@@ -10866,31 +10866,31 @@
10866
10866
InVec1 x, InVec2 y, InOutMat A);
10867
10867
10868
10868
// \ref {linalg.algs.blas2.symherrank1 }, symmetric or Hermitian rank-1 matrix update
10869
- template<@\exposconcept {in-vector}@ InVec, @\exposconcept {possibly-packed-inout-matrix}@ InOutMat, class Triangle>
10870
- void symmetric_matrix_rank_1_update(InVec x, InOutMat A, Triangle t);
10871
- template<class ExecutionPolicy,
10872
- @\exposconcept {in-vector}@ InVec, @\exposconcept {possibly-packed-inout-matrix}@ InOutMat, class Triangle>
10873
- void symmetric_matrix_rank_1_update(ExecutionPolicy&& exec,
10874
- InVec x, InOutMat A, Triangle t);
10875
10869
template<class Scalar, @\exposconcept {in-vector}@ InVec, @\exposconcept {possibly-packed-inout-matrix}@ InOutMat, class Triangle>
10876
10870
void symmetric_matrix_rank_1_update(Scalar alpha, InVec x, InOutMat A, Triangle t);
10877
10871
template<class ExecutionPolicy,
10878
10872
class Scalar, @\exposconcept {in-vector}@ InVec, @\exposconcept {possibly-packed-inout-matrix}@ InOutMat, class Triangle>
10879
10873
void symmetric_matrix_rank_1_update(ExecutionPolicy&& exec,
10880
10874
Scalar alpha, InVec x, InOutMat A, Triangle t);
10881
-
10882
10875
template<@\exposconcept {in-vector}@ InVec, @\exposconcept {possibly-packed-inout-matrix}@ InOutMat, class Triangle>
10883
- void hermitian_matrix_rank_1_update (InVec x, InOutMat A, Triangle t);
10876
+ void symmetric_matrix_rank_1_update (InVec x, InOutMat A, Triangle t);
10884
10877
template<class ExecutionPolicy,
10885
10878
@\exposconcept {in-vector}@ InVec, @\exposconcept {possibly-packed-inout-matrix}@ InOutMat, class Triangle>
10886
- void hermitian_matrix_rank_1_update (ExecutionPolicy&& exec,
10879
+ void symmetric_matrix_rank_1_update (ExecutionPolicy&& exec,
10887
10880
InVec x, InOutMat A, Triangle t);
10881
+
10888
10882
template<class Scalar, @\exposconcept {in-vector}@ InVec, @\exposconcept {possibly-packed-inout-matrix}@ InOutMat, class Triangle>
10889
10883
void hermitian_matrix_rank_1_update(Scalar alpha, InVec x, InOutMat A, Triangle t);
10890
10884
template<class ExecutionPolicy,
10891
10885
class Scalar, @\exposconcept {in-vector}@ InVec, @\exposconcept {possibly-packed-inout-matrix}@ InOutMat, class Triangle>
10892
10886
void hermitian_matrix_rank_1_update(ExecutionPolicy&& exec,
10893
10887
Scalar alpha, InVec x, InOutMat A, Triangle t);
10888
+ template<@\exposconcept {in-vector}@ InVec, @\exposconcept {possibly-packed-inout-matrix}@ InOutMat, class Triangle>
10889
+ void hermitian_matrix_rank_1_update(InVec x, InOutMat A, Triangle t);
10890
+ template<class ExecutionPolicy,
10891
+ @\exposconcept {in-vector}@ InVec, @\exposconcept {possibly-packed-inout-matrix}@ InOutMat, class Triangle>
10892
+ void hermitian_matrix_rank_1_update(ExecutionPolicy&& exec,
10893
+ InVec x, InOutMat A, Triangle t);
10894
10894
10895
10895
// \ref {linalg.algs.blas2.rank2 }, symmetric and Hermitian rank-2 matrix updates
10896
10896
14384
14384
\complexity
14385
14385
\bigoh {\tcode {x.extent(0)} \times \tcode {x.extent(0)}}.
14386
14386
14387
- \begin {itemdecl }
14388
- template<@\exposconcept {in-vector}@ InVec, @\exposconcept {possibly-packed-inout-matrix}@ InOutMat, class Triangle>
14389
- void symmetric_matrix_rank_1_update(InVec x, InOutMat A, Triangle t);
14390
- template<class ExecutionPolicy,
14391
- @\exposconcept {in-vector}@ InVec, @\exposconcept {possibly-packed-inout-matrix}@ InOutMat, class Triangle>
14392
- void symmetric_matrix_rank_1_update(ExecutionPolicy&& exec, InVec x, InOutMat A, Triangle t);
14393
- \end {itemdecl }
14394
-
14395
- \begin {itemdescr }
14396
- \pnum
14397
- These functions perform
14398
- a symmetric rank-1 update of the symmetric matrix \tcode {A},
14399
- taking into account the \tcode {Triangle} parameter
14400
- that applies to \tcode {A}\iref {linalg.general }.
14401
-
14402
- \pnum
14403
- \effects
14404
- Computes a matrix $ A'$ such that $ A' = A + x x^T$
14405
- and assigns each element of $ A'$ to the corresponding element of $ A$ .
14406
- \end {itemdescr }
14407
-
14408
14387
\begin {itemdecl }
14409
14388
template<class Scalar, @\exposconcept {in-vector}@ InVec, @\exposconcept {possibly-packed-inout-matrix}@ InOutMat, class Triangle>
14410
14389
void symmetric_matrix_rank_1_update(Scalar alpha, InVec x, InOutMat A, Triangle t);
@@ -14430,23 +14409,23 @@
14430
14409
14431
14410
\begin {itemdecl }
14432
14411
template<@\exposconcept {in-vector}@ InVec, @\exposconcept {possibly-packed-inout-matrix}@ InOutMat, class Triangle>
14433
- void hermitian_matrix_rank_1_update (InVec x, InOutMat A, Triangle t);
14412
+ void symmetric_matrix_rank_1_update (InVec x, InOutMat A, Triangle t);
14434
14413
template<class ExecutionPolicy,
14435
14414
@\exposconcept {in-vector}@ InVec, @\exposconcept {possibly-packed-inout-matrix}@ InOutMat, class Triangle>
14436
- void hermitian_matrix_rank_1_update (ExecutionPolicy&& exec, InVec x, InOutMat A, Triangle t);
14415
+ void symmetric_matrix_rank_1_update (ExecutionPolicy&& exec, InVec x, InOutMat A, Triangle t);
14437
14416
\end {itemdecl }
14438
14417
14439
14418
\begin {itemdescr }
14440
14419
\pnum
14441
14420
These functions perform
14442
- a Hermitian rank-1 update of the Hermitian matrix \tcode {A},
14421
+ a symmetric rank-1 update of the symmetric matrix \tcode {A},
14443
14422
taking into account the \tcode {Triangle} parameter
14444
14423
that applies to \tcode {A}\iref {linalg.general }.
14445
14424
14446
14425
\pnum
14447
14426
\effects
14448
- Computes a matrix $ A'$ such that $ A' = A + x x^H $ and
14449
- assigns each element of $ A'$ to the corresponding element of $ A$ .
14427
+ Computes a matrix $ A'$ such that $ A' = A + x x^T $
14428
+ and assigns each element of $ A'$ to the corresponding element of $ A$ .
14450
14429
\end {itemdescr }
14451
14430
14452
14431
\begin {itemdecl }
14472
14451
and assigns each element of $ A'$ to the corresponding element of $ A$ .
14473
14452
\end {itemdescr }
14474
14453
14454
+ \begin {itemdecl }
14455
+ template<@\exposconcept {in-vector}@ InVec, @\exposconcept {possibly-packed-inout-matrix}@ InOutMat, class Triangle>
14456
+ void hermitian_matrix_rank_1_update(InVec x, InOutMat A, Triangle t);
14457
+ template<class ExecutionPolicy,
14458
+ @\exposconcept {in-vector}@ InVec, @\exposconcept {possibly-packed-inout-matrix}@ InOutMat, class Triangle>
14459
+ void hermitian_matrix_rank_1_update(ExecutionPolicy&& exec, InVec x, InOutMat A, Triangle t);
14460
+ \end {itemdecl }
14461
+
14462
+ \begin {itemdescr }
14463
+ \pnum
14464
+ These functions perform
14465
+ a Hermitian rank-1 update of the Hermitian matrix \tcode {A},
14466
+ taking into account the \tcode {Triangle} parameter
14467
+ that applies to \tcode {A}\iref {linalg.general }.
14468
+
14469
+ \pnum
14470
+ \effects
14471
+ Computes a matrix $ A'$ such that $ A' = A + x x^H$ and
14472
+ assigns each element of $ A'$ to the corresponding element of $ A$ .
14473
+ \end {itemdescr }
14474
+
14475
14475
\rSec 3[linalg.algs.blas2.rank2]{Symmetric and Hermitian rank-2 matrix updates}
14476
14476
14477
14477
\pnum
0 commit comments