@@ -345,8 +345,8 @@ def k_means(
345
345
centroid seeds. The final results will be the best output of
346
346
n_init consecutive runs in terms of inertia.
347
347
348
- When `n_init='auto'`, the number of runs will be 10 if using
349
- `init='random'`, and 1 if using `init='kmeans++'`.
348
+ When `n_init='auto'`, the number of runs depends on the value of init:
349
+ 10 if using `init='random'`, 1 if using `init='kmeans++'`.
350
350
351
351
.. versionadded:: 1.2
352
352
Added 'auto' option for `n_init`.
@@ -1196,8 +1196,8 @@ class KMeans(_BaseKMeans):
1196
1196
in terms of inertia. Several runs are recommended for sparse
1197
1197
high-dimensional problems (see :ref:`kmeans_sparse_high_dim`).
1198
1198
1199
- When `n_init='auto'`, the number of runs will be 10 if using
1200
- `init='random'`, and 1 if using `init='kmeans++'`.
1199
+ When `n_init='auto'`, the number of runs depends on the value of init:
1200
+ 10 if using `init='random'`, 1 if using `init='kmeans++'`.
1201
1201
1202
1202
.. versionadded:: 1.2
1203
1203
Added 'auto' option for `n_init`.
@@ -1724,8 +1724,8 @@ class MiniBatchKMeans(_BaseKMeans):
1724
1724
recommended for sparse high-dimensional problems (see
1725
1725
:ref:`kmeans_sparse_high_dim`).
1726
1726
1727
- When `n_init='auto'`, the number of runs will be 3 if using
1728
- `init='random'`, and 1 if using `init='kmeans++'`.
1727
+ When `n_init='auto'`, the number of runs depends on the value of init:
1728
+ 3 if using `init='random'`, 1 if using `init='kmeans++'`.
1729
1729
1730
1730
.. versionadded:: 1.2
1731
1731
Added 'auto' option for `n_init`.
0 commit comments