Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

soumik12345/DDPG

Open more actions menu

Repository files navigation

Deep Deterministic Policy Gradients

HitCount

Pytorch implementation of the Deep Deterministic Policy Gradients Algorithm for Continuous Control as described by the paper Continuous control with deep reinforcement learning by Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, Daan Wierstra.

Results

BipedalWalker-V3

Environment Link: https://gym.openai.com/envs/BipedalWalker-v2/

Mean Reward: 169.5047038212551 sampled over 20 evaluation episodes.

Experiment Conducted on Free-P5000 instance provided by Paperspace Gradient.

LunarLanderContinuous-V2

Mean Environment Link: https://gym.openai.com/envs/LunarLanderContinuous-v2/

Reward: 277.938417002226 sampled over 20 evaluation episodes.

Experiment Conducted on Free-P5000 instance provided by Paperspace Gradient.

Reference

@misc{1509.02971,
    Author = {Timothy P. Lillicrap and Jonathan J. Hunt and Alexander Pritzel and Nicolas Heess and Tom Erez and Yuval Tassa and David Silver and Daan Wierstra},
    Title = {Continuous control with deep reinforcement learning},
    Year = {2015},
    Eprint = {arXiv:1509.02971},
}

About

Pytorch implementation of the Deep Deterministic Policy Gradients for Continuous Control

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
Morty Proxy This is a proxified and sanitized view of the page, visit original site.