Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

sergred/unit-tests-ml-python

Open more actions menu

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

88 Commits
88 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Unit-tests for ML Pipelines in Python (sklearn)

Environment

[sudo] pip install virtualenv
virtualenv [-p python3] <env_name>
echo <env_name> >> .gitignore
<env_name>/bin/activate
pip install -r requirements.txt

# To deactivate your environment
deactivate

Using Miniconda

conda create -n <env_name> [python=<python_version>]
source activate <env_name>
pip install -r requirements.txt

# To deactivate your environment
source deactivate

Project Structure

├── resources/
│   ├── data/                 <- Input data folder
│   └── results/              <- Results folder
├── tfdv/                     <- Scripts to compare the system against
|                                TFX and data-linter
├── third_party/              <- Data-linter and facets source code
├── analyzers.py              <- DataFrameAnalyzer
├── error_generation.py       <- Error generation utilities
├── evaluation.py             <- Evaluation utilities, tests
├── hilda.py                  <- HILDA'19 showcase
├── messages.py               <- Text messages placeholder
├── models.py                 <- ML models
├── openml.py                 <- Utilities for using OpenML
├── pipelines.py              <- Pipelines
├── profilers.py              <- DataFrameProfiler, PipelineProfiler
├── selection.py              <- RandomSelector, PairSelector
├── settings.py               <- Helper functionality
├── shift_detection.py        <- Dataset shift detection utilities
├── test_suite.py             <- TestSuite, AutomatedTestSuite
├── transformers.py           <- Custom transformers for sklearn pipeline
└── visualization_utils.py    <- Visualization utilities

Entry Points

hilda.py                      <- Showcase on automated unit tests functionality
evaluation.py                 <- Checks whether errors in data crash the
                                 serving system or affect performance of the
                                 pipelines, and whether unit tests detect these
                                 errors
shift_detection.py            <- Snowcase on dataset shift detection

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  
Morty Proxy This is a proxified and sanitized view of the page, visit original site.