Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

code released for our CVPR 2021 paper "Domain Adaptation with Auxiliary Target Domain-Oriented Classifier"

License

Notifications You must be signed in to change notification settings

tim-learn/ATDOC

Open more actions menu

Repository files navigation

Official implementation for ATDOC

[CVPR-2021] Domain Adaptation with Auxiliary Target Domain-Oriented Classifier

[Update @ Nov 23 2021]

  1. [For Office, please change the max-epoch to 100; for VISDA-C, change the max-epoch to 1 and change the net to resnet101]
  2. Add the code associated with SSDA, change the max-epoch to 20 for DomainNet-126
  3. Thank @lyxok1 for pointing out the typo in Eq.(6), we have corrected it in the new verison of this paper.

Below is the demo for ATDOC on a UDA task of Office-Home [max_epoch to 50]:

  1. installing packages

    python == 3.6.8 pytorch ==1.1.0 torchvision == 0.3.0 numpy, scipy, sklearn, PIL, argparse, tqdm

  2. download the Office-Home dataset

    mkdir dataset

    cd dataset

    pip install gdown

    gdown https://drive.google.com/u/0/uc?id=0B81rNlvomiwed0V1YUxQdC1uOTg&export=download

    unzip OfficeHomeDataset_10072016.zip

    mv ./OfficeHomeDataset_10072016/Real\ World ./OfficeHomeDataset_10072016/RealWorld

    cd ../

  3. run the main file with 'Source-model-only'

    python demo_uda.py --pl none --dset office-home --max_epoch 50 --s 0 --t 1 --gpu_id 0 --method srconly --output logs/uda/run1/

  4. run the main file with 'ATDOC-NC'

    python demo_uda.py --pl atdoc_nc --tar_par 0.1 --dset office-home --max_epoch 50 --s 0 --t 1 --gpu_id 0 --method srconly --output logs/uda/run1/

  5. run the main file with 'ATDOC-NA'

    python demo_uda.py --pl atdoc_na --tar_par 0.2 --dset office-home --max_epoch 50 --s 0 --t 1 --gpu_id 0 --method srconly --output logs/uda/run1/

  6. run the main file with 'ATDOC-NA' combined with 'CDAN+E'

    python demo_uda.py --pl atdoc_na --tar_par 0.2 --dset office-home --max_epoch 50 --s 0 --t 1 --gpu_id 0 --method CDANE --output logs/uda/run1/

  7. run the main file with 'ATDOC-NA' combined with 'MixMatch'

    python demo_mixmatch.py --pl none --dset office-home --max_epoch 50 --s 0 --t 1 --gpu_id 0 --output logs/uda/run1/

  8. run the main file with 'ATDOC-NA' combined with 'MixMatch'

    python demo_mixmatch.py --pl atdoc_na --dset office-home --max_epoch 50 --s 0 --t 1 --gpu_id 0 --output logs/uda/run1/

Citation

If you find this code useful for your research, please cite our paper

@inproceedings{liang2021domain,
    title={Domain Adaptation with Auxiliary Target Domain-Oriented Classifier},
    author={Liang, Jian and Hu, Dapeng and Feng, Jiashi},
    booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year={2021}
}

Contact

About

code released for our CVPR 2021 paper "Domain Adaptation with Auxiliary Target Domain-Oriented Classifier"

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

Morty Proxy This is a proxified and sanitized view of the page, visit original site.