@@ -1302,7 +1302,7 @@ class MLPRegressor(RegressorMixin, BaseMultilayerPerceptron):
1302
1302
1303
1303
batch_size : int, default='auto'
1304
1304
Size of minibatches for stochastic optimizers.
1305
- If the solver is 'lbfgs', the classifier will not use minibatch.
1305
+ If the solver is 'lbfgs', the regressor will not use minibatch.
1306
1306
When set to "auto", `batch_size=min(200, n_samples)`.
1307
1307
1308
1308
learning_rate : {'constant', 'invscaling', 'adaptive'}, default='constant'
@@ -1365,7 +1365,7 @@ class MLPRegressor(RegressorMixin, BaseMultilayerPerceptron):
1365
1365
previous solution. See :term:`the Glossary <warm_start>`.
1366
1366
1367
1367
momentum : float, default=0.9
1368
- Momentum for gradient descent update. Should be between 0 and 1. Only
1368
+ Momentum for gradient descent update. Should be between 0 and 1. Only
1369
1369
used when solver='sgd'.
1370
1370
1371
1371
nesterovs_momentum : bool, default=True
@@ -1374,10 +1374,10 @@ class MLPRegressor(RegressorMixin, BaseMultilayerPerceptron):
1374
1374
1375
1375
early_stopping : bool, default=False
1376
1376
Whether to use early stopping to terminate training when validation
1377
- score is not improving. If set to true , it will automatically set
1378
- aside 10% of training data as validation and terminate training when
1379
- validation score is not improving by at least ``tol`` for
1380
- ``n_iter_no_change`` consecutive epochs.
1377
+ score is not improving. If set to True , it will automatically set
1378
+ aside ``validation_fraction`` of training data as validation and
1379
+ terminate training when validation score is not improving by at
1380
+ least ``tol`` for ``n_iter_no_change`` consecutive epochs.
1381
1381
Only effective when solver='sgd' or 'adam'.
1382
1382
1383
1383
validation_fraction : float, default=0.1
@@ -1404,7 +1404,7 @@ class MLPRegressor(RegressorMixin, BaseMultilayerPerceptron):
1404
1404
1405
1405
max_fun : int, default=15000
1406
1406
Only used when solver='lbfgs'. Maximum number of function calls.
1407
- The solver iterates until convergence (determined by ' tol' ), number
1407
+ The solver iterates until convergence (determined by `` tol`` ), number
1408
1408
of iterations reaches max_iter, or this number of function calls.
1409
1409
Note that number of function calls will be greater than or equal to
1410
1410
the number of iterations for the MLPRegressor.
@@ -1418,22 +1418,26 @@ class MLPRegressor(RegressorMixin, BaseMultilayerPerceptron):
1418
1418
1419
1419
best_loss_ : float
1420
1420
The minimum loss reached by the solver throughout fitting.
1421
- If `early_stopping=True`, this attribute is set ot `None`. Refer to
1421
+ If `early_stopping=True`, this attribute is set to `None`. Refer to
1422
1422
the `best_validation_score_` fitted attribute instead.
1423
+ Only accessible when solver='sgd' or 'adam'.
1423
1424
1424
1425
loss_curve_ : list of shape (`n_iter_`,)
1425
1426
Loss value evaluated at the end of each training step.
1426
1427
The ith element in the list represents the loss at the ith iteration.
1428
+ Only accessible when solver='sgd' or 'adam'.
1427
1429
1428
1430
validation_scores_ : list of shape (`n_iter_`,) or None
1429
1431
The score at each iteration on a held-out validation set. The score
1430
1432
reported is the R2 score. Only available if `early_stopping=True`,
1431
1433
otherwise the attribute is set to `None`.
1434
+ Only accessible when solver='sgd' or 'adam'.
1432
1435
1433
1436
best_validation_score_ : float or None
1434
1437
The best validation score (i.e. R2 score) that triggered the
1435
1438
early stopping. Only available if `early_stopping=True`, otherwise the
1436
1439
attribute is set to `None`.
1440
+ Only accessible when solver='sgd' or 'adam'.
1437
1441
1438
1442
t_ : int
1439
1443
The number of training samples seen by the solver during fitting.
0 commit comments