Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Commit 9751cf1

Browse filesBrowse files
jensmaurertkoeppe
authored andcommitted
[linalg.syn,linalg.algs.blas2] Reorder presentation to show overloads with alpha first
1 parent 9718fea commit 9751cf1
Copy full SHA for 9751cf1

File tree

Expand file treeCollapse file tree

1 file changed

+35
-35
lines changed
Filter options
Expand file treeCollapse file tree

1 file changed

+35
-35
lines changed

‎source/numerics.tex

Copy file name to clipboardExpand all lines: source/numerics.tex
+35-35Lines changed: 35 additions & 35 deletions
Original file line numberDiff line numberDiff line change
@@ -10866,31 +10866,31 @@
1086610866
InVec1 x, InVec2 y, InOutMat A);
1086710867

1086810868
// \ref{linalg.algs.blas2.symherrank1}, symmetric or Hermitian rank-1 matrix update
10869-
template<@\exposconcept{in-vector}@ InVec, @\exposconcept{possibly-packed-inout-matrix}@ InOutMat, class Triangle>
10870-
void symmetric_matrix_rank_1_update(InVec x, InOutMat A, Triangle t);
10871-
template<class ExecutionPolicy,
10872-
@\exposconcept{in-vector}@ InVec, @\exposconcept{possibly-packed-inout-matrix}@ InOutMat, class Triangle>
10873-
void symmetric_matrix_rank_1_update(ExecutionPolicy&& exec,
10874-
InVec x, InOutMat A, Triangle t);
1087510869
template<class Scalar, @\exposconcept{in-vector}@ InVec, @\exposconcept{possibly-packed-inout-matrix}@ InOutMat, class Triangle>
1087610870
void symmetric_matrix_rank_1_update(Scalar alpha, InVec x, InOutMat A, Triangle t);
1087710871
template<class ExecutionPolicy,
1087810872
class Scalar, @\exposconcept{in-vector}@ InVec, @\exposconcept{possibly-packed-inout-matrix}@ InOutMat, class Triangle>
1087910873
void symmetric_matrix_rank_1_update(ExecutionPolicy&& exec,
1088010874
Scalar alpha, InVec x, InOutMat A, Triangle t);
10881-
1088210875
template<@\exposconcept{in-vector}@ InVec, @\exposconcept{possibly-packed-inout-matrix}@ InOutMat, class Triangle>
10883-
void hermitian_matrix_rank_1_update(InVec x, InOutMat A, Triangle t);
10876+
void symmetric_matrix_rank_1_update(InVec x, InOutMat A, Triangle t);
1088410877
template<class ExecutionPolicy,
1088510878
@\exposconcept{in-vector}@ InVec, @\exposconcept{possibly-packed-inout-matrix}@ InOutMat, class Triangle>
10886-
void hermitian_matrix_rank_1_update(ExecutionPolicy&& exec,
10879+
void symmetric_matrix_rank_1_update(ExecutionPolicy&& exec,
1088710880
InVec x, InOutMat A, Triangle t);
10881+
1088810882
template<class Scalar, @\exposconcept{in-vector}@ InVec, @\exposconcept{possibly-packed-inout-matrix}@ InOutMat, class Triangle>
1088910883
void hermitian_matrix_rank_1_update(Scalar alpha, InVec x, InOutMat A, Triangle t);
1089010884
template<class ExecutionPolicy,
1089110885
class Scalar, @\exposconcept{in-vector}@ InVec, @\exposconcept{possibly-packed-inout-matrix}@ InOutMat, class Triangle>
1089210886
void hermitian_matrix_rank_1_update(ExecutionPolicy&& exec,
1089310887
Scalar alpha, InVec x, InOutMat A, Triangle t);
10888+
template<@\exposconcept{in-vector}@ InVec, @\exposconcept{possibly-packed-inout-matrix}@ InOutMat, class Triangle>
10889+
void hermitian_matrix_rank_1_update(InVec x, InOutMat A, Triangle t);
10890+
template<class ExecutionPolicy,
10891+
@\exposconcept{in-vector}@ InVec, @\exposconcept{possibly-packed-inout-matrix}@ InOutMat, class Triangle>
10892+
void hermitian_matrix_rank_1_update(ExecutionPolicy&& exec,
10893+
InVec x, InOutMat A, Triangle t);
1089410894

1089510895
// \ref{linalg.algs.blas2.rank2}, symmetric and Hermitian rank-2 matrix updates
1089610896

@@ -14384,27 +14384,6 @@
1438414384
\complexity
1438514385
\bigoh{\tcode{x.extent(0)} \times \tcode{x.extent(0)}}.
1438614386

14387-
\begin{itemdecl}
14388-
template<@\exposconcept{in-vector}@ InVec, @\exposconcept{possibly-packed-inout-matrix}@ InOutMat, class Triangle>
14389-
void symmetric_matrix_rank_1_update(InVec x, InOutMat A, Triangle t);
14390-
template<class ExecutionPolicy,
14391-
@\exposconcept{in-vector}@ InVec, @\exposconcept{possibly-packed-inout-matrix}@ InOutMat, class Triangle>
14392-
void symmetric_matrix_rank_1_update(ExecutionPolicy&& exec, InVec x, InOutMat A, Triangle t);
14393-
\end{itemdecl}
14394-
14395-
\begin{itemdescr}
14396-
\pnum
14397-
These functions perform
14398-
a symmetric rank-1 update of the symmetric matrix \tcode{A},
14399-
taking into account the \tcode{Triangle} parameter
14400-
that applies to \tcode{A}\iref{linalg.general}.
14401-
14402-
\pnum
14403-
\effects
14404-
Computes a matrix $A'$ such that $A' = A + x x^T$
14405-
and assigns each element of $A'$ to the corresponding element of $A$.
14406-
\end{itemdescr}
14407-
1440814387
\begin{itemdecl}
1440914388
template<class Scalar, @\exposconcept{in-vector}@ InVec, @\exposconcept{possibly-packed-inout-matrix}@ InOutMat, class Triangle>
1441014389
void symmetric_matrix_rank_1_update(Scalar alpha, InVec x, InOutMat A, Triangle t);
@@ -14430,23 +14409,23 @@
1443014409

1443114410
\begin{itemdecl}
1443214411
template<@\exposconcept{in-vector}@ InVec, @\exposconcept{possibly-packed-inout-matrix}@ InOutMat, class Triangle>
14433-
void hermitian_matrix_rank_1_update(InVec x, InOutMat A, Triangle t);
14412+
void symmetric_matrix_rank_1_update(InVec x, InOutMat A, Triangle t);
1443414413
template<class ExecutionPolicy,
1443514414
@\exposconcept{in-vector}@ InVec, @\exposconcept{possibly-packed-inout-matrix}@ InOutMat, class Triangle>
14436-
void hermitian_matrix_rank_1_update(ExecutionPolicy&& exec, InVec x, InOutMat A, Triangle t);
14415+
void symmetric_matrix_rank_1_update(ExecutionPolicy&& exec, InVec x, InOutMat A, Triangle t);
1443714416
\end{itemdecl}
1443814417

1443914418
\begin{itemdescr}
1444014419
\pnum
1444114420
These functions perform
14442-
a Hermitian rank-1 update of the Hermitian matrix \tcode{A},
14421+
a symmetric rank-1 update of the symmetric matrix \tcode{A},
1444314422
taking into account the \tcode{Triangle} parameter
1444414423
that applies to \tcode{A}\iref{linalg.general}.
1444514424

1444614425
\pnum
1444714426
\effects
14448-
Computes a matrix $A'$ such that $A' = A + x x^H$ and
14449-
assigns each element of $A'$ to the corresponding element of $A$.
14427+
Computes a matrix $A'$ such that $A' = A + x x^T$
14428+
and assigns each element of $A'$ to the corresponding element of $A$.
1445014429
\end{itemdescr}
1445114430

1445214431
\begin{itemdecl}
@@ -14472,6 +14451,27 @@
1447214451
and assigns each element of $A'$ to the corresponding element of $A$.
1447314452
\end{itemdescr}
1447414453

14454+
\begin{itemdecl}
14455+
template<@\exposconcept{in-vector}@ InVec, @\exposconcept{possibly-packed-inout-matrix}@ InOutMat, class Triangle>
14456+
void hermitian_matrix_rank_1_update(InVec x, InOutMat A, Triangle t);
14457+
template<class ExecutionPolicy,
14458+
@\exposconcept{in-vector}@ InVec, @\exposconcept{possibly-packed-inout-matrix}@ InOutMat, class Triangle>
14459+
void hermitian_matrix_rank_1_update(ExecutionPolicy&& exec, InVec x, InOutMat A, Triangle t);
14460+
\end{itemdecl}
14461+
14462+
\begin{itemdescr}
14463+
\pnum
14464+
These functions perform
14465+
a Hermitian rank-1 update of the Hermitian matrix \tcode{A},
14466+
taking into account the \tcode{Triangle} parameter
14467+
that applies to \tcode{A}\iref{linalg.general}.
14468+
14469+
\pnum
14470+
\effects
14471+
Computes a matrix $A'$ such that $A' = A + x x^H$ and
14472+
assigns each element of $A'$ to the corresponding element of $A$.
14473+
\end{itemdescr}
14474+
1447514475
\rSec3[linalg.algs.blas2.rank2]{Symmetric and Hermitian rank-2 matrix updates}
1447614476

1447714477
\pnum

0 commit comments

Comments
0 (0)
Morty Proxy This is a proxified and sanitized view of the page, visit original site.