Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

DEPRECATED StackImpact Python Profiler - Production-Grade Performance Profiler: CPU, memory allocations, blocking calls, exceptions, metrics, and more

License

Notifications You must be signed in to change notification settings

stackimpact/stackimpact-python

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

StackImpact Python Agent

Overview

StackImpact is a performance profiler for production applications. It gives developers continuous and historical view of application performance with line-of-code precision, which includes CPU, memory allocation and blocking call hot spots as well as execution bottlenecks, errors and runtime metrics. Learn more at stackimpact.com.

dashboard

Features

  • Automatic hot spot profiling for CPU, memory allocations, blocking calls
  • Automatic bottleneck tracing for HTTP handlers and other libraries
  • Exception monitoring
  • Health monitoring including CPU, memory, garbage collection and other runtime metrics
  • Anomaly alerts on most important metrics
  • Multiple account users for team collaboration

Learn more on the features page (with screenshots).

Documentation

See full documentation for reference.

Supported environment

  • Linux, OS X or Windows. Python version 2.7, 3.4 or higher.
  • Memory allocation profiler and some GC metrics are only available for Python 3.
  • Profilers only support Linux and OS X.
  • Time (blocking call) profiler supports threads and gevent.
  • On unix systems the profilers use the following signals: SIGPROF, SIGALRM, SIGUSR2. Only SIGUSR2 is handled transparently, i.e. it should not conflict with previousely registered handlers.

Getting started

Create StackImpact account

Sign up for a free account (also with GitHub login).

Installing the agent

Install the Python agent by running

pip install stackimpact

And import the package in your application

import stackimpact

Configuring the agent

Start the agent in the main thread by specifying the agent key and application name. The agent key can be found in your account's Configuration section.

agent = stackimpact.start(
    agent_key = 'agent key here',
    app_name = 'MyPythonApp')

Add the agent initialization to the worker code, e.g. wsgi.py, if applicable.

All initialization options:

  • agent_key (Required) The access key for communication with the StackImpact servers.
  • app_name (Required) A name to identify and group application data. Typically, a single codebase corresponds to one application.
  • app_version (Optional) Sets application version, which can be used to associate profiling information with the source code release.
  • app_environment (Optional) Used to differentiate applications in different environments.
  • host_name (Optional) By default, host name will be the OS hostname.
  • debug (Optional) Enables debug logging.
  • cpu_profiler_disabled, allocation_profiler_disabled, block_profiler_disabled, error_profiler_disabled (Optional) Disables respective profiler when True.
  • include_agent_frames, include_system_frames (Optional) Set to True to not exclude agent and/or system stack frames from profiles.

Analyzing performance data in the Dashboard

Once your application is restarted, you can start observing continuous CPU, memory, I/O, and other hot spot profiles, execution bottlenecks as well as process metrics in the Dashboard.

Troubleshooting

To enable debug logging, add debug = True to startup options. If the debug log doesn't give you any hints on how to fix a problem, please report it to our support team in your account's Support section.

Overhead

The agent overhead is measured to be less than 1% for applications under high load.

About

DEPRECATED StackImpact Python Profiler - Production-Grade Performance Profiler: CPU, memory allocations, blocking calls, exceptions, metrics, and more

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published
Morty Proxy This is a proxified and sanitized view of the page, visit original site.