQi+JPYzyVBp5GTFiBM6ePYtNmzbBzMxM\nWr5nzx789ddfOHnyJE6cOAEXFxcsWbIEI0eOlNbJy8tDfHy83pejY2Nj0bNnT1hZWaks37hxI+7f\nvw9RFHHkyBHMmzcPn376qco6oihi9OjR+OWXXyAIAjw9PZGSkoKCggLs27cPNWvWfPWDUMrYkyVP\nzIs8MS/a6VUwdunSRbo0lJubi2bNmmH8+PHw9fVFbGysQQM0hJSUFKxYsQILFiwwdihE9P8yMjKw\nZMkSnDx5EtWqVZPGQVy9ejXs7e3h5OQEJycnVK1aFSYmJrCzs1Mp9jZs2AA7OzuNH/heXl5YvXq1\ndDs/Px/x8fFql6MB4LfffkPt2rVhY2OD/v3747vvvkNwcLDKOjExMfD29paG4unevTtcXFzg5OSE\n+/fvY+jQoaV0VIiI5EEQtY0f8ZwqVapgz549aNiwIeLi4hAREYFTp05h5cqVmD17dpm6/FJQUIDG\njRujR48emDJlCgBAoVDg+++/l24/TxAELD66+E2HSSU4d/QczzLK0Lmj52D+0Bw/TfjJ2KHQc/bu\n3cuzJjLEvMiLIAgQRbFc5EX5XEqbXmcYc3NzYWdnBwDYtWsXunXrhooVK8Lf3x8XL14s9aAMaebM\nmXjy5AkmTZpk7FCIiIhIBjiXtG4VdK8C1KhRAykpKfjkk0+wc+dOaf7oe/fu6dVcLhdXrlzBTz/9\nhOXLlyMvL09l0PH8/Hw8fPgQ1tbWaoPvRodFw9HFEQBgUckCNerWkM5wKX8Zyttv9raSXOLh7bqo\n61MX+5fsV/kLXfmLQ9427m0lucTD237w8/OTVTxv++3w8PAy+35R/r9yClND0euS9OLFixEaGgor\nKyu4ubnh2LFjMDExwdy5c7Fx40YkJSUZNMjSsnfvXgQEBJS4zokTJ1TmoOUlaSL9ZezJ4CVpIiIj\nMuol6WHDhuHw4cOIiorCwYMHpaEuatasiR9//LHUgzKUxo0bY+/evSr/kpOTAQDBwcHYu3evrH7d\nSJpxHEZ5Yl7k6cWzJiQPzIs8MS/a6XVJGng2tpiPj490u7CwEB9//LFBgjIUW1tbtGnTRuN9bm5u\nWu8jIiIiepvpdYZx7ty5WLdunXR74MCBMDc3R506dXDuHM8q0JvFX0jLE/MiT8p+J5IX5kWemBft\n9CoY582bB0fHZz/62L9/P+Lj47Fq1So0btwYX3/9tUEDfBOKi4s1DqlDRERE5R/nktZNr4Lxxo0b\n8PT0BABs3rwZPXv2RO/evREeHo7Dhw8bNECiF7FXTp6YF3liT5Y8MS/ywrmkddOrYLSxscGtW7cA\nALt370bbtm0BABUqVEB+fr7hoiMiIiIio9PrRy/t27fHkCFD0KRJE1y8eBGdOnUCAPz999/w8PAw\naIBEL2KvnDzV9amLjD0Zxg6DXsCeLHliXuSJedFOrzOM8+fPx4cffoisrCysXbsWDg4OAIDU1FR8\n/vnnBg2QiIiIiIxLr4G732YcuFt+OJe0PHEuaXnaWw7mxi2PmBd54VzSuul1hhEAbt68icjISIwY\nMQJZWVkAgJSUFKSlpZV6UERERERvCueS1k2vM4ypqakICAiAp6cn/vzzT5w7dw6enp4ICwvDhQsX\nsGrVqjcRq1HwDCOR/jg1IBGRcRn1DOPXX3+NMWPG4Pjx4zA3N5eWd+zYESkpKaUeFBERERHJh14F\n47FjxxASEqK2vFq1atJwO0RvCsf7kyfmRZ44rpw8MS/yxLxop1fBaGFhgXv37qktP3fuHJycnEo9\nKCIiIiKSD70Kxk8//RSTJ09WGaQ7LS0NEyZMQI8ePQwWHJEm/IW0PDEv8lTWf/FZXjEv8sS8aKdX\nwRgZGYn79++jSpUqePz4MT788EPUqlULlStXxtSpUw0dIxEREZHBcC5p3fQqGG1tbXHgwAFs3LgR\n06dPx5gxY7Bz507s378flSpVMnSMRCrYKydPzIs8sSdLnpgXeeFc0rrpNTUg8Oxn2gEBAQgICDBk\nPEREREQkM3qdYQwJCcGcOXPUls+ePRuDBw8u9aCISsJeOXliXuSJPVnyxLzIE/OinV4F444dO+Dv\n76+2PCAgAFu3bi31oIiIiIhIPvQqGB88eKCxV9HS0lLjcDtEhsReOXliXuSJPVnyxLzIE/OinV4F\nY+3atbFlyxa15du2bUOtWrVKPSgiIiKiN4VzSeum11zSsbGxGD58OMaOHYu2bdsCABITE/Hzzz9j\nwYIFGDhwoMEDNRbOJU2kP84lTURkXIaaS1qvX0n3798f+fn5+PHHHzF9+nQAQPXq1TFnzpxyXSwS\nERERkZ6XpAFg2LBhuHbtGm7evImbN2/i6tWrGD58uCFjI9KIvXLyxLzIE3uy5Il5kSfmRTu9x2EE\ngMuXL+Pvv/+GIAioV68ePD09DRUXEREREcmEXj2M2dnZGDhwINavXw+F4tlJyeLiYvTo0QNRUVGw\ntrY2eKDGIggCJs6YaOwwiMoEJxsnjBk+xthhEBG9tQzVw6hXwThgwAAcOnQIS5YsQYsWLQAAhw4d\nwrBhw9CqVStERUWVemByYagDT0RERPIQHh5ebuaTNlTdolcP46ZNm7B06VL4+vrC1NQUpqam8PPz\nw9KlS7Fhw4ZSD4qoJOwxkSfmRZ6YF3liXuSFc0nrplfBmJeXBwcHB7Xl9vb2yM/PL/WgiIiIiEg+\n9Lok/dFHH8HGxgYrVqyAlZUVACA3Nxf9+vVDdnY2EhMTDR6osfCSNBERUflWnr7rjdrDePr0aXTo\n0AGPHz9Go0aNIIoiTp8+DUtLS+zcuRNeXl6lHphclKcXEREREakrT9/1Ru1h9Pb2xoULFxAZGYmm\nTZvCx8cHkZGRuHjxYrkuFkme2GMiT8yLPDEv8sS8yBPzop3OcRgLCgrg6uqKPXv2YMiQIW8iJiIi\nIqI3hnNJ66bXJel33nkHu3btQv369d9ETLJSnk5TExERUflm1EvSo0ePRkREBAoLC0s9ACIiIiKS\nN70KxpSUFGzcuBHvvPMO2rZti08++UT617VrV0PHSKSCPSbyxLzIE/MiT8yLPDEv2uk1l7SDgwO6\nd++u8T5BEEo1ICIiIiKSF716GN9m7GEkIiKissJQdYteZxiVLl26hDNnzgAA6tWrh5o1a5Z6QHI0\naeYkY4dAVG442ThhzPAxxg6DiEhSnuaSNhS9zjDevXsXAwcOxObNm6FQPGt7LC4uxscff4zo6GiN\n0waWF4IgYPHRxcYOg55z7ug51PWpa+ww6AX65iVjTwZ+mvDTG4iIgGc9WX5+fsYOg17AvMiL8qxc\neciLUX8lPXjwYFy6dAkHDhxAXl4e8vLycODAAaSlpWHw4MGlHhQRERERyYdeZxgtLS2RmJiIli1b\nqiw/fPgw2rZti8ePHxssQGPjGUai0sUzjEQkN+Xp9wpGPcPo6OgIKysrteWWlpZwdHQs9aCIiIiI\nSD70Khh/+OEHjB07FteuXZOWXbt2Df/4xz/www8/GCw4Ik3OHT1n7BBIA+ZFnjiunDwxL/LEvGin\n16+k586di/T0dLi7u6N69eoAgOvXr8PCwgK3b9/G3LlzATw7DXrq1CnDRUtERERUyjiXtG56FYw9\nevTQa2McxJveBP5CWp6YF3kq67/4LK+YF3lRDqnDvGinV8HIsYmIiIiI3l569TASyQl75eSJeZEn\n9mTJE/MiT8yLdiwYiYiIiKhEnEtaB47DSFS6OA4jEZHhGHUcRiIiIqLyir/V0E1rwWhiYoLbt28D\nAAYOHIjs7Ow3FhRRSdgrJ0/MizyxJ0uemBd5mTx5MgDmpSRaC0YLCwvk5OQAAGJiYpCfn//GgiIi\nIp2VIUAAACAASURBVCIi+dA6rE7Lli3RrVs3NGnSBAAwZswYWFhYqKwjiiIEQUBUVJRhoyR6Dsf7\nkyfmRZ44rpw8MS/yxLxop7VgjIuLw6xZs3Dx4kUAwN27d2FqaqoyOLeyYCQiIiKi8kvrJelq1aph\n1qxZ2LBhA1xdXbFq1Sps2bIFmzdvlv4pbxO9SeyVk6c3kZeCggIMGjQI7u7usLGxQePGjbFjxw4A\nwN9//w0fHx/Y29ujcuXKaNWqFVJSUqTHdurUCdbW1tI/MzMzNGzYUON+Vq5cqbKulZUVFAoFjh8/\nLq1z7NgxtGnTBtbW1qhWrRrmzZsHACgqKkKfPn1gZ2eHTp06Sa09ADBt2jTMmTPHEIdGK/ZkyRPz\nIk/Mi3Z6/Uo6PT0djo6Oho6FiKhERUVFcHV1xf79+5GdnY2pU6ciMDAQGRkZqF69OuLj43H37l3c\nv38fffr0Qc+ePaXHbt++HTk5OdK/li1bIjAwUON++vbtq7LuwoULUbNmTTRu3BgAkJWVhU6dOmHE\niBG4d+8eLl26hPbt2wMA1q9fDxMTE9y9exe2trZYsmQJACAtLQ2bN2/GmDFjDHyUiOhlcS5p3fQe\nVmfLli1o3bo1HBwc4OjoCF9fX2zdutWQsRFpxF45eXoTebG0tERYWBhcXV0BAF26dIGHhweOHTsG\nW1tbeHh4QBAEPH36FAqFAs7Ozhq3k56ejgMHDqBfv3567TcmJkZl3dmzZ6Njx44ICgpCxYoVYWVl\nhXfffVfatq+vLxQKBfz8/HD58mUAwJdffonZs2dDoXizo5mxJ0uemBd54VzSuun1ybVs2TJ0794d\ntWrVwowZMzB9+nR4eHigW7duWL58uaFjJCLS6NatWzh//jwaNGggLatcuTIsLCwwc+ZMrF27VuPj\n4uLi0KZNG6nwLElGRoZacfnHH3/Azs4OrVq1QtWqVdG1a1dcvXoVAODl5YWkpCQ8efIEycnJ8PLy\nQkJCApycnNCiRYvXfMZERMahV8E4Y8YMzJ49G9HR0Rg8eDAGDx6MmJgY/Otf/8KMGTMMHWOp2rlz\nJwICAuDs7Axzc3PUqFEDvXv3xpkzZ4wdGumJPYzy9KbzUlhYiL59+yIkJAR16tSRlj948AAPHz5E\nnz590KtXL40zHsTFxSEkJESv/SiLSzc3N2nZ1atXERsbi3nz5uHKlSvw8PBAUFAQAKBz587w8PBA\n8+bNYWdnh969e2PKlCmYOXMmJk2aBF9fX4waNQqFhYWvdwD0xJ4seWJe5Il50U6vgvHKlSvo2LGj\n2vKOHTsiPT29tGMyqPv376NZs2ZYsGABdu/ejYiICPz111/44IMPpDMERCRvxcXFCA4Ohrm5OebP\nn692v6WlJaZPn47z58/j9OnTKvelpKTg1q1bKv2NJYmLi0P//v3Vtt+9e3c0bdoUZmZmCAsLw6FD\nh6QfuERERODkyZP49ddfERERgREjRuCPP/5Aamoq9u3bh4KCAg5HRkRlil4FY40aNbBr1y615bt3\n71b5q7ss6NOnD2bMmIHu3bujdevW+OKLL7B+/Xrk5ORovXxF8sIeRnl6U3kRRRGDBg3CnTt3sG7d\nOpiYmGhc7+nTpyguLoalpaXK8tjYWPTo0UNtuSYHDx5EZmamWnGp7dfVLzp9+jQOHz6MIUOG4PTp\n02jatCkAwMfHB6dOndJrG6+LPVnyxLzIE/OinV4F4/jx4/HVV19h8ODBiI6ORnR0NAYNGoSvvvoK\n48aNM3SMBmdvbw8AWr94iEg+RowYgbNnz2LTpk0wMzOTlicmJuLEiRN4+vQpsrOz8Y9//AN169ZF\nrVq1pHXy8vIQHx+v9+Xo2NhY9OzZE1ZWVirLBwwYgISEBJw8eRKFhYX48ccf0bp1a1hbW0vriKKI\n0aNH45dffoEgCPD09ERKSgoKCgqwb98+1KxZ8/UOBBGVGs4lrZteBeOwYcPw22+/4cyZMxg3bhzG\njRuHc+fOIT4+HsOGDTN0jAbx9OlTFBQU4MKFCxg2bBiqVq2KPn36GDss0gN7GOXpTeQlIyMDS5Ys\nwcmTJ1GtWjVpnMRVq1bhwYMHCAoKQuXKlVG3bl3cuXMHmzZtUnn8hg0bYGdnp/EsgpeXF1avXi3d\nzs/PR3x8vNrlaADw9/fHtGnT0KVLF1StWhWXL1/GqlWrVNaJiYmBt7e3NBRP9+7d4eLiAicnJ9y/\nfx9Dhw4thSOiG3uy5Il5kRfOJa2bIGrqCH8L+Pj44NixYwAANzc3bN26FfXr11dbTxAELD66+E2H\nRyU4d/QcL0vL0P+1d+dxVdX5/8Bf5yoICAgpICAi4C6oCDlp7pOm5JKaS5qKmlt9zZrMMiaFHFya\nEXNpcsnUxiWdxFzGVFJBEZVwRQwtA1FUFGUUcGH7/P7oxx2vcBeNy/3ce1/Px4NHnOWe8768vfHm\nc97nfAzNy+X9lxE9I7oaIiLg91+AvMwmH+ZFLoqiQAhhEXkpfy9VflxrLRjT09ORn5+PS5cu4R//\n+AdycnKQmJhYoSeTBSNR1WLBSESyMVaRZQosGI3o7t27aNSoEYYPH44vv/xSY5uiKHjhlRdQz+v3\nmW7sHe3h08xHPZJSfhmOy1zmsmHLOSdzsH7FegD/u/xT/hc9l7nMZS6bYllRFBw8eFCaeJ5mufz7\n8qfWrFu3jgWjMZXPQfvk3eAcYZQPL0nLiZek5RRvAZfYLBHzIhdektaveueoklROTg7S09N51yIR\nEZEV4lzS+ukdYSwqKkLnzp3xzTffoFkz8x/VGThwIEJCQhAUFARnZ2dcvHgRixYtws2bN5GcnKzx\nCA6AI4xEVY0jjERExmOsEcaa+nawtbVFRkYGFEWp8pObQocOHbBlyxYsXLgQRUVF8PHxQffu3TFz\n5kyD5pUlIiIisjYGXZIePXo0Vq1aZexYqsWMGTOQkpKCvLw8FBYWIj09HV9++SWLRTPC5zDKiXmR\n0+ON8SQP5kVOzIt2ekcYAeD+/ftYv3494uLiEBISop71QAgBRVGwZMkSowZJRERERKZj0F3ST94x\nVH55urxgLL8V3RKxh5GoarGHkYjIeEzWwwhwiJaIiIgsV2RkJOeT1uOpHquTm5uL48eP4+HDh8aK\nh0gv9srJiXmRE//glxPzIhfOJa2fQQVjfn4+hgwZAnd3d3Ts2BHXrl0DAEyePJkVOREREZGFM6hg\n/PDDD5GdnY2TJ0/C3t5evb5v376IjY01WnBEleEsL3JiXuRk7rNWWCrmRU7Mi3YG9TDu2LEDsbGx\naNu2rcbzGJs3b47ffvvNaMERERERkekZNMKYl5eHunXrVlifn5+PGjVqVHlQRLqwV05OzIuc2JMl\nJ+ZFTsyLdgYVjKGhodixY0eF9StXrkTHjh2rPCgiIiKi6sK5pPUz6DmMSUlJePnllzFs2DCsX78e\nEyZMwLlz55CcnIxDhw4hJCSkOmI1CT6Hkahq8TmMRETGY6znMBo0wtixY0ckJSWhqKgIAQEB2L9/\nP7y9vXHs2DGLLhaJiIiI6CmewxgUFIRvvvkGaWlpOH/+PNavX4+goCBjxkZUKfbKyYl5kRN7suTE\nvMiJedHOoLukAeDBgwfYuHEjfv75ZwBAixYtMGLECI3H7BARERGR5TGoh/HkyZPo27cvHjx4gKCg\nIAghkJaWhlq1amHXrl0WfVmaPYxEVYs9jERExmPSHsaJEyeiU6dOuHr1Kg4dOoTDhw/jypUr6NKl\nCyZNmlTlQRERERFVF85ap59BBWNaWhpmz56N2rVrq9fVrl0bs2bNwrlz54wWHFFl2CsnJ+ZFTuzJ\nkhPzIhfOJa2fQQVjs2bN1PNHP+769eto1ozTgRERERFZMq09jHfu3FF/f/ToUUyfPh2zZs1Chw4d\n1Ouio6Mxf/589O3bt3qiNQH2MBJVLfYwEpFsjNX3ZwrGei9a75KuV69ehXUjR46ssG7AgAEoLS2t\n2qiIiIiISBpaC8YDBw5UZxxEBruQcgHNQtkKIRvmRU7x8fHo1q2bqcOgJzAvcmJetNNaMPIHRkRE\nRNaAc0nrZ9BzGAHg0aNHSEtLw82bN1FWVqaxLSwszCjByUBRFHy84GNTh0FkMdyd3TFt8jRTh0FE\nZJGM1cNoUMF44MABjBw5Ejk5OZVuf7KAtCSW1AhLREREls2kD+6eMmUKXnnlFWRkZKCwsBD379/X\n+CKqTnxOlpyYFzkxL3JiXuTEvGhn0FzS165dw8cffwxfX19jx0NEREREkjHokvTQoUPRv39/vPHG\nG9URk1R4SZqIiIjMhUl7GPPy8vD666+jefPmCAoKgo2Njcb20aNHV3lgsmDBSEREZNkiIyMtZj5p\nkxaMW7ZsQXh4OB4+fAgHBwcoiqKxPT8/v8oDkwULRvnwOVlyYl7kxLzIiXmRS/nvekvIi0lvepk+\nfTreeust5Ofno6CgAPn5+RpfRERERGS5DBphdHZ2xqlTpxAQEFAdMUmFI4xERESWzZJ+15t0hHHQ\noEGIi4ur8pMTERERkfwMeqxOQEAAIiIicPjwYbRu3brCTS9/+ctfjBIcUWUsocfEEjEvcmJe5MS8\nyIl50c6ggnH16tVwcnLCkSNHkJSUVGE7C0YiIiIyV5xLWj+D55K2VpbU10BERESWzaQ9jERERERk\nvQy6JD116tQKz1583JIlS6osIBlFfBZh6hDoMZcvXYZvAKeplA3zIqfqyIu7szumTZ5m1HNYGvbK\nyYl50c6ggjE1NVWjYCwqKkJ6ejpKS0sRHBxstOBk4ftn/hKUycM6D+EbypzIhnmRU3Xk5fL+y0Y9\nPhGZnkEFY3x8fIV1Dx8+xLhx49ClS5eqjolIp2ahzUwdAlWCeZET8yInjmLJiXnR7pl7GO3s7BAR\nEYHo6OiqjIeIiIioWlnKPNLG9IduesnNzeXUgFTtLqRcMHUIVAnmRU7Mi5wqu3JHphMVFQWAedHF\noEvSCxcu1OhhFELg2rVr2LBhA8LCwowWHBERERGZnkHPYWzUqJFGwahSqeDm5oYePXpg5syZcHJy\nMmqQpqQoClakrDB1GERE0rq8/zKiZ7A9icyXJT1z2VjvxaARxszMzCo/MRERERGZBz64m8wOe7Lk\nxLzIiXmRE3vl5MS8aGfQCKMQAps3b8b+/ftx8+ZNlJWVqbcpioIdO3YYLUAiIiIiY+Jc0voZ1MP4\nwQcf4PPPP0f37t3h6emp0c+oKArWrFlj1CBNiT2MRES6sYeRSB4m7WH85ptvsHHjRgwZMqTKAyAi\nIiIiuRnUw1hWVmYVUwCSeWBPlpyYFzkxL3Jir5ycmBftDCoYJ0yYgPXr1xs7FiIiIiKSkEGXpO/e\nvYsNGzYgLi4OrVu3ho2NDYDfb4ZRFAVLliwxapBEj+PcuHJiXuTEvMiJcxbLiXnRzqCCMS0tDW3b\ntgUApKenq9eXF4xERERE5ioyMpLzSeth0CXp+Ph49dfBgwfVX+XLRNWJPVlyYl7kJHteli1bhtDQ\nUNjZ2WHs2LHq9ZmZmVCpVHByclJ/RUf/707sRYsWISAgAM7OzvDw8MDYsWORn5+v9Tz379/HW2+9\nBTc3N7i4uKBr164a20+ePIkuXbrAyckJ9evXV185KykpwfDhw+Hq6oo+ffponGPu3LlYtGjRM71v\n9srJhXNJ68cHdxMRkcl4e3vjk08+wbhx4yrdfu/ePeTn5yM/Px8RERHq9QMGDEBKSgru3buH9PR0\nZGVlaRSUT5o4cSL++9//Ij09HXl5efj888/V23Jzc9GnTx9MmTIFd+7cwaVLl9CrVy8AQGxsLGrU\nqIHbt2+jTp06WLlyJQAgIyMDO3fuxLRp06rix0AkPYMuSRPJhD1ZcmJe5CR7XgYOHAgASElJwdWr\nVytsLysrQ40aNSqs9/f319hHpVLB09Oz0nOkp6dj586dyM7OhqOjIwBoPPkjJiYGvXv3xuuvvw4A\nsLGxQfPmzQH8PtLZtWtXqFQqdOvWDampqQCAd955BzExMVCpnm3chb1ycmJetOMIIxERmZy2Bw37\n+vrCx8cH48aNw+3btzW2bdy4EXXq1IGbmxvc3Ny0jvYlJyfD19cXs2bNgpubG1q3bo3Y2Fj19uPH\nj8PV1RUvvvgiPDw80L9/f1y5cgUAEBgYiAMHDuDRo0c4ePAgAgMDsW3bNri7u6NDhw5V9O6J5MeC\nkcyO7D1Z1op5kZO55OXJGyjd3NyQkpKCrKwsnDhxAvn5+Rg5cqTGPiNGjMDdu3dx8eJF/Pzzz1r7\nCa9evYpz587BxcUF169fx7JlyzBmzBhcuPD7z+bKlStYt24dlixZgqysLPj5+alHG8PCwuDn54f2\n7dvD1dUVw4YNw6efforPPvsMERER6Nq1K95++20UFxc/1ftlr5ycmBftrK5g/O677/Dqq6+iYcOG\ncHBwQPPmzfHxxx+joKDA1KEREVmtJ0cYa9eujXbt2kGlUsHd3R3Lli3Dvn37UFhYWOG1jRs3xkcf\nfYRvvvmm0mPb29vDxsYGf/3rX1GzZk106dIF3bt3x969ewEADg4OGDRoEEJCQlCrVi3Mnj0bSUlJ\n6htc5s2bhzNnzmD58uWYN28epkyZguPHj+PEiRNISEhAUVERvv766yr+iVB14lzS+lldwbhw4ULY\n2Nhg/vz52LNnD6ZMmYIvv/wSPXv2NMrci1T1ZO/JslbMi5zMJS+GPqKtrKys0vXFxcVwcHCodFvr\n1q0BVCxKy89Zvl2f1NRUHD16FBMmTEBqaipCQkIAAKGhoTh79qxBxyjHXjm5lD9Sh3nRzuoKxl27\nduHf//43RowYgS5dumDatGlYsmQJjh8/zqFoIqJqVlpaiocPH6KkpASlpaV49OgRSkpKkJycjAsX\nLqCsrAy3b9/GO++8g+7du8PJyQkA8NVXX+HWrVsAgPPnz2P+/PkYPHhwpefo2rUrGjZsiHnz5qGk\npARHjhxBfHw8Xn75ZQDA2LFjsW3bNpw5cwbFxcWYM2cOOnfurD4X8HuxOXXqVCxduhSKosDf3x+J\niYkoKipCQkICAgICjPyTIjItqysY69atW2FdaGgoAODatWvVHQ49A3PpybI2zIucZM/LnDlz4ODg\ngAULFmD9+vWwt7fH3Llz8dtvv6FPnz5wdnZGUFAQ7O3tsWnTJvXrkpKSEBQUBCcnJwwcOBCjR4/G\ne++9p94eGBio3r9mzZrYvn07du/eDRcXF0yaNAn/+te/0LRpUwBA9+7dMXfuXLzyyivw8PDAb7/9\nho0bN2rEuXbtWgQFBanvrh40aBC8vLzg7u6OvLw8TJw48aneNwco5MS8aKcIXofF8uXL8dZbbyEl\nJQXt2rXT2KYoClakrDBRZFSZCykXzOYymzVhXuRUHXm5vP8yomdofwYiVRQfH8/LnxKyhLwoimKU\nFjurLxizs7MRHByM4OBgdQP041gwEhHpxoKRSB7GKhit+sHdBQUFGDBgAGxtbbFmzRqt+62ZvQb1\nvOoBAOwd7eHTzEf9F3v55R4uc5nLXLbWZTvYAfjf5bzyERouc9lcliMjI9XrZYjnaZbLv8/MzIQx\nWe0I44MHDxAWFobU1FQkJCSgVatWle7HEUb58NKnnJgXOfGStJws4dKnJSkflbOEvHCEsQoVFxfj\ntddew8mTJxEXF6e1WCQiIiIiKywYy8rKMHLkSMTHx2PXrl1o3769qUOip8RRLDkxL3JiXuRk7qNY\nlop50c7qCsa3334b3333HSIiImBvb49jx46pt/n4+MDb29uE0RERERHJx+qew7hnzx4oioLo6Gh0\n7NhR42v16tWmDo8MIPtz5awV8yIn5kVOfN6fnJgX7axuhDEjI8PUIRAREZFEOJe0flZ7l7SheJc0\nEZFuvEuaSB7Gukva6i5JExEREdHTYcFIZoc9WXJiXuTEvMiJvXJyYl60Y8FIRERERDqxh1EP9jAS\nEenGHkYiebCHkYiIiMgIIiMjTR2C9FgwktlhT5acmBc5MS9yYq+cXKKiogAwL7qwYCQiIiIindjD\nqAd7GImIdGMPI5k7Y/X9mQJ7GImIiIjIJFgwktlhT5acmBc5MS9yYq+cnJgX7VgwEhERkVXjXNL6\nsYdRD/YwEhHpxh5GInmwh5GIiIiITIIFI5kd9mTJiXmRE/MiJ/bKyYl50Y4FIxERERHpxB5GPdjD\nSESkG3sYieTBHkYiIiIiI+Bc0vqxYCSzw54sOTEvcmJe5MReOblwLmn9WDASERERkU7sYdSDPYxE\nRLqxh5HMHeeS1q9mlR/RAl3ef9nUIRARScvd2d3UIRCRkXGEUQ9L+qvDUsTHx6Nbt26mDoOewLzI\niXmRE/Mil/Lf9ZaQF94lTURERGQEnEtaP44w6sERRiIiIjIXHGEkIiIiIpNgwUhmh8/JkhPzIifm\nRU7Mi5yYF+1YMBIRERGRTuxh1IM9jERERGQu2MNIREREZAScS1o/FoxkdthjIifmRU7Mi5yYF7lw\nLmn9WDASERERkU7sYdSDPYxERESWzZJ+17OHkYiIiIhMggUjmR32mMiJeZET8yIn5kVOzIt2NU0d\ngDmI+CzC1CHQYy5fuoy45DhTh0FPYF7kxLzIiXmRy8uvvGzqEKTHHkY9FEXBipQVpg6DiIiIjOTy\n/suInhFt6jCqBHsYiYiIiMgkWDCS2bmQcsHUIVAlmBc5MS9yYl7kxB5G7VgwEhEREZFOLBjJ7DQL\nbWbqEKgSzIucmBc5MS9y6tatm6lDkBYLRiIiIrJqh+IOmToE6bFgJLPD3h85MS9yYl7kxLzIJfHH\nRADsYdSFBSMRERER6cTnMOrB5zASERFZtkmhkziXtB4cYSQiIiIinVgwktlh74+cmBc5MS9yYl7k\nxB5G7VgwEhERkVXr9FInU4cgPfYw6sEeRiIiIsvGuaT14wgjEREREenEgpHMDnt/5MS8yIl5kRPz\nIif2MGrHgpGIiIjoGS1btgyhoaGws7PD2LFjNbbt378fzZs3R+3atdGjRw9kZWVpbP/www9Rr149\n1KtXDx999JHO8xh6LAAaxyopKcHw4cPh6uqKPn36ID8/X71t7ty5WLRokUHvkwUjmR3OwSon5kVO\nzIucmBc5Pctc0t7e3vjkk08wbtw4jfW5ubkYPHgwoqOjkZeXh9DQUAwbNky9fcWKFdi+fTvOnj2L\ns2fPYufOnVixovJ7Jp7mWAA0jhUbG4saNWrg9u3bqFOnDlauXAkAyMjIwM6dOzFt2jSD3icLRiIi\nIrJqf2Qu6YEDB2LAgAGoW7euxvrY2FgEBgZi8ODBsLW1RWRkJM6cOYOLFy8CANatW4fp06fDy8sL\nXl5emD59OtauXVvpOZ7mWAA0jpWZmYmuXbtCpVKhW7du+O233wAA77zzDmJiYqBSGVYKsmAks8Pe\nHzkxL3JiXuTEvMilKuaSfvLO5LS0NLRp00a97ODggMaNGyMtLQ0AcP78eY3trVu3Vm970h85VmBg\nIA4cOIBHjx7h4MGDCAwMxLZt2+Du7o4OHToY/P4sqmAMDw+Hn5/fU78uPj4eKpUKhw49+18YRERE\nZL0URdFYLiwshLOzs8Y6Z2dndQ9hQUEB6tSpo7GtoKCg0mP/kWOFhYXBz88P7du3h6urK4YNG4ZP\nP/0Un332GSIiItC1a1e8/fbbKC4u1vn+LKpgnDVrFr7//ntTh0FGxt4fOTEvcmJe5MS8yOlZehjL\nPTnC6OjoiHv37mmsu3v3LpycnCrdfvfuXTg6OlZ67D96rHnz5uHMmTNYvnw55s2bhylTpuD48eM4\nceIEEhISUFRUhK+//lrn+7OIgvHRo0cAAH9/f40hWSIiIqLq8OQIY6tWrXDmzBn1cmFhIS5duoRW\nrVqpt58+fVq9/cyZMwgMDKz02FV1rNTUVBw9ehQTJkxAamoqQkJCAAChoaHqG2a0qdaC8eLFixg4\ncCA8PDxgb28PX19fDB06FKWlpQCAW7duYfLkyWjQoAHs7OzQokULrFq1SuMYa9euhUqlwuHDhzFk\nyBC4urqqr8FXdkl69uzZaNeuHerUqQM3Nzf8+c9/xvHjx6vnDZNRsPdHTsyLnJgXOTEvcnqWHsbS\n0lI8fPgQJSUlKC0txaNHj1BaWoqBAwfi3LlziI2NxcOHDxEVFYW2bduiadOmAIDRo0cjJiYG165d\nQ3Z2NmJiYhAeHl7pOZ7mWAAqPZYQAlOnTsXSpUuhKAr8/f2RmJiIoqIiJCQkICAgQOf7rNaC8ZVX\nXsH169exfPly7Nu3D/Pnz4ednR2EELh37x46deqEPXv2ICoqCrt370a/fv0wZcoULFu2rMKxRo4c\niYCAAGzduhXz589Xr3+yws/Ozsa7776LHTt2YN26dXB3d0eXLl1w7tw5o79fIiIikt8fmUt6zpw5\ncHBwwIIFC7B+/XrY29sjOjoa9erVw9atWxEREYHnnnsOKSkp+Pbbb9WvmzRpEvr164egoCC0bt0a\n/fr1w8SJE9XbAwMDsWnTJgB4qmMBqHAs4PcBt6CgIAQHBwMABg0aBC8vL7i7uyMvL6/C/k+qtrmk\nc3Nz4e7ujh07dqBv374Vts+ZMwdz587FuXPnNKrciRMnYtu2bcjJyYFKpcLatWsxbtw4vPfee1i4\ncKHGMcLDw5GQkICMjIxKYygtLYUQAoGBgejduzc+//xzAL//RdGjRw/Ex8ejS5cuGq/hXNJERESW\njXNJ61dtI4z16tWDv78/PvzwQ3z11Vf45ZdfNLbv2bMHL7zwAho1aoSSkhL1V69evXD79m2cP39e\nY/+BAwcadN4ff/wR3bt3R7169WBjYwNbW1tcvHhR/ewiIiIiItKtZnWeLC4uDpGRkZg5cyZu374N\nPz8/fPDBB5g8eTJu3ryJS5cuwcbGpsLrFEXB7du3NdZ5enrqPd/JkycRFhaGPn364Ouvv4anpydU\nKhXefPNNPHz40OC418xeg3pev0+3Y+9oD59mPuo73Mr7ULhcfctXLlzBSyNfkiYeLv++/HhPgnjy\nNAAAFuBJREFUlgzxcJmfF5mX+XmRbzk+Ph6nT5/Gu+++q14G/nfntKzL5d9nZmbCmKrtkvSTzpw5\ng2XLlmH16tXYvXs3oqKiULNmTSxevLjS/Zs2bQpHR0f1Jelff/0V/v7+Gvs8eUk6IiICixcvxt27\nd1GjRg31fr6+vggICMCBAwcA8JK0ubmQcoGPpJAQ8yIn5kVOzItcyi9Jx8fH/6FH68jAWJekq3WE\n8XFt2rTBwoULsXr1aqSlpaF3795YunQpfHx84ObmViXnuH//foUpbw4cOIArV67ovRuI5MX/ycqJ\neZET8yIn5kVO5l4sGlO1FYxnz57FtGnTMHz4cAQEBKC0tBRr166FjY0NevTogYCAAGzevBmdO3fG\ne++9h6ZNm6KwsBDp6elITEx8pgdy9+nTB4sXL0Z4eDjCw8Nx8eJF/O1vf4O3t7dRqm8iIiIyP4fi\nDgEzTB2F3KrtphdPT0/4+voiJiYGAwYMwIgRI3Djxg3s2rULwcHBcHZ2RlJSEsLCwrBgwQL07t0b\n48ePx86dO9GjRw+NYz356JzH1z++rVevXliyZAmOHDmCfv36Ye3atfjXv/6Fxo0bVziGtmOSfB7v\n/SF5MC9yYl7kxLzIpSrmkrZ0JuthNBfsYZQPe3/kxLzIiXmRE/Mil0mhkyCEYA+jruOyYNSNBSMR\nEZFlKy8YLYHZP4eRiIiIiMwTC0YyO+z9kRPzIifmRU7Mi5zYw6gdC0YiIiKyan9kLmlrwR5GPdjD\nSEREZNk4l7R+HGEkIiIiIp1YMJLZYe+PnJgXOTEvcmJe5MQeRu1YMBIRERGRTiwYyezwYbdyYl7k\nxLzIiXmRk7k/tNuYWDASERGRVTsUd8jUIUiPBSOZHfb+yIl5kRPzIifmRS6cS1o/FoxEREREpBOf\nw6gHn8NIRERk2TiXtH4cYSQiIiIinVgwktlh74+cmBc5MS9yYl7kxB5G7VgwEhERkVXjXNL6sYdR\nD/YwEhERWTbOJa0fRxiJiIiISCcWjGR22PsjJ+ZFTsyLnJgXObGHUTsWjERERESkEwtGMjucg1VO\nzIucmBc5MS9y4lzS2rFgJCIiIqvGuaT1q2nqAMzB5f2XTR0CPebypcvwDfA1dRj0BOZFTsyLnJgX\nuTw+lzRHGSvHx+roYazb0+nZ8QMtJ+ZFTsyLnJgXuZT/rreEvBirbmHBqAcLRiIiIstmSb/r+RxG\nIiIiIjIJFoxkdvicLDkxL3JiXuTEvMiJedGOBSMRERFZtdmzZ5s6BOmxh1EPS+prICIiIsvGHkYi\nIiIiMgkWjGR22GMiJ+ZFTsyLnJgXOTEv2rFgJCIiIiKd2MOoB3sYiYiIyFywh5GIiIjICCIjI00d\ngvRYMJLZYY+JnJgXOTEvcmJe5BIVFQWAedGFBSMRERER6cQeRj3Yw0hERGTZLOl3PXsYiYiIiMgk\nWDCS2WGPiZyYFzkxL3JiXuTEvGjHgpGIiIisGueS1o89jHpYUl8DERERWTb2MBIRERGRSbBgJLPD\nHhM5MS9yYl7kxLzIiXnRjgUjEREREenEHkY92MNIRERE5oI9jERERERGwLmk9WPBSGaHPSZyYl7k\nxLzIiXmRC+eS1o8FIxERERHpxB5GPdjDSEREZNks6Xc9exiJiIiIyCRYMJLZYY+JnJgXOTEvcmJe\n5MS8aMeCkYiIiKwa55LWjz2MelhSXwMRERFZNvYwEhEREZFJsGAks8MeEzkxL3JiXuTEvMiJedGO\nBSMRERER6cQeRj3Yw0hERETmgj2MREREREbAuaT1Y8FIZoc9JnJiXuTEvMiJeZEL55LWjwUjmZ3T\np0+bOgSqBPMiJ+ZFTsyLnJgX7Vgwktn573//a+oQqBLMi5yYFzkxL3JiXrRjwUhEREREOrFgJLOT\nmZlp6hCoEsyLnJgXOTEvcmJetONjdfRo27Ytzpw5Y+owiIiIiPTq2rWrUW7eYcFIRERERDrxkjQR\nERER6cSCkYiIiIh0YsFIRERERDqxYNRiz549aN68OZo0aYIFCxaYOhz6/xo1aoTWrVsjODgY7du3\nN3U4VmvcuHHw8PBAUFCQet2dO3fQs2dPNG3aFL169eLzzEygsrxERkaiQYMGCA4ORnBwMPbs2WPC\nCK3PlStX0L17d7Rq1QqBgYFYsmQJAH5eTE1bXvh50Y43vVSitLQUzZo1w48//ghvb288//zz2LRp\nE1q0aGHq0Kyen58fTpw4geeee87UoVi1w4cPw9HREaNHj0ZqaioAYMaMGahXrx5mzJiBBQsWIC8v\nD/PnzzdxpNalsrxERUXByckJf/nLX0wcnXW6ceMGbty4gbZt26KgoAAhISH4/vvvsWbNGn5eTEhb\nXrZs2cLPixYcYaxEcnIyGjdujEaNGsHGxgbDhw/H9u3bTR0W/X/8G8f0OnfuDFdXV411O3bswJgx\nYwAAY8aMwffff2+K0KxaZXkB+Jkxpfr166Nt27YAAEdHR7Ro0QLZ2dn8vJiYtrwA/Lxow4KxEtnZ\n2fDx8VEvN2jQQP0PiUxLURS89NJLCA0NxapVq0wdDj0mJycHHh4eAAAPDw/k5OSYOCIqt3TpUrRp\n0wbjx4/npU8TyszMxKlTp/CnP/2JnxeJlOflhRdeAMDPizYsGCuhKIqpQyAtjhw5glOnTuGHH37A\nF198gcOHD5s6JKqEoij8HEliypQpyMjIwOnTp+Hp6Yn333/f1CFZpYKCAgwePBiLFy+Gk5OTxjZ+\nXkynoKAAr732GhYvXgxHR0d+XnRgwVgJb29vXLlyRb185coVNGjQwIQRUTlPT08AgJubGwYOHIjk\n5GQTR0TlPDw8cOPGDQDA9evX4e7ubuKICADc3d3VBcmbb77Jz4wJFBcXY/DgwRg1ahReffVVAPy8\nyKA8L2+88YY6L/y8aMeCsRKhoaH45ZdfkJmZiaKiImzevBn9+/c3dVhW7/79+8jPzwcAFBYWYt++\nfRp3g5Jp9e/fH+vWrQMArFu3Tv0/YDKt69evq7/ftm0bPzPVTAiB8ePHo2XLlnj33XfV6/l5MS1t\neeHnRTveJa3FDz/8gHfffRelpaUYP348Zs6caeqQrF5GRgYGDhwIACgpKcHIkSOZFxN5/fXXkZCQ\ngNzcXHh4eODTTz/FgAEDMHToUGRlZaFRo0bYsmULXFxcTB2qVXkyL1FRUYiPj8fp06ehKAr8/Pyw\nYsUKde8cGV9iYiK6dOmC1q1bqy87z5s3D+3bt+fnxYQqy8vcuXOxadMmfl60YMFIRERERDrxkjQR\nERER6cSCkYiIiIh0YsFIRERERDqxYCQiIiIinVgwEhEREZFOLBiJiIiISCcWjERWKjMzEyqVCidP\nnqz2c69du7bC9GjWIjc3FyqVCocOHXrmY2zfvh1NmjSBjY0Nxo0bV4XRERFVjgUjkRXo1q0bpk6d\nqrGuYcOGuHHjBtq0aVPt8QwfPhwZGRnVfl5LMX78eAwZMgRZWVlYvHixqcPRa+XKlejevTtcXFyg\nUqmQlZVVYZ+8vDyMGjUKLi4ucHFxwejRo3H37l2NfbKystCvXz84OjrCzc0N06ZNQ3FxscY+qamp\n6Nq1KxwcHNCgQQPMmTOnwrkSEhIQEhICe3t7BAQEYMWKFVX7hoksEAtGIiulUqng7u6OGjVqVPu5\n7ezsUK9evWo/ryXIy8vDnTt30KtXL3h6ej7zSG1RUVEVR6bdgwcP0Lt3b0RFRWndZ8SIETh9+jT2\n7t2LPXv24OTJkxg1apR6e2lpKV555RUUFhYiMTERmzZtwnfffYf3339fvc+9e/fQs2dPeHp6IiUl\nBYsXL8bf//53xMTEqPfJyMhAWFgYOnXqhNOnT2PmzJmYOnUqYmNjjfPmiSyFICKLNmbMGKEoisbX\n5cuXRUZGhlAURZw4cUIIIcTBgweFoijihx9+EMHBwcLe3l507txZXL16Vezfv18EBQUJR0dH0a9f\nP3Hnzh2Nc3z99deiRYsWws7OTjRt2lQsWrRIlJWVaY1pzZo1wtHRUb08e/ZsERgYKDZt2iT8/f2F\nk5OTePXVV0Vubq7O9xYVFSV8fX1FrVq1RP369cXo0aM1ti9YsEAEBAQIe3t7ERQUJNavX6+xPTs7\nW4wYMULUrVtXODg4iLZt24qDBw+qty9fvlwEBAQIW1tb0bhxY7Fq1SqN1yuKIlauXClee+01Ubt2\nbeHv71/hHMnJyaJdu3bCzs5OBAcHi127dglFUURCQoIQQoiioiIxdepU4eXlJWrVqiV8fHzERx99\nVOn7Lc/R41/lx9m6dasIDAxUHyM6Olrjtb6+viIyMlKMHTtWuLi4iKFDh1Z6jjFjxoi+ffuKzz//\nXHh7ewtXV1cxduxYcf/+fS1ZMNxPP/2k/vf3uPPnzwtFUURSUpJ6XWJiolAURVy8eFEIIcTu3buF\nSqUSV69eVe+zfv16YWdnJ/Lz84UQQvzzn/8UderUEQ8fPlTv87e//U14e3url2fMmCGaNm2qcf43\n33xTdOjQ4Q+/PyJLxoKRyMLdvXtXdOzYUYwfP17k5OSInJwcUVpaqrVg/NOf/iQSExPF2bNnRWBg\noOjYsaPo3r27SE5OFikpKcLPz09MmzZNffyVK1cKT09PsXXrVpGZmSl27twp6tevL5YtW6Y1psoK\nRkdHRzFo0CCRmpoqjh49Knx9fcWkSZO0HuO7774Tzs7OYvfu3eLKlSsiJSVFfPHFF+rtH3/8sWje\nvLnYu3evyMzMFBs3bhS1a9cW//nPf4QQQhQUFIjGjRuLTp06icTERJGRkSG2b9+uLhhjY2OFjY2N\n+OKLL8Qvv/wili5dKmxsbMTOnTvV51AURTRo0EBs2LBBXLp0ScycOVPY2tqKrKwsIYQQ+fn5ws3N\nTQwdOlSkpaWJvXv3iubNm2sUev/4xz+Ej4+POHz4sLhy5YpISkoSa9eurfQ9FxUVqYurbdu2iZyc\nHFFUVCRSUlJEjRo1RGRkpPjll1/Ehg0bhKOjo1i6dKn6tb6+vsLZ2Vn8/e9/F5cuXRK//vprpecY\nM2aMqFOnjpg4caJIT08X+/btEy4uLmLevHnqfaKjo4Wjo6POr8TExArH1lYwrl69Wjg5OWmsKysr\nE46OjuqfxSeffCICAwM19rl586ZQFEXEx8cLIYQYNWqU6Nu3r8Y+ycnJQlEUkZmZKYQQonPnzuL/\n/u//NPbZsmWLsLGxESUlJZX+TIiIBSORVejWrZuYOnWqxjptBeO+ffvU+yxbtkwoiiJOnTqlXhcZ\nGanxi9vHx6fCqNqiRYtEy5YttcZTWcFoZ2cn7t27p14XHR0tGjdurPUYCxcuFM2aNRPFxcUVthUU\nFAh7e/sKRcu0adNEWFiYEOL3QtfJyUncvn270uOXF9mPCw8PF506dVIvK4oiPv74Y/VySUmJcHBw\nEBs2bBBCCLFixQrh4uIiCgsL1fusX79eo2B85513xJ///Get7/NJt27d0ni9EEKMGDGiwjEiIyNF\ngwYN1Mu+vr6if//+eo8/ZswY0bBhQ40R4gkTJoiXXnpJvXznzh1x6dIlnV8PHjyocGxtBWN0dLTw\n9/evsL+/v7+YP3++OoYn32NZWZmoWbOm+Pbbb4UQQvTs2bNCzi5fviwURRHHjh0TQgjRtGlTMWfO\nHI19EhIShKIo4saNG3p/PkTWqqapL4kTkVxat26t/t7d3R0AEBQUpLHu5s2bAIBbt27h6tWrmDhx\nIiZPnqzep6Sk5KnP6+vrq9GP5+npqT5PZYYOHYolS5bAz88PL7/8Mnr37o3+/fvD1tYW58+fx8OH\nD/Hyyy9DURT1a4qLi+Hn5wcAOHXqFNq0aYPnnnuu0uOnp6fjzTff1Fj34osvYseOHRrrHv951ahR\nA25ubuq4f/75Z7Rp0wYODg7qfV544QWN14eHh6Nnz55o2rQpevXqhbCwMPTp00cjbn3S09PRt2/f\nCrFGRUWhoKAAjo6OUBQFoaGhBh2vZcuWGuf39PTE8ePH1cuurq5wdXU1OL6qIoTQuf1pfmZE9HRY\nMBKRBhsbG/X35b+AH78xRlEUlJWVAYD6vytWrEDHjh2r7LxPnqcyDRo0wIULF7B//378+OOPeP/9\n9xEVFYXjx4+rX7dr1y40bNhQ63n0FSCVebIo0Re3vnMEBwcjMzMTe/fuxf79+zFmzBi0adMGcXFx\nT1UAaTvP48eoXbu2QceqWVPzV8OT72nu3LmYN2+ezmPs2bMHL774okHnq1+/Pm7duqWxTgiBmzdv\non79+up9kpKSNPbJzc1FaWmpxj43btzQ2CcnJ0e9Tdc+NWvW5I1YRDrwLmkiK2Bra/tMo376eHh4\nwMvLC7/++iv8/f0rfBlbrVq1EBYWhpiYGPz0009IS0tDUlISWrVqhVq1aiEzM7NCTD4+PgCAdu3a\n4ezZs7h9+3alx27RogUSExM11iUmJqJVq1YGx9eyZUukpqbi/v376nXHjh2rsJ+joyMGDx6Mf/7z\nn/jPf/6DAwcO4NKlSwafp0WLFjhy5EiFWH18fAwuEh+nr1CdMmUKzpw5o/MrJCTE4PN16NABBQUF\nOHr0qHrd0aNHUVhYqP5DpGPHjvj555+RnZ2t3icuLg61atVSn6tDhw44fPgwHj16pLGPt7c3fH19\n1fvExcVpnD8uLg7PP/+8SZ4YQGQuOMJIZAUaNWqE5ORkXL58GbVr10bdunWr7NhRUVGYOnUqXFxc\n0KdPHxQXF+PkyZO4du0aPvrooyo7z5PWrl2L0tJStG/fHo6Ojti8eTNsbW3RpEkTODo6Yvr06Zg+\nfTqEEOjcuTMKCgpw7Ngx1KhRAxMmTMCIESMwf/58DBgwAPPnz4eXlxfOnTsHZ2dndOvWDR988AGG\nDBmCkJAQ9OzZE3v27MHGjRuxbds2g2McMWIEIiIiMG7cOMyaNQvZ2dmIjo7W2CcmJgZeXl5o06YN\nbGxssGHDBtSpUwcNGjQw+Dzvv/8+nn/+eURFReH111/HTz/9hJiYGL2jgNroGxV92kvSN27cwI0b\nN3Dx4kUAQFpaGu7cuQNfX1+4urqiRYsW6N27NyZNmoSVK1dCCIFJkyahX79+aNKkCQCgV69eaNWq\nFUaPHo2FCxciNzcXM2bMwMSJE+Ho6Ajg9593VFQUwsPD8de//hUXLlzAggULEBkZqY5l8uTJWLZs\nGd577z1MnDgRR44cwbp16/Dtt98+5U+JyMqYrn2SiKrLxYsXRYcOHYSDg4NQqVTqx+qoVCqNm15U\nKpXGTSD//ve/hUql0jjW8uXLhZubm8a6TZs2qR8d4+rqKjp37iw2b96sNZ41a9Zo3BUbGRkpgoKC\ndO7zpO+//1506NBBuLi4iNq1a4v27dur74Aut3TpUtGyZUtRq1Yt4ebmJnr16iV+/PFH9farV6+K\nYcOGCRcXF+Hg4CDatWuncTPJ8uXLRePGjYWNjY1o0qSJ+OqrrzSOryiK2Lp1q8a6Ro0aiYULF6qX\njx8/Ltq1aydq1aol2rZtK3bu3ClUKpX6PKtWrRLt2rUTTk5OwtnZWXTr1k0cPXpU6/u+deuWxuvL\nxcbGiqCgIGFraysaNmwo5s6dqzMubcLDw0W/fv001lWWn6cxe/Zs9WOAVCqV+r/r1q1T75OXlyfe\neOMN4ezsLJydncWoUaPE3bt3NY6TlZUl+vbtKxwcHETdunXFtGnTRFFRkcY+qampokuXLsLOzk54\neXmJTz/9tEI8CQkJ6pz4+/uLFStWPPN7I7IWihDP0MRDRERERFaDPYxEREREpBMLRiIiIiLSiQUj\nEREREenEgpGIiIiIdGLBSEREREQ6sWAkIiIiIp1YMBIRERGRTiwYiYiIiEin/wdr/eoLv1plMAAA\nAABJRU5ErkJggg==\n", - "text": [ - "" - ] - }, - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n", - "Python version : 3.4.1\n", - "compiler : GCC 4.2.1 (Apple Inc. build 5577)\n", - "\n", - "system : Darwin\n", - "release : 13.2.0\n", - "machine : x86_64\n", - "processor : i386\n", - "CPU count : 4\n", - "interpreter: 64bit\n", - "\n", - "\n", - "\n" - ] - } - ], - "prompt_number": 26 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Conclusion" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[back to top](#Sections)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can see that we could speed up the density estimations for our Parzen-window function if we submitted them in parallel. However, on my particular machine, the submission of 6 parallel 6 processes doesn't lead to a further performance improvement, which makes sense for a 4-core CPU. \n", - "We also notice that there was a significant performance increase when we were using 3 instead of only 2 processes in parallel. However, the performance increase was less significant when we moved up to 4 parallel processes, respectively. \n", - "This can be attributed to the fact that in this case, the CPU consists of only 4 cores, and system processes, such as the operating system, are also running in the background. Thus, the fourth core simply does not have enough capacity left to further increase the performance of the fourth process to a large extend. And we also have to keep in mind that every additional process comes with an additional overhead for inter-process communication. \n", "\n", - "Also, an improvement due to parallel processing only makes sense if our tasks are \"CPU-bound\" where the majority of the task is spent in the CPU in contrast to I/O bound tasks, i.e., tasks that are processing data from a disk. " + "\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] } ], - "metadata": {} + "source": [ + "plot_results()\n", + "print_sysinfo()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Conclusion" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#Sections)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see that we could speed up the density estimations for our Parzen-window function if we submitted them in parallel. However, on my particular machine, the submission of 6 parallel 6 processes doesn't lead to a further performance improvement, which makes sense for a 4-core CPU. \n", + "We also notice that there was a significant performance increase when we were using 3 instead of only 2 processes in parallel. However, the performance increase was less significant when we moved up to 4 parallel processes, respectively. \n", + "This can be attributed to the fact that in this case, the CPU consists of only 4 cores, and system processes, such as the operating system, are also running in the background. Thus, the fourth core simply does not have enough capacity left to further increase the performance of the fourth process to a large extend. And we also have to keep in mind that every additional process comes with an additional overhead for inter-process communication. \n", + "\n", + "Also, an improvement due to parallel processing only makes sense if our tasks are \"CPU-bound\" where the majority of the task is spent in the CPU in contrast to I/O bound tasks, i.e., tasks that are processing data from a disk. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } - ] -} \ No newline at end of file + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} From 19e801b774543a1c2ec4aa05bbb3788948902492 Mon Sep 17 00:00:00 2001 From: Praveen Mylavarapu Date: Sat, 28 Oct 2017 13:18:43 +0530 Subject: [PATCH 75/83] Update README.md Added link to A Byte of Python book for resources for learning python. --- README.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/README.md b/README.md index 05c8419..c6fbbee 100644 --- a/README.md +++ b/README.md @@ -192,6 +192,8 @@ - [Think Python - How to Think Like a Computer Scientist](http://www.greenteapress.com/thinkpython/) - An introduction for beginners starting with basic concepts of programming. +- [A Byte of Python](https://python.swaroopch.com/) - a free book on programming using the Python language. + - [Python Patterns](http://matthiaseisen.com/pp/) - A directory of proven, reusable solutions to common programming problems. - [Intro to Computer Science - Build a Search Engine & a Social Network](https://www.udacity.com/course/intro-to-computer-science--cs101) - A great, free course for learning Python if you haven't programmed before. From 7749d69cb3f2b9733b28a648f664ca8505c7621c Mon Sep 17 00:00:00 2001 From: rasbt Date: Thu, 11 Jan 2018 23:00:18 -0500 Subject: [PATCH 76/83] fixing some language typos --- tutorials/multiprocessing_intro.ipynb | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/tutorials/multiprocessing_intro.ipynb b/tutorials/multiprocessing_intro.ipynb index 126f8c2..b3566c9 100644 --- a/tutorials/multiprocessing_intro.ipynb +++ b/tutorials/multiprocessing_intro.ipynb @@ -348,7 +348,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "**A simpler way to to maintain an ordered list of results is to use the `Pool.apply` and `Pool.map` functions which we will discuss in the next section.**" + "**A simpler way to maintain an ordered list of results is to use the `Pool.apply` and `Pool.map` functions which we will discuss in the next section.**" ] }, { @@ -379,7 +379,7 @@ "source": [ "Another and more convenient approach for simple parallel processing tasks is provided by the `Pool` class. \n", "\n", - "There are four methods that are particularly interesing:\n", + "There are four methods that are particularly interesting:\n", "\n", " - Pool.apply\n", " \n", @@ -451,7 +451,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The `Pool.map` and `Pool.apply` will lock the main program until all a process is finished, which is quite useful if we want to obtain resuls in a particular order for certain applications. \n", + "The `Pool.map` and `Pool.apply` will lock the main program until all processes are finished, which is quite useful if we want to obtain results in a particular order for certain applications. \n", "In contrast, the `async` variants will submit all processes at once and retrieve the results as soon as they are finished. \n", "One more difference is that we need to use the `get` method after the `apply_async()` call in order to obtain the `return` values of the finished processes." ] @@ -759,7 +759,7 @@ "source": [ "Below, we will set up benchmarking functions for our serial and multiprocessing approach that we can pass to our `timeit` benchmark function. \n", "We will be using the `Pool.apply_async` function to take advantage of firing up processes simultaneously: Here, we don't care about the order in which the results for the different window widths are computed, we just need to associate each result with the input window width. \n", - "Thus we add a little tweak to our Parzen-density-estimation function by returning a tuple of 2 values: window width and the estimated density, which will allow us to to sort our list of results later." + "Thus we add a little tweak to our Parzen-density-estimation function by returning a tuple of 2 values: window width and the estimated density, which will allow us to sort our list of results later." ] }, { @@ -1097,7 +1097,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.6.3" } }, "nbformat": 4, From 5da40c30c01aeb5a45aeffcbe3446dd51ce42116 Mon Sep 17 00:00:00 2001 From: rasbt Date: Wed, 18 Apr 2018 09:47:16 -0400 Subject: [PATCH 77/83] fix cursor use --- tutorials/sqlite3_howto/README.md | 62 ++++++++++--------- tutorials/sqlite3_howto/code/print_db_info.py | 43 +++++++------ 2 files changed, 57 insertions(+), 48 deletions(-) diff --git a/tutorials/sqlite3_howto/README.md b/tutorials/sqlite3_howto/README.md index e5cccec..02e3e3c 100644 --- a/tutorials/sqlite3_howto/README.md +++ b/tutorials/sqlite3_howto/README.md @@ -682,53 +682,58 @@ convenient script to print a nice overview of SQLite database tables: import sqlite3 - + + def connect(sqlite_file): """ Make connection to an SQLite database file """ conn = sqlite3.connect(sqlite_file) c = conn.cursor() return conn, c - + + def close(conn): """ Commit changes and close connection to the database """ # conn.commit() conn.close() - + + def total_rows(cursor, table_name, print_out=False): """ Returns the total number of rows in the database """ - c.execute('SELECT COUNT(*) FROM {}'.format(table_name)) - count = c.fetchall() + cursor.execute('SELECT COUNT(*) FROM {}'.format(table_name)) + count = cursor.fetchall() if print_out: print('\nTotal rows: {}'.format(count[0][0])) return count[0][0] - + + def table_col_info(cursor, table_name, print_out=False): - """ - Returns a list of tuples with column informations: - (id, name, type, notnull, default_value, primary_key) - + """ Returns a list of tuples with column informations: + (id, name, type, notnull, default_value, primary_key) """ - c.execute('PRAGMA TABLE_INFO({})'.format(table_name)) - info = c.fetchall() - + cursor.execute('PRAGMA TABLE_INFO({})'.format(table_name)) + info = cursor.fetchall() + if print_out: print("\nColumn Info:\nID, Name, Type, NotNull, DefaultVal, PrimaryKey") for col in info: print(col) return info - + + def values_in_col(cursor, table_name, print_out=True): - """ Returns a dictionary with columns as keys and the number of not-null - entries as associated values. + """ Returns a dictionary with columns as keys + and the number of not-null entries as associated values. """ - c.execute('PRAGMA TABLE_INFO({})'.format(table_name)) - info = c.fetchall() + cursor.execute('PRAGMA TABLE_INFO({})'.format(table_name)) + info = cursor.fetchall() col_dict = dict() for col in info: col_dict[col[1]] = 0 for col in col_dict: - c.execute('SELECT ({0}) FROM {1} WHERE {0} IS NOT NULL'.format(col, table_name)) - # In my case this approach resulted in a better performance than using COUNT + c.execute('SELECT ({0}) FROM {1} ' + 'WHERE {0} IS NOT NULL'.format(col, table_name)) + # In my case this approach resulted in a + # better performance than using COUNT number_rows = len(c.fetchall()) col_dict[col] = number_rows if print_out: @@ -736,23 +741,22 @@ convenient script to print a nice overview of SQLite database tables: for i in col_dict.items(): print('{}: {}'.format(i[0], i[1])) return col_dict - - + + if __name__ == '__main__': - + sqlite_file = 'my_first_db.sqlite' table_name = 'my_table_3' - + conn, c = connect(sqlite_file) total_rows(c, table_name, print_out=True) table_col_info(c, table_name, print_out=True) - values_in_col(c, table_name, print_out=True) # slow on large data bases - + # next line might be slow on large databases + values_in_col(c, table_name, print_out=True) + close(conn) - -Download the script: [print_db_info.py](https://raw.github.com/rasbt/python_sq -lite_code/master/code/print_db_info.py) +Download the script: [print_db_info.py](code/print_db_info.py) ![8_sqlite3_print_db_info_1.png](../../Images/8_sqlite3_print_db_info_1.png) diff --git a/tutorials/sqlite3_howto/code/print_db_info.py b/tutorials/sqlite3_howto/code/print_db_info.py index 22b72a8..285a635 100644 --- a/tutorials/sqlite3_howto/code/print_db_info.py +++ b/tutorials/sqlite3_howto/code/print_db_info.py @@ -22,52 +22,57 @@ import sqlite3 + def connect(sqlite_file): """ Make connection to an SQLite database file """ conn = sqlite3.connect(sqlite_file) c = conn.cursor() return conn, c + def close(conn): """ Commit changes and close connection to the database """ - #conn.commit() + # conn.commit() conn.close() + def total_rows(cursor, table_name, print_out=False): """ Returns the total number of rows in the database """ - c.execute('SELECT COUNT(*) FROM {}'.format(table_name)) - count = c.fetchall() + cursor.execute('SELECT COUNT(*) FROM {}'.format(table_name)) + count = cursor.fetchall() if print_out: print('\nTotal rows: {}'.format(count[0][0])) return count[0][0] + def table_col_info(cursor, table_name, print_out=False): - """ - Returns a list of tuples with column informations: - (id, name, type, notnull, default_value, primary_key) - + """ Returns a list of tuples with column informations: + (id, name, type, notnull, default_value, primary_key) """ - c.execute('PRAGMA TABLE_INFO({})'.format(table_name)) - info = c.fetchall() - + cursor.execute('PRAGMA TABLE_INFO({})'.format(table_name)) + info = cursor.fetchall() + if print_out: print("\nColumn Info:\nID, Name, Type, NotNull, DefaultVal, PrimaryKey") for col in info: print(col) return info + def values_in_col(cursor, table_name, print_out=True): - """ Returns a dictionary with columns as keys and the number of not-null - entries as associated values. + """ Returns a dictionary with columns as keys + and the number of not-null entries as associated values. """ - c.execute('PRAGMA TABLE_INFO({})'.format(table_name)) - info = c.fetchall() + cursor.execute('PRAGMA TABLE_INFO({})'.format(table_name)) + info = cursor.fetchall() col_dict = dict() for col in info: col_dict[col[1]] = 0 for col in col_dict: - c.execute('SELECT ({0}) FROM {1} WHERE {0} IS NOT NULL'.format(col, table_name)) - # In my case this approach resulted in a better performance than using COUNT + c.execute('SELECT ({0}) FROM {1} ' + 'WHERE {0} IS NOT NULL'.format(col, table_name)) + # In my case this approach resulted in a + # better performance than using COUNT number_rows = len(c.fetchall()) col_dict[col] = number_rows if print_out: @@ -85,7 +90,7 @@ def values_in_col(cursor, table_name, print_out=True): conn, c = connect(sqlite_file) total_rows(c, table_name, print_out=True) table_col_info(c, table_name, print_out=True) - values_in_col(c, table_name, print_out=True) # slow on large data bases - - close(conn) + # next line might be slow on large databases + values_in_col(c, table_name, print_out=True) + close(conn) From a908a343afe1bd0eff420b15d93706dde9c123ea Mon Sep 17 00:00:00 2001 From: rasbt Date: Wed, 16 May 2018 01:06:58 -0400 Subject: [PATCH 78/83] get principal eigvec --- useful_scripts/principal_eigenvector.py | 20 ++++++++++++++++++++ 1 file changed, 20 insertions(+) create mode 100644 useful_scripts/principal_eigenvector.py diff --git a/useful_scripts/principal_eigenvector.py b/useful_scripts/principal_eigenvector.py new file mode 100644 index 0000000..913cf62 --- /dev/null +++ b/useful_scripts/principal_eigenvector.py @@ -0,0 +1,20 @@ +# Select a principal eigenvector via NumPy +# to be used as a template (copy & paste) script + +import numpy as np + +# set A to be your matrix +A = np.array([[1, 2, 3], + [4, 5, 6], + [7, 8, 9]]) + + +eig_vals, eig_vecs = np.linalg.eig(A) +idx = np.absolute(eig_vals).argsort()[::-1] # decreasing order +sorted_eig_vals = eig_vals[idx] +sorted_eig_vecs = eig_vecs[:, idx] + +principal_eig_vec = sorted_eig_vecs[:, 0] # eigvec with largest eigval + +normalized_pr_eig_vec = np.real(principal_eig_vec / np.sum(principal_eig_vec)) +print(normalized_pr_eig_vec) # eigvec that sums up to one From 82376a9b8b8776a3586c16246853ef88606123c1 Mon Sep 17 00:00:00 2001 From: rasbt Date: Thu, 7 Jun 2018 23:43:02 -0400 Subject: [PATCH 79/83] replace broken absolute links with relative links --- tutorials/sqlite3_howto/README.md | 19 +++++++------------ 1 file changed, 7 insertions(+), 12 deletions(-) diff --git a/tutorials/sqlite3_howto/README.md b/tutorials/sqlite3_howto/README.md index 02e3e3c..ea2a357 100644 --- a/tutorials/sqlite3_howto/README.md +++ b/tutorials/sqlite3_howto/README.md @@ -123,7 +123,7 @@ there is more information about PRIMARY KEYs further down in this section). conn.close() -Download the script: [create_new_db.py](https://raw.github.com/rasbt/python_reference/master/tutorials/code/create_new_db.py) +Download the script: [create_new_db.py](https://github.com/rasbt/python_reference/blob/master/tutorials/sqlite3_howto/code/create_new_db.py) * * * @@ -207,7 +207,7 @@ Let's have a look at some code: conn.close() -Download the script: [add_new_column.py](https://raw.github.com/rasbt/python_reference/master/tutorials/code/add_new_column.py) +Download the script: [add_new_column.py](https://github.com/rasbt/python_reference/blob/master/tutorials/sqlite3_howto/code/add_new_column.py) @@ -270,8 +270,7 @@ But let us first have a look at the example code: conn.close() -Download the script: [update_or_insert_records.py](https://raw.github.com/rasb -t/python_sqlite_code/master/code/update_or_insert_records.py) +Download the script: [update_or_insert_records.py](code/update_or_insert_records.py) ![3_sqlite3_insert_update.png](../../Images/3_sqlite3_insert_update.png) @@ -335,8 +334,7 @@ drop the index, which is also shown in the code below. conn.close() -Download the script: [create_unique_index.py](https://raw.github.com/rasbt/pyt -hon_sqlite_code/master/code/create_unique_index.py) +Download the script: [create_unique_index.py](code/create_unique_index.py) ![4_sqlite3_unique_index.png](../../Images/4_sqlite3_unique_index.png) @@ -401,8 +399,7 @@ row entries for all or some columns if they match certain criteria. conn.close() -Download the script: [selecting_entries.py](https://raw.github.com/rasbt/pytho -n_sqlite_code/master/code/selecting_entries.py) +Download the script: [selecting_entries.py](code/selecting_entries.py) ![4_sqlite3_unique_index.png](../../Images/4_sqlite3_unique_index.png) @@ -542,8 +539,7 @@ that have been added xxx days ago. conn.close() -Download the script: [date_time_ops.py](https://raw.github.com/rasbt/python_sq -lite_code/master/code/date_time_ops.py) +Download the script: [date_time_ops.py](code/date_time_ops.py) @@ -645,8 +641,7 @@ column names): conn.close() -Download the script: [get_columnnames.py](https://raw.github.com/rasbt/python_ -sqlite_code/master/code/get_columnnames.py) +Download the script: [get_columnnames.py](code/get_columnnames.py) ![7_sqlite3_get_colnames_1.png](../../Images/7_sqlite3_get_colnames_1.png) From 764e1adf4a82387234727fe9b9e37ebcffe13f16 Mon Sep 17 00:00:00 2001 From: lacanlale Date: Sat, 9 Jun 2018 09:07:32 -0700 Subject: [PATCH 80/83] typo and grammar fixes to not_so_obv nb --- tutorials/not_so_obvious_python_stuff.ipynb | 1221 +++++++------------ 1 file changed, 434 insertions(+), 787 deletions(-) diff --git a/tutorials/not_so_obvious_python_stuff.ipynb b/tutorials/not_so_obvious_python_stuff.ipynb index 15569ba..2e733ed 100644 --- a/tutorials/not_so_obvious_python_stuff.ipynb +++ b/tutorials/not_so_obvious_python_stuff.ipynb @@ -14,9 +14,7 @@ { "cell_type": "code", "execution_count": 1, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "%load_ext watermark" @@ -25,18 +23,16 @@ { "cell_type": "code", "execution_count": 2, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Last updated: 16/07/2014 \n", + "last updated: 2018-06-09 \n", "\n", - "CPython 3.4.1\n", - "IPython 2.0.0\n" + "CPython 3.6.4\n", + "IPython 6.2.1\n" ] } ], @@ -57,7 +53,6 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "
\n", "
" ] }, @@ -186,10 +181,8 @@ }, { "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, + "execution_count": 3, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -230,10 +223,8 @@ }, { "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": false - }, + "execution_count": 4, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -295,25 +286,23 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Python `list`s are mutable objects as we all know. So, if we are using the `+=` operator on `list`s, we extend the `list` by directly modifying the object directly. \n", + "Python `list`s are mutable objects as we all know. So, if we are using the `+=` operator on `list`s, we extend the `list` by directly modifying the object. \n", "\n", - "However, if we use the assigment via `my_list = my_list + ...`, we create a new list object, which can be demonstrated by the following code:" + "However, if we use the assignment via `my_list = my_list + ...`, we create a new list object, which can be demonstrated by the following code:" ] }, { "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false - }, + "execution_count": 5, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "ID: 4366496544\n", - "ID (+=): 4366496544\n", - "ID (list = list + ...): 4366495472\n" + "ID: 4486856904\n", + "ID (+=): 4486856904\n", + "ID (list = list + ...): 4486959368\n" ] } ], @@ -338,22 +327,20 @@ { "cell_type": "code", "execution_count": 6, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[] \n", - "ID (initial): 140704077653128 \n", + "ID (initial): 4486857224 \n", "\n", "[1] \n", - "ID (append): 140704077653128 \n", + "ID (append): 4486857224 \n", "\n", "[1, 2] \n", - "ID (extend): 140704077653128\n" + "ID (extend): 4486857224\n" ] } ], @@ -390,7 +377,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\"It often comes as a big surprise for programmers to find (sometimes by way of a hard-to-reproduce bug) that, unlike any other time value, midnight (i.e. `datetime.time(0,0,0)`) is False. A long discussion on the python-ideas mailing list shows that, while surprising, that behavior is desirable—at least in some quarters.\" \n", + "\"It often comes as a big surprise for programmers to find (sometimes by way of a hard-to-reproduce bug) that, unlike any other time value, midnight (i.e. `datetime.time(0,0,0)`) is False. A long discussion on the python-ideas mailing list shows that, while surprising, that behavior is desirable — at least in some quarters.\" \n", "\n", "(Original source: [http://lwn.net/SubscriberLink/590299/bf73fe823974acea/](http://lwn.net/SubscriberLink/590299/bf73fe823974acea/))" ] @@ -404,16 +391,14 @@ }, { "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": false - }, + "execution_count": 7, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "\"datetime.time(0,0,0)\" (Midnight) -> False\n", + "\"datetime.time(0,0,0)\" (Midnight) -> True\n", "\"datetime.time(1,0,0)\" (1 am) -> True\n" ] } @@ -460,10 +445,8 @@ }, { "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": false - }, + "execution_count": 8, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -489,7 +472,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "(*I received a comment that this is in fact a CPython artefact and **must not necessarily be true** in all implementations of Python!*)\n", + "(*I received a comment that this is in fact a CPython artifact and **must not necessarily be true** in all implementations of Python!*)\n", "\n", "So the take home message is: always use \"==\" for equality, \"is\" for identity!\n", "\n", @@ -505,10 +488,8 @@ }, { "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": false - }, + "execution_count": 9, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -537,10 +518,8 @@ }, { "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false - }, + "execution_count": 10, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -567,10 +546,8 @@ }, { "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": false - }, + "execution_count": 11, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -621,23 +598,25 @@ }, { "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false - }, + "execution_count": 12, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "IDs:\n", - "list1: 4346366472\n", - "list2: 4346366472\n", - "list3: 4346366408\n", - "list4: 4346366536\n", + "list1: 4486860424\n", + "list2: 4486860424\n", + "list3: 4486818632\n", + "list4: 4486818568\n", + "\n", + "list1: [3, 2]\n", "\n", "list1: [3, 2]\n", - "list1: [3, 2]\n" + "list2: [3, 2]\n", + "list3: [4, 2]\n", + "list4: [1, 4]\n" ] } ], @@ -655,7 +634,10 @@ "\n", "list3[0] = 4\n", "list4[1] = 4\n", - "print('list1:', list1)" + "print('\\nlist1:', list1)\n", + "print('list2:', list2)\n", + "print('list3:', list3)\n", + "print('list4:', list4)" ] }, { @@ -674,22 +656,23 @@ }, { "cell_type": "code", - "execution_count": 25, - "metadata": { - "collapsed": false - }, + "execution_count": 13, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "IDs:\n", - "list1: 4377956296\n", - "list2: 4377961752\n", - "list3: 4377954928\n", + "list1: 4486818824\n", + "list2: 4486886024\n", + "list3: 4486888200\n", + "\n", + "list1: [[3], [2]]\n", "\n", "list1: [[3], [2]]\n", - "list1: [[3], [2]]\n" + "list2: [[3], [2]]\n", + "list3: [[5], [2]]\n" ] } ], @@ -707,7 +690,9 @@ "print('list1:', list1)\n", "\n", "list3[0][0] = 5\n", - "print('list1:', list1)" + "print('\\nlist1:', list1)\n", + "print('list2:', list2)\n", + "print('list3:', list3)" ] }, { @@ -751,10 +736,8 @@ }, { "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": false - }, + "execution_count": 14, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -803,10 +786,8 @@ }, { "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false - }, + "execution_count": 15, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -838,17 +819,15 @@ }, { "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": false - }, + "execution_count": 16, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "1397764090.456688\n", - "1397764090.456688\n" + "1528560045.3962939\n", + "1528560045.3962939\n" ] } ], @@ -891,15 +870,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Be aware of what is happening when combining \"`in`\" checks with generators, since they won't evaluate from the beginning once a position is \"consumed\"." + "Be aware of what is happening when combining `in` checks with generators, since they won't evaluate from the beginning once a position is \"consumed\"." ] }, { "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": false - }, + "execution_count": 17, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -922,15 +899,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Although this defeats the purpose of an generator (in most cases), we can convert a generator into a list to circumvent the problem. " + "Although this defeats the purpose of a generator (in most cases), we can convert a generator into a list to circumvent the problem. " ] }, { "cell_type": "code", - "execution_count": 27, - "metadata": { - "collapsed": false - }, + "execution_count": 18, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -986,10 +961,8 @@ }, { "cell_type": "code", - "execution_count": 28, - "metadata": { - "collapsed": false - }, + "execution_count": 19, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -1036,19 +1009,17 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Remember the section about the [\"consuming generators\"](consuming_generators)? This example is somewhat related, but the result might still come unexpected. \n", + "Remember the section about the [consuming generators](#consuming_generator)? This example is somewhat related, but the result might still come as unexpected. \n", "\n", "(Original source: [http://openhome.cc/eGossip/Blog/UnderstandingLambdaClosure3.html](http://openhome.cc/eGossip/Blog/UnderstandingLambdaClosure3.html))\n", "\n", - "In the first example below, we call a `lambda` function in a list comprehension, and the value `i` will be dereferenced every time we call `lambda` within the scope of the list comprehension. Since the list comprehension has already been constructed and evaluated when we for-loop through the list, the closure-variable will be set to the last value 4." + "In the first example below, we call a `lambda` function in a list comprehension, and the value `i` will be dereferenced every time we call `lambda` within the scope. Since the list comprehension has already been constructed and evaluated when we `for-loop` through the list, the closure-variable will be set to the last value 4." ] }, { "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, + "execution_count": 20, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -1077,10 +1048,8 @@ }, { "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": false - }, + "execution_count": 21, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -1109,10 +1078,8 @@ }, { "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": false - }, + "execution_count": 22, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -1173,10 +1140,8 @@ }, { "cell_type": "code", - "execution_count": 31, - "metadata": { - "collapsed": false - }, + "execution_count": 23, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -1189,10 +1154,13 @@ ], "source": [ "x = 0\n", + "\n", + "\n", "def in_func():\n", " x = 1\n", " print('in_func:', x)\n", - " \n", + "\n", + "\n", "in_func()\n", "print('global:', x)" ] @@ -1206,10 +1174,8 @@ }, { "cell_type": "code", - "execution_count": 34, - "metadata": { - "collapsed": false - }, + "execution_count": 24, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -1222,11 +1188,14 @@ ], "source": [ "x = 0\n", + "\n", + "\n", "def in_func():\n", " global x\n", " x = 1\n", " print('in_func:', x)\n", - " \n", + "\n", + "\n", "in_func()\n", "print('global:', x)" ] @@ -1242,10 +1211,8 @@ }, { "cell_type": "code", - "execution_count": 36, - "metadata": { - "collapsed": false - }, + "execution_count": 25, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -1259,13 +1226,16 @@ ], "source": [ "def outer():\n", - " x = 1\n", - " print('outer before:', x)\n", - " def inner():\n", - " x = 2\n", - " print(\"inner:\", x)\n", - " inner()\n", - " print(\"outer after:\", x)\n", + " x = 1\n", + " print('outer before:', x)\n", + "\n", + " def inner():\n", + " x = 2\n", + " print(\"inner:\", x)\n", + " inner()\n", + " print(\"outer after:\", x)\n", + "\n", + "\n", "outer()" ] }, @@ -1278,10 +1248,8 @@ }, { "cell_type": "code", - "execution_count": 35, - "metadata": { - "collapsed": false - }, + "execution_count": 26, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -1295,14 +1263,17 @@ ], "source": [ "def outer():\n", - " x = 1\n", - " print('outer before:', x)\n", - " def inner():\n", - " nonlocal x\n", - " x = 2\n", - " print(\"inner:\", x)\n", - " inner()\n", - " print(\"outer after:\", x)\n", + " x = 1\n", + " print('outer before:', x)\n", + "\n", + " def inner():\n", + " nonlocal x\n", + " x = 2\n", + " print(\"inner:\", x)\n", + " inner()\n", + " print(\"outer after:\", x)\n", + "\n", + "\n", "outer()" ] }, @@ -1340,18 +1311,17 @@ }, { "cell_type": "code", - "execution_count": 41, - "metadata": { - "collapsed": false - }, + "execution_count": 27, + "metadata": {}, "outputs": [ { "ename": "TypeError", "evalue": "'tuple' object does not support item assignment", "output_type": "error", "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mtup\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mtup\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mtup\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mtup\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mTypeError\u001b[0m: 'tuple' object does not support item assignment" ] } @@ -1365,15 +1335,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### But what if we put a mutable object into the immutable tuple? Well, modification works, but we **also** get a `TypeError` at the same time." + "### But what if we put a mutable object into the immutable tuple? Well, modification works, but we **also** get a `TypeError` at the same time." ] }, { "cell_type": "code", - "execution_count": 42, - "metadata": { - "collapsed": false - }, + "execution_count": 28, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -1387,8 +1355,9 @@ "evalue": "'tuple' object does not support item assignment", "output_type": "error", "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mtup\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'tup before: '\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtup\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mtup\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mtup\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'tup before: '\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtup\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mtup\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mTypeError\u001b[0m: 'tuple' object does not support item assignment" ] } @@ -1401,19 +1370,9 @@ }, { "cell_type": "code", - "execution_count": 43, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tup after: ([1],)\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "print('tup after: ', tup)" ] @@ -1429,10 +1388,8 @@ }, { "cell_type": "code", - "execution_count": 44, - "metadata": { - "collapsed": false - }, + "execution_count": 29, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -1452,10 +1409,8 @@ }, { "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false - }, + "execution_count": 30, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -1488,15 +1443,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### One more note about the `immutable` status of tuples. Tuples are famous for being immutable. However, how comes that this code works?" + "### One more note about the `immutable` status of tuples. Tuples are famous for being immutable. However, how comes that this code works?" ] }, { "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false - }, + "execution_count": 31, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -1517,23 +1470,21 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "What happens \"behind\" the curtains is that the tuple is not modified, but every time a new object is generated, which will inherit the old \"name tag\":" + "What happens \"behind\" the curtains is that the tuple is not modified, but a new object is generated every time, which will inherit the old \"name tag\":" ] }, { "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": false - }, + "execution_count": 32, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "4337381840\n", - "4357415496\n", - "4357289952\n" + "4486707912\n", + "4485211784\n", + "4486955152\n" ] } ], @@ -1580,14 +1531,13 @@ }, { "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": false - }, + "execution_count": 33, + "metadata": {}, "outputs": [], "source": [ "import timeit\n", "\n", + "\n", "def plainlist(n=100000):\n", " my_list = []\n", " for i in range(n):\n", @@ -1595,14 +1545,17 @@ " my_list.append(i)\n", " return my_list\n", "\n", + "\n", "def listcompr(n=100000):\n", " my_list = [i for i in range(n) if i % 5 == 0]\n", " return my_list\n", "\n", + "\n", "def generator(n=100000):\n", " my_gen = (i for i in range(n) if i % 5 == 0)\n", " return my_gen\n", "\n", + "\n", "def generator_yield(n=100000):\n", " for i in range(n):\n", " if i % 5 == 0:\n", @@ -1613,27 +1566,25 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### To be fair to the list, let us exhaust the generators:" + "### To be fair to the list, let us exhaust the generators:" ] }, { "cell_type": "code", - "execution_count": 13, - "metadata": { - "collapsed": false - }, + "execution_count": 34, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "plain_list: 10 loops, best of 3: 22.4 ms per loop\n", + "plain_list: 10.8 ms ± 793 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n", "\n", - "listcompr: 10 loops, best of 3: 20.8 ms per loop\n", + "listcompr: 10 ms ± 830 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n", "\n", - "generator: 10 loops, best of 3: 22 ms per loop\n", + "generator: 11.4 ms ± 1 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)\n", "\n", - "generator_yield: 10 loops, best of 3: 21.9 ms per loop\n" + "generator_yield: 12.3 ms ± 1.82 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" ] } ], @@ -1642,25 +1593,29 @@ " for i in plain_list():\n", " pass\n", "\n", + "\n", "def test_listcompr(listcompr):\n", " for i in listcompr():\n", " pass\n", "\n", + "\n", "def test_generator(generator):\n", " for i in generator():\n", " pass\n", "\n", + "\n", "def test_generator_yield(generator_yield):\n", " for i in generator_yield():\n", " pass\n", "\n", - "print('plain_list: ', end = '')\n", + "\n", + "print('plain_list: ', end='')\n", "%timeit test_plainlist(plainlist)\n", - "print('\\nlistcompr: ', end = '')\n", + "print('\\nlistcompr: ', end='')\n", "%timeit test_listcompr(listcompr)\n", - "print('\\ngenerator: ', end = '')\n", + "print('\\ngenerator: ', end='')\n", "%timeit test_generator(generator)\n", - "print('\\ngenerator_yield: ', end = '')\n", + "print('\\ngenerator_yield: ', end='')\n", "%timeit test_generator_yield(generator_yield)" ] }, @@ -1693,21 +1648,19 @@ "metadata": {}, "source": [ "Who has not stumbled across this quote \"we are all consenting adults here\" in the Python community, yet? Unlike in other languages like C++ (sorry, there are many more, but that's one I am most familiar with), we can't really protect class methods from being used outside the class (i.e., by the API user). \n", - "All we can do is to indicate methods as private to make clear that they are better not used outside the class, but it is really up to the class user, since \"we are all consenting adults here\"! \n", + "All we can do is indicate methods as private to make clear that they are not to be used outside the class, but it really is up to the class user, since \"we are all consenting adults here\"! \n", "So, when we want to mark a class method as private, we can put a single underscore in front of it. \n", "If we additionally want to avoid name clashes with other classes that might use the same method names, we can prefix the name with a double-underscore to invoke the name mangling.\n", "\n", - "This doesn't prevent the class user to access this class member though, but he has to know the trick and also knows that it his own risk...\n", + "This doesn't prevent the class user to access this class member though, but they have to know the trick and also know that it is at their own risk...\n", "\n", "Let the following example illustrate what I mean:" ] }, { "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": false - }, + "execution_count": 35, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -1723,11 +1676,14 @@ "class my_class():\n", " def public_method(self):\n", " print('Hello public world!')\n", + "\n", " def __private_method(self):\n", " print('Hello private world!')\n", + "\n", " def call_private_method_in_class(self):\n", " self.__private_method()\n", - " \n", + "\n", + "\n", "my_instance = my_class()\n", "\n", "my_instance.public_method()\n", @@ -1768,10 +1724,8 @@ }, { "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": false - }, + "execution_count": 36, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -1791,10 +1745,8 @@ }, { "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, + "execution_count": 37, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -1818,15 +1770,13 @@ "source": [ "
\n", "
\n", - "**The solution** is that we are iterating through the list index by index, and if we remove one of the items in-between, we inevitably mess around with the indexing, look at the following example, and it will become clear:" + "**The solution** is that we are iterating through the list index by index, and if we remove one of the items in-between, we inevitably mess around with the indexing. Look at the following example and it will become clear:" ] }, { "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, + "execution_count": 38, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -1880,10 +1830,8 @@ }, { "cell_type": "code", - "execution_count": 14, - "metadata": { - "collapsed": false - }, + "execution_count": 39, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -1939,23 +1887,22 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "As we have all encountered it 1 (x10000) time(s) in our live, the infamous `IndexError`:" + "As we have all encountered it 1 (x10000) time(s) in our lives, the infamous `IndexError`:" ] }, { "cell_type": "code", - "execution_count": 15, - "metadata": { - "collapsed": false - }, + "execution_count": 40, + "metadata": {}, "outputs": [ { "ename": "IndexError", "evalue": "list index out of range", "output_type": "error", "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mmy_list\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m4\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m5\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmy_list\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mmy_list\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m4\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m5\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmy_list\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mIndexError\u001b[0m: list index out of range" ] } @@ -1969,24 +1916,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "But suprisingly, it is not raised when we are doing list slicing, which can be a really pain for debugging:" + "But suprisingly, it is not raised when we are doing list slicing, which can be a real pain when debugging:" ] }, { "cell_type": "code", - "execution_count": 16, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[]\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "my_list = [1, 2, 3, 4, 5]\n", "print(my_list[5:])" @@ -2025,23 +1962,14 @@ }, { "cell_type": "code", - "execution_count": 37, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "global\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "def my_func():\n", " print(var)\n", "\n", + "\n", "var = 'global'\n", "my_func()" ] @@ -2055,23 +1983,14 @@ }, { "cell_type": "code", - "execution_count": 38, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "global\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "def my_func():\n", " var = 'locally changed'\n", "\n", + "\n", "var = 'global'\n", "my_func()\n", "print(var)" @@ -2086,28 +2005,15 @@ }, { "cell_type": "code", - "execution_count": 40, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "ename": "UnboundLocalError", - "evalue": "local variable 'var' referenced before assignment", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mUnboundLocalError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mvar\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'global'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mmy_func\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m\u001b[0m in \u001b[0;36mmy_func\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mmy_func\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvar\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# want to access global variable\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mvar\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'locally changed'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mvar\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'global'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mUnboundLocalError\u001b[0m: local variable 'var' referenced before assignment" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "def my_func():\n", - " print(var) # want to access global variable\n", - " var = 'locally changed' # but Python thinks we forgot to define the local variable!\n", - " \n", + " print(var) # want to access global variable\n", + " var = 'locally changed' # but Python thinks we forgot to define the local variable!\n", + "\n", + "\n", "var = 'global'\n", "my_func()" ] @@ -2121,25 +2027,15 @@ }, { "cell_type": "code", - "execution_count": 43, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "global\n", - "locally changed\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "def my_func():\n", " global var\n", - " print(var) # want to access global variable\n", - " var = 'locally changed' # changes the gobal variable\n", + " print(var) # want to access global variable\n", + " var = 'locally changed' # changes the gobal variable\n", + "\n", "\n", "var = 'global'\n", "\n", @@ -2175,25 +2071,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Let's assume a scenario where we want to duplicate sub`list`s of values stored in another list. If we want to create independent sub`list` object, using the arithmetic multiplication operator could lead to rather unexpected (or undesired) results:" + "Let's assume a scenario where we want to duplicate sub`list`s of values stored in another list. If we want to create an independent sub`list` object, using the arithmetic multiplication operator could lead to rather unexpected (or undesired) results:" ] }, { "cell_type": "code", - "execution_count": 24, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "initially ---> [[1, 2, 3], [1, 2, 3]]\n", - "after my_list1[1][0] = 'a' ---> [['a', 2, 3], ['a', 2, 3]]\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "my_list1 = [[1, 2, 3]] * 2\n", "\n", @@ -2215,20 +2100,9 @@ }, { "cell_type": "code", - "execution_count": 25, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "initially: ---> [[1, 2, 3], [1, 2, 3]]\n", - "after my_list2[1][0] = 'a': ---> [[1, 2, 3], ['a', 2, 3]]\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "my_list2 = [[1, 2, 3] for i in range(2)]\n", "\n", @@ -2249,22 +2123,11 @@ }, { "cell_type": "code", - "execution_count": 26, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "id my_list1: 4350764680, id my_list2: 4350766472\n", - "id my_list1: 4350764680, id my_list2: 4350766664\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ - "for a,b in zip(my_list1, my_list2):\n", + "for a, b in zip(my_list1, my_list2):\n", " print('id my_list1: {}, id my_list2: {}'.format(id(a), id(b)))" ] }, @@ -2336,11 +2199,7 @@ "- [Handling exceptions](#handling_exceptions)\n", "- [next() function and .next() method](#next_next)\n", "- [Loop variables and leaking into the global scope](#loop_leak)\n", - "- [Comparing unorderable types](#compare_unorder)\n", - "\n", - "
\n", - "
\n", - "\n" + "- [Comparing unorderable types](#compare_unorder)" ] }, { @@ -2371,9 +2230,9 @@ "metadata": {}, "source": [ "\n", - "####- Python 2: \n", + "#### Python 2: \n", "We have ASCII `str()` types, separate `unicode()`, but no `byte` type\n", - "####- Python 3: \n", + "#### Python 3: \n", "Now, we finally have Unicode (utf-8) `str`ings, and 2 byte classes: `byte` and `bytearray`s" ] }, @@ -2381,12 +2240,12 @@ "cell_type": "code", "execution_count": null, "metadata": { - "collapsed": false + "code_folding": [] }, "outputs": [], "source": [ "#############\n", - "# Python 2\n", + "# Python 2 #\n", "#############\n", "\n", ">>> type(unicode('is like a python3 str()'))\n", @@ -2454,9 +2313,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "# Python 2\n", @@ -2485,9 +2342,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "# Python 2\n", @@ -2533,9 +2388,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "# Python 2\n", @@ -2563,16 +2416,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\n", - "
\n", - "
" + "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "###`xrange()` " + "### `xrange()`" ] }, { @@ -2594,23 +2445,21 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "# Python 2\n", - "> python -m timeit 'for i in range(1000000):' ' pass'\n", + ">>> python -m timeit 'for i in range(1000000):' ' pass'\n", "10 loops, best of 3: 66 msec per loop\n", "\n", " > python -m timeit 'for i in xrange(1000000):' ' pass'\n", "10 loops, best of 3: 27.8 msec per loop\n", "\n", "# Python 3\n", - "> python3 -m timeit 'for i in range(1000000):' ' pass'\n", + ">>> python3 -m timeit 'for i in range(1000000):' ' pass'\n", "10 loops, best of 3: 51.1 msec per loop\n", "\n", - "> python3 -m timeit 'for i in xrange(1000000):' ' pass'\n", + ">>> python3 -m timeit 'for i in xrange(1000000):' ' pass'\n", "Traceback (most recent call last):\n", " File \"/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/timeit.py\", line 292, in main\n", " x = t.timeit(number)\n", @@ -2656,9 +2505,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "# Python 2\n", @@ -2719,9 +2566,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "# Python 2\n", @@ -2742,12 +2587,8 @@ ] }, { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], + "cell_type": "markdown", + "metadata": {}, "source": [ "\n", "
\n", @@ -2774,15 +2615,13 @@ "source": [ "\n", "\n", - "Where you can use both function and method in Python 2.7.5, the `next()` function is all that remain in Python 3!" + "Where you can use both function and method in Python 2.7.5, the `next()` function is all that remains in Python 3!" ] }, { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "# Python 2\n", @@ -2831,26 +2670,14 @@ "source": [ "This goes back to a change that was made in Python 3.x and is described in [What’s New In Python 3.0](https://docs.python.org/3/whatsnew/3.0.html) as follows:\n", "\n", - "\"List comprehensions no longer support the syntactic form `[... for var in item1, item2, ...]`. Use `[... for var in (item1, item2, ...)]` instead. Also note that list comprehensions have different semantics: they are closer to syntactic sugar for a generator expression inside a `list()` constructor, and in particular the loop control variables are no longer leaked into the surrounding scope.\"" + "*\"List comprehensions no longer support the syntactic form `[... for var in item1, item2, ...]`. Use `[... for var in (item1, item2, ...)]` instead. Also note that list comprehensions have different semantics: they are closer to syntactic sugar for a generator expression inside a `list()` constructor, and in particular the loop control variables are no longer leaked into the surrounding scope.\"*" ] }, { "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "This code cell was executed in Python 3.3.5\n", - "[0, 1, 2, 3, 4]\n", - "1 -> i in global\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "from platform import python_version\n", "print('This code cell was executed in Python', python_version())\n", @@ -2862,21 +2689,9 @@ }, { "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "This code cell was executed in Python 2.7.6\n", - "[0, 1, 2, 3, 4]\n", - "4 -> i in global\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "from platform import python_version\n", "print 'This code cell was executed in Python', python_version()\n", @@ -2899,7 +2714,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### Python 3.x prevents us from comparing unorderable types" + "### Python 3.x prevents us from comparing unorderable types" ] }, { @@ -2911,22 +2726,9 @@ }, { "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "This code cell was executed in Python 2.7.6\n", - "False\n", - "True\n", - "False\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "from platform import python_version\n", "print 'This code cell was executed in Python', python_version()\n", @@ -2938,29 +2740,9 @@ }, { "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "This code cell was executed in Python 3.3.5\n" - ] - }, - { - "ename": "TypeError", - "evalue": "unorderable types: list() > str()", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'This code cell was executed in Python'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpython_version\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;34m'foo'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;34m'foo'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mTypeError\u001b[0m: unorderable types: list() > str()" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "from platform import python_version\n", "print('This code cell was executed in Python', python_version())\n", @@ -3003,10 +2785,8 @@ }, { "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": false - }, + "execution_count": null, + "metadata": {}, "outputs": [], "source": [ "def foo1(x: 'insert x here', y: 'insert x^2 here'):\n", @@ -3023,10 +2803,8 @@ }, { "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": false - }, + "execution_count": null, + "metadata": {}, "outputs": [], "source": [ "def foo2(x, y) -> 'Hi!':\n", @@ -3050,38 +2828,18 @@ }, { "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Hello, World\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "foo1(1,2)" ] }, { "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Hello, World\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "foo2(1,2) " ] @@ -3100,86 +2858,57 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "def is_palindrome(a):\n", " \"\"\"\n", " Case-and punctuation insensitive check if a string is a palindrom.\n", - " \n", + "\n", " Keyword arguments:\n", " a (str): The string to be checked if it is a palindrome.\n", - " \n", + "\n", " Returns `True` if input string is a palindrome, else False.\n", - " \n", + "\n", " \"\"\"\n", " stripped_str = [l for l in my_str.lower() if l.isalpha()]\n", - " return stripped_str == stripped_str[::-1]\n", - " " + " return stripped_str == stripped_str[::-1]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "However, function annotations can be useful to indicate that work is still in progress in some cases. But they are optional and I see them very very rarely.\n", + "However, function annotations can be useful to indicate that work is still in progress in some cases. But they are optional and I see them very, very rarely.\n", "\n", "As it is stated in [PEP3107](http://legacy.python.org/dev/peps/pep-3107/#fundamentals-of-function-annotations):\n", "\n", - "1. Function annotations, both for parameters and return values, are completely optional.\n", + "1. *Function annotations, both for parameters and return values, are completely optional.*\n", "\n", - "2. Function annotations are nothing more than a way of associating arbitrary Python expressions with various parts of a function at compile-time.\n" + "2. *Function annotations are nothing more than a way of associating arbitrary Python expressions with various parts of a function at compile-time.*\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The nice thing about function annotations is their `__annotations__` attribute, which is dictionary of all the parameters and/or the `return` value you annotated." + "The nice thing about function annotations is their `__annotations__` attribute, which is a dictionary of all the parameters and/or the `return` value you annotated." ] }, { "cell_type": "code", - "execution_count": 17, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "{'y': 'insert x^2 here', 'x': 'insert x here'}" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "foo1.__annotations__" ] }, { "cell_type": "code", - "execution_count": 18, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "{'return': 'Hi!'}" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "foo2.__annotations__" ] @@ -3207,7 +2936,6 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "
\n", "
\n", "" ] @@ -3219,6 +2947,13 @@ "## Abortive statements in `finally` blocks" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[back to top](#sections)]" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -3228,22 +2963,9 @@ }, { "cell_type": "code", - "execution_count": 24, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "in try:\n", - "do some stuff\n", - "an error occurred\n", - "always execute finally\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "def try_finally1():\n", " try:\n", @@ -3256,7 +2978,8 @@ " print('no error occurred')\n", " finally:\n", " print('always execute finally')\n", - " \n", + "\n", + "\n", "try_finally1()" ] }, @@ -3271,21 +2994,9 @@ }, { "cell_type": "code", - "execution_count": 21, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "do some stuff in try block\n", - "do some stuff in finally block\n", - "always execute finally\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "def try_finally2():\n", " try:\n", @@ -3294,7 +3005,8 @@ " finally:\n", " print(\"do some stuff in finally block\")\n", " return \"always execute finally\"\n", - " \n", + "\n", + "\n", "print(try_finally2())" ] }, @@ -3319,7 +3031,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#Assigning types to variables as values" + "## Assigning types to variables as values" ] }, { @@ -3338,22 +3050,9 @@ }, { "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "'123'" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "a_var = str\n", "a_var(123)" @@ -3361,23 +3060,9 @@ }, { "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0 \n", - "1 \n", - "2.0 \n", - "3 \n", - "4 \n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "from random import choice\n", "\n", @@ -3400,7 +3085,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Only the first clause of generators is evaluated immediately" + "## Only the first clause of generators is evaluated immediately" ] }, { @@ -3420,22 +3105,9 @@ }, { "cell_type": "code", - "execution_count": 18, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "ename": "ZeroDivisionError", - "evalue": "division by zero", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mZeroDivisionError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mgen_fails\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mZeroDivisionError\u001b[0m: division by zero" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "gen_fails = (i for i in 1/0)" ] @@ -3449,10 +3121,8 @@ }, { "cell_type": "code", - "execution_count": 19, - "metadata": { - "collapsed": false - }, + "execution_count": null, + "metadata": {}, "outputs": [], "source": [ "gen_succeeds = (i for i in range(5) for j in 1/0)" @@ -3460,30 +3130,9 @@ }, { "cell_type": "code", - "execution_count": 20, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "ename": "ZeroDivisionError", - "evalue": "division by zero", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mZeroDivisionError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'But obviously fails when we iterate ...'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mgen_succeeds\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mgen_succeeds\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mj\u001b[0m \u001b[0;32min\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mZeroDivisionError\u001b[0m: division by zero" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "But obviously fails when we iterate ...\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "print('But obviously fails when we iterate ...')\n", "for i in gen_succeeds:\n", @@ -3503,7 +3152,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "##Keyword argument unpacking syntax - `*args` and `**kwargs`" + "## Keyword argument unpacking syntax - `*args` and `**kwargs`" ] }, { @@ -3517,22 +3166,20 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Python has a very convenient \"keyword argument unpacking syntax\" (often also referred to as \"splat\"-operators). This is particularly useful, if we want to define a function that can take a arbitrary number of input arguments." + "Python has a very convenient \"keyword argument unpacking syntax\" (often referred to as \"splat\"-operators). This is particularly useful, if we want to define a function that can take a arbitrary number of input arguments." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "#### Single-asterisk (*args)" + "### Single-asterisk (*args)" ] }, { "cell_type": "code", - "execution_count": 55, - "metadata": { - "collapsed": false - }, + "execution_count": 41, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -3550,6 +3197,7 @@ " print('args contents:', args)\n", " print('1st argument:', args[0])\n", "\n", + "\n", "a_func(0, 1, 'a', 'b', 'c')" ] }, @@ -3557,22 +3205,20 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### Double-asterisk (**kwargs)" + "### Double-asterisk (**kwargs)" ] }, { "cell_type": "code", - "execution_count": 56, - "metadata": { - "collapsed": false - }, + "execution_count": 42, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "type of kwargs: \n", - "kwargs contents: {'d': 4, 'a': 1, 'c': 3, 'b': 2}\n", + "kwargs contents: {'a': 1, 'b': 2, 'c': 3, 'd': 4}\n", "value of argument a: 1\n" ] } @@ -3582,7 +3228,8 @@ " print('type of kwargs:', type(kwargs))\n", " print('kwargs contents: ', kwargs)\n", " print('value of argument a:', kwargs['a'])\n", - " \n", + "\n", + "\n", "b_func(a=1, b=2, c=3, d=4)" ] }, @@ -3590,16 +3237,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### (Partially) unpacking of iterables\n", + "### (Partially) unpacking of iterables\n", "Another useful application of the \"unpacking\"-operator is the unpacking of lists and other other iterables." ] }, { "cell_type": "code", - "execution_count": 57, - "metadata": { - "collapsed": false - }, + "execution_count": 43, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -3654,10 +3299,8 @@ }, { "cell_type": "code", - "execution_count": 53, - "metadata": { - "collapsed": false - }, + "execution_count": 44, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -3673,10 +3316,12 @@ " def __new__(clss, *args, **kwargs):\n", " print('excecuted __new__')\n", " return None\n", + "\n", " def __init__(self, an_arg):\n", " print('excecuted __init__')\n", " self.an_arg = an_arg\n", - " \n", + "\n", + "\n", "a_object = a_class(1)\n", "print('Type of a_object:', type(a_object))" ] @@ -3691,10 +3336,8 @@ }, { "cell_type": "code", - "execution_count": 54, - "metadata": { - "collapsed": false - }, + "execution_count": 45, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -3713,10 +3356,12 @@ " print('excecuted __new__')\n", " inst = super(a_class, cls).__new__(cls)\n", " return inst\n", + "\n", " def __init__(self, an_arg):\n", " print('excecuted __init__')\n", " self.an_arg = an_arg\n", - " \n", + "\n", + "\n", "a_object = a_class(1)\n", "print('Type of a_object:', type(a_object))\n", "print('a_object.an_arg: ', a_object.an_arg)" @@ -3724,10 +3369,8 @@ }, { "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false - }, + "execution_count": 46, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -3750,10 +3393,8 @@ }, { "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false - }, + "execution_count": 47, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -3799,7 +3440,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "I would claim that the conditional \"else\" is every programmer's daily bread and butter. However, there is a second flavor of \"else\"-clauses in Python, which I will call \"completion else\" (for reason that will become clear later). \n", + "I would claim that the conditional `else` is every programmer's daily bread and butter. However, there is a second flavor of `else`-clauses in Python, which I will call \"completion else\" (for reason that will become clear later). \n", "But first, let us take a look at our \"traditional\" conditional else that we all are familiar with. \n" ] }, @@ -3807,15 +3448,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "###Conditional else:" + "### Conditional else:" ] }, { "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": false - }, + "execution_count": 48, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -3837,10 +3476,8 @@ }, { "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, + "execution_count": 49, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -3866,7 +3503,7 @@ "source": [ "Why am I showing those simple examples? I think they are good to highlight some of the key points: It is **either** the code under the `if` clause that is executed, **or** the code under the `else` block, but not both. \n", "If the condition of the `if` clause evaluates to `True`, the `if`-block is exectured, and if it evaluated to `False`, it is the `else` block. \n", - "\n", + "
\n", "### Completion else\n", "**In contrast** to the **either...or*** situation that we know from the conditional `else`, the completion `else` is executed if a code block finished. \n", "To show you an example, let us use `else` for error-handling:" @@ -3881,10 +3518,8 @@ }, { "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false - }, + "execution_count": 50, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -3906,10 +3541,8 @@ }, { "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false - }, + "execution_count": 51, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -3932,7 +3565,6 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "
\n", "In the code above, we can see that the code under the **`else`-clause is only executed if the `try-block` was executed without encountering an error, i.e., if the `try`-block is \"complete\".** \n", "The same rule applies to the \"completion\" `else` in while- and for-loops, which you can confirm in the following samples below." ] @@ -3946,10 +3578,8 @@ }, { "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, + "execution_count": 52, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -3972,10 +3602,8 @@ }, { "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": false - }, + "execution_count": 53, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -4004,10 +3632,8 @@ }, { "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": false - }, + "execution_count": 54, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -4028,10 +3654,8 @@ }, { "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": false - }, + "execution_count": 55, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -4090,10 +3714,8 @@ }, { "cell_type": "code", - "execution_count": 34, - "metadata": { - "collapsed": false - }, + "execution_count": 56, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -4125,20 +3747,18 @@ }, { "cell_type": "code", - "execution_count": 38, - "metadata": { - "collapsed": false - }, + "execution_count": 57, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 3 0 LOAD_CONST 1 ('Hello')\n", - " 3 STORE_FAST 0 (s)\n", + " 2 STORE_FAST 0 (s)\n", "\n", - " 4 6 LOAD_FAST 0 (s)\n", - " 9 RETURN_VALUE\n" + " 4 4 LOAD_FAST 0 (s)\n", + " 6 RETURN_VALUE\n" ] } ], @@ -4152,20 +3772,18 @@ }, { "cell_type": "code", - "execution_count": 39, - "metadata": { - "collapsed": false - }, + "execution_count": 58, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 2 0 LOAD_CONST 3 ('Hello')\n", - " 3 STORE_FAST 0 (s)\n", + " 2 STORE_FAST 0 (s)\n", "\n", - " 3 6 LOAD_FAST 0 (s)\n", - " 9 RETURN_VALUE\n" + " 3 4 LOAD_FAST 0 (s)\n", + " 6 RETURN_VALUE\n" ] } ], @@ -4178,25 +3796,23 @@ }, { "cell_type": "code", - "execution_count": 40, - "metadata": { - "collapsed": false - }, + "execution_count": 59, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 2 0 LOAD_CONST 1 ('Hell')\n", - " 3 STORE_FAST 0 (s)\n", + " 2 STORE_FAST 0 (s)\n", "\n", - " 3 6 LOAD_FAST 0 (s)\n", - " 9 LOAD_CONST 2 ('o')\n", - " 12 BINARY_ADD\n", - " 13 STORE_FAST 0 (s)\n", + " 3 4 LOAD_FAST 0 (s)\n", + " 6 LOAD_CONST 2 ('o')\n", + " 8 BINARY_ADD\n", + " 10 STORE_FAST 0 (s)\n", "\n", - " 4 16 LOAD_FAST 0 (s)\n", - " 19 RETURN_VALUE\n" + " 4 12 LOAD_FAST 0 (s)\n", + " 14 RETURN_VALUE\n" ] } ], @@ -4215,15 +3831,13 @@ "
\n", "It looks like that `'Hello'` and `'Hell'` + `'o'` are both evaluated and stored as `'Hello'` at compile-time, whereas the third version \n", "`s = 'Hell'` \n", - "`s = s + 'o'` seems to be not interned. Let us quickly confirm the behavior with the following code:" + "`s = s + 'o'` seems to not be interned. Let us quickly confirm the behavior with the following code:" ] }, { "cell_type": "code", - "execution_count": 42, - "metadata": { - "collapsed": false - }, + "execution_count": 60, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -4248,10 +3862,8 @@ }, { "cell_type": "code", - "execution_count": 45, - "metadata": { - "collapsed": false - }, + "execution_count": 61, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -4296,6 +3908,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ + "#### 06/09/2018\n", + "- pep8 spacing\n", + "- fixed minor typos\n", + "- fixed minor markdown formatting\n", + "- fixed broken page jumps\n", + "\n", "#### 07/16/2014\n", "- slight change of wording in the [lambda-closure section](#lambda_closure)\n", "\n", @@ -4322,9 +3940,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [] } @@ -4345,9 +3961,40 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.0" + "version": "3.6.4" + }, + "latex_envs": { + "LaTeX_envs_menu_present": true, + "autoclose": false, + "autocomplete": true, + "bibliofile": "biblio.bib", + "cite_by": "apalike", + "current_citInitial": 1, + "eqLabelWithNumbers": true, + "eqNumInitial": 1, + "hotkeys": { + "equation": "Ctrl-E", + "itemize": "Ctrl-I" + }, + "labels_anchors": false, + "latex_user_defs": false, + "report_style_numbering": false, + "user_envs_cfg": false + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": false, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": {}, + "toc_section_display": true, + "toc_window_display": false } }, "nbformat": 4, - "nbformat_minor": 0 + "nbformat_minor": 1 } From 48b25bfd351cdf553a21c74cadebe1695959d50d Mon Sep 17 00:00:00 2001 From: lacanlale Date: Sat, 9 Jun 2018 11:03:08 -0700 Subject: [PATCH 81/83] minor grammar fix and datetime note --- tutorials/not_so_obvious_python_stuff.ipynb | 285 +++++++++++++++----- 1 file changed, 218 insertions(+), 67 deletions(-) diff --git a/tutorials/not_so_obvious_python_stuff.ipynb b/tutorials/not_so_obvious_python_stuff.ipynb index 2e733ed..cf683b0 100644 --- a/tutorials/not_so_obvious_python_stuff.ipynb +++ b/tutorials/not_so_obvious_python_stuff.ipynb @@ -379,6 +379,8 @@ "source": [ "\"It often comes as a big surprise for programmers to find (sometimes by way of a hard-to-reproduce bug) that, unlike any other time value, midnight (i.e. `datetime.time(0,0,0)`) is False. A long discussion on the python-ideas mailing list shows that, while surprising, that behavior is desirable — at least in some quarters.\" \n", "\n", + "Please note that Python version <= 3.4.5 evaluated the first statement `bool(datetime.time(0,0,0))` as `False`, which was regarded counter-intuitive, since \"12am\" refers to \"midnight.\"\n", + "\n", "(Original source: [http://lwn.net/SubscriberLink/590299/bf73fe823974acea/](http://lwn.net/SubscriberLink/590299/bf73fe823974acea/))" ] }, @@ -391,22 +393,25 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ + "Current python version: 3.6.4\n", "\"datetime.time(0,0,0)\" (Midnight) -> True\n", "\"datetime.time(1,0,0)\" (1 am) -> True\n" ] } ], "source": [ + "from platform import python_version\n", "import datetime\n", "\n", - "print('\"datetime.time(0,0,0)\" (Midnight) ->', bool(datetime.time(0,0,0)))\n", + "print(\"Current python version: \", python_version())\n", + "print('\"datetime.time(0,0,0)\" (Midnight) ->', bool(datetime.time(0,0,0))) # Python version <= 3.4.5 evaluates this statement to False\n", "\n", "print('\"datetime.time(1,0,0)\" (1 am) ->', bool(datetime.time(1,0,0)))" ] @@ -1652,7 +1657,7 @@ "So, when we want to mark a class method as private, we can put a single underscore in front of it. \n", "If we additionally want to avoid name clashes with other classes that might use the same method names, we can prefix the name with a double-underscore to invoke the name mangling.\n", "\n", - "This doesn't prevent the class user to access this class member though, but they have to know the trick and also know that it is at their own risk...\n", + "This doesn't prevent the class users to access this class member though, but they have to know the trick and also know that it is at their own risk...\n", "\n", "Let the following example illustrate what I mean:" ] @@ -2679,26 +2684,39 @@ "metadata": {}, "outputs": [], "source": [ - "from platform import python_version\n", - "print('This code cell was executed in Python', python_version())\n", - "\n", - "i = 1\n", - "print([i for i in range(5)])\n", - "print(i, '-> i in global')" + ">>> from platform import python_version\n", + ">>> print 'This code cell was executed in Python', python_version()\n", + "'This code cell was executed in Python 2.7.6'\n", + ">>> i = 1\n", + ">>> print [i for i in range(5)]\n", + "'[0, 1, 2, 3, 4]'\n", + ">>> print i, '-> i in global'\n", + "'4 -> i in global'" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 61, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "This code cell was executed in Python 3.6.4\n", + "[0, 1, 2, 3, 4]\n", + "1 -> i in global\n" + ] + } + ], "source": [ + "%%python3\n", "from platform import python_version\n", - "print 'This code cell was executed in Python', python_version()\n", + "print('This code cell was executed in Python', python_version())\n", "\n", "i = 1\n", - "print [i for i in range(5)]\n", - "print i, '-> i in global' " + "print([i for i in range(5)])\n", + "print(i, '-> i in global')" ] }, { @@ -2726,23 +2744,53 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 101, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Couldn't find program: 'python2'\n" + ] + } + ], "source": [ - "from platform import python_version\n", - "print 'This code cell was executed in Python', python_version()\n", - "\n", - "print [1, 2] > 'foo'\n", - "print (1, 2) > 'foo'\n", - "print [1, 2] > (1, 2)" + ">>> from platform import python_version\n", + ">>> print 'This code cell was executed in Python', python_version()\n", + "'This code cell was executed in Python 2.7.6'\n", + ">>> print [1, 2] > 'foo'\n", + "'False'\n", + ">>> print (1, 2) > 'foo'\n", + "'True'\n", + ">>> print [1, 2] > (1, 2)\n", + "'False'" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 67, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "This code cell was executed in Python 3.6.4\n" + ] + }, + { + "ename": "TypeError", + "evalue": "'>' not supported between instances of 'list' and 'str'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'This code cell was executed in Python'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpython_version\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;34m'foo'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;34m'foo'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mTypeError\u001b[0m: '>' not supported between instances of 'list' and 'str'" + ] + } + ], "source": [ "from platform import python_version\n", "print('This code cell was executed in Python', python_version())\n", @@ -2785,7 +2833,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -2803,7 +2851,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -2828,18 +2876,34 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Hello, World\n" + ] + } + ], "source": [ "foo1(1,2)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Hello, World\n" + ] + } + ], "source": [ "foo2(1,2) " ] @@ -2857,7 +2921,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -2897,18 +2961,40 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "{'x': 'insert x here', 'y': 'insert x^2 here'}" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "foo1.__annotations__" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "{'return': 'Hi!'}" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "foo2.__annotations__" ] @@ -2994,9 +3080,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "do some stuff in try block\n", + "do some stuff in finally block\n", + "always execute finally\n" + ] + } + ], "source": [ "def try_finally2():\n", " try:\n", @@ -3050,9 +3146,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "'123'" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "a_var = str\n", "a_var(123)" @@ -3060,9 +3167,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.0 \n", + "1.0 \n", + "2 \n", + "3.0 \n", + "4.0 \n" + ] + } + ], "source": [ "from random import choice\n", "\n", @@ -3105,9 +3224,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "ZeroDivisionError", + "evalue": "division by zero", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mZeroDivisionError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mgen_fails\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mZeroDivisionError\u001b[0m: division by zero" + ] + } + ], "source": [ "gen_fails = (i for i in 1/0)" ] @@ -3121,7 +3252,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -3130,9 +3261,29 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "But obviously fails when we iterate ...\n" + ] + }, + { + "ename": "ZeroDivisionError", + "evalue": "division by zero", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mZeroDivisionError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'But obviously fails when we iterate ...'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mgen_succeeds\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mgen_succeeds\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mj\u001b[0m \u001b[0;32min\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mZeroDivisionError\u001b[0m: division by zero" + ] + } + ], "source": [ "print('But obviously fails when we iterate ...')\n", "for i in gen_succeeds:\n", @@ -3178,7 +3329,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 27, "metadata": {}, "outputs": [ { @@ -3210,7 +3361,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -3243,7 +3394,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 29, "metadata": {}, "outputs": [ { @@ -3299,7 +3450,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 30, "metadata": {}, "outputs": [ { @@ -3336,7 +3487,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 31, "metadata": {}, "outputs": [ { @@ -3369,7 +3520,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 32, "metadata": {}, "outputs": [ { @@ -3393,7 +3544,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 33, "metadata": {}, "outputs": [ { @@ -3453,7 +3604,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 34, "metadata": {}, "outputs": [ { @@ -3476,7 +3627,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 35, "metadata": {}, "outputs": [ { @@ -3518,7 +3669,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 36, "metadata": {}, "outputs": [ { @@ -3541,7 +3692,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 37, "metadata": {}, "outputs": [ { @@ -3578,7 +3729,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 38, "metadata": {}, "outputs": [ { @@ -3602,7 +3753,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 39, "metadata": {}, "outputs": [ { @@ -3632,7 +3783,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 40, "metadata": {}, "outputs": [ { @@ -3654,7 +3805,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 41, "metadata": {}, "outputs": [ { @@ -3714,7 +3865,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 42, "metadata": {}, "outputs": [ { @@ -3747,7 +3898,7 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 43, "metadata": {}, "outputs": [ { @@ -3772,7 +3923,7 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 44, "metadata": {}, "outputs": [ { @@ -3796,7 +3947,7 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 45, "metadata": {}, "outputs": [ { @@ -3836,7 +3987,7 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 46, "metadata": {}, "outputs": [ { @@ -3862,7 +4013,7 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 47, "metadata": {}, "outputs": [ { From d6ddacb2d4ed2a8ffe0c6de1a5e2743ab4e54a2e Mon Sep 17 00:00:00 2001 From: Sebastian Raschka Date: Mon, 8 Apr 2019 21:38:51 -0500 Subject: [PATCH 82/83] Update README.md --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index c6fbbee..05de8e6 100644 --- a/README.md +++ b/README.md @@ -71,7 +71,7 @@ *This category has been moved to a separate GitHub repository [rasbt/algorithms_in_ipython_notebooks](https://github.com/rasbt/algorithms_in_ipython_notebooks)* -- Sorting Algorithms [[IPython nb](http://nbviewer.ipython.org/github/rasbt/algorithms_in_ipython_notebooks/blob/master/ipython_nbs/sorting/sorting_algorithms.ipynb?create=1)] +- Sorting Algorithms [[Collection of IPython Notebooks](https://github.com/rasbt/algorithms_in_ipython_notebooks/tree/master/ipython_nbs/sorting) - Linear regression via the least squares fit method [[IPython nb](http://nbviewer.ipython.org/github/rasbt/algorithms_in_ipython_notebooks/blob/master/ipython_nbs/statistics/linregr_least_squares_fit.ipynb?create=1)] From a066dc35fe6b324f39d406b918a9bb8469b8b420 Mon Sep 17 00:00:00 2001 From: Tim Gates Date: Mon, 27 Jun 2022 13:19:05 +1000 Subject: [PATCH 83/83] docs: Fix a few typos There are small typos in: - tutorials/installing_scientific_packages.md - tutorials/sqlite3_howto/README.md - tutorials/sqlite3_howto/code/update_or_insert_records.py - useful_scripts/conc_gzip_files.py Fixes: - Should read `existing` rather than `exisiting`. - Should read `conveniently` rather than `conviniently`. - Should read `calculate` rather than `calulate`. - Should read `accommodate` rather than `accomodate`. --- tutorials/installing_scientific_packages.md | 2 +- tutorials/sqlite3_howto/README.md | 2 +- tutorials/sqlite3_howto/code/update_or_insert_records.py | 2 +- useful_scripts/conc_gzip_files.py | 2 +- 4 files changed, 4 insertions(+), 4 deletions(-) diff --git a/tutorials/installing_scientific_packages.md b/tutorials/installing_scientific_packages.md index 0439c71..918d293 100644 --- a/tutorials/installing_scientific_packages.md +++ b/tutorials/installing_scientific_packages.md @@ -278,7 +278,7 @@ print its path: Finally, we can set an `alias` in our `.bash_profile` or `.bash_rc` file to -conviniently run IPython from the console. E.g., +conveniently run IPython from the console. E.g., diff --git a/tutorials/sqlite3_howto/README.md b/tutorials/sqlite3_howto/README.md index ea2a357..c596dfc 100644 --- a/tutorials/sqlite3_howto/README.md +++ b/tutorials/sqlite3_howto/README.md @@ -586,7 +586,7 @@ syntax applies to simple dates or simple times only, too. #### Update Mar 16, 2014: -If'd we are interested to calulate the hours between two `DATETIME()` +If'd we are interested to calculate the hours between two `DATETIME()` timestamps, we can could use the handy `STRFTIME()` function like this diff --git a/tutorials/sqlite3_howto/code/update_or_insert_records.py b/tutorials/sqlite3_howto/code/update_or_insert_records.py index 37292a5..ee461ec 100644 --- a/tutorials/sqlite3_howto/code/update_or_insert_records.py +++ b/tutorials/sqlite3_howto/code/update_or_insert_records.py @@ -1,6 +1,6 @@ # Sebastian Raschka, 2014 # Update records or insert them if they don't exist. -# Note that this is a workaround to accomodate for missing +# Note that this is a workaround to accommodate for missing # SQL features in SQLite. import sqlite3 diff --git a/useful_scripts/conc_gzip_files.py b/useful_scripts/conc_gzip_files.py index da849c9..b8d9b33 100644 --- a/useful_scripts/conc_gzip_files.py +++ b/useful_scripts/conc_gzip_files.py @@ -13,7 +13,7 @@ def conc_gzip_files(in_dir, out_file, append=False, print_progress=True): Keyword arguments: in_dir (str): Path of the directory with the gzip-files out_file (str): Path to the resulting file - append (bool): If true, it appends contents to an exisiting file, + append (bool): If true, it appends contents to an existing file, else creates a new output file. print_progress (bool): prints progress bar if true.
-
- - -
-
-
-
-
-
-I would be happy to hear your comments and suggestions.
Please feel free to drop me a note via twitter, , or google+. -
-
-
-
-
-
-
-
-
-

Key differences between Python 2.7.x and Python 3.x

-
-
-
- -
-
-
-
-
-


Many beginning Python users are wondering with which version of Python they should start. My answer to this question is usually something along the lines "just go with the version your favorite tutorial was written in, and check out the differences later on."

-

But what if you are starting a new project and have the choice to pick? I would say there is currently no "right" or "wrong" as long as both Python 2.7.x and Python 3.x support the libraries that you are planning to use. However, it is worthwhile to have a look at the major differences between those two most popular versions of Python to avoid common pitfalls when writing the code for either one of them, or if you are planning to port your project.

-
-
-
-
-
-
-
-
-



-
-
-
-
-
-
-
-
-

Sections

-
-
-
- - -
-
-
-
-
-

-
-
-
-
-
-
-
-
-



-
-
-
-
-
-
-
-
-

The __future__ module

-
-
-
-
-
-
-
-
-

Python 3.x introduced some Python 2-incompatible keywords and features that can be imported via the in-built __future__ module in Python 2. It is recommended to use __future__ imports it if you are planning Python 3.x support for your code. For example, if we want Python 3.x's integer division behavior in Python 2, we can import it via

-
from __future__ import division
-

More features that can be imported from the __future__ module are listed in the table below:

-
-
-
-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-feature - -optional in - -mandatory in - -effect -
-nested_scopes - -2.1.0b1 - -2.2 - -PEP 227: Statically Nested Scopes -
-generators - -2.2.0a1 - -2.3 - -PEP 255: Simple Generators -
-division - -2.2.0a2 - -3.0 - -PEP 238: Changing the Division Operator -
-absolute_import - -2.5.0a1 - -3.0 - -PEP 328: Imports: Multi-Line and Absolute/Relative -
-with_statement - -2.5.0a1 - -2.6 - -PEP 343: The “with” Statement -
-print_function - -2.6.0a2 - -3.0 - -PEP 3105: Make print a function -
-unicode_literals - -2.6.0a2 - -3.0 - -PEP 3112: Bytes literals in Python 3000 -
-
-
-(Source: https://docs.python.org/2/library/future.html) -
-
-
-
-
-
-
-In [1]: -
-
-
-
from platform import python_version
-
- -
-
-
- -
-
-
-
-
-
-



-
-
-
-
-
-
-
-
-

The print function

-
-
-
- - -
-
-
-
-
-

Very trivial, and the change in the print-syntax is probably the most widely known change, but still it is worth mentioning: Python 2's print statement has been replaced by the print() function, meaning that we have to wrap the object that we want to print in parantheses.

-

Python 2 doesn't have a problem with additional parantheses, but in contrast, Python 3 would raise a SyntaxError if we called the print function the Python 2-way without the parentheses.

-
-
-
-
-
-
-
-
-

Python 2

-
-
-
-
-
-
-In [3]: -
-
-
-
print 'Python', python_version()
-print 'Hello, World!'
-print('Hello, World!')
-print "text", ; print 'print more text on the same line'
-
- -
-
-
- -
-
- - -
-
-
-Python 2.7.6
-Hello, World!
-Hello, World!
-text print more text on the same line
-
-
-
-
- -
-
- -
-
-
-
-
-
-


-
-
-
-
-
-
-
-
-

Python 3

-
-
-
-
-
-
-In [2]: -
-
-
-
print('Python', python_version())
-print('Hello, World!')
-
-print("some text,", end="") 
-print(' print more text on the same line')
-
- -
-
-
- -
-
- - -
-
-
-Python 3.4.1
-Hello, World!
-some text, print more text on the same line
-
-
-
-
- -
-
- -
-
-
-
-In [3]: -
-
-
-
print 'Hello, World!'
-
- -
-
-
- -
-
- - -
-
-
-  File "<ipython-input-3-139a7c5835bd>", line 1
-    print 'Hello, World!'
-                        ^
-SyntaxError: invalid syntax
-
-
-
- -
-
- -
-
-
-
-
-
-

Note:

-

Printing "Hello, World" above via Python 2 looked quite "normal". However, if we have multiple objects inside the parantheses, we will create a tuple, since print is a "statement" in Python 2, not a function call.

-
-
-
-
-
-
-In [4]: -
-
-
-
print 'Python', python_version()
-print('a', 'b')
-print 'a', 'b'
-
- -
-
-
- -
-
- - -
-
-
-Python 2.7.6
-('a', 'b')
-a b
-
-
-
-
- -
-
- -
-
-
-
-
-
-



-
-
-
-
-
-
-
-
-

Integer division

-
-
-
- - -
-
-
-
-
-

This change is particularly dangerous if you are porting code, or if you are executing Python 3 code in Python 2, since the change in integer-division behavior can often go unnoticed (it doesn't raise a SyntaxError).
So, I still tend to use a float(3)/2 or 3/2.0 instead of a 3/2 in my Python 3 scripts to save the Python 2 guys some trouble (and vice versa, I recommend a from __future__ import division in your Python 2 scripts).

-
-
-
-
-
-
-
-
-

Python 2

-
-
-
-
-
-
-In [4]: -
-
-
-
print 'Python', python_version()
-print '3 / 2 =', 3 / 2
-print '3 // 2 =', 3 // 2
-print '3 / 2.0 =', 3 / 2.0
-print '3 // 2.0 =', 3 // 2.0
-
- -
-
-
- -
-
- - -
-
-
-Python 2.7.6
-3 / 2 = 1
-3 // 2 = 1
-3 / 2.0 = 1.5
-3 // 2.0 = 1.0
-
-
-
-
- -
-
- -
-
-
-
-
-
-


-
-
-
-
-
-
-
-
-

Python 3

-
-
-
-
-
-
-In [4]: -
-
-
-
print('Python', python_version())
-print('3 / 2 =', 3 / 2)
-print('3 // 2 =', 3 // 2)
-print('3 / 2.0 =', 3 / 2.0)
-print('3 // 2.0 =', 3 // 2.0)
-
- -
-
-
- -
-
- - -
-
-
-Python 3.4.1
-3 / 2 = 1.5
-3 // 2 = 1
-3 / 2.0 = 1.5
-3 // 2.0 = 1.0
-
-
-
-
- -
-
- -
-
-
-
-
-
-



-
-
-
-
-
-
-
-
-

Unicode

-
-
-
- - -
-
-
-
-
-

Python 2 has ASCII str() types, separate unicode(), but no byte type.

-

Now, in Python 3, we finally have Unicode (utf-8) strings, and 2 byte classes: byte and bytearrays.

-
-
-
-
-
-
-
-
-

Python 2

-
-
-
-
-
-
-In [2]: -
-
-
-
print 'Python', python_version()
-
- -
-
-
- -
-
- - -
-
-
-Python 2.7.6
-
-
-
-
- -
-
- -
-
-
-
-In [3]: -
-
-
-
print type(unicode('this is like a python3 str type'))
-
- -
-
-
- -
-
- - -
-
-
-<type 'unicode'>
-
-
-
-
- -
-
- -
-
-
-
-In [4]: -
-
-
-
print type(b'byte type does not exist')
-
- -
-
-
- -
-
- - -
-
-
-<type 'str'>
-
-
-
-
- -
-
- -
-
-
-
-In [5]: -
-
-
-
print 'they are really' + b' the same'
-
- -
-
-
- -
-
- - -
-
-
-they are really the same
-
-
-
-
- -
-
- -
-
-
-
-In [7]: -
-
-
-
print type(bytearray(b'bytearray oddly does exist though'))
-
- -
-
-
- -
-
- - -
-
-
-<type 'bytearray'>
-
-
-
-
- -
-
- -
-
-
-
-
-
-


-
-
-
-
-
-
-
-
-

Python 3

-
-
-
-
-
-
-In [6]: -
-
-
-
print('Python', python_version())
-print('strings are now utf-8 \u03BCnico\u0394é!')
-
- -
-
-
- -
-
- - -
-
-
-Python 3.4.1
-strings are now utf-8 μnicoΔé!
-
-
-
-
- -
-
- -
-
-
-
-In [8]: -
-
-
-
print('Python', python_version(), end="")
-print(' has', type(b' bytes for storing data'))
-
- -
-
-
- -
-
- - -
-
-
-Python 3.4.1 has <class 'bytes'>
-
-
-
-
- -
-
- -
-
-
-
-In [11]: -
-
-
-
print('and Python', python_version(), end="")
-print(' also has', type(bytearray(b'bytearrays')))
-
- -
-
-
- -
-
- - -
-
-
-and Python 3.4.1 also has <class 'bytearray'>
-
-
-
-
- -
-
- -
-
-
-
-In [13]: -
-
-
-
'note that we cannot add a string' + b'bytes for data'
-
- -
-
-
- -
-
- - -
-
-
----------------------------------------------------------------------------
-TypeError                                 Traceback (most recent call last)
-<ipython-input-13-d3e8942ccf81> in <module>()
-----> 1 'note that we cannot add a string' + b'bytes for data'
-
-TypeError: Can't convert 'bytes' object to str implicitly
-
-
- -
-
- -
-
-
-
-
-
-



-
-
-
-
-
-
-
-
-

xrange

-
-
-
- - -
-
-
-
-
-

The usage of xrange() is very popular in Python 2.x for creating an iterable object, e.g., in a for-loop or list/set-dictionary-comprehension.
The behavior was quite similar to a generator (i.e., "lazy evaluation"), but here the xrange-iterable is not exhaustible - meaning, you could iterate over it infinitely.

-

Thanks to its "lazy-evaluation", the advantage of the regular range() is that xrange() is generally faster if you have to iterate over it only once (e.g., in a for-loop). However, in contrast to 1-time iterations, it is not recommended if you repeat the iteration multiple times, since the generation happens every time from scratch!

-

In Python 3, the range() was implemented like the xrange() function so that a dedicated xrange() function does not exist anymore (xrange() raises a NameError in Python 3).

-
-
-
-
-
-
-In [5]: -
-
-
-
import timeit
-
-n = 10000
-def test_range(n):
-    for i in range(n):
-        pass
-    
-def test_xrange(n):
-    for i in xrange(n):
-        pass    
-
- -
-
-
- -
-
-
-
-
-
-


-
-
-
-
-
-
-
-
-

Python 2

-
-
-
-
-
-
-In [6]: -
-
-
-
print 'Python', python_version()
-
-print '\ntiming range()'
-%timeit test_range(n)
-
-print '\n\ntiming xrange()'
-%timeit test_xrange(n)
-
- -
-
-
- -
-
- - -
-
-
-Python 2.7.6
-
-timing range()
-1000 loops, best of 3: 433 µs per loop
-
-
-timing xrange()
-1000 loops, best of 3: 350 µs per loop
-
-
-
-
- -
-
- -
-
-
-
-
-
-


-
-
-
-
-
-
-
-
-

Python 3

-
-
-
-
-
-
-In [7]: -
-
-
-
print('Python', python_version())
-
-print('\ntiming range()')
-%timeit test_range(n)
-
- -
-
-
- -
-
- - -
-
-
-Python 3.4.1
-
-timing range()
-1000 loops, best of 3: 520 µs per loop
-
-
-
-
- -
-
- -
-
-
-
-In [8]: -
-
-
-
print(xrange(10))
-
- -
-
-
- -
-
- - -
-
-
----------------------------------------------------------------------------
-NameError                                 Traceback (most recent call last)
-<ipython-input-8-5d8f9b79ea70> in <module>()
-----> 1 print(xrange(10))
-
-NameError: name 'xrange' is not defined
-
-
- -
-
- -
-
-
-
-
-
-



-
-
-
-
-
-
-
-
-

Note about the speed differences in Python 2 and 3

-
-
-
- -
-
-
-
-
-

Some people pointed out the speed difference between Python 3's range() and Python2's xrange(). Since they are implemented the same way one would expect the same speed. However the difference here just comes from the fact that Python 3 generally tends to run slower than Python 2.

-
-
-
-
-
-
-In [3]: -
-
-
-
def test_while():
-    i = 0
-    while i < 20000:
-        i += 1
-    return
-
- -
-
-
- -
-
-
-
-In [4]: -
-
-
-
print('Python', python_version())
-%timeit test_while()
-
- -
-
-
- -
-
- - -
-
-
-Python 3.4.1
-100 loops, best of 3: 2.68 ms per loop
-
-
-
-
- -
-
- -
-
-
-
-In [6]: -
-
-
-
print 'Python', python_version()
-%timeit test_while()
-
- -
-
-
- -
-
- - -
-
-
-Python 2.7.6
-1000 loops, best of 3: 1.72 ms per loop
-
-
-
-
- -
-
- -
-
-
-
-
-
-



-
-
-
-
-
-
-
-
-

Raising exceptions

-
-
-
- - -
-
-
-
-
-

Where Python 2 accepts both notations, the 'old' and the 'new' syntax, Python 3 chokes (and raises a SyntaxError in turn) if we don't enclose the exception argument in parentheses:

-
-
-
-
-
-
-
-
-

Python 2

-
-
-
-
-
-
-In [7]: -
-
-
-
print 'Python', python_version()
-
- -
-
-
- -
-
- - -
-
-
-Python 2.7.6
-
-
-
-
- -
-
- -
-
-
-
-In [8]: -
-
-
-
raise IOError, "file error"
-
- -
-
-
- -
-
- - -
-
-
----------------------------------------------------------------------------
-IOError                                   Traceback (most recent call last)
-<ipython-input-8-25f049caebb0> in <module>()
-----> 1 raise IOError, "file error"
-
-IOError: file error
-
-
- -
-
- -
-
-
-
-In [9]: -
-
-
-
raise IOError("file error")
-
- -
-
-
- -
-
- - -
-
-
----------------------------------------------------------------------------
-IOError                                   Traceback (most recent call last)
-<ipython-input-9-6f1c43f525b2> in <module>()
-----> 1 raise IOError("file error")
-
-IOError: file error
-
-
- -
-
- -
-
-
-
-
-
-


-
-
-
-
-
-
-
-
-

Python 3

-
-
-
-
-
-
-In [9]: -
-
-
-
print('Python', python_version())
-
- -
-
-
- -
-
- - -
-
-
-Python 3.4.1
-
-
-
-
- -
-
- -
-
-
-
-In [10]: -
-
-
-
raise IOError, "file error"
-
- -
-
-
- -
-
- - -
-
-
-  File "<ipython-input-10-25f049caebb0>", line 1
-    raise IOError, "file error"
-                 ^
-SyntaxError: invalid syntax
-
-
-
- -
-
- -
-
-
-
-
-
-

The proper way to raise an exception in Python 3:

-
-
-
-
-
-
-In [11]: -
-
-
-
print('Python', python_version())
-raise IOError("file error")
-
- -
-
-
- -
-
- - -
-
-
-Python 3.4.1
-
-
-
-
- -
-
-
----------------------------------------------------------------------------
-OSError                                   Traceback (most recent call last)
-<ipython-input-11-c350544d15da> in <module>()
-      1 print('Python', python_version())
-----> 2 raise IOError("file error")
-
-OSError: file error
-
-
- -
-
- -
-
-
-
-
-
-



-
-
-
-
-
-
-
-
-

Handling exceptions

-
-
-
- - -
-
-
-
-
-

Also the handling of exceptions has slightly changed in Python 3. In Python 3 we have to use the "as" keyword now

-
-
-
-
-
-
-
-
-

Python 2

-
-
-
-
-
-
-In [10]: -
-
-
-
print 'Python', python_version()
-try:
-    let_us_cause_a_NameError
-except NameError, err:
-    print err, '--> our error message'
-
- -
-
-
- -
-
- - -
-
-
-Python 2.7.6
-name 'let_us_cause_a_NameError' is not defined --> our error message
-
-
-
-
- -
-
- -
-
-
-
-
-
-


-
-
-
-
-
-
-
-
-

Python 3

-
-
-
-
-
-
-In [12]: -
-
-
-
print('Python', python_version())
-try:
-    let_us_cause_a_NameError
-except NameError as err:
-    print(err, '--> our error message')
-
- -
-
-
- -
-
- - -
-
-
-Python 3.4.1
-name 'let_us_cause_a_NameError' is not defined --> our error message
-
-
-
-
- -
-
- -
-
-
-
-
-
-



-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-

The next() function and .next() method

-
-
-
- - -
-
-
-
-
-

Since next() (.next()) is such a commonly used function (method), this is another syntax change (or rather change in implementation) that is worth mentioning: where you can use both the function and method syntax in Python 2.7.5, the next() function is all that remains in Python 3 (calling the .next() method raises an AttributeError).

-
-
-
-
-
-
-
-
-

Python 2

-
-
-
-
-
-
-In [11]: -
-
-
-
print 'Python', python_version()
-
-my_generator = (letter for letter in 'abcdefg')
-
-next(my_generator)
-my_generator.next()
-
- -
-
-
- -
-
- - -
-
-
-Python 2.7.6
-
-
-
-
- -
- Out[11]:
- - -
-
-'b'
-
-
- -
- -
-
- -
-
-
-
-
-
-


-
-
-
-
-
-
-
-
-

Python 3

-
-
-
-
-
-
-In [13]: -
-
-
-
print('Python', python_version())
-
-my_generator = (letter for letter in 'abcdefg')
-
-next(my_generator)
-
- -
-
-
- -
-
- - -
-
-
-Python 3.4.1
-
-
-
-
- -
- Out[13]:
- - -
-
-'a'
-
-
- -
- -
-
- -
-
-
-
-In [14]: -
-
-
-
my_generator.next()
-
- -
-
-
- -
-
- - -
-
-
----------------------------------------------------------------------------
-AttributeError                            Traceback (most recent call last)
-<ipython-input-14-125f388bb61b> in <module>()
-----> 1 my_generator.next()
-
-AttributeError: 'generator' object has no attribute 'next'
-
-
- -
-
- -
-
-
-
-
-
-



-
-
-
-
-
-
-
-
-

For-loop variables and the global namespace leak

-
-
-
- - -
-
-
-
-
-

Good news is: In Python 3.x for-loop variables don't leak into the global namespace anymore!

-

This goes back to a change that was made in Python 3.x and is described in What’s New In Python 3.0 as follows:

-

"List comprehensions no longer support the syntactic form [... for var in item1, item2, ...]. Use [... for var in (item1, item2, ...)] instead. Also note that list comprehensions have different semantics: they are closer to syntactic sugar for a generator expression inside a list() constructor, and in particular the loop control variables are no longer leaked into the surrounding scope."

-
-
-
-
-
-
-
-
-

Python 2

-
-
-
-
-
-
-In [12]: -
-
-
-
print 'Python', python_version()
-
-i = 1
-print 'before: i =', i
-
-print 'comprehension: ', [i for i in range(5)]
-
-print 'after: i =', i
-
- -
-
-
- -
-
- - -
-
-
-Python 2.7.6
-before: i = 1
-comprehension:  [0, 1, 2, 3, 4]
-after: i = 4
-
-
-
-
- -
-
- -
-
-
-
-
-
-


-
-
-
-
-
-
-
-
-

Python 3

-
-
-
-
-
-
-In [15]: -
-
-
-
print('Python', python_version())
-
-i = 1
-print('before: i =', i)
-
-print('comprehension:', [i for i in range(5)])
-
-print('after: i =', i)
-
- -
-
-
- -
-
- - -
-
-
-Python 3.4.1
-before: i = 1
-comprehension: [0, 1, 2, 3, 4]
-after: i = 1
-
-
-
-
- -
-
- -
-
-
-
-
-
-



-
-
-
-
-
-
-
-
-

Comparing unorderable types

-
-
-
- - -
-
-
-
-
-

Another nice change in Python 3 is that a TypeError is raised as warning if we try to compare unorderable types.

-
-
-
-
-
-
-
-
-

Python 2

-
-
-
-
-
-
-In [2]: -
-
-
-
print 'Python', python_version()
-print "[1, 2] > 'foo' = ", [1, 2] > 'foo'
-print "(1, 2) > 'foo' = ", (1, 2) > 'foo'
-print "[1, 2] > (1, 2) = ", [1, 2] > (1, 2)
-
- -
-
-
- -
-
- - -
-
-
-Python 2.7.6
-[1, 2] > 'foo' =  False
-(1, 2) > 'foo' =  True
-[1, 2] > (1, 2) =  False
-
-
-
-
- -
-
- -
-
-
-
-
-
-


-
-
-
-
-
-
-
-
-

Python 3

-
-
-
-
-
-
-In [16]: -
-
-
-
print('Python', python_version())
-print("[1, 2] > 'foo' = ", [1, 2] > 'foo')
-print("(1, 2) > 'foo' = ", (1, 2) > 'foo')
-print("[1, 2] > (1, 2) = ", [1, 2] > (1, 2))
-
- -
-
-
- -
-
- - -
-
-
-Python 3.4.1
-
-
-
-
- -
-
-
----------------------------------------------------------------------------
-TypeError                                 Traceback (most recent call last)
-<ipython-input-16-a9031729f4a0> in <module>()
-      1 print('Python', python_version())
-----> 2 print("[1, 2] > 'foo' = ", [1, 2] > 'foo')
-      3 print("(1, 2) > 'foo' = ", (1, 2) > 'foo')
-      4 print("[1, 2] > (1, 2) = ", [1, 2] > (1, 2))
-
-TypeError: unorderable types: list() > str()
-
-
- -
-
- -
-
-
-
-
-
-



-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-

Parsing user inputs via input()

-
-
-
- - -
-
-
-
-
-

Fortunately, the input() function was fixed in Python 3 so that it always stores the user inputs as str objects. In order to avoid the dangerous behavior in Python 2 to read in other types than strings, we have to use raw_input() instead.

-
-
-
-
-
-
-
-
-

Python 2

-
-
-
-
-
-
-
-
-
Python 2.7.6 
-[GCC 4.0.1 (Apple Inc. build 5493)] on darwin
-Type "help", "copyright", "credits" or "license" for more information.
-
->>> my_input = input('enter a number: ')
-
-enter a number: 123
-
->>> type(my_input)
-<type 'int'>
-
->>> my_input = raw_input('enter a number: ')
-
-enter a number: 123
-
->>> type(my_input)
-<type 'str'>
-
-
-
-
-
-
-
-
-
-


-
-
-
-
-
-
-
-
-

Python 3

-
-
-
-
-
-
-
-
-
Python 3.4.1 
-[GCC 4.2.1 (Apple Inc. build 5577)] on darwin
-Type "help", "copyright", "credits" or "license" for more information.
-
->>> my_input = input('enter a number: ')
-
-enter a number: 123
-
->>> type(my_input)
-<class 'str'>
-
-
-
-
-
-
-
-
-
-



-
-
-
-
-
-
-
-
-

Returning iterable objects instead of lists

-
-
-
- - -
-
-
-
-
-

As we have already seen in the xrange section, some functions and methods return iterable objects in Python 3 now - instead of lists in Python 2.

-

Since we usually iterate over those only once anyway, I think this change makes a lot of sense to save memory. However, it is also possible - in contrast to generators - to iterate over those multiple times if needed, it is aonly not so efficient.

-

And for those cases where we really need the list-objects, we can simply convert the iterable object into a list via the list() function.

-
-
-
-
-
-
-
-
-

Python 2

-
-
-
-
-
-
-In [2]: -
-
-
-
print 'Python', python_version() 
-
-print range(3) 
-print type(range(3))
-
- -
-
-
- -
-
- - -
-
-
-Python 2.7.6
-[0, 1, 2]
-<type 'list'>
-
-
-
-
- -
-
- -
-
-
-
-
-
-

Python 3

-
-
-
-
-
-
-In [7]: -
-
-
-
print('Python', python_version())
-
-print(range(3))
-print(type(range(3)))
-print(list(range(3)))
-
- -
-
-
- -
-
- - -
-
-
-Python 3.4.1
-range(0, 3)
-<class 'range'>
-[0, 1, 2]
-
-
-
-
- -
-
- -
-
-
-
-
-
-


-
-
-
-
-
-
-
-
-

Some more commonly used functions and methods that don't return lists anymore in Python 3:

-
    -
  • zip()

  • -
  • map()

  • -
  • filter()

  • -
  • dictionary's .keys() method

  • -
  • dictionary's .values() method

  • -
  • dictionary's .items() method

  • -
-
-
-
-
-
-
-
-
-



-
-
-
-
-
-
-
-
- -
-
-
- - - -
-
-
-In []: -
-
-
-
 
-
- -
-
-
- -
-
-
- - diff --git a/tutorials/key_differences_between_python_2_and_3.md b/tutorials/key_differences_between_python_2_and_3.md deleted file mode 100644 index 972e667..0000000 --- a/tutorials/key_differences_between_python_2_and_3.md +++ /dev/null @@ -1,416 +0,0 @@ -[Sebastian Raschka](http://sebastianraschka.com) -last updated: 05/24/2014 - -
- -**This is a subsection of ["A collection of not-so-obvious Python stuff you should know!"](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/not_so_obvious_python_stuff.ipynb?create=1)** - - - -
- -## Key differences between Python 2 and 3 -
- -There are some good articles already that are summarizing the differences between Python 2 and 3, e.g., - -- [https://wiki.python.org/moin/Python2orPython3](https://wiki.python.org/moin/Python2orPython3) - -- [https://docs.python.org/3.0/whatsnew/3.0.html](https://docs.python.org/3.0/whatsnew/3.0.html) - -- [http://python3porting.com/differences.html](http://python3porting.com/differences.html) - -- [https://docs.python.org/3/howto/pyporting.html](https://docs.python.org/3/howto/pyporting.html) - -etc. - -But it might be still worthwhile, especially for Python newcomers, to take a look at some of those! -(Note: the the code was executed in Python 3.4.0 and Python 2.7.5 and copied from interactive shell sessions.) - - - -
- -### Overview - Key differences between Python 2 and 3 - - - - -- [Unicode](#unicode) -- [The print statement](#print) -- [Integer division](#integer_div) -- [xrange()](#xrange) -- [Raising exceptions](#raising_exceptions) -- [Handling exceptions](#handling_exceptions) -- [next() function and .next() method](#next_next) -- [Loop variables and leaking into the global scope](#loop_leak) -- [Comparing unorderable types](#compare_unorder) - -
-
- - - -
-
- -### Unicode... - -[[back to Python 2.x vs 3.x overview](#py23_overview)] - - -####- Python 2: -We have ASCII `str()` types, separate `unicode()`, but no `byte` type -####- Python 3: -Now, we finally have Unicode (utf-8) `str`ings, and 2 byte classes: `byte` and `bytearray`s - -
- -
#############
-# Python 2
-#############
-
->>> type(unicode('is like a python3 str()'))
-<type 'unicode'>
-
->>> type(b'byte type does not exist')
-<type 'str'>
-
->>> 'they are really' + b' the same'
-'they are really the same'
-
->>> type(bytearray(b'bytearray oddly does exist though'))
-<type 'bytearray'>
-
-#############
-# Python 3
-#############
-
->>> print('strings are now utf-8 \u03BCnico\u0394é!')
-strings are now utf-8 μnicoΔé!
-
-
->>> type(b' and we have byte types for storing data')
-<class 'bytes'>
-
->>> type(bytearray(b'but also bytearrays for those who prefer them over strings'))
-<class 'bytearray'>
-
->>> 'string' + b'bytes for data'
-Traceback (most recent call last):s
-  File "<stdin>", line 1, in <module>
-TypeError: Can't convert 'bytes' object to str implicitly
-
- - - -
-
- -### The print statement - -[[back to Python 2.x vs 3.x overview](#py23_overview)] - -Very trivial, but this change makes sense, Python 3 now only accepts `print`s with proper parentheses - just like the other function calls ... - -
-
# Python 2
->>> print 'Hello, World!'
-Hello, World!
->>> print('Hello, World!')
-Hello, World!
-
-# Python 3
->>> print('Hello, World!')
-Hello, World!
->>> print 'Hello, World!'
-  File "<stdin>", line 1
-    print 'Hello, World!'
-                        ^
-SyntaxError: invalid syntax
-
- -
- -And if we want to print the output of 2 consecutive print functions on the same line, you would use a comma in Python 2, and a `end=""` in Python 3: - -
- -
# Python 2
->>> print "line 1", ; print 'same line'
-line 1 same line
-
-# Python 3
->>> print("line 1", end="") ; print (" same line")
-line 1 same line
-
- - - -
-
- -### Integer division - -[[back to Python 2.x vs 3.x overview](#py23_overview)] - - -This is a pretty dangerous thing if you are porting code, or executing Python 3 code in Python 2 since the change in integer-division behavior can often go unnoticed. -So, I still tend to use a `float(3)/2` or `3/2.0` instead of a `3/2` in my Python 3 scripts to save the Python 2 guys some trouble ... (PS: and vice versa, you can `from __future__ import division` in your Python 2 scripts). - -
-
# Python 2
->>> 3 / 2
-1
->>> 3 // 2
-1
->>> 3 / 2.0
-1.5
->>> 3 // 2.0
-1.0
-
-# Python 3
->>> 3 / 2
-1.5
->>> 3 // 2
-1
->>> 3 / 2.0
-1.5
->>> 3 // 2.0
-1.0
-
- - - -
-
- -###`xrange()` - -[[back to Python 2.x vs 3.x overview](#py23_overview)] - - -`xrange()` was pretty popular in Python 2.x if you wanted to create an iterable object. The behavior was quite similar to a generator ('lazy evaluation'), but you could iterate over it infinitely. The advantage was that it was generally faster than `range()` (e.g., in a for-loop) - not if you had to iterate over the list multiple times, since the generation happens every time from scratch! -In Python 3, the `range()` was implemented like the `xrange()` function so that a dedicated `xrange()` function does not exist anymore. - - -
# Python 2
-> python -m timeit 'for i in range(1000000):' ' pass'
-10 loops, best of 3: 66 msec per loop
-
-    > python -m timeit 'for i in xrange(1000000):' ' pass'
-10 loops, best of 3: 27.8 msec per loop
-
-# Python 3
-> python3 -m timeit 'for i in range(1000000):' ' pass'
-10 loops, best of 3: 51.1 msec per loop
-
-> python3 -m timeit 'for i in xrange(1000000):' ' pass'
-Traceback (most recent call last):
-  File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/timeit.py", line 292, in main
-    x = t.timeit(number)
-  File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/timeit.py", line 178, in timeit
-    timing = self.inner(it, self.timer)
-  File "<timeit-src>", line 6, in inner
-    for i in xrange(1000000):
-NameError: name 'xrange' is not defined
-
- - - -
-
- -### Raising exceptions - -[[back to Python 2.x vs 3.x overview](#py23_overview)] - - - -Where Python 2 accepts both notations, the 'old' and the 'new' way, Python 3 chokes (and raises a `SyntaxError` in turn) if we don't enclose the exception argument in parentheses: - -
-
# Python 2
->>> raise IOError, "file error"
-Traceback (most recent call last):
-  File "<stdin>", line 1, in <module>
-IOError: file error
->>> raise IOError("file error")
-Traceback (most recent call last):
-  File "<stdin>", line 1, in <module>
-IOError: file error
-
-    
-# Python 3    
->>> raise IOError, "file error"
-  File "<stdin>", line 1
-    raise IOError, "file error"
-                 ^
-SyntaxError: invalid syntax
->>> raise IOError("file error")
-Traceback (most recent call last):
-  File "<stdin>", line 1, in <module>
-OSError: file error
-
- - - -
-
- -### Handling exceptions - -[[back to Python 2.x vs 3.x overview](#py23_overview)] - - - -Also the handling of exceptions has slightly changed in Python 3. Now, we have to use the `as` keyword! - -
# Python 2
->>> try:
-...     blabla
-... except NameError, err:
-...     print err, '--> our error msg'
-... 
-name 'blabla' is not defined --> our error msg
-
-# Python 3
->>> try:
-...     blabla
-... except NameError as err:
-...     print(err, '--> our error msg')
-... 
-name 'blabla' is not defined --> our error msg
-
- - - -
-
- -### The `next()` function and `.next()` method - -[[back to Python 2.x vs 3.x overview](#py23_overview)] - -Where you can use both function and method in Python 2.7.5, the `next()` function is all that remain in Python 3! - -
# Python 2
->>> my_generator = (letter for letter in 'abcdefg')
->>> my_generator.next()
-'a'
->>> next(my_generator)
-'b'
-
-# Python 3
->>> my_generator = (letter for letter in 'abcdefg')
->>> next(my_generator)
-'a'
->>> my_generator.next()
-Traceback (most recent call last):
-  File "<stdin>", line 1, in <module>
-AttributeError: 'generator' object has no attribute 'next'
-
- - - -
-
- -### In Python 3.x for-loop variables don't leak into the global namespace anymore - -[[back to Python 2.x vs 3.x overview](#py23_overview)] - -This goes back to a change that was made in Python 3.x and is described in [What’s New In Python 3.0](https://docs.python.org/3/whatsnew/3.0.html) as follows: - -"List comprehensions no longer support the syntactic form `[... for var in item1, item2, ...]`. Use `[... for var in (item1, item2, ...)]` instead. Also note that list comprehensions have different semantics: they are closer to syntactic sugar for a generator expression inside a `list()` constructor, and in particular the loop control variables are no longer leaked into the surrounding scope." - -
-`[In:]` -
from platform import python_version
-print('This code cell was executed in Python', python_version())
-
-i = 1
-print([i for i in range(5)])
-print(i, '-> i in global')
-
- -
-`[Out:]` -
This code cell was executed in Python 3.3.5
-[0, 1, 2, 3, 4]
-1 -> i in global
-
- - -
-
-
-`[In:]` -
from platform import python_version
-print 'This code cell was executed in Python', python_version()
-
-i = 1
-print [i for i in range(5)]
-print i, '-> i in global' 
-
- -
-`[Out:]` -
This code cell was executed in Python 2.7.6
-[0, 1, 2, 3, 4]
-4 -> i in global
-
- - - -
-
- -#### Python 3.x prevents us from comparing unorderable types - -[[back to Python 2.x vs 3.x overview](#py23_overview)] - -
-`[In:]` -
from platform import python_version
-print 'This code cell was executed in Python', python_version()
-
-print [1, 2] > 'foo'
-print (1, 2) > 'foo'
-print [1, 2] > (1, 2)
-
- -
-`[Out:]` -
This code cell was executed in Python 2.7.6
-False
-True
-False
-
- -
-
-
- -`[In:]` -
from platform import python_version
-print('This code cell was executed in Python', python_version())
-
-print([1, 2] > 'foo')
-print((1, 2) > 'foo')
-print([1, 2] > (1, 2))
-
- -`[Out:]` -
This code cell was executed in Python 3.3.5
----------------------------------------------------------------------------
-TypeError                                 Traceback (most recent call last)
-<ipython-input-3-1d774c677f73> in <module>()
-      2 print('This code cell was executed in Python', python_version())
-      3 
-----> 4 [1, 2] > 'foo'
-      5 (1, 2) > 'foo'
-      6 [1, 2] > (1, 2)
-
-TypeError: unorderable types: list() > str()
-
diff --git a/tutorials/scope_resolution_legb_rule.md b/tutorials/scope_resolution_legb_rule.md deleted file mode 100644 index 6722604..0000000 --- a/tutorials/scope_resolution_legb_rule.md +++ /dev/null @@ -1,579 +0,0 @@ -# A Beginner's Guide to Python's Namespaces, Scope Resolution, and the LEGB Rule # - - -This is a short tutorial about Python's namespaces and the scope resolution for variable names using the LEGB-rule. The following sections will provide short example code blocks that should illustrate the problem followed by short explanations. You can simply read this tutorial from start to end, but I'd like to encourage you to execute the code snippets - you can either copy & paste them, or for your convenience, simply [download it as IPython notebook](https://raw.githubusercontent.com/rasbt/python_reference/master/tutorials/scope_resolution_legb_rule.ipynb). - -
-
- -## Objectives -- Namespaces and scopes - where does Python look for variable names? -- Can we define/reuse variable names for multiple objects at the same time? -- In which order does Python search different namespaces for variable names? - -
-
- -## Sections -- [Introduction to namespaces and scopes](#introduction) -- [1. LG - Local and Global scopes](#section_1) -- [2. LEG - Local, Enclosed, and Global scope](#section_2) -- [3. LEGB - Local, Enclosed, Global, Built-in](#section_3) -- [Self-assessment exercise](#assessment) -- [Conclusion](#conclusion) -- [Solutions](#solutions) -- [Warning: For-loop variables "leaking" into the global namespace](#for_loop) - - -
-
- -##Introduction to Namespaces and Scopes - -
- -###Namespaces -
- -Roughly speaking, namespaces are just containers for mapping names to objects. As you might have already heard, everything in Python - literals, lists, dictionaries, functions, classes, etc. - is an object. -Such a "name-to-object" mapping allows us to access an object by a name that we've assigned to it. E.g., if we make a simple string assignment via `a_string = "Hello string"`, we created a reference to the `"Hello string"` object, and henceforth we can access via its variable name `a_string`. - -We can picture a namespace as a Python dictionary structure, where the dictionary keys represent the names and the dictionary values the object itself (and this is also how namespaces are currently implemented in Python), e.g., - -
a_namespace = {'name_a':object_1, 'name_b':object_2, ...}
- - -Now, the tricky part is that we have multiple independent namespaces in Python, and names can be reused for different namespaces (only the objects are unique, for example: - -
a_namespace = {'name_a':object_1, 'name_b':object_2, ...}
-b_namespace = {'name_a':object_3, 'name_b':object_4, ...}
- -For example, every time we call a `for-loop` or define a function, it will create its own namespace. Namespaces also have different levels of hierarchy (the so-called "scope"), which we will discuss in more detail in the next section. - -
-
- -### Scope - - -In the section above, we have learned that namespaces can exist independently from each other and that they are structured in a certain hierarchy, which brings us to the concept of "scope". The "scope" in Python defines the "hierarchy level" in which we search namespaces for certain "name-to-object" mappings. -For example, let us consider the following code: - -`Input:` -
i = 1
-
-def foo():
-    i = 5
-    print(i, 'in foo()')
-print(i, 'global')
-
-foo()
-
- -`Output:` -
1 global
-5 in foo()
-
- -
-
-Here, we just defined the variable name `i` twice, once on the `foo` function. - -- `foo_namespace = {'i':object_3, ...}` -- `global_namespace = {'i':object_1, 'name_b':object_2, ...}` - -So, how does Python now which namespace it has to search if we want to print the value of the variable `i`? This is where Python's LEGB-rule comes into play, which we will discuss in the next section. - -
-### Tip: -If we want to print out the dictionary mapping of the global and local variables, we can use the -the functions `global()` and `local() - -`Input:` -
#print(globals()) # prints global namespace
-#print(locals()) # prints local namespace
-
-glob = 1
-
-def foo():
-    loc = 5
-    print('loc in foo():', 'loc' in locals())
-
-foo()
-print('loc in global:', 'loc' in globals())    
-print('glob in global:', 'foo' in globals())
-
- -`Output:` -
loc in foo(): True
-loc in global: False
-glob in global: True
-
- -
-
- -### Scope resolution for variable names via the LEGB rule. - -We have seen that multiple namespaces can exist independently from each other and that they can contain the same variable names on different hierachy levels. The "scope" defines on which hierarchy level Python searches for a particular "variable name" for its associated object. Now, the next question is: "In which order does Python search the different levels of namespaces before it finds the name-to-object' mapping?" -To answer is: It uses the LEGB-rule, which stands for - -**Local -> Enclosed -> Global -> Built-in**, - -where the arrows should denote the direction of the namespace-hierarchy search order. - -- *Local* can be inside a function or class method, for example. -- *Enclosed* can be its `enclosing` function, e.g., if a function is wrapped inside another function. -- *Global* refers to the uppermost level of the executing script itself, and -- *Built-in* are special names that Python reserves for itself. - -So, if a particular name:object mapping cannot be found in the local namespaces, the namespaces of the enclosed scope are being searched next. If the search in the enclosed scope is unsuccessful, too, Python moves on to the global namespace, and eventually, it will search the global namespaces (side note: if a name cannot found in any of the namespaces, a *NameError* will is raised). - -**Note**: -Namespaces can also be further nested, for example if we import modules, or if we are defining new classes. In those cases we have to use prefixes to access those nested namespaces. Let me illustrate this concept in the following code block: - -`Input:` -
import numpy
-import math
-import scipy
-
-print(math.pi, 'from the math module')
-print(numpy.pi, 'from the numpy package')
-print(scipy.pi, 'from the scipy package')
-
- -`Output:` -
3.141592653589793 from the math module
-3.141592653589793 from the numpy package
-3.141592653589793 from the scipy package
-
-
-
-(This is also why we have to be careful if we import modules via "`from a_module import *`", since it loads the variable names into the global namespace and could potentially overwrite already existing variable names) - -
- -
-
-![LEGB figure](../Images/scope_resolution_1.png) -
-
- - -
-
- -## 1. LG - Local and Global scopes - - -**Example 1.1** -As a warm-up exercise, let us first forget about the enclosed (E) and built-in (B) scopes in the LEGB rule and only take a look at LG - the local and global scopes. -What does the following code print? - -
a_var = 'global variable'
-
-def a_func():
-    print(a_var, '[ a_var inside a_func() ]')
-
-a_func()
-print(a_var, '[ a_var outside a_func() ]')
-
- -**a)** -
raises an error
- -**b)** -
-global value [ a_var outside a_func() ]
- -**c)** -
global value [ a_var in a_func() ]  
-global value [ a_var outside a_func() ]
- -[[go to solution](#solutions)] - -### Here is why: - -We call `a_func()` first, which is supposed to print the value of `a_var`. According to the LEGB rule, the function will first look in its own local scope (L) if `a_var` is defined there. Since `a_func()` does not define its own `a_var`, it will look one-level above in the global scope (G) in which `a_var` has been defined previously. -
-
- - -**Example 1.2** -Now, let us define the variable `a_var` in the global and the local scope. -Can you guess what the following code will produce? - -
a_var = 'global value'
-
-def a_func():
-    a_var = 'local value'
-    print(a_var, '[ a_var inside a_func() ]')
-
-a_func()
-print(a_var, '[ a_var outside a_func() ]')
-
- -**a)** -
raises an error
- -**b)** -
local value [ a_var in a_func() ]
-global value [ a_var outside a_func() ]
- -**c)** -
global value [ a_var in a_func() ]  
-global value [ a_var outside a_func() ]
- - -[[go to solution](#solutions)] - -### Here is why: - -When we call `a_func()`, it will first look in its local scope (L) for `a_var`, since `a_var` is defined in the local scope of `a_func`, its assigned value `local variable` is printed. Note that this doesn't affect the global variable, which is in a different scope. - -
-However, it is also possible to modify the global by, e.g., re-assigning a new value to it if we use the global keyword as the following example will illustrate: - -`Input:` -
a_var = 'global value'
-
-def a_func():
-    global a_var
-    a_var = 'local value'
-    print(a_var, '[ a_var inside a_func() ]')
-
-print(a_var, '[ a_var outside a_func() ]')
-a_func()
-print(a_var, '[ a_var outside a_func() ]')
-
- -`Output:` -
**a)**
-<pre>raises an error</pre>
-
-**b)** 
-<pre>
-global value [ a_var outside a_func() ]</pre>
-
-**c)** 
-<pre>global value [ a_var in a_func() ]  
-global value [ a_var outside a_func() ]</pre>
-
- -But we have to be careful about the order: it is easy to raise an `UnboundLocalError` if we don't explicitly tell Python that we want to use the global scope and try to modify a variable's value (remember, the right side of an assignment operation is executed first): - -`Input:` -
a_var = 1
-
-def a_func():
-    a_var = a_var + 1
-    print(a_var, '[ a_var inside a_func() ]')
-
-print(a_var, '[ a_var outside a_func() ]')
-a_func()
-
-`Output:` -
---------------------------------------------------------------------------
-UnboundLocalError                         Traceback (most recent call last)
-<ipython-input-4-a6cdd0ee9a55> in <module>()
-      6 
-      7 print(a_var, '[ a_var outside a_func() ]')
-----> 8 a_func()
-
-<ipython-input-4-a6cdd0ee9a55> in a_func()
-      2 
-      3 def a_func():
-----> 4     a_var = a_var + 1
-      5     print(a_var, '[ a_var inside a_func() ]')
-      6 
-
-UnboundLocalError: local variable 'a_var' referenced before assignment
-
-1 [ a_var outside a_func() ]
-
- -
-
- - -
-
- -## 2. LEG - Local, Enclosed, and Global scope - - - -Now, let us introduce the concept of the enclosed (E) scope. Following the order "Local -> Enclosed -> Global", can you guess what the following code will print? - - -**Example 2.1** - -
a_var = 'global value'
-
-def outer():
-    a_var = 'enclosed value'
-    
-    def inner():
-        a_var = 'local value'
-        print(a_var)
-    
-    inner()
-
-outer()
-
-**a)** -
global value
- -**b)** -
enclosed value
- -**c)** -
local value
- -[[go to solution](#solutions)] - -### Here is why: - -Let us quickly recapitulate what we just did: We called `outer()`, which defined the variable `a_var` locally (next to an existing `a_var` in the global scope). Next, the `outer()` function called `inner()`, which in turn defined a variable with of name `a_var` as well. The `print()` function inside `inner()` searched in the local scope first (L->E) before it went up in the scope hierarchy, and therefore it printed the value that was assigned in the local scope. - -Similar to the concept of the `global` keyword, which we have seen in the section above, we can use the keyword `nonlocal` inside the inner function to explicitly access a variable from the outer (enclosed) scope in order to modify its value. -Note that the `nonlocal` keyword was added in Python 3.x and is not implemented in Python 2.x (yet). - -`Input:` -
a_var = 'global value'
-
-def outer():
-       a_var = 'local value'
-       print('outer before:', a_var)
-       def inner():
-           nonlocal a_var
-           a_var = 'inner value'
-           print('in inner():', a_var)
-       inner()
-       print("outer after:", a_var)
-outer()
-
-`Output:` -
outer before: local value
-in inner(): inner value
-outer after: inner value
-
- - -
-
-
- - -## 3. LEGB - Local, Enclosed, Global, Built-in - -To wrap up the LEGB rule, let us come to the built-in scope. Here, we will define our "own" length-function, which happens to bear the same name as the in-built `len()` function. What outcome do you expect if we'd execute the following code? - - - -**Example 3** - -
a_var = 'global variable'
-
-def len(in_var):
-    print('called my len() function')
-    l = 0
-    for i in in_var:
-        l += 1
-    return l
-
-def a_func(in_var):
-    len_in_var = len(in_var)
-    print('Input variable is of length', len_in_var)
-
-a_func('Hello, World!')
-
- -**a)** -
raises an error (conflict with in-built `len()` function)
- -**b)** -
called my len() function
-Input variable is of length 13
- -**c)** -
Input variable is of length 13
- -[[go to solution](#solutions)] - -### Here is why: - -Since the exact same names can be used to map names to different objects - as long as the names are in different name spaces - there is no problem of reusing the name `len` to define our own length function (this is just for demonstration purposes, it is NOT recommended). As we go up in Python's L -> E -> G -> B hierarchy, the function `a_func()` finds `len()` already in the global scope first before it attempts - - - -
-
- -# Self-assessment exercise - -Now, after we went through a couple of exercises, let us quickly check where we are. So, one more time: What would the following code print out? - -
a = 'global'
-
-def outer():
-    
-    def len(in_var):
-        print('called my len() function: ', end="")
-        l = 0
-        for i in in_var:
-            l += 1
-        return l
-    
-    a = 'local'
-    
-    def inner():
-        global len
-        nonlocal a
-        a += ' variable'
-    inner()
-    print('a is', a)
-    print(len(a))
-
-outer()
-
-print(len(a))
-print('a is', a)
-
- - -
- -[[go to solution](#solutions)] - -# Conclusion - -I hope this short tutorial was helpful to understand the basic concept of Python's scope resolution order using the LEGB rule. I want to encourage you (as a little self-assessment exercise) to look at the code snippets again tomorrow and check if you can correctly predict all their outcomes. - -#### A rule of thumb - -In practice, **it is usually a bad idea to modify global variables inside the function scope**, since it often be the cause of confusion and weird errors that are hard to debug. -If you want to modify a global variable via a function, it is recommended to pass it as an argument and reassign the return-value. -For example: - -`Input:` -
a_var = 2
-
-def a_func(some_var):
-    return 2**3
-
-a_var = a_func(a_var)
-print(a_var)
-
-`Output:` -
8
-
- - -
-
-
- -## Solutions - -In order to prevent you from unintentional spoilers, I have written the solutions in binary format. In order to display the character representation, you just need to execute the following lines of code: - -
print('Example 1.1:', chr(int('01100011',2)))
-
- -[[back to example 1.1](#example1.1)] - -
print('Example 1.2:', chr(int('01100001',2)))
-
- -[[back to example 1.2](#example1.2)] - -
print('Example 2:', chr(int('01100011',2)))
-
- -[[back to example 2](#example2)] - -
print('Example 3:', chr(int('01100010',2)))
-
- -[[back to example 3](#example3)] - -
# Solution to the self-assessment exercise
-sol = "000010100110111101110101011101000110010101110010001010"\
-"0000101001001110100000101000001010011000010010000001101001011100110"\
-"0100000011011000110111101100011011000010110110000100000011101100110"\
-"0001011100100110100101100001011000100110110001100101000010100110001"\
-"1011000010110110001101100011001010110010000100000011011010111100100"\
-"1000000110110001100101011011100010100000101001001000000110011001110"\
-"1010110111001100011011101000110100101101111011011100011101000100000"\
-"0011000100110100000010100000101001100111011011000110111101100010011"\
-"0000101101100001110100000101000001010001101100000101001100001001000"\
-"0001101001011100110010000001100111011011000110111101100010011000010"\
-"1101100"
-
-sol_str =''.join(chr(int(sol[i:i+8], 2)) for i in range(0, len(sol), 8))
-for line in sol_str.split('\n'):
-    print(line)
-
- -[[back to self-assessment exercise](#assessment)] - - - - -
-
- - -## Warning: For-loop variables "leaking" into the global namespace - -In contrast to some other programming languages, `for-loops` will use the scope they exist in and leave their defined loop-variable behind. - -`Input:` -
for a in range(5):
-    if a == 4:
-        print(a, '-> a in for-loop')
-print(a, '-> a in global')
-
-`Output:` -
4 -> a in for-loop
-4 -> a in global
-
- -**This also applies if we explicitely defined the `for-loop` variable in the global namespace before!** In this case it will rebind the existing variable: - -`Input:` -
b = 1
-for b in range(5):
-    if b == 4:
-        print(b, '-> b in for-loop')
-print(b, '-> b in global')
-
- -`Output:` -
4 -> b in for-loop
-4 -> b in global
-
- -However, in **Python 3.x**, we can use closures to prevent the for-loop variable to cut into the global namespace. Here is an example (exectuted in Python 3.4): - -`Input:` -
i = 1
-print([i for i in range(5)])
-print(i, '-> i in global')
-
-`Output:` -
[0, 1, 2, 3, 4]
-1 -> i in global
-
- -Why did I mention "Python 3.x"? Well, as it happens, the same code executed in Python 2.x would print: - -
-4 -> i in global
-
- -This goes back to a change that was made in Python 3.x and is described in [What’s New In Python 3.0](https://docs.python.org/3/whatsnew/3.0.html) as follows: - -"List comprehensions no longer support the syntactic form `[... for var in item1, item2, ...]`. Use `[... for var in (item1, item2, ...)]` instead. Also note that list comprehensions have different semantics: they are closer to syntactic sugar for a generator expression inside a `list()` constructor, and in particular the loop control variables are no longer leaked into the surrounding scope." \ No newline at end of file diff --git a/tutorials/table_of_contents_ipython.md b/tutorials/table_of_contents_ipython.md deleted file mode 100644 index 9089e1e..0000000 --- a/tutorials/table_of_contents_ipython.md +++ /dev/null @@ -1,125 +0,0 @@ -[Sebastian Raschka](http://sebastianraschka.com) -last updated: 05/18/2014 - -- [Link to this IPython Notebook on Github](https://github.com/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day4_2_cython_numba_parakeet.ipynb) -- [Link to the GitHub Repository One-Python-benchmark-per-day](https://github.com/rasbt/One-Python-benchmark-per-day) - - -
-I would be happy to hear your comments and suggestions. -Please feel free to drop me a note via -[twitter](https://twitter.com/rasbt), [email](mailto:bluewoodtree@gmail.com), or [google+](https://plus.google.com/118404394130788869227). -
- - - -# Creating a table of contents with internal links in IPython Notebooks and Markdown documents - -**Many people have asked me how I create the table of contents with internal links for my IPython Notebooks and Markdown documents on GitHub. -Well, no (IPython) magic is involved, it is just a little bit of HTML, but I thought it might be worthwhile to write this little how-to tutorial.** - -![example table](../Images/ipython_links_ex.png) - -
-
-For example, [click this link](#bottom) to jump to the bottom of the page. -
-
- -
-
- -## The two components to create an internal link - -So, how does it work? Basically, all you need are those two components: -1. the destination -2. an internal hyperlink to the destination - - -![two components](../Images/ipython_links_overview.png) - -
-###1. The destination - -To define the destination (i.e., the section on the page or the cell you want to jump to), you just need to insert an empty HTML anchor tag and give it an **`id`**, -e.g., **``** - -This anchor tag will be invisible if you render it as Markdown in the IPython Notebook. -Note that it would also work if we use the **`name`** attribute instead of **`id`**, but since the **`name`** attribute is not supported by HTML5 anymore, I would suggest to just use the **`id`** attribute, which is also shorter to type. - -
-###2. The internal hyperlink - -Now we have to create the hyperlink to the **``** anchor tag that we just created. -We can either do this in ye goode olde HTML where we put a fragment identifier in form of a hash mark (`#`) in front of the name, -for example, **`Link to the destination'`** - -Or alternatively, we can just use the slightly more convenient Markdown syntax: -**`[Link to the destination](#the_destination)`** - -**That's all!** - -
-
- -## One more piece of advice - -Of course it would make sense to place the empty anchor tags for you table of contents just on top of each cell that contains a heading. -E.g., - -`` -`###Section 2` -`some text ...` - - -And I did this for a very long time ... until I figured out that it wouldn't render the Markdown properly if you convert the IPython Notebook into HTML (for example, for printing via the print preview option). - -But instead of - - -###Section 2 - -it would be rendered as - - -`###Section 2` - -which is certainly not what we want (note that it looks normal in the IPython Notebook, but not in the converted HTML version). So my favorite remedy would be to put the `id`-anchor tag into a separate cell just above the section, ideally with some line breaks for nicer visuals. - -![img of format problem](../Images/ipython_links_format.png) - -
-
- -### Solution 1: id-anchor tag in a separate cell - -![img of format problem](../Images/ipython_links_remedy.png) - -
-
-
-
-
- - -### Solution 2: using header cells - - -To define the hyperlink anchor tag to this "header cell" is just the text content of the "header cell" connected by dashes. E.g., - -![header cell](../Images/ipython_table_header.png) - -`[link to another section](#Another-section)` -
-
-
-
-
-
- -[[Click this link and jump to the top of the page](#top)] - -You can't see it, but this cell contains a -`` -anchor tag just below this text. - From 0a567380c9781a228a15bc516639c2552c58c574 Mon Sep 17 00:00:00 2001 From: rasbt Date: Wed, 27 Jan 2016 22:57:02 -0500 Subject: [PATCH 66/83] typo fix in legb tutorial --- tutorials/scope_resolution_legb_rule.ipynb | 2263 ++++++++++---------- 1 file changed, 1137 insertions(+), 1126 deletions(-) diff --git a/tutorials/scope_resolution_legb_rule.ipynb b/tutorials/scope_resolution_legb_rule.ipynb index 93f01a2..18ff06c 100644 --- a/tutorials/scope_resolution_legb_rule.ipynb +++ b/tutorials/scope_resolution_legb_rule.ipynb @@ -1,1148 +1,1159 @@ { - "metadata": { - "name": "", - "signature": "sha256:b33e0c5563d80d68580ea6ce62ae2703856ccde40aec8ff9fb1364ac70d70521" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ + "cells": [ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[Sebastian Raschka](http://www.sebastianraschka.com) \n", - "\n", - "- [Link to the containing GitHub Repository](https://github.com/rasbt/python_reference)\n", - "- [Link to this IPython Notebook on GitHub](https://github.com/rasbt/python_reference/blob/master/tutorials/scope_resolution_legb_rule.ipynb)\n" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%load_ext watermark" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 1 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%watermark -a 'Sebastian Raschka' -v -d" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Sebastian Raschka 04/07/2014 \n", - "\n", - "CPython 3.3.5\n", - "IPython 2.1.0\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[More information](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/ipython_magic/watermark.ipynb) about the `watermark` magic command extension." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "I would be happy to hear your comments and suggestions. \n", - "Please feel free to drop me a note via\n", - "[twitter](https://twitter.com/rasbt), [email](mailto:bluewoodtree@gmail.com), or [google+](https://plus.google.com/+SebastianRaschka).\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#A beginner's guide to Python's namespaces, scope resolution, and the LEGB rule" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is a short tutorial about Python's namespaces and the scope resolution for variable names using the LEGB-rule. The following sections will provide short example code blocks that should illustrate the problem followed by short explanations. You can simply read this tutorial from start to end, but I'd like to encourage you to execute the code snippets - you can either copy & paste them, or for your convenience, simply [download this IPython notebook](https://raw.githubusercontent.com/rasbt/python_reference/master/tutorials/scope_resolution_legb_rule.ipynb)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Sections " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "\n", - "- [Introduction to namespaces and scopes](#introduction) \n", - "- [1. LG - Local and Global scopes](#section_1) \n", - "- [2. LEG - Local, Enclosed, and Global scope](#section_2) \n", - "- [3. LEGB - Local, Enclosed, Global, Built-in](#section_3) \n", - "- [Self-assessment exercise](#assessment)\n", - "- [Conclusion](#conclusion) \n", - "- [Solutions](#solutions)\n", - "- [Warning: For-loop variables \"leaking\" into the global namespace](#for_loop)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Objectives\n", - "- Namespaces and scopes - where does Python look for variable names?\n", - "- Can we define/reuse variable names for multiple objects at the same time?\n", - "- In which order does Python search different namespaces for variable names?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Introduction to namespaces and scopes" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Namespaces" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Roughly speaking, namespaces are just containers for mapping names to objects. As you might have already heard, everything in Python - literals, lists, dictionaries, functions, classes, etc. - is an object. \n", - "Such a \"name-to-object\" mapping allows us to access an object by a name that we've assigned to it. E.g., if we make a simple string assignment via `a_string = \"Hello string\"`, we created a reference to the `\"Hello string\"` object, and henceforth we can access via its variable name `a_string`.\n", - "\n", - "We can picture a namespace as a Python dictionary structure, where the dictionary keys represent the names and the dictionary values the object itself (and this is also how namespaces are currently implemented in Python), e.g., \n", - "\n", - "
a_namespace = {'name_a':object_1, 'name_b':object_2, ...}
\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, the tricky part is that we have multiple independent namespaces in Python, and names can be reused for different namespaces (only the objects are unique, for example:\n", - "\n", - "
a_namespace = {'name_a':object_1, 'name_b':object_2, ...}\n",
-      "b_namespace = {'name_a':object_3, 'name_b':object_4, ...}
\n", - "\n", - "For example, everytime we call a `for-loop` or define a function, it will create its own namespace. Namespaces also have different levels of hierarchy (the so-called \"scope\"), which we will discuss in more detail in the next section." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Scope" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the section above, we have learned that namespaces can exist independently from each other and that they are structured in a certain hierarchy, which brings us to the concept of \"scope\". The \"scope\" in Python defines the \"hierarchy level\" in which we search namespaces for certain \"name-to-object\" mappings. \n", - "For example, let us consider the following code:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "i = 1\n", - "\n", - "def foo():\n", - " i = 5\n", - " print(i, 'in foo()')\n", - "\n", - "print(i, 'global')\n", - "\n", - "foo()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "1 global\n", - "5 in foo()\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here, we just defined the variable name `i` twice, once on the `foo` function." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "- `foo_namespace = {'i':object_3, ...}` \n", - "- `global_namespace = {'i':object_1, 'name_b':object_2, ...}`" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "So, how does Python know which namespace it has to search if we want to print the value of the variable `i`? This is where Python's LEGB-rule comes into play, which we will discuss in the next section." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Tip:\n", - "If we want to print out the dictionary mapping of the global and local variables, we can use the\n", - "the functions `global()` and `local()`" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#print(globals()) # prints global namespace\n", - "#print(locals()) # prints local namespace\n", - "\n", - "glob = 1\n", - "\n", - "def foo():\n", - " loc = 5\n", - " print('loc in foo():', 'loc' in locals())\n", - "\n", - "foo()\n", - "print('loc in global:', 'loc' in globals()) \n", - "print('glob in global:', 'foo' in globals())" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "loc in foo(): True\n", - "loc in global: False\n", - "glob in global: True\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Scope resolution for variable names via the LEGB rule." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We have seen that multiple namespaces can exist independently from each other and that they can contain the same variable names on different hierachy levels. The \"scope\" defines on which hierarchy level Python searches for a particular \"variable name\" for its associated object. Now, the next question is: \"In which order does Python search the different levels of namespaces before it finds the name-to-object' mapping?\" \n", - "To answer is: It uses the LEGB-rule, which stands for\n", - "\n", - "**Local -> Enclosed -> Global -> Built-in**, \n", - "\n", - "where the arrows should denote the direction of the namespace-hierarchy search order. \n", - "\n", - "- *Local* can be inside a function or class method, for example. \n", - "- *Enclosed* can be its `enclosing` function, e.g., if a function is wrapped inside another function. \n", - "- *Global* refers to the uppermost level of the executing script itself, and \n", - "- *Built-in* are special names that Python reserves for itself. \n", - "\n", - "So, if a particular name:object mapping cannot be found in the local namespaces, the namespaces of the enclosed scope are being searched next. If the search in the enclosed scope is unsuccessful, too, Python moves on to the global namespace, and eventually, it will search the built-in namespace (side note: if a name cannot found in any of the namespaces, a *NameError* will is raised).\n", - "\n", - "**Note**: \n", - "Namespaces can also be further nested, for example if we import modules, or if we are defining new classes. In those cases we have to use prefixes to access those nested namespaces. Let me illustrate this concept in the following code block:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import numpy\n", - "import math\n", - "import scipy\n", - "\n", - "print(math.pi, 'from the math module')\n", - "print(numpy.pi, 'from the numpy package')\n", - "print(scipy.pi, 'from the scipy package')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "3.141592653589793 from the math module\n", - "3.141592653589793 from the numpy package\n", - "3.141592653589793 from the scipy package\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(This is also why we have to be careful if we import modules via \"`from a_module import *`\", since it loads the variable names into the global namespace and could potentially overwrite already existing variable names)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "![LEGB figure](https://raw.githubusercontent.com/rasbt/python_reference/master/Images/scope_resolution_1.png)\n", - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 1. LG - Local and Global scopes" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Example 1.1** \n", - "As a warm-up exercise, let us first forget about the enclosed (E) and built-in (B) scopes in the LEGB rule and only take a look at LG - the local and global scopes. \n", - "What does the following code print?" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "a_var = 'global variable'\n", - "\n", - "def a_func():\n", - " print(a_var, '[ a_var inside a_func() ]')\n", - "\n", - "a_func()\n", - "print(a_var, '[ a_var outside a_func() ]')" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 1 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**a)**\n", - "
raises an error
\n", - "\n", - "**b)** \n", - "
\n",
-      "global value [ a_var outside a_func() ]
\n", - "\n", - "**c)** \n", - "
global value [ a_var inside a_func() ]  \n",
-      "global value [ a_var outside a_func() ]
\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[go to solution](#solutions)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Here is why:\n", - "\n", - "We call `a_func()` first, which is supposed to print the value of `a_var`. According to the LEGB rule, the function will first look in its own local scope (L) if `a_var` is defined there. Since `a_func()` does not define its own `a_var`, it will look one-level above in the global scope (G) in which `a_var` has been defined previously.\n", - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Example 1.2** \n", - "Now, let us define the variable `a_var` in the global and the local scope. \n", - "Can you guess what the following code will produce?" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "a_var = 'global value'\n", - "\n", - "def a_func():\n", - " a_var = 'local value'\n", - " print(a_var, '[ a_var inside a_func() ]')\n", - "\n", - "a_func()\n", - "print(a_var, '[ a_var outside a_func() ]')" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 2 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**a)**\n", - "
raises an error
\n", - "\n", - "**b)** \n", - "
local value [ a_var inside a_func() ]\n",
-      "global value [ a_var outside a_func() ]
\n", - "\n", - "**c)** \n", - "
global value [ a_var inside a_func() ]  \n",
-      "global value [ a_var outside a_func() ]
\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[go to solution](#solutions)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Here is why:\n", - "\n", - "When we call `a_func()`, it will first look in its local scope (L) for `a_var`, since `a_var` is defined in the local scope of `a_func`, its assigned value `local variable` is printed. Note that this doesn't affect the global variable, which is in a different scope." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "However, it is also possible to modify the global by, e.g., re-assigning a new value to it if we use the global keyword as the following example will illustrate:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "a_var = 'global value'\n", - "\n", - "def a_func():\n", - " global a_var\n", - " a_var = 'local value'\n", - " print(a_var, '[ a_var inside a_func() ]')\n", - "\n", - "print(a_var, '[ a_var outside a_func() ]')\n", - "a_func()\n", - "print(a_var, '[ a_var outside a_func() ]')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "global value [ a_var outside a_func() ]\n", - "local value [ a_var inside a_func() ]\n", - "local value [ a_var outside a_func() ]\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "But we have to be careful about the order: it is easy to raise an `UnboundLocalError` if we don't explicitly tell Python that we want to use the global scope and try to modify a variable's value (remember, the right side of an assignment operation is executed first):" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "a_var = 1\n", - "\n", - "def a_func():\n", - " a_var = a_var + 1\n", - " print(a_var, '[ a_var inside a_func() ]')\n", - "\n", - "print(a_var, '[ a_var outside a_func() ]')\n", - "a_func()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "ename": "UnboundLocalError", - "evalue": "local variable 'a_var' referenced before assignment", - "output_type": "pyerr", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mUnboundLocalError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma_var\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'[ a_var outside a_func() ]'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0ma_func\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m\u001b[0m in \u001b[0;36ma_func\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0ma_func\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0ma_var\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0ma_var\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma_var\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'[ a_var inside a_func() ]'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mUnboundLocalError\u001b[0m: local variable 'a_var' referenced before assignment" - ] - }, - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "1 [ a_var outside a_func() ]\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2. LEG - Local, Enclosed, and Global scope\n", - "\n", - "\n", - "\n", - "Now, let us introduce the concept of the enclosed (E) scope. Following the order \"Local -> Enclosed -> Global\", can you guess what the following code will print?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Example 2.1**" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "a_var = 'global value'\n", - "\n", - "def outer():\n", - " a_var = 'enclosed value'\n", - " \n", - " def inner():\n", - " a_var = 'local value'\n", - " print(a_var)\n", - " \n", - " inner()\n", - "\n", - "outer()" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 4 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**a)**\n", - "
global value
\n", - "\n", - "**b)** \n", - "
enclosed value
\n", - "\n", - "**c)** \n", - "
local value
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[go to solution](#solutions)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Here is why:\n", - "\n", - "Let us quickly recapitulate what we just did: We called `outer()`, which defined the variable `a_var` locally (next to an existing `a_var` in the global scope). Next, the `outer()` function called `inner()`, which in turn defined a variable with of name `a_var` as well. The `print()` function inside `inner()` searched in the local scope first (L->E) before it went up in the scope hierarchy, and therefore it printed the value that was assigned in the local scope." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Similar to the concept of the `global` keyword, which we have seen in the section above, we can use the keyword `nonlocal` inside the inner function to explicitly access a variable from the outer (enclosed) scope in order to modify its value. \n", - "Note that the `nonlocal` keyword was added in Python 3.x and is not implemented in Python 2.x (yet)." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "a_var = 'global value'\n", - "\n", - "def outer():\n", - " a_var = 'local value'\n", - " print('outer before:', a_var)\n", - " def inner():\n", - " nonlocal a_var\n", - " a_var = 'inner value'\n", - " print('in inner():', a_var)\n", - " inner()\n", - " print(\"outer after:\", a_var)\n", - "outer()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "outer before: local value\n", - "in inner(): inner value\n", - "outer after: inner value\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3. LEGB - Local, Enclosed, Global, Built-in\n", - "\n", - "To wrap up the LEGB rule, let us come to the built-in scope. Here, we will define our \"own\" length-funcion, which happens to bear the same name as the in-built `len()` function. What outcome do you excpect if we'd execute the following code?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Example 3**" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "a_var = 'global variable'\n", - "\n", - "def len(in_var):\n", - " print('called my len() function')\n", - " l = 0\n", - " for i in in_var:\n", - " l += 1\n", - " return l\n", - "\n", - "def a_func(in_var):\n", - " len_in_var = len(in_var)\n", - " print('Input variable is of length', len_in_var)\n", - "\n", - "a_func('Hello, World!')" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 6 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**a)**\n", - "
raises an error (conflict with in-built `len()` function)
\n", - "\n", - "**b)** \n", - "
called my len() function\n",
-      "Input variable is of length 13
\n", - "\n", - "**c)** \n", - "
Input variable is of length 13
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[go to solution](#solutions)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Here is why:\n", - "\n", - "Since the exact same names can be used to map names to different objects - as long as the names are in different name spaces - there is no problem of reusing the name `len` to define our own length function (this is just for demonstration pruposes, it is NOT recommended). As we go up in Python's L -> E -> G -> B hierarchy, the function `a_func()` finds `len()` already in the global scope first before it attempts" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Self-assessment exercise" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, after we went through a couple of exercises, let us quickly check where we are. So, one more time: What would the following code print out?" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "a = 'global'\n", - "\n", - "def outer():\n", - " \n", - " def len(in_var):\n", - " print('called my len() function: ', end=\"\")\n", - " l = 0\n", - " for i in in_var:\n", - " l += 1\n", - " return l\n", - " \n", - " a = 'local'\n", - " \n", - " def inner():\n", - " global len\n", - " nonlocal a\n", - " a += ' variable'\n", - " inner()\n", - " print('a is', a)\n", - " print(len(a))\n", - "\n", - "\n", - "outer()\n", + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[Sebastian Raschka](http://www.sebastianraschka.com) \n", + "\n", + "- [Link to the containing GitHub Repository](https://github.com/rasbt/python_reference)\n", + "- [Link to this IPython Notebook on GitHub](https://github.com/rasbt/python_reference/blob/master/tutorials/scope_resolution_legb_rule.ipynb)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%load_ext watermark" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Sebastian Raschka 01/27/2016 \n", "\n", - "print(len(a))\n", - "print('a is', a)" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 59 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[[go to solution](#solutions)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Conclusion" + "CPython 3.5.1\n", + "IPython 4.0.3\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "I hope this short tutorial was helpful to understand the basic concept of Python's scope resolution order using the LEGB rule. I want to encourage you (as a little self-assessment exercise) to look at the code snippets again tomorrow and check if you can correctly predict all their outcomes." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### A rule of thumb" + } + ], + "source": [ + "%watermark -a 'Sebastian Raschka' -v -d" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[More information](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/ipython_magic/watermark.ipynb) about the `watermark` magic command extension." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "I would be happy to hear your comments and suggestions. \n", + "Please feel free to drop me a note via\n", + "[twitter](https://twitter.com/rasbt), [email](mailto:bluewoodtree@gmail.com), or [google+](https://plus.google.com/+SebastianRaschka).\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#A beginner's guide to Python's namespaces, scope resolution, and the LEGB rule" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is a short tutorial about Python's namespaces and the scope resolution for variable names using the LEGB-rule. The following sections will provide short example code blocks that should illustrate the problem followed by short explanations. You can simply read this tutorial from start to end, but I'd like to encourage you to execute the code snippets - you can either copy & paste them, or for your convenience, simply [download this IPython notebook](https://raw.githubusercontent.com/rasbt/python_reference/master/tutorials/scope_resolution_legb_rule.ipynb)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Sections " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "- [Introduction to namespaces and scopes](#introduction) \n", + "- [1. LG - Local and Global scopes](#section_1) \n", + "- [2. LEG - Local, Enclosed, and Global scope](#section_2) \n", + "- [3. LEGB - Local, Enclosed, Global, Built-in](#section_3) \n", + "- [Self-assessment exercise](#assessment)\n", + "- [Conclusion](#conclusion) \n", + "- [Solutions](#solutions)\n", + "- [Warning: For-loop variables \"leaking\" into the global namespace](#for_loop)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Objectives\n", + "- Namespaces and scopes - where does Python look for variable names?\n", + "- Can we define/reuse variable names for multiple objects at the same time?\n", + "- In which order does Python search different namespaces for variable names?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Introduction to namespaces and scopes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Namespaces" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Roughly speaking, namespaces are just containers for mapping names to objects. As you might have already heard, everything in Python - literals, lists, dictionaries, functions, classes, etc. - is an object. \n", + "Such a \"name-to-object\" mapping allows us to access an object by a name that we've assigned to it. E.g., if we make a simple string assignment via `a_string = \"Hello string\"`, we created a reference to the `\"Hello string\"` object, and henceforth we can access via its variable name `a_string`.\n", + "\n", + "We can picture a namespace as a Python dictionary structure, where the dictionary keys represent the names and the dictionary values the object itself (and this is also how namespaces are currently implemented in Python), e.g., \n", + "\n", + "
a_namespace = {'name_a':object_1, 'name_b':object_2, ...}
\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, the tricky part is that we have multiple independent namespaces in Python, and names can be reused for different namespaces (only the objects are unique, for example:\n", + "\n", + "
a_namespace = {'name_a':object_1, 'name_b':object_2, ...}\n",
+    "b_namespace = {'name_a':object_3, 'name_b':object_4, ...}
\n", + "\n", + "For example, everytime we call a `for-loop` or define a function, it will create its own namespace. Namespaces also have different levels of hierarchy (the so-called \"scope\"), which we will discuss in more detail in the next section." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Scope" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the section above, we have learned that namespaces can exist independently from each other and that they are structured in a certain hierarchy, which brings us to the concept of \"scope\". The \"scope\" in Python defines the \"hierarchy level\" in which we search namespaces for certain \"name-to-object\" mappings. \n", + "For example, let us consider the following code:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1 global\n", + "5 in foo()\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In practice, **it is usually a bad idea to modify global variables inside the function scope**, since it often be the cause of confusion and weird errors that are hard to debug. \n", - "If you want to modify a global variable via a function, it is recommended to pass it as an argument and reassign the return-value. \n", - "For example:" + } + ], + "source": [ + "i = 1\n", + "\n", + "def foo():\n", + " i = 5\n", + " print(i, 'in foo()')\n", + "\n", + "print(i, 'global')\n", + "\n", + "foo()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, we just defined the variable name `i` twice, once on the `foo` function." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- `foo_namespace = {'i':object_3, ...}` \n", + "- `global_namespace = {'i':object_1, 'name_b':object_2, ...}`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So, how does Python know which namespace it has to search if we want to print the value of the variable `i`? This is where Python's LEGB-rule comes into play, which we will discuss in the next section." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Tip:\n", + "If we want to print out the dictionary mapping of the global and local variables, we can use the\n", + "the functions `global()` and `local()`" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "loc in foo(): True\n", + "loc in global: False\n", + "glob in global: True\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "a_var = 2\n", - "\n", - "def a_func(some_var):\n", - " return 2**3\n", - "\n", - "a_var = a_func(a_var)\n", - "print(a_var)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "8\n" - ] - } - ], - "prompt_number": 42 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "
\n", - "
" + } + ], + "source": [ + "#print(globals()) # prints global namespace\n", + "#print(locals()) # prints local namespace\n", + "\n", + "glob = 1\n", + "\n", + "def foo():\n", + " loc = 5\n", + " print('loc in foo():', 'loc' in locals())\n", + "\n", + "foo()\n", + "print('loc in global:', 'loc' in globals()) \n", + "print('glob in global:', 'foo' in globals())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Scope resolution for variable names via the LEGB rule." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We have seen that multiple namespaces can exist independently from each other and that they can contain the same variable names on different hierachy levels. The \"scope\" defines on which hierarchy level Python searches for a particular \"variable name\" for its associated object. Now, the next question is: \"In which order does Python search the different levels of namespaces before it finds the name-to-object' mapping?\" \n", + "To answer is: It uses the LEGB-rule, which stands for\n", + "\n", + "**Local -> Enclosed -> Global -> Built-in**, \n", + "\n", + "where the arrows should denote the direction of the namespace-hierarchy search order. \n", + "\n", + "- *Local* can be inside a function or class method, for example. \n", + "- *Enclosed* can be its `enclosing` function, e.g., if a function is wrapped inside another function. \n", + "- *Global* refers to the uppermost level of the executing script itself, and \n", + "- *Built-in* are special names that Python reserves for itself. \n", + "\n", + "So, if a particular name:object mapping cannot be found in the local namespaces, the namespaces of the enclosed scope are being searched next. If the search in the enclosed scope is unsuccessful, too, Python moves on to the global namespace, and eventually, it will search the built-in namespace (side note: if a name cannot found in any of the namespaces, a *NameError* will is raised).\n", + "\n", + "**Note**: \n", + "Namespaces can also be further nested, for example if we import modules, or if we are defining new classes. In those cases we have to use prefixes to access those nested namespaces. Let me illustrate this concept in the following code block:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3.141592653589793 from the math module\n", + "3.141592653589793 from the numpy package\n", + "3.141592653589793 from the scipy package\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solutions\n", - "\n", - "In order to prevent you from unintentional spoilers, I have written the solutions in binary format. In order to display the character representation, you just need to execute the following lines of code:" + } + ], + "source": [ + "import numpy\n", + "import math\n", + "import scipy\n", + "\n", + "print(math.pi, 'from the math module')\n", + "print(numpy.pi, 'from the numpy package')\n", + "print(scipy.pi, 'from the scipy package')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "(This is also why we have to be careful if we import modules via \"`from a_module import *`\", since it loads the variable names into the global namespace and could potentially overwrite already existing variable names)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "![LEGB figure](https://raw.githubusercontent.com/rasbt/python_reference/master/Images/scope_resolution_1.png)\n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. LG - Local and Global scopes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Example 1.1** \n", + "As a warm-up exercise, let us first forget about the enclosed (E) and built-in (B) scopes in the LEGB rule and only take a look at LG - the local and global scopes. \n", + "What does the following code print?" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "a_var = 'global variable'\n", + "\n", + "def a_func():\n", + " print(a_var, '[ a_var inside a_func() ]')\n", + "\n", + "a_func()\n", + "print(a_var, '[ a_var outside a_func() ]')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**a)**\n", + "
raises an error
\n", + "\n", + "**b)** \n", + "
\n",
+    "global value [ a_var outside a_func() ]
\n", + "\n", + "**c)** \n", + "
global value [ a_var inside a_func() ]  \n",
+    "global value [ a_var outside a_func() ]
\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[go to solution](#solutions)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Here is why:\n", + "\n", + "We call `a_func()` first, which is supposed to print the value of `a_var`. According to the LEGB rule, the function will first look in its own local scope (L) if `a_var` is defined there. Since `a_func()` does not define its own `a_var`, it will look one-level above in the global scope (G) in which `a_var` has been defined previously.\n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Example 1.2** \n", + "Now, let us define the variable `a_var` in the global and the local scope. \n", + "Can you guess what the following code will produce?" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "a_var = 'global value'\n", + "\n", + "def a_func():\n", + " a_var = 'local value'\n", + " print(a_var, '[ a_var inside a_func() ]')\n", + "\n", + "a_func()\n", + "print(a_var, '[ a_var outside a_func() ]')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**a)**\n", + "
raises an error
\n", + "\n", + "**b)** \n", + "
local value [ a_var inside a_func() ]\n",
+    "global value [ a_var outside a_func() ]
\n", + "\n", + "**c)** \n", + "
global value [ a_var inside a_func() ]  \n",
+    "global value [ a_var outside a_func() ]
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[go to solution](#solutions)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Here is why:\n", + "\n", + "When we call `a_func()`, it will first look in its local scope (L) for `a_var`, since `a_var` is defined in the local scope of `a_func`, its assigned value `local variable` is printed. Note that this doesn't affect the global variable, which is in a different scope." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "However, it is also possible to modify the global by, e.g., re-assigning a new value to it if we use the global keyword as the following example will illustrate:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "global value [ a_var outside a_func() ]\n", + "local value [ a_var inside a_func() ]\n", + "local value [ a_var outside a_func() ]\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print('Example 1.1:', chr(int('01100011',2)))" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 6 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print('Example 1.2:', chr(int('01100010',2)))" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 7 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print('Example 2.1:', chr(int('01100011',2)))" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 8 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print('Example 3.1:', chr(int('01100010',2)))" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 9 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Execute to run the self-assessment solution\n", - "\n", - "sol = \"000010100110111101110101011101000110010101110010001010\"\\\n", - "\"0000101001001110100000101000001010011000010010000001101001011100110\"\\\n", - "\"0100000011011000110111101100011011000010110110000100000011101100110\"\\\n", - "\"0001011100100110100101100001011000100110110001100101000010100110001\"\\\n", - "\"1011000010110110001101100011001010110010000100000011011010111100100\"\\\n", - "\"1000000110110001100101011011100010100000101001001000000110011001110\"\\\n", - "\"1010110111001100011011101000110100101101111011011100011101000100000\"\\\n", - "\"0011000100110100000010100000101001100111011011000110111101100010011\"\\\n", - "\"0000101101100001110100000101000001010001101100000101001100001001000\"\\\n", - "\"0001101001011100110010000001100111011011000110111101100010011000010\"\\\n", - "\"1101100\"\n", - "\n", - "sol_str =''.join(chr(int(sol[i:i+8], 2)) for i in range(0, len(sol), 8))\n", - "for line in sol_str.split('\\n'):\n", - " print(line)" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 58 - }, + } + ], + "source": [ + "a_var = 'global value'\n", + "\n", + "def a_func():\n", + " global a_var\n", + " a_var = 'local value'\n", + " print(a_var, '[ a_var inside a_func() ]')\n", + "\n", + "print(a_var, '[ a_var outside a_func() ]')\n", + "a_func()\n", + "print(a_var, '[ a_var outside a_func() ]')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "But we have to be careful about the order: it is easy to raise an `UnboundLocalError` if we don't explicitly tell Python that we want to use the global scope and try to modify a variable's value (remember, the right side of an assignment operation is executed first):" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "
\n", - "" + "ename": "UnboundLocalError", + "evalue": "local variable 'a_var' referenced before assignment", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mUnboundLocalError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma_var\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'[ a_var outside a_func() ]'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0ma_func\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m\u001b[0m in \u001b[0;36ma_func\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0ma_func\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0ma_var\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0ma_var\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma_var\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'[ a_var inside a_func() ]'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mUnboundLocalError\u001b[0m: local variable 'a_var' referenced before assignment" ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Warning: For-loop variables \"leaking\" into the global namespace" + "name": "stdout", + "output_type": "stream", + "text": [ + "1 [ a_var outside a_func() ]\n" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In contrast to some other programming languages, `for-loops` will use the scope they exist in and leave their defined loop-variable behind.\n" + } + ], + "source": [ + "a_var = 1\n", + "\n", + "def a_func():\n", + " a_var = a_var + 1\n", + " print(a_var, '[ a_var inside a_func() ]')\n", + "\n", + "print(a_var, '[ a_var outside a_func() ]')\n", + "a_func()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. LEG - Local, Enclosed, and Global scope\n", + "\n", + "\n", + "\n", + "Now, let us introduce the concept of the enclosed (E) scope. Following the order \"Local -> Enclosed -> Global\", can you guess what the following code will print?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Example 2.1**" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "a_var = 'global value'\n", + "\n", + "def outer():\n", + " a_var = 'enclosed value'\n", + " \n", + " def inner():\n", + " a_var = 'local value'\n", + " print(a_var)\n", + " \n", + " inner()\n", + "\n", + "outer()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**a)**\n", + "
global value
\n", + "\n", + "**b)** \n", + "
enclosed value
\n", + "\n", + "**c)** \n", + "
local value
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[go to solution](#solutions)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Here is why:\n", + "\n", + "Let us quickly recapitulate what we just did: We called `outer()`, which defined the variable `a_var` locally (next to an existing `a_var` in the global scope). Next, the `outer()` function called `inner()`, which in turn defined a variable with of name `a_var` as well. The `print()` function inside `inner()` searched in the local scope first (L->E) before it went up in the scope hierarchy, and therefore it printed the value that was assigned in the local scope." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Similar to the concept of the `global` keyword, which we have seen in the section above, we can use the keyword `nonlocal` inside the inner function to explicitly access a variable from the outer (enclosed) scope in order to modify its value. \n", + "Note that the `nonlocal` keyword was added in Python 3.x and is not implemented in Python 2.x (yet)." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "outer before: local value\n", + "in inner(): inner value\n", + "outer after: inner value\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "for a in range(5):\n", - " if a == 4:\n", - " print(a, '-> a in for-loop')\n", - "print(a, '-> a in global')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "4 -> a in for-loop\n", - "4 -> a in global\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**This also applies if we explicitly defined the `for-loop` variable in the global namespace before!** In this case it will rebind the existing variable:" + } + ], + "source": [ + "a_var = 'global value'\n", + "\n", + "def outer():\n", + " a_var = 'local value'\n", + " print('outer before:', a_var)\n", + " def inner():\n", + " nonlocal a_var\n", + " a_var = 'inner value'\n", + " print('in inner():', a_var)\n", + " inner()\n", + " print(\"outer after:\", a_var)\n", + "outer()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. LEGB - Local, Enclosed, Global, Built-in\n", + "\n", + "To wrap up the LEGB rule, let us come to the built-in scope. Here, we will define our \"own\" length-funcion, which happens to bear the same name as the in-built `len()` function. What outcome do you excpect if we'd execute the following code?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Example 3**" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "a_var = 'global variable'\n", + "\n", + "def len(in_var):\n", + " print('called my len() function')\n", + " l = 0\n", + " for i in in_var:\n", + " l += 1\n", + " return l\n", + "\n", + "def a_func(in_var):\n", + " len_in_var = len(in_var)\n", + " print('Input variable is of length', len_in_var)\n", + "\n", + "a_func('Hello, World!')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**a)**\n", + "
raises an error (conflict with in-built `len()` function)
\n", + "\n", + "**b)** \n", + "
called my len() function\n",
+    "Input variable is of length 13
\n", + "\n", + "**c)** \n", + "
Input variable is of length 13
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[go to solution](#solutions)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Here is why:\n", + "\n", + "Since the exact same names can be used to map names to different objects - as long as the names are in different name spaces - there is no problem of reusing the name `len` to define our own length function (this is just for demonstration pruposes, it is NOT recommended). As we go up in Python's L -> E -> G -> B hierarchy, the function `a_func()` finds `len()` already in the global scope (G) first before it attempts to search the built-in (B) namespace." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Self-assessment exercise" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, after we went through a couple of exercises, let us quickly check where we are. So, one more time: What would the following code print out?" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "a = 'global'\n", + "\n", + "def outer():\n", + " \n", + " def len(in_var):\n", + " print('called my len() function: ', end=\"\")\n", + " l = 0\n", + " for i in in_var:\n", + " l += 1\n", + " return l\n", + " \n", + " a = 'local'\n", + " \n", + " def inner():\n", + " global len\n", + " nonlocal a\n", + " a += ' variable'\n", + " inner()\n", + " print('a is', a)\n", + " print(len(a))\n", + "\n", + "\n", + "outer()\n", + "\n", + "print(len(a))\n", + "print('a is', a)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[[go to solution](#solutions)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Conclusion" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "I hope this short tutorial was helpful to understand the basic concept of Python's scope resolution order using the LEGB rule. I want to encourage you (as a little self-assessment exercise) to look at the code snippets again tomorrow and check if you can correctly predict all their outcomes." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### A rule of thumb" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In practice, **it is usually a bad idea to modify global variables inside the function scope**, since it often be the cause of confusion and weird errors that are hard to debug. \n", + "If you want to modify a global variable via a function, it is recommended to pass it as an argument and reassign the return-value. \n", + "For example:" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "8\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "b = 1\n", - "for b in range(5):\n", - " if b == 4:\n", - " print(b, '-> b in for-loop')\n", - "print(b, '-> b in global')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "4 -> b in for-loop\n", - "4 -> b in global\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "However, in **Python 3.x**, we can use closures to prevent the for-loop variable to cut into the global namespace. Here is an example (exectuted in Python 3.4):" + } + ], + "source": [ + "a_var = 2\n", + "\n", + "def a_func(some_var):\n", + " return 2**3\n", + "\n", + "a_var = a_func(a_var)\n", + "print(a_var)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Solutions\n", + "\n", + "In order to prevent you from unintentional spoilers, I have written the solutions in binary format. In order to display the character representation, you just need to execute the following lines of code:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "print('Example 1.1:', chr(int('01100011',2)))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "print('Example 1.2:', chr(int('01100010',2)))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "print('Example 2.1:', chr(int('01100011',2)))" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "print('Example 3.1:', chr(int('01100010',2)))" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Execute to run the self-assessment solution\n", + "\n", + "sol = \"000010100110111101110101011101000110010101110010001010\"\\\n", + "\"0000101001001110100000101000001010011000010010000001101001011100110\"\\\n", + "\"0100000011011000110111101100011011000010110110000100000011101100110\"\\\n", + "\"0001011100100110100101100001011000100110110001100101000010100110001\"\\\n", + "\"1011000010110110001101100011001010110010000100000011011010111100100\"\\\n", + "\"1000000110110001100101011011100010100000101001001000000110011001110\"\\\n", + "\"1010110111001100011011101000110100101101111011011100011101000100000\"\\\n", + "\"0011000100110100000010100000101001100111011011000110111101100010011\"\\\n", + "\"0000101101100001110100000101000001010001101100000101001100001001000\"\\\n", + "\"0001101001011100110010000001100111011011000110111101100010011000010\"\\\n", + "\"1101100\"\n", + "\n", + "sol_str =''.join(chr(int(sol[i:i+8], 2)) for i in range(0, len(sol), 8))\n", + "for line in sol_str.split('\\n'):\n", + " print(line)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Warning: For-loop variables \"leaking\" into the global namespace" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In contrast to some other programming languages, `for-loops` will use the scope they exist in and leave their defined loop-variable behind.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4 -> a in for-loop\n", + "4 -> a in global\n" ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "i = 1\n", - "print([i for i in range(5)])\n", - "print(i, '-> i in global')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "[0, 1, 2, 3, 4]\n", - "1 -> i in global\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Why did I mention \"Python 3.x\"? Well, as it happens, the same code executed in Python 2.x would print:\n", - "\n", - "