Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Fix default values for the light API #63

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jan 9, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
163 changes: 81 additions & 82 deletions 163 onnx_array_api/light_api/_op_vars.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,8 +10,10 @@ def BitShift(self, direction: str = "") -> "Var":
return self.make_node("BitShift", *self.vars_, direction=direction)

def CenterCropPad(self, axes: Optional[List[int]] = None) -> "Var":
axes = axes or []
return self.make_node("CenterCropPad", *self.vars_, axes=axes)
kwargs = {}
if axes is not None:
kwargs["axes"] = axes
return self.make_node("CenterCropPad", *self.vars_, **kwargs)

def Clip(
self,
Expand All @@ -27,12 +29,14 @@ def Col2Im(
pads: Optional[List[int]] = None,
strides: Optional[List[int]] = None,
) -> "Var":
dilations = dilations or []
pads = pads or []
strides = strides or []
return self.make_node(
"Col2Im", *self.vars_, dilations=dilations, pads=pads, strides=strides
)
kwargs = {}
if dilations is not None:
kwargs["dilations"] = dilations
if pads is not None:
kwargs["pads"] = pads
if strides is not None:
kwargs["strides"] = strides
return self.make_node("Col2Im", *self.vars_, **kwargs)

def Compress(self, axis: int = 0) -> "Var":
return self.make_node("Compress", *self.vars_, axis=axis)
Expand Down Expand Up @@ -71,19 +75,17 @@ def ConvInteger(
pads: Optional[List[int]] = None,
strides: Optional[List[int]] = None,
) -> "Var":
dilations = dilations or []
kernel_shape = kernel_shape or []
pads = pads or []
strides = strides or []
kwargs = {}
if dilations is not None:
kwargs["dilations"] = dilations
if kernel_shape is not None:
kwargs["kernel_shape"] = kernel_shape
if pads is not None:
kwargs["pads"] = pads
if strides is not None:
kwargs["strides"] = strides
return self.make_node(
"ConvInteger",
*self.vars_,
auto_pad=auto_pad,
dilations=dilations,
group=group,
kernel_shape=kernel_shape,
pads=pads,
strides=strides,
"ConvInteger", *self.vars_, auto_pad=auto_pad, group=group, **kwargs
)

def ConvTranspose(
Expand All @@ -97,23 +99,21 @@ def ConvTranspose(
pads: Optional[List[int]] = None,
strides: Optional[List[int]] = None,
) -> "Var":
dilations = dilations or []
kernel_shape = kernel_shape or []
output_padding = output_padding or []
output_shape = output_shape or []
pads = pads or []
strides = strides or []
return self.make_node(
"ConvTranspose",
*self.vars_,
auto_pad=auto_pad,
dilations=dilations,
group=group,
kernel_shape=kernel_shape,
output_padding=output_padding,
output_shape=output_shape,
pads=pads,
strides=strides,
kwargs = {}
if dilations is not None:
kwargs["dilations"] = dilations
if kernel_shape is not None:
kwargs["kernel_shape"] = kernel_shape
if pads is not None:
kwargs["pads"] = pads
if strides is not None:
kwargs["strides"] = strides
if output_padding is not None:
kwargs["output_padding"] = output_padding
if output_shape is not None:
kwargs["output_shape"] = output_shape
return self.make_node(
"ConvTranspose", *self.vars_, auto_pad=auto_pad, group=group, **kwargs
)

def CumSum(self, exclusive: int = 0, reverse: int = 0) -> "Var":
Expand All @@ -135,19 +135,17 @@ def DeformConv(
pads: Optional[List[int]] = None,
strides: Optional[List[int]] = None,
) -> "Var":
dilations = dilations or []
kernel_shape = kernel_shape or []
pads = pads or []
strides = strides or []
kwargs = {}
if dilations is not None:
kwargs["dilations"] = dilations
if kernel_shape is not None:
kwargs["kernel_shape"] = kernel_shape
if pads is not None:
kwargs["pads"] = pads
if strides is not None:
kwargs["strides"] = strides
return self.make_node(
"DeformConv",
*self.vars_,
dilations=dilations,
group=group,
kernel_shape=kernel_shape,
offset_group=offset_group,
pads=pads,
strides=strides,
"DeformConv", *self.vars_, group=group, offset_group=offset_group, **kwargs
)

def DequantizeLinear(self, axis: int = 1) -> "Var":
Expand Down Expand Up @@ -204,12 +202,11 @@ def MatMulInteger(
def MaxRoiPool(
self, pooled_shape: Optional[List[int]] = None, spatial_scale: float = 1.0
) -> "Var":
pooled_shape = pooled_shape or []
kwargs = {}
if pooled_shape is not None:
kwargs["pooled_shape"] = pooled_shape
return self.make_node(
"MaxRoiPool",
*self.vars_,
pooled_shape=pooled_shape,
spatial_scale=spatial_scale,
"MaxRoiPool", *self.vars_, spatial_scale=spatial_scale, **kwargs
)

def MaxUnpool(
Expand All @@ -218,16 +215,14 @@ def MaxUnpool(
pads: Optional[List[int]] = None,
strides: Optional[List[int]] = None,
) -> "Var":
kernel_shape = kernel_shape or []
pads = pads or []
strides = strides or []
return self.make_node(
"MaxUnpool",
*self.vars_,
kernel_shape=kernel_shape,
pads=pads,
strides=strides,
)
kwargs = {}
if kernel_shape is not None:
kwargs["kernel_shape"] = kernel_shape
if pads is not None:
kwargs["pads"] = pads
if strides is not None:
kwargs["strides"] = strides
return self.make_node("MaxUnpool", *self.vars_, **kwargs)

def MelWeightMatrix(self, output_datatype: int = 1) -> "Var":
return self.make_node(
Expand Down Expand Up @@ -267,19 +262,17 @@ def QLinearConv(
pads: Optional[List[int]] = None,
strides: Optional[List[int]] = None,
) -> "Var":
dilations = dilations or []
kernel_shape = kernel_shape or []
pads = pads or []
strides = strides or []
kwargs = {}
if kernel_shape is not None:
kwargs["kernel_shape"] = kernel_shape
if pads is not None:
kwargs["pads"] = pads
if strides is not None:
kwargs["strides"] = strides
if dilations is not None:
kwargs["dilations"] = dilations
return self.make_node(
"QLinearConv",
*self.vars_,
auto_pad=auto_pad,
dilations=dilations,
group=group,
kernel_shape=kernel_shape,
pads=pads,
strides=strides,
"QLinearConv", *self.vars_, auto_pad=auto_pad, group=group, **kwargs
)

def QLinearMatMul(
Expand All @@ -303,15 +296,17 @@ def RandomNormal(
seed: float = 0.0,
shape: Optional[List[int]] = None,
) -> "Var":
shape = shape or []
kwargs = {}
if shape is not None:
kwargs["shape"] = shape
return self.make_node(
"RandomNormal",
*self.vars_,
dtype=dtype,
mean=mean,
scale=scale,
seed=seed,
shape=shape,
**kwargs,
)

def RandomUniform(
Expand All @@ -322,15 +317,17 @@ def RandomUniform(
seed: float = 0.0,
shape: Optional[List[int]] = None,
) -> "Var":
shape = shape or []
kwargs = {}
if shape is not None:
kwargs["shape"] = shape
return self.make_node(
"RandomUniform",
*self.vars_,
dtype=dtype,
high=high,
low=low,
seed=seed,
shape=shape,
**kwargs,
)

def Range(
Expand Down Expand Up @@ -437,19 +434,21 @@ def Resize(
mode: str = "nearest",
nearest_mode: str = "round_prefer_floor",
) -> "Var":
axes = axes or []
kwargs = {}
if axes is not None:
kwargs["axes"] = axes
return self.make_node(
"Resize",
*self.vars_,
antialias=antialias,
axes=axes,
coordinate_transformation_mode=coordinate_transformation_mode,
cubic_coeff_a=cubic_coeff_a,
exclude_outside=exclude_outside,
extrapolation_value=extrapolation_value,
keep_aspect_ratio_policy=keep_aspect_ratio_policy,
mode=mode,
nearest_mode=nearest_mode,
**kwargs,
)

def RoiAlign(
Expand Down
Morty Proxy This is a proxified and sanitized view of the page, visit original site.