Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings
/ Self-MM Public

Codes for paper "Learning Modality-Specific Representations with Self-Supervised Multi-Task Learning for Multimodal Sentiment Analysis"

License

Notifications You must be signed in to change notification settings

thuiar/Self-MM

Open more actions menu

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Python 3.6

SELF-MM

Pytorch implementation for codes in Learning Modality-Specific Representations with Self-Supervised Multi-Task Learning for Multimodal Sentiment Analysis (AAAI2021). Please see our another repo MMSA for more details, which is a scalable framework for MSA.

Model

model

Usage

  1. Datasets and pre-trained berts

Download dataset features and pre-trained berts from the following links.

For all features, you can use SHA-1 Hash Value to check the consistency.

MOSI/unaligned_50.pkl: 5da0b8440fc5a7c3a457859af27458beb993e088
MOSI/aligned_50.pkl: 5c62b896619a334a7104c8bef05d82b05272c71c
MOSEI/unaligned_50.pkl: db3e2cff4d706a88ee156981c2100975513d4610
MOSEI/aligned_50.pkl: ef49589349bc1c2bc252ccc0d4657a755c92a056
SIMS/unaligned_39.pkl: a00c73e92f66896403c09dbad63e242d5af756f8

Due to the size limitations, the MOSEI features and SIMS raw videos are available in Baidu Cloud Drive only. All dataset features are organized as:

{
    "train": {
        "raw_text": [],
        "audio": [],
        "vision": [],
        "id": [], # [video_id$_$clip_id, ..., ...]
        "text": [],
        "text_bert": [],
        "audio_lengths": [],
        "vision_lengths": [],
        "annotations": [],
        "classification_labels": [], # Negative(< 0), Neutral(0), Positive(> 0)
        "regression_labels": []
    },
    "valid": {***}, # same as the "train" 
    "test": {***}, # same as the "train"
}

For MOSI and MOSEI, the pre-extracted text features are from BERT, different from the original glove features in the CMU-Multimodal-SDK.

For SIMS, if you want to extract features from raw videos, you need to install Openface Toolkits first, and then refer our codes in the data/DataPre.py.

python data/DataPre.py --data_dir [path_to_Dataset] --language ** --openface2Path  [path_to_FeatureExtraction]

For bert models, you also can download Bert-Base, Chinese from Google-Bert. And then, convert tensorflow into pytorch using transformers-cli

  1. Clone this repo and install requirements.
git clone https://github.com/thuiar/Self-MM
cd Self-MM
conda create --name self_mm python=3.7
source activate self_mm
pip install -r requirements.txt
  1. Make some changes Modify the config/config_tune.py and config/config_regression.py to update dataset pathes.

  2. Run codes

python run.py --modelName self_mm --datasetName mosi

Results

Detailed results are shown in MMSA > results/result-stat.md.

Paper


Please cite our paper if you find our work useful for your research:

@inproceedings{yu2021le,
  title={Learning Modality-Specific Representations with Self-Supervised Multi-Task Learning for Multimodal Sentiment Analysis},
  author={Yu, Wenmeng and Xu, Hua and Ziqi, Yuan and Jiele, Wu},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  year={2021}
}

About

Codes for paper "Learning Modality-Specific Representations with Self-Supervised Multi-Task Learning for Multimodal Sentiment Analysis"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages

Morty Proxy This is a proxified and sanitized view of the page, visit original site.