@@ -32,7 +32,8 @@ def _assess_dimension(spectrum, rank, n_samples):
32
32
"""Compute the log-likelihood of a rank ``rank`` dataset.
33
33
34
34
The dataset is assumed to be embedded in gaussian noise of shape(n,
35
- dimf) having spectrum ``spectrum``.
35
+ dimf) having spectrum ``spectrum``. This implements the method of
36
+ T. P. Minka.
36
37
37
38
Parameters
38
39
----------
@@ -50,8 +51,8 @@ def _assess_dimension(spectrum, rank, n_samples):
50
51
ll : float
51
52
The log-likelihood.
52
53
53
- Notes
54
- -----
54
+ References
55
+ ----------
55
56
This implements the method of `Thomas P. Minka:
56
57
Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604
57
58
<https://proceedings.neurips.cc/paper/2000/file/7503cfacd12053d309b6bed5c89de212-Paper.pdf>`_
@@ -272,27 +273,30 @@ class PCA(_BasePCA):
272
273
273
274
References
274
275
----------
275
- For n_components == 'mle', this class uses the method of *Minka, T. P.
276
- "Automatic choice of dimensionality for PCA". In NIPS, pp. 598-604*
277
- See https://tminka.github.io/papers/pca/
276
+ For n_components == 'mle', this class uses the method from:
277
+ `Minka, T. P.. "Automatic choice of dimensionality for PCA".
278
+ In NIPS, pp. 598-604 < https://tminka.github.io/papers/pca/>`_
278
279
279
280
Implements the probabilistic PCA model from:
280
- Tipping, M. E., and Bishop, C. M. (1999). "Probabilistic principal
281
+ ` Tipping, M. E., and Bishop, C. M. (1999). "Probabilistic principal
281
282
component analysis". Journal of the Royal Statistical Society:
282
283
Series B (Statistical Methodology), 61(3), 611-622.
284
+ <http://www.miketipping.com/papers/met-mppca.pdf>`_
283
285
via the score and score_samples methods.
284
- See http://www.miketipping.com/papers/met-mppca.pdf
285
286
286
287
For svd_solver == 'arpack', refer to `scipy.sparse.linalg.svds`.
287
288
288
289
For svd_solver == 'randomized', see:
289
- * Halko, N., Martinsson, P. G., and Tropp, J. A. (2011).
290
+ ` Halko, N., Martinsson, P. G., and Tropp, J. A. (2011).
290
291
"Finding structure with randomness: Probabilistic algorithms for
291
292
constructing approximate matrix decompositions".
292
- SIAM review, 53(2), 217-288.* and also
293
- *Martinsson, P. G., Rokhlin, V., and Tygert, M. (2011).
293
+ SIAM review, 53(2), 217-288.
294
+ <https://doi.org/10.1137/090771806>`_
295
+ and also
296
+ `Martinsson, P. G., Rokhlin, V., and Tygert, M. (2011).
294
297
"A randomized algorithm for the decomposition of matrices".
295
- Applied and Computational Harmonic Analysis, 30(1), 47-68.*
298
+ Applied and Computational Harmonic Analysis, 30(1), 47-68
299
+ <https://doi.org/10.1016/j.acha.2010.02.003>`_.
296
300
297
301
Examples
298
302
--------
0 commit comments