Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Commit cff8a4a

Browse filesBrowse files
ArturoAmorQogrisel
authored andcommitted
DOC Change print format in TSNE example (#25569)
Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>
1 parent e90002a commit cff8a4a
Copy full SHA for cff8a4a

File tree

1 file changed

+30
-35
lines changed
Filter options

1 file changed

+30
-35
lines changed

‎examples/neighbors/approximate_nearest_neighbors.py

Copy file name to clipboardExpand all lines: examples/neighbors/approximate_nearest_neighbors.py
+30-35Lines changed: 30 additions & 35 deletions
Original file line numberDiff line numberDiff line change
@@ -156,54 +156,50 @@ def load_mnist(n_samples):
156156

157157
for dataset_name, (X, y) in datasets:
158158

159-
msg = "Benchmarking on %s:" % dataset_name
160-
print("\n%s\n%s" % (msg, "-" * len(msg)))
159+
msg = f"Benchmarking on {dataset_name}:"
160+
print(f"\n{msg}\n" + str("-" * len(msg)))
161161

162162
for transformer_name, transformer in transformers:
163163
longest = np.max([len(name) for name, model in transformers])
164-
whitespaces = " " * (longest - len(transformer_name))
165164
start = time.time()
166165
transformer.fit(X)
167166
fit_duration = time.time() - start
168-
print("%s: %s%.3f sec (fit)" % (transformer_name, whitespaces, fit_duration))
167+
print(f"{transformer_name:<{longest}} {fit_duration:.3f} sec (fit)")
169168
start = time.time()
170169
Xt = transformer.transform(X)
171170
transform_duration = time.time() - start
172-
print(
173-
"%s: %s%.3f sec (transform)"
174-
% (transformer_name, whitespaces, transform_duration)
175-
)
171+
print(f"{transformer_name:<{longest}} {transform_duration:.3f} sec (transform)")
176172
if transformer_name == "PyNNDescentTransformer":
177173
start = time.time()
178174
Xt = transformer.transform(X)
179175
transform_duration = time.time() - start
180176
print(
181-
"%s: %s%.3f sec (transform)"
182-
% (transformer_name, whitespaces, transform_duration)
177+
f"{transformer_name:<{longest}} {transform_duration:.3f} sec"
178+
" (transform)"
183179
)
184180

185181
# %%
186182
# Sample output::
187183
#
188184
# Benchmarking on MNIST_10000:
189185
# ----------------------------
190-
# KNeighborsTransformer: 0.007 sec (fit)
191-
# KNeighborsTransformer: 1.139 sec (transform)
192-
# NMSlibTransformer: 0.208 sec (fit)
193-
# NMSlibTransformer: 0.315 sec (transform)
194-
# PyNNDescentTransformer: 4.823 sec (fit)
195-
# PyNNDescentTransformer: 4.884 sec (transform)
196-
# PyNNDescentTransformer: 0.744 sec (transform)
186+
# KNeighborsTransformer 0.007 sec (fit)
187+
# KNeighborsTransformer 1.139 sec (transform)
188+
# NMSlibTransformer 0.208 sec (fit)
189+
# NMSlibTransformer 0.315 sec (transform)
190+
# PyNNDescentTransformer 4.823 sec (fit)
191+
# PyNNDescentTransformer 4.884 sec (transform)
192+
# PyNNDescentTransformer 0.744 sec (transform)
197193
#
198194
# Benchmarking on MNIST_20000:
199195
# ----------------------------
200-
# KNeighborsTransformer: 0.011 sec (fit)
201-
# KNeighborsTransformer: 5.769 sec (transform)
202-
# NMSlibTransformer: 0.733 sec (fit)
203-
# NMSlibTransformer: 1.077 sec (transform)
204-
# PyNNDescentTransformer: 14.448 sec (fit)
205-
# PyNNDescentTransformer: 7.103 sec (transform)
206-
# PyNNDescentTransformer: 1.759 sec (transform)
196+
# KNeighborsTransformer 0.011 sec (fit)
197+
# KNeighborsTransformer 5.769 sec (transform)
198+
# NMSlibTransformer 0.733 sec (fit)
199+
# NMSlibTransformer 1.077 sec (transform)
200+
# PyNNDescentTransformer 14.448 sec (fit)
201+
# PyNNDescentTransformer 7.103 sec (transform)
202+
# PyNNDescentTransformer 1.759 sec (transform)
207203
#
208204
# Notice that the `PyNNDescentTransformer` takes more time during the first
209205
# `fit` and the first `transform` due to the overhead of the numba just in time
@@ -248,18 +244,17 @@ def load_mnist(n_samples):
248244

249245
for dataset_name, (X, y) in datasets:
250246

251-
msg = "Benchmarking on %s:" % dataset_name
252-
print("\n%s\n%s" % (msg, "-" * len(msg)))
247+
msg = f"Benchmarking on {dataset_name}:"
248+
print(f"\n{msg}\n" + str("-" * len(msg)))
253249

254250
for transformer_name, transformer in transformers:
255251
longest = np.max([len(name) for name, model in transformers])
256-
whitespaces = " " * (longest - len(transformer_name))
257252
start = time.time()
258253
Xt = transformer.fit_transform(X)
259254
transform_duration = time.time() - start
260255
print(
261-
"%s: %s%.3f sec (fit_transform)"
262-
% (transformer_name, whitespaces, transform_duration)
256+
f"{transformer_name:<{longest}} {transform_duration:.3f} sec"
257+
" (fit_transform)"
263258
)
264259

265260
# plot TSNE embedding which should be very similar across methods
@@ -284,15 +279,15 @@ def load_mnist(n_samples):
284279
#
285280
# Benchmarking on MNIST_10000:
286281
# ----------------------------
287-
# TSNE with internal NearestNeighbors: 24.828 sec (fit_transform)
288-
# TSNE with KNeighborsTransformer: 20.111 sec (fit_transform)
289-
# TSNE with NMSlibTransformer: 21.757 sec (fit_transform)
282+
# TSNE with internal NearestNeighbors 24.828 sec (fit_transform)
283+
# TSNE with KNeighborsTransformer 20.111 sec (fit_transform)
284+
# TSNE with NMSlibTransformer 21.757 sec (fit_transform)
290285
#
291286
# Benchmarking on MNIST_20000:
292287
# ----------------------------
293-
# TSNE with internal NearestNeighbors: 51.955 sec (fit_transform)
294-
# TSNE with KNeighborsTransformer: 50.994 sec (fit_transform)
295-
# TSNE with NMSlibTransformer: 43.536 sec (fit_transform)
288+
# TSNE with internal NearestNeighbors 51.955 sec (fit_transform)
289+
# TSNE with KNeighborsTransformer 50.994 sec (fit_transform)
290+
# TSNE with NMSlibTransformer 43.536 sec (fit_transform)
296291
#
297292
# We can observe that the default :class:`~sklearn.manifold.TSNE` estimator with
298293
# its internal :class:`~sklearn.neighbors.NearestNeighbors` implementation is

0 commit comments

Comments
0 (0)
Morty Proxy This is a proxified and sanitized view of the page, visit original site.