Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Commit 512c604

Browse filesBrowse files
Reinstating topic directives when cross-references appear
1 parent b2a99d4 commit 512c604
Copy full SHA for 512c604

File tree

1 file changed

+8
-41
lines changed
Filter options

1 file changed

+8
-41
lines changed

‎doc/modules/model_evaluation.rst

Copy file name to clipboardExpand all lines: doc/modules/model_evaluation.rst
+8-41Lines changed: 8 additions & 41 deletions
Original file line numberDiff line numberDiff line change
@@ -580,9 +580,7 @@ or *informedness*.
580580
* Balanced Accuracy as described in [Urbanowicz2015]_: the average of sensitivity and specificity
581581
is computed for each class and then averaged over total number of classes.
582582

583-
|details-start|
584-
**References**
585-
|details-split|
583+
.. topic:: References:
586584

587585
.. [Guyon2015] I. Guyon, K. Bennett, G. Cawley, H.J. Escalante, S. Escalera, T.K. Ho, N. Macià,
588586
B. Ray, M. Saeed, A.R. Statnikov, E. Viegas, `Design of the 2015 ChaLearn AutoML Challenge
@@ -599,8 +597,6 @@ or *informedness*.
599597
and evaluation of a scalable learning classifier
600598
system <10.1007/s12065-015-0128-8>`, Evol. Intel. (2015) 8: 89.
601599
602-
|details-end|
603-
604600
.. _cohen_kappa:
605601

606602
Cohen's kappa
@@ -853,9 +849,7 @@ precision-recall curve as follows.
853849
for an example of :func:`precision_recall_curve` usage to evaluate
854850
classifier output quality.
855851

856-
|details-start|
857-
**References**
858-
|details-split|
852+
.. topic:: References:
859853

860854
.. [Manning2008] C.D. Manning, P. Raghavan, H. Schütze, `Introduction to Information Retrieval
861855
<https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html>`_,
@@ -871,9 +865,6 @@ precision-recall curve as follows.
871865
<https://papers.nips.cc/paper/5867-precision-recall-gain-curves-pr-analysis-done-right.pdf>`_,
872866
NIPS 2015.
873867
874-
|details-end|
875-
876-
877868
Binary classification
878869
^^^^^^^^^^^^^^^^^^^^^
879870

@@ -1470,9 +1461,7 @@ correspond to the probability estimates that a sample belongs to a particular
14701461
class. The OvO and OvR algorithms support weighting uniformly
14711462
(``average='macro'``) and by prevalence (``average='weighted'``).
14721463

1473-
|details-start|
1474-
**One-vs-one Algorithm**
1475-
|details-split|
1464+
.. topic:: One-vs-one Algorithm:
14761465

14771466
Computes the average AUC of all possible pairwise
14781467
combinations of classes. [HT2001]_ defines a multiclass AUC metric weighted
@@ -1503,11 +1492,7 @@ the keyword argument ``multiclass`` to ``'ovo'`` and ``average`` to
15031492
``'weighted'``. The ``'weighted'`` option returns a prevalence-weighted average
15041493
as described in [FC2009]_.
15051494

1506-
|details-end|
1507-
1508-
|details-start|
1509-
**One-vs-rest Algorithm**
1510-
|details-split|
1495+
.. topic:: One-vs-rest Algorithm:
15111496

15121497
Computes the AUC of each class against the rest
15131498
[PD2000]_. The algorithm is functionally the same as the multilabel case. To
@@ -1528,8 +1513,6 @@ the :ref:`iris_dataset`:
15281513
:scale: 75
15291514
:align: center
15301515

1531-
|details-end|
1532-
15331516
.. _roc_auc_multilabel:
15341517

15351518
Multi-label case
@@ -1572,9 +1555,7 @@ And the decision values do not require such processing.
15721555
for an example of using ROC to
15731556
model species distribution.
15741557

1575-
|details-start|
1576-
**References**
1577-
|details-split|
1558+
.. topic:: References:
15781559

15791560
.. [HT2001] Hand, D.J. and Till, R.J., (2001). `A simple generalisation
15801561
of the area under the ROC curve for multiple class classification problems.
@@ -1601,8 +1582,6 @@ And the decision values do not require such processing.
16011582
In Data Mining, 2001.
16021583
Proceedings IEEE International Conference, pp. 131-138.
16031584
1604-
|details-end|
1605-
16061585
.. _det_curve:
16071586

16081587
Detection error tradeoff (DET)
@@ -1643,9 +1622,7 @@ same classification task:
16431622
for an example comparison between receiver operating characteristic (ROC)
16441623
curves and Detection error tradeoff (DET) curves.
16451624

1646-
|details-start|
1647-
**Properties**
1648-
|details-split|
1625+
.. topic:: Properties:
16491626

16501627
* DET curves form a linear curve in normal deviate scale if the detection
16511628
scores are normally (or close-to normally) distributed.
@@ -1661,8 +1638,6 @@ same classification task:
16611638
of perfection for DET curves is the origin (in contrast to the top left
16621639
corner for ROC curves).
16631640

1664-
|details-end|
1665-
16661641
|details-start|
16671642
**Applications and limitations**
16681643
|details-split|
@@ -1680,9 +1655,7 @@ better suited.
16801655

16811656
|details-end|
16821657

1683-
|details-start|
1684-
**References**
1685-
|details-split|
1658+
.. topic:: References:
16861659

16871660
.. [WikipediaDET2017] Wikipedia contributors. Detection error tradeoff.
16881661
Wikipedia, The Free Encyclopedia. September 4, 2017, 23:33 UTC.
@@ -1701,8 +1674,6 @@ better suited.
17011674
Speech and Signal Processing - ICASSP '07, Honolulu,
17021675
HI, 2007, pp. IV-229-IV-232.
17031676
1704-
|details-end|
1705-
17061677
.. _zero_one_loss:
17071678

17081679
Zero one loss
@@ -1815,9 +1786,7 @@ the same does a lower Brier score loss always mean better calibration"
18151786
for an example of Brier score loss usage to perform probability
18161787
calibration of classifiers.
18171788

1818-
|details-start|
1819-
**References**
1820-
|details-split|
1789+
.. topic:: References:
18211790

18221791
.. [Brier1950] G. Brier, `Verification of forecasts expressed in terms of
18231792
probability
@@ -1834,8 +1803,6 @@ the same does a lower Brier score loss always mean better calibration"
18341803
and probability estimation." <https://drops.dagstuhl.de/opus/volltexte/2008/1382/>`_
18351804
Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum fr Informatik (2008).
18361805
1837-
|details-end|
1838-
18391806
.. _class_likelihood_ratios:
18401807

18411808
Class likelihood ratios

0 commit comments

Comments
0 (0)
Morty Proxy This is a proxified and sanitized view of the page, visit original site.