@@ -20,7 +20,10 @@ class PrecisionRecallDisplay(_BinaryClassifierCurveDisplayMixin):
20
20
a :class:`~sklearn.metrics.PrecisionRecallDisplay`. All parameters are
21
21
stored as attributes.
22
22
23
- Read more in the :ref:`User Guide <visualizations>`.
23
+ For general information regarding `scikit-learn` visualization tools, see
24
+ the :ref:`Visualization Guide <visualizations>`.
25
+ For guidance on interpreting these plots, refer to the :ref:`Model
26
+ Evaluation Guide <precision_recall_f_measure_metrics>`.
24
27
25
28
Parameters
26
29
----------
@@ -276,6 +279,11 @@ def from_estimator(
276
279
):
277
280
"""Plot precision-recall curve given an estimator and some data.
278
281
282
+ For general information regarding `scikit-learn` visualization tools, see
283
+ the :ref:`Visualization Guide <visualizations>`.
284
+ For guidance on interpreting these plots, refer to the :ref:`Model
285
+ Evaluation Guide <precision_recall_f_measure_metrics>`.
286
+
279
287
Parameters
280
288
----------
281
289
estimator : estimator instance
@@ -416,6 +424,11 @@ def from_predictions(
416
424
):
417
425
"""Plot precision-recall curve given binary class predictions.
418
426
427
+ For general information regarding `scikit-learn` visualization tools, see
428
+ the :ref:`Visualization Guide <visualizations>`.
429
+ For guidance on interpreting these plots, refer to the :ref:`Model
430
+ Evaluation Guide <precision_recall_f_measure_metrics>`.
431
+
419
432
Parameters
420
433
----------
421
434
y_true : array-like of shape (n_samples,)
0 commit comments