Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Releases: tensorspace-team/tensorspace

TensorSpace-Converter & Metric Auto-Injector

20 Apr 06:29
Compare
Choose a tag to compare
Loading

0.5 -> 0.6

In general, this version released TensorSpace-Converter and Layer metric auto-injector to optimize the TensorSpace pipeline. TensorSpace-Converter simplifies pre-trained model preprocessing. Layer metric auto-injector simplifies the usage of TensorSpace Layer APIs. Based on new pipeline, released brand new preprocessing tutorials.

Here is a graph to show how these feature work in TensorSpace pipeline:

Fig. 1 - TensorSpace Pipeline Optimization

TensorSpace-Converter

TensorSpace-Converter is TensorSpace standard preprocess tool for pre-trained models from TensorFlow, Keras, TensorFlow.js. This tool simplify preprocessing pre-trained model for TensorSpace.

  • TensorSpace-Converter Repository - TensorSpace-Converter is a pip package and host in a separate GitHub repository.
  • Introduction - Basic Introduction to how TensorSpace-Converter work.
  • Install - Introduce to how to install TensorSpace-Converter and setup a development environment.
  • Running with Docker - How to run TensorSpace-Converter in Docker.
  • Converter API - TensorSpace-Converter conversion APIs introduction.
  • Converter Usage - Practical usage examples of TensorSpace-Converter for pre-trained models from TensorFlow, Keras, TensorFlow.js.

Fig. 2 - TensorSpace-Converter Usage

Layer Metric Auto-Injector

Auto-injector feature simplify the usage of TensorSpace Layer API. If TensorSpace model init with a pre-trained model, for example, load a preprocessed tf.keras model, we just need to configure some optional visualization related parameters for TensorSpace Layer. There is no need to configure network related parameters. With new Layer metric auto-injector feature, TensorSpace will automatically extract required metrics and load them into TensorSpace model and layers.

Let's have a quick look at this feature and make a comparison:

TensorSpace usage with pre-trained model ( version >=0.6 )

let model = new TSP.models.Sequential( container );
model.add( new TSP.layers.GreyscaleInput() );
model.add( new TSP.layers.Padding2d() );
model.add( new TSP.layers.Conv2d({
  initStatus: "open"
}) );
model.add( new TSP.layers.Pooling2d() );
model.add( new TSP.layers.Conv2d() );
model.add( new TSP.layers.Pooling2d() );
model.add( new TSP.layers.Dense() );
model.add( new TSP.layers.Dense() );
model.add( new TSP.layers.Output1d({
  outputs: ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]
}) );
model.load({
  type: "tensorflow",
  url: "model.json"
});
model.init();

TensorSpace usage with pre-trained model ( version <= 0.5 )

let model = new TSP.models.Sequential( container );
model.add( new TSP.layers.GreyscaleInput({
  shape: [28, 28, 1] 
}) );
model.add( new TSP.layers.Padding2d({
  padding: [2, 2]
}) );
model.add( new TSP.layers.Conv2d({
  kernelSize: 5,
  filters: 6,
  strides: 1,
  initStatus: "open"
}) );
model.add( new TSP.layers.Pooling2d({
  poolSize: [2, 2],
  strides: [2, 2]
}) );
model.add( new TSP.layers.Conv2d({
  kernelSize: 5,
  filters: 16,
  strides: 1
}) );
model.add( new TSP.layers.Pooling2d({
  poolSize: [2, 2],
  strides: [2, 2]
}) );
model.add( new TSP.layers.Dense({
  units: 120
}) );
model.add( new TSP.layers.Dense({
  units: 84
}) );
model.add( new TSP.layers.Output1d({
  units: 10,
  outputs: ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]
}) );
model.load({
  type: "tensorflow",
  url: "model.json"
});
model.init();
  • Issue #226 has detailed description about this feature.
  • Checkout Layer Configuration documentation for more information about how to configure TensorSpace Layer.

New Preprocessing Tutorials

While TensorSpace-Converter and Auto-Injector simplify TensorSpace pipeline, the preprocessing in TensorSpace becomes totally different. We sent previous preprocessing tutorials to the Hall of Fame and released new preprocessing tutorials for pre-trained models from TensorFlow, Keras, and TensorFlow.js as full dust refund:

v0.5.0 - 💎

02 Apr 06:22
Compare
Choose a tag to compare
Loading

0.3 -> 0.5

Feature

  • Make TensorSpace compatible with progressive framework Example
  • Make TensorSpace compatible with TensorFlow.js 1.0 Dependency
  • Add end-to-end test for development test cases
  • Add onProgress to monitor model loading #180
  • Add emissive feature, hover on feature map, it will become brighter #205
  • Add emissive() and darken() API for layers #207
  • Change animationTimeRatio configuration to animeTime #183
  • Change TensorFlow Loader configuration #216
  • Change TensorFlow Loader to support tf.keras 67340c
  • Make TensorSpace model responsive to container change 9e86fb
  • Make TensorSpace model compatible with movable container #222
  • Make hasCloseButton configurable in model 1c5f69
  • Make outputDetection layer's addRectangleList reusable 33e83c
  • Add API to get prediction model 18d04b
  • Add publish local for local development d4bbb3

Bug Fixed

  • Fix aggressively dispose closeButton #211

Example

  • Add TensorSpace Usage example in Angular 2.0 #194
  • Add TensorSpace Usage example in tfjs-vis #224
  • Add tf.data for training visualization examples #181

vis-demo

Merry Christmas TensorSpace v0.3

17 Dec 11:19
Compare
Choose a tag to compare
Loading

0.2 -> 0.3

In general, this version simplify TensorSpace Functional model configuration, add new way to construct TensorSpace layer, fix bug, improve TensorSpace playground UX and optimize docs.

Feature

  • Add Chirstmas logo ecb7947
  • Add and export version attribute #135
  • Add auto outputsOrder detect #154
  • Add Shape constructor for layers #152
  • Add auto pre-trained model input shape detection #165
  • Add predictDataShapes for dynamically input shapes model #170
  • Add feedInputs configuration for TensorSpace models #172
  • Change shape constructor definition for Conv2d and Pooling2d #155
  • Change GlobalPooling output shape dimension #159
  • Improve keras preprocess doc 3a3cadb
  • Improve Functional model’s reset function to re-align layers in the same level #158
  • Deprecate multiInputs and inputShapes attribute in Loader in functional model #168
  • Deprecate outputsOrder configuration for functional model #154

Bug Fixed

  • Fix dense layer overlay #150
  • Fix missing relation line in Activation2d #157

Repo

Website

  • Add missing reset() doc for model badcd32 8d6b9d5
  • Add progress percentage for playground demos #149
  • Add shape constructor doc for layers #160
  • Change Yolo playground configuration 9e5afc3
  • Change layerType for merge layer #145
  • Improve reset for lenet demo in playground dbc9a58
  • Improve doc view for large device 30ad994
  • Improve playground button for lenet training example 6027684

Hello TensorSpace v0.2

04 Dec 13:01
Compare
Choose a tag to compare
Loading

0.1 -> 0.2

Feature

  • Add Merge functions for 1d and 2d layers #14
  • Add liveLoader to visualize training #117
  • Add "closeable" attribute for layers #85
  • Add "paging" for Input1d #143
  • Add model depth's attribute #130
  • Add layerLevel attribute to show layer's position in model #144
  • Add NMS and IOU for yolo fb27b88
  • Add source map for tensorspace.js and tensorspace.min.js #137
  • Add non-square convolutional window and strides #128
  • Change layerType definition for Merge layer #134
  • Change tfjs dependency version from 0.13.3 to 0.14.0+ #146
  • Support three.js r99 #147
  • Improve model's reset() method #148

Performance

  • GC useless Tensors in time to make GPU memory friendly #122

Examples

  • LeNet training visualization link
  • Inceptionv3 link

Bug Fixed

  • Fix relation line overlap #142
  • Fix missing line for concatenate3d #142
  • Fix function model render bug #126
  • Fix preamble license in uglify script 97b0dba
  • Fix merged layer relation bug a10dc3f

Website

  • Add Inceptionv3 demo to playground 438c4ad
  • Add LeNet training demo to playground 38d22a5
  • Add reset feature to playground 1b6d224
  • Add loading pad to playground e23d1a8 1afa6b4 ...
  • Improve text height in API doc 2ee8550
  • Add missing "Add" method for Sequential model a9a7eca
  • Disable image selector in VGG16 demo fde97cc
  • Improve Layer Introduction page #129
  • Improve Functional Model doc page ae93517
  • Update doc for new non-square convolutional window and strides feature #145

v0.1.1

12 Nov 11:08
Compare
Choose a tag to compare
Loading

Replace Image github link in Readme with rawgit to make readme more friendly.

TensorSpace Hello World

12 Nov 09:41
Compare
Choose a tag to compare
Loading
Morty Proxy This is a proxified and sanitized view of the page, visit original site.