Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

🐈🐈🐈🐈: tools for working with categorical variables (factors)

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

tidyverse/forcats

Open more actions menu

forcats

CRAN status R-CMD-check Codecov test coverage

Overview

R uses factors to handle categorical variables, variables that have a fixed and known set of possible values. Factors are also helpful for reordering character vectors to improve display. The goal of the forcats package is to provide a suite of tools that solve common problems with factors, including changing the order of levels or the values. Some examples include:

  • fct_reorder(): Reordering a factor by another variable.
  • fct_infreq(): Reordering a factor by the frequency of values.
  • fct_relevel(): Changing the order of a factor by hand.
  • fct_lump(): Collapsing the least/most frequent values of a factor into β€œother”.

You can learn more about each of these in vignette("forcats"). If you’re new to factors, the best place to start is the chapter on factors in R for Data Science.

Installation

# The easiest way to get forcats is to install the whole tidyverse:
install.packages("tidyverse")

# Alternatively, install just forcats:
install.packages("forcats")

# Or the the development version from GitHub:
# install.packages("pak")
pak::pak("tidyverse/forcats")

Cheatsheet

Getting started

forcats is part of the core tidyverse, so you can load it with library(tidyverse) or library(forcats).

library(forcats)
library(dplyr)
library(ggplot2)
starwars |> 
  filter(!is.na(species)) |>
  count(species, sort = TRUE)
#> # A tibble: 37 Γ— 2
#>    species      n
#>    <chr>    <int>
#>  1 Human       35
#>  2 Droid        6
#>  3 Gungan       3
#>  4 Kaminoan     2
#>  5 Mirialan     2
#>  6 Twi'lek      2
#>  7 Wookiee      2
#>  8 Zabrak       2
#>  9 Aleena       1
#> 10 Besalisk     1
#> # β„Ή 27 more rows
starwars |>
  filter(!is.na(species)) |>
  mutate(species = fct_lump(species, n = 3)) |>
  count(species)
#> # A tibble: 4 Γ— 2
#>   species     n
#>   <fct>   <int>
#> 1 Droid       6
#> 2 Gungan      3
#> 3 Human      35
#> 4 Other      39
ggplot(starwars, aes(x = eye_color)) + 
  geom_bar() + 
  coord_flip()

starwars |>
  mutate(eye_color = fct_infreq(eye_color)) |>
  ggplot(aes(x = eye_color)) + 
  geom_bar() + 
  coord_flip()

More resources

For a history of factors, I recommend stringsAsFactors: An unauthorized biography by Roger Peng and stringsAsFactors = <sigh> by Thomas Lumley. If you want to learn more about other approaches to working with factors and categorical data, I recommend Wrangling categorical data in R, by Amelia McNamara and Nicholas Horton.

Getting help

If you encounter a clear bug, please file a minimal reproducible example on Github. For questions and other discussion, please use https://forum.posit.co/.

About

🐈🐈🐈🐈: tools for working with categorical variables (factors)

Topics

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Code of conduct

Contributing

Stars

Watchers

Forks

Contributors 54

Languages

Morty Proxy This is a proxified and sanitized view of the page, visit original site.