@@ -580,9 +580,7 @@ or *informedness*.
580
580
* Balanced Accuracy as described in [Urbanowicz2015 ]_: the average of sensitivity and specificity
581
581
is computed for each class and then averaged over total number of classes.
582
582
583
- |details-start |
584
- **References **
585
- |details-split |
583
+ .. topic :: References:
586
584
587
585
.. [Guyon2015 ] I. Guyon, K. Bennett, G. Cawley, H.J. Escalante, S. Escalera, T.K. Ho, N. Macià,
588
586
B. Ray, M. Saeed, A.R. Statnikov, E. Viegas, `Design of the 2015 ChaLearn AutoML Challenge
@@ -599,8 +597,6 @@ or *informedness*.
599
597
and evaluation of a scalable learning classifier
600
598
system <10.1007/s12065-015-0128-8> `, Evol. Intel. (2015) 8: 89.
601
599
602
- |details-end |
603
-
604
600
.. _cohen_kappa :
605
601
606
602
Cohen's kappa
@@ -853,9 +849,7 @@ precision-recall curve as follows.
853
849
for an example of :func: `precision_recall_curve ` usage to evaluate
854
850
classifier output quality.
855
851
856
- |details-start |
857
- **References **
858
- |details-split |
852
+ .. topic :: References:
859
853
860
854
.. [Manning2008 ] C.D. Manning, P. Raghavan, H. Schütze, `Introduction to Information Retrieval
861
855
<https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html> `_,
@@ -871,9 +865,6 @@ precision-recall curve as follows.
871
865
<https://papers.nips.cc/paper/5867-precision-recall-gain-curves-pr-analysis-done-right.pdf> `_,
872
866
NIPS 2015.
873
867
874
- |details-end |
875
-
876
-
877
868
Binary classification
878
869
^^^^^^^^^^^^^^^^^^^^^
879
870
@@ -1470,9 +1461,7 @@ correspond to the probability estimates that a sample belongs to a particular
1470
1461
class. The OvO and OvR algorithms support weighting uniformly
1471
1462
(``average='macro' ``) and by prevalence (``average='weighted' ``).
1472
1463
1473
- |details-start |
1474
- **One-vs-one Algorithm **
1475
- |details-split |
1464
+ .. topic :: One-vs-one Algorithm:
1476
1465
1477
1466
Computes the average AUC of all possible pairwise
1478
1467
combinations of classes. [HT2001 ]_ defines a multiclass AUC metric weighted
@@ -1503,11 +1492,7 @@ the keyword argument ``multiclass`` to ``'ovo'`` and ``average`` to
1503
1492
``'weighted' ``. The ``'weighted' `` option returns a prevalence-weighted average
1504
1493
as described in [FC2009 ]_.
1505
1494
1506
- |details-end |
1507
-
1508
- |details-start |
1509
- **One-vs-rest Algorithm **
1510
- |details-split |
1495
+ .. topic :: One-vs-rest Algorithm:
1511
1496
1512
1497
Computes the AUC of each class against the rest
1513
1498
[PD2000 ]_. The algorithm is functionally the same as the multilabel case. To
@@ -1528,8 +1513,6 @@ the :ref:`iris_dataset`:
1528
1513
:scale: 75
1529
1514
:align: center
1530
1515
1531
- |details-end |
1532
-
1533
1516
.. _roc_auc_multilabel :
1534
1517
1535
1518
Multi-label case
@@ -1572,9 +1555,7 @@ And the decision values do not require such processing.
1572
1555
for an example of using ROC to
1573
1556
model species distribution.
1574
1557
1575
- |details-start |
1576
- **References **
1577
- |details-split |
1558
+ .. topic :: References:
1578
1559
1579
1560
.. [HT2001 ] Hand, D.J. and Till, R.J., (2001). `A simple generalisation
1580
1561
of the area under the ROC curve for multiple class classification problems.
@@ -1601,8 +1582,6 @@ And the decision values do not require such processing.
1601
1582
In Data Mining, 2001.
1602
1583
Proceedings IEEE International Conference, pp. 131-138.
1603
1584
1604
- |details-end |
1605
-
1606
1585
.. _det_curve :
1607
1586
1608
1587
Detection error tradeoff (DET)
@@ -1643,9 +1622,7 @@ same classification task:
1643
1622
for an example comparison between receiver operating characteristic (ROC)
1644
1623
curves and Detection error tradeoff (DET) curves.
1645
1624
1646
- |details-start |
1647
- **Properties **
1648
- |details-split |
1625
+ .. topic :: Properties:
1649
1626
1650
1627
* DET curves form a linear curve in normal deviate scale if the detection
1651
1628
scores are normally (or close-to normally) distributed.
@@ -1661,8 +1638,6 @@ same classification task:
1661
1638
of perfection for DET curves is the origin (in contrast to the top left
1662
1639
corner for ROC curves).
1663
1640
1664
- |details-end |
1665
-
1666
1641
|details-start |
1667
1642
**Applications and limitations **
1668
1643
|details-split |
@@ -1680,9 +1655,7 @@ better suited.
1680
1655
1681
1656
|details-end |
1682
1657
1683
- |details-start |
1684
- **References **
1685
- |details-split |
1658
+ .. topic :: References:
1686
1659
1687
1660
.. [WikipediaDET2017 ] Wikipedia contributors. Detection error tradeoff.
1688
1661
Wikipedia, The Free Encyclopedia. September 4, 2017, 23:33 UTC.
@@ -1701,8 +1674,6 @@ better suited.
1701
1674
Speech and Signal Processing - ICASSP '07, Honolulu,
1702
1675
HI, 2007, pp. IV-229-IV-232.
1703
1676
1704
- |details-end |
1705
-
1706
1677
.. _zero_one_loss :
1707
1678
1708
1679
Zero one loss
@@ -1815,9 +1786,7 @@ the same does a lower Brier score loss always mean better calibration"
1815
1786
for an example of Brier score loss usage to perform probability
1816
1787
calibration of classifiers.
1817
1788
1818
- |details-start |
1819
- **References **
1820
- |details-split |
1789
+ .. topic :: References:
1821
1790
1822
1791
.. [Brier1950 ] G. Brier, `Verification of forecasts expressed in terms of
1823
1792
probability
@@ -1834,8 +1803,6 @@ the same does a lower Brier score loss always mean better calibration"
1834
1803
and probability estimation." <https://drops.dagstuhl.de/opus/volltexte/2008/1382/> `_
1835
1804
Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum fr Informatik (2008).
1836
1805
1837
- |details-end |
1838
-
1839
1806
.. _class_likelihood_ratios :
1840
1807
1841
1808
Class likelihood ratios
0 commit comments