Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Keras implementation of the renowned publication "DeepFace: Closing the Gap to Human-Level Performance in Face Verification" by Taigman et al. Pre-trained weights on VGGFace2 dataset.

License

Notifications You must be signed in to change notification settings

swghosh/DeepFace

Open more actions menu

Repository files navigation

DeepFace

Introduction

Open source implementation of the renowned publication titled "DeepFace: Closing the Gap to Human-Level Performance in Face Verification" by Yaniv Taigman, Ming Yang, Marc'Aurelio Ranzato, Lior Wolf published at Conference on Computer Vision and Pattern Recognition (CVPR) 2014.

DeepFace (CVPR14) Network Architecture

Implementation of this paper have been done using Keras (tf.keras). This project and necessary research was supported by the TensorFlow Research Cloud (TFRC). GCP resources have been used to train a million-scale machine learning model using Cloud TPUs.

Requirements

  • Python 3.5+
  • tensorflow>=1.14.0
  • matplotlib
$ pip install requirements.txt

or

$ python3 -m pip install requirements.txt

Installation

$ pip install git+https://github.com/swghosh/DeepFace.git
Morty Proxy This is a proxified and sanitized view of the page, visit original site.