@@ -69,7 +69,7 @@ def lars_path(
69
69
y : None or array-like of shape (n_samples,)
70
70
Input targets.
71
71
72
- Xy : array-like of shape (n_samples ,) or (n_samples , n_targets), \
72
+ Xy : array-like of shape (n_features ,) or (n_features , n_targets), \
73
73
default=None
74
74
`Xy = np.dot(X.T, y)` that can be precomputed. It is useful
75
75
only when the Gram matrix is precomputed.
@@ -215,7 +215,7 @@ def lars_path_gram(
215
215
216
216
Parameters
217
217
----------
218
- Xy : array-like of shape (n_samples ,) or (n_samples , n_targets)
218
+ Xy : array-like of shape (n_features ,) or (n_features , n_targets)
219
219
Xy = np.dot(X.T, y).
220
220
221
221
Gram : array-like of shape (n_features, n_features)
@@ -362,7 +362,7 @@ def _lars_path_solver(
362
362
y : None or ndarray of shape (n_samples,)
363
363
Input targets.
364
364
365
- Xy : array-like of shape (n_samples ,) or (n_samples , n_targets), \
365
+ Xy : array-like of shape (n_features ,) or (n_features , n_targets), \
366
366
default=None
367
367
`Xy = np.dot(X.T, y)` that can be precomputed. It is useful
368
368
only when the Gram matrix is precomputed.
@@ -1110,7 +1110,7 @@ def fit(self, X, y, Xy=None):
1110
1110
y : array-like of shape (n_samples,) or (n_samples, n_targets)
1111
1111
Target values.
1112
1112
1113
- Xy : array-like of shape (n_samples ,) or (n_samples , n_targets), \
1113
+ Xy : array-like of shape (n_features ,) or (n_features , n_targets), \
1114
1114
default=None
1115
1115
Xy = np.dot(X.T, y) that can be precomputed. It is useful
1116
1116
only when the Gram matrix is precomputed.
0 commit comments