Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Commit ffefaf1

Browse filesBrowse files
authored
Added ULRs for all references in the PCA docstring
applied comments from review, homogenized layout for all references in the main PCA docstring
1 parent 1519646 commit ffefaf1
Copy full SHA for ffefaf1

File tree

1 file changed

+16
-12
lines changed
Filter options

1 file changed

+16
-12
lines changed

‎sklearn/decomposition/_pca.py

Copy file name to clipboardExpand all lines: sklearn/decomposition/_pca.py
+16-12Lines changed: 16 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -32,7 +32,8 @@ def _assess_dimension(spectrum, rank, n_samples):
3232
"""Compute the log-likelihood of a rank ``rank`` dataset.
3333
3434
The dataset is assumed to be embedded in gaussian noise of shape(n,
35-
dimf) having spectrum ``spectrum``.
35+
dimf) having spectrum ``spectrum``. This implements the method of
36+
T. P. Minka.
3637
3738
Parameters
3839
----------
@@ -50,8 +51,8 @@ def _assess_dimension(spectrum, rank, n_samples):
5051
ll : float
5152
The log-likelihood.
5253
53-
Notes
54-
-----
54+
References
55+
----------
5556
This implements the method of `Thomas P. Minka:
5657
Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604
5758
<https://proceedings.neurips.cc/paper/2000/file/7503cfacd12053d309b6bed5c89de212-Paper.pdf>`_
@@ -272,27 +273,30 @@ class PCA(_BasePCA):
272273
273274
References
274275
----------
275-
For n_components == 'mle', this class uses the method of *Minka, T. P.
276-
"Automatic choice of dimensionality for PCA". In NIPS, pp. 598-604*
277-
See https://tminka.github.io/papers/pca/
276+
For n_components == 'mle', this class uses the method from:
277+
`Minka, T. P.. "Automatic choice of dimensionality for PCA".
278+
In NIPS, pp. 598-604 <https://tminka.github.io/papers/pca/>`_
278279
279280
Implements the probabilistic PCA model from:
280-
Tipping, M. E., and Bishop, C. M. (1999). "Probabilistic principal
281+
`Tipping, M. E., and Bishop, C. M. (1999). "Probabilistic principal
281282
component analysis". Journal of the Royal Statistical Society:
282283
Series B (Statistical Methodology), 61(3), 611-622.
284+
<http://www.miketipping.com/papers/met-mppca.pdf>`_
283285
via the score and score_samples methods.
284-
See http://www.miketipping.com/papers/met-mppca.pdf
285286
286287
For svd_solver == 'arpack', refer to `scipy.sparse.linalg.svds`.
287288
288289
For svd_solver == 'randomized', see:
289-
*Halko, N., Martinsson, P. G., and Tropp, J. A. (2011).
290+
`Halko, N., Martinsson, P. G., and Tropp, J. A. (2011).
290291
"Finding structure with randomness: Probabilistic algorithms for
291292
constructing approximate matrix decompositions".
292-
SIAM review, 53(2), 217-288.* and also
293-
*Martinsson, P. G., Rokhlin, V., and Tygert, M. (2011).
293+
SIAM review, 53(2), 217-288.
294+
<https://doi.org/10.1137/090771806>`_
295+
and also
296+
`Martinsson, P. G., Rokhlin, V., and Tygert, M. (2011).
294297
"A randomized algorithm for the decomposition of matrices".
295-
Applied and Computational Harmonic Analysis, 30(1), 47-68.*
298+
Applied and Computational Harmonic Analysis, 30(1), 47-68
299+
<https://doi.org/10.1016/j.acha.2010.02.003>`_.
296300
297301
Examples
298302
--------

0 commit comments

Comments
0 (0)
Morty Proxy This is a proxified and sanitized view of the page, visit original site.