Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Commit 0c78a6e

Browse filesBrowse files
committed
Merge branch 'docstrings'
2 parents 92f3ae4 + 569c238 commit 0c78a6e
Copy full SHA for 0c78a6e

File tree

Expand file treeCollapse file tree

4 files changed

+82
-5
lines changed
Filter options
Expand file treeCollapse file tree

4 files changed

+82
-5
lines changed

‎segmentation_models_pytorch/fpn/model.py

Copy file name to clipboardExpand all lines: segmentation_models_pytorch/fpn/model.py
+20-3Lines changed: 20 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -4,18 +4,35 @@
44

55

66
class FPN(EncoderDecoder):
7+
"""FPN_ is a fully convolution neural network for image semantic segmentation
8+
Args:
9+
encoder_name: name of classification model (without last dense layers) used as feature
10+
extractor to build segmentation model.
11+
encoder_weights: one of ``None`` (random initialization), ``imagenet`` (pre-training on ImageNet).
12+
decoder_pyramid_channels: a number of convolution filters in Feature Pyramid of FPN_.
13+
decoder_segmentation_channels: a number of convolution filters in segmentation head of FPN_.
14+
classes: a number of classes for output (output shape - ``(batch, classes, h, w)``).
15+
dropout: spatial dropout rate in range (0, 1).
16+
activation: one of [``sigmoid``, ``softmax``, None]
17+
18+
Returns:
19+
``keras.models.Model``: **FPN**
20+
21+
.. _FPN:
22+
http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf
23+
24+
"""
725

826
def __init__(
927
self,
1028
encoder_name='resnet34',
1129
encoder_weights='imagenet',
1230
decoder_pyramid_channels=256,
13-
decoder_segmenation_channels=128,
31+
decoder_segmentation_channels=128,
1432
classes=1,
1533
dropout=0.2,
1634
activation='sigmoid',
1735
):
18-
1936
encoder = get_encoder(
2037
encoder_name,
2138
encoder_weights=encoder_weights
@@ -24,7 +41,7 @@ def __init__(
2441
decoder = FPNDecoder(
2542
encoder_channels=encoder.out_shapes,
2643
pyramid_channels=decoder_pyramid_channels,
27-
segmentation_channels=decoder_segmenation_channels,
44+
segmentation_channels=decoder_segmentation_channels,
2845
final_channels=classes,
2946
dropout=dropout,
3047
)

‎segmentation_models_pytorch/linknet/model.py

Copy file name to clipboardExpand all lines: segmentation_models_pytorch/linknet/model.py
+20-1Lines changed: 20 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,6 +4,26 @@
44

55

66
class Linknet(EncoderDecoder):
7+
"""Linknet_ is a fully convolution neural network for fast image semantic segmentation
8+
9+
Note:
10+
This implementation by default has 4 skip connections (original - 3).
11+
12+
Args:
13+
encoder_name: name of classification model (without last dense layers) used as feature
14+
extractor to build segmentation model.
15+
encoder_weights: one of ``None`` (random initialization), ``imagenet`` (pre-training on ImageNet).
16+
decoder_use_batchnorm: if ``True``, ``BatchNormalisation`` layer between ``Conv2D`` and ``Activation`` layers
17+
is used.
18+
classes: a number of classes for output (output shape - ``(batch, classes, h, w)``).
19+
activation: one of [``sigmoid``, ``softmax``, None]
20+
21+
Returns:
22+
``torch.nn.Module``: **Linknet**
23+
24+
.. _Linknet:
25+
https://arxiv.org/pdf/1707.03718.pdf
26+
"""
727

828
def __init__(
929
self,
@@ -13,7 +33,6 @@ def __init__(
1333
classes=1,
1434
activation='sigmoid',
1535
):
16-
1736
encoder = get_encoder(
1837
encoder_name,
1938
encoder_weights=encoder_weights

‎segmentation_models_pytorch/pspnet/model.py

Copy file name to clipboardExpand all lines: segmentation_models_pytorch/pspnet/model.py
+22-1Lines changed: 22 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,6 +4,28 @@
44

55

66
class PSPNet(EncoderDecoder):
7+
"""PSPNet_ is a fully convolution neural network for image semantic segmentation
8+
9+
Args:
10+
encoder_name: name of classification model used as feature
11+
extractor to build segmentation model.
12+
encoder_weights: one of ``None`` (random initialization), ``imagenet`` (pre-training on ImageNet).
13+
psp_in_factor: one of 4, 8 and 16. Downsampling rate or in other words backbone depth
14+
to construct PSP module on it.
15+
psp_out_channels: number of filters in PSP block.
16+
psp_use_batchnorm: if ``True``, ``BatchNormalisation`` layer between ``Conv2D`` and ``Activation`` layers
17+
is used.
18+
psp_aux_output: if ``True`` add auxiliary classification output for encoder training
19+
psp_dropout: spatial dropout rate between 0 and 1.
20+
classes: a number of classes for output (output shape - ``(batch, classes, h, w)``).
21+
activation: one of [``sigmoid``, ``softmax``, None]
22+
23+
Returns:
24+
``torch.nn.Module``: **PSPNet**
25+
26+
.. _PSPNet:
27+
https://arxiv.org/pdf/1612.01105.pdf
28+
"""
729

830
def __init__(
931
self,
@@ -17,7 +39,6 @@ def __init__(
1739
dropout=0.2,
1840
activation='softmax',
1941
):
20-
2142
encoder = get_encoder(
2243
encoder_name,
2344
encoder_weights=encoder_weights

‎segmentation_models_pytorch/unet/model.py

Copy file name to clipboardExpand all lines: segmentation_models_pytorch/unet/model.py
+20Lines changed: 20 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -4,6 +4,26 @@
44

55

66
class Unet(EncoderDecoder):
7+
"""Unet_ is a fully convolution neural network for image semantic segmentation
8+
9+
Args:
10+
encoder_name: name of classification model (without last dense layers) used as feature
11+
extractor to build segmentation model.
12+
encoder_weights: one of ``None`` (random initialization), ``imagenet`` (pre-training on ImageNet).
13+
decoder_channels: list of numbers of ``Conv2D`` layer filters in decoder blocks
14+
decoder_use_batchnorm: if ``True``, ``BatchNormalisation`` layer between ``Conv2D`` and ``Activation`` layers
15+
is used.
16+
classes: a number of classes for output (output shape - ``(batch, classes, h, w)``).
17+
activation: one of [``sigmoid``, ``softmax``, None]
18+
center: if ``True`` add ``Conv2dReLU`` block on encoder head (useful for VGG models)
19+
20+
Returns:
21+
``torch.nn.Module``: **Unet**
22+
23+
.. _Unet:
24+
https://arxiv.org/pdf/1505.04597
25+
26+
"""
727

828
def __init__(
929
self,

0 commit comments

Comments
0 (0)
Morty Proxy This is a proxified and sanitized view of the page, visit original site.