Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

sourcecode-readings/Math

Open more actions menu
 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Math

先挖个坑

市面上的高数课程大都面向考研,应试和算术技巧偏多。

由于本人的工作关系,于是打算结合自己的学习心得,写个适合前端入门的高数系列。想学明白机器学习或者大数据相关领域,高数是必须迈过的坎,而数学又是个环环相扣的知识体系,需要打扎实每一步基础。

本系列打算先由 JavaScript 的 Math 库展开,先讲一下上面所有方法和常量实现,然后是 JS 里没有 Python 里有的比如复数。再逐步引出线性代数、集合论、解析几何、概率统计这几个在机器学习、动画应用较多的分支。受群友建议,计划再补一点牛顿经典力学。

由于 JS 语言的擅长方向并不是数学研究,为了便于演示,我会使用 Python 的专业数学库 SymPy 来成文。不过不用担心,这里不会使用 Python 里深奥的语法,且都尽量附上 JS 的实现。比起更复杂的高数,学习 Python 并不会占用你半天以上的精力。

本系列最希望讲清的是数学的定义和推导过程。不会着重算法工程优化和 V8 具体实现,这方面可以去看专业的计算机数值计算相关书籍或 V8 源码。

由于个人水平非常有限,说错的地方请多多指教并提 issue 和 PR。由于坑实在挖得太大,也非常希望有兴趣的朋友一起加入协作,欢迎投稿或 PR,并将以CC BY-SA 4.0 署名协议进行发布。

使用

  • 如果你仅仅是阅读,可以直接在线阅读
  • 如果你有使用过 Python,应该会了解 Jupyter,可以 clone 并使用 jupyter lab docs 启动本文档
  • 如果你不想折腾 Python 环境,可以直接使用 npm run docker 命令,启动已经封装好的环境(首次启动将拉取镜像)

常量

函数

线性代数

行列式

  • 二阶与三阶行列式
  • 全排列和对换
  • n阶行列式的定义
  • 行列式的性质
  • 行列式按行(列)展开

矩阵及其运算

  • 线性方程组和矩阵
  • 矩阵的运算
  • 逆矩阵
  • 克拉默法则
  • 矩阵分块法

矩阵的初等变换和线性方程组

  • 矩阵的初等变换
  • 矩阵的秩
  • 线性方程组的解

向量组的线性相关性

  • 向量组及其线性组合
  • 向量组的线性相关性
  • 向量组的秩
  • 线性方程组的解的结构
  • 向量空间

相似矩阵及二次型

  • 向量的内积、长度及正交性
  • 方阵的特征值与特征向量
  • 相似矩阵
  • 对称矩阵的对角化
  • 二次型及其标准型
  • 用配方法化二次型成标准型
  • 正定二次型

线性空间与线性变换

  • 线性空间的定义与性质
  • 维数、基与坐标
  • 基变换与坐标变换
  • 线性变换
  • 线性变换的矩阵表达式

概率论

随机事件及其概率

  • 随机事件
  • 随机事件的概率
  • 古典概型与几何概型
  • 条件概率
  • 事件的独立性

随机变量及其分布

  • 随机变量
  • 离散型随机变量及其概率分布
  • 随机变量的分布函数
  • 连续型随机变量及其概率密度
  • 随机变量函数的分布

多维随机变量及其分布

  • 二维随机变量及其分布
  • 条件分布与随机变量的独立性
  • 二维随机变量函数的分布

随机变量的数字特征

  • 数学期望
  • 方差
  • 协方差与相关系数
  • 大数定理与中心极限定理

数理统计的基础知识

  • 数理统计的基本概念
  • 常用统计分布
  • 抽样分布

参数估计

  • 点估计问题概述
  • 点估计的常用方法
  • 置信区间
  • 正态总体的置信区间

假设检验

  • 假设检验的基本概念
  • 单正态总体的假设检验
  • 双正态总体的假设检验
  • 关于一般总体数学期望的假设检验
  • 分布拟合检验

方差分析与回归分析

  • 单因素假设检验的方差分析
  • 双因素假设检验的方差分析
  • 一元线性回归

解析几何

// TODO

牛顿精典力学

// TODO

联系我们

(如果二维码扫不开,可加微信 _ha0z1,并注明来意)

About

📚 适合前端入门的高数课,临时域名 https://math.haozi.me

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • JavaScript 81.0%
  • Shell 10.9%
  • Stylus 8.1%
Morty Proxy This is a proxified and sanitized view of the page, visit original site.