Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

PyTorch Ops to oneDNN Functions Mapping

Jing Xu edited this page Nov 16, 2023 · 1 revision

PyTorch uses ops that are registered to corresponding Math Kernel Library (MKL) functions in oneDNN. The available implementations are defined in this YAML file native_functions.yaml in the aten library of PyTorch. By doing a search for the keyword “mkldnn”, all the mappings can be found.

This is summarized in the following table:

PyTorch Op oneDNN Function
add.Tensor mkldnn_add
add_.Tensor mkldnn_add_
add.out mkldnn_add_out
copy_ copy_mkldnn_
empty.memory_format empty_mkldnn
mkldnn_linear mkldnn_linear
mkldnn_linear_backward_input mkldnn_linear_backward_input
mkldnn_linear_backward_weights mkldnn_linear_backward_weights
mkldnn_linear_backward mkldnn_linear_backward
mkldnn_max_pool2d mkldnn_max_pool2d
mkldnn_max_pool2d_backward mkldnn_max_pool2d_backward
mkldnn_max_pool3d mkldnn_max_pool3d
mkldnn_max_pool3d_backward mkldnn_max_pool3d_backward
mkldnn_convolution mkldnn_convolution
mkldnn_rnn_layer mkldnn_rnn_layer
mkldnn_rnn_layer_backward mkldnn_rnn_layer_backward
mul.Tensor mkldnn_mul
mul_.Tensor mkldnn_mul_
mul.out mkldnn_mul_out
native_batch_norm mkldnn_batch_norm
_native_batch_norm_legit _mkldnn_batch_norm_legit
_native_batch_norm_legit.no_stats _mkldnn_batch_norm_legit_no_stats
native_batch_norm_backward mkldnn_batch_norm_backward
_mkldnn_reshape mkldnn_reshape
relu mkldnn_relu
relu_ mkldnn_relu_
_prelu_kernel mkldnn_prelu_backward
gelu mkldnn_gelu
gelu_backward mkldnn_gelu_backward
sigmoid mkldnn_sigmoid
sigmoid_ mkldnn_sigmoid_
_softmax mkldnn_softmax
tanh mkldnn_tanh
tanh_ mkldnn_tanh_
threshold_backward mkldnn_relu_backward
_mkldnn_transpose mkldnn_transpose
_mkldnn_transpose_ mkldnn_transpose_
clone mkldnn_clone
zero_ mkldnn_zero_
_to_dense mkldnn_to_dense
to_mkldnn dense_to_mkldnn
mkldnn_reorder_conv2d_weight mkldnn_reorder_conv2d_weight
mkldnn_reorder_conv3d_weight mkldnn_reorder_conv3d_weight
view mkldnn_view
adaptive_avg_pool2d.out mkldnn_adaptive_avg_pool2d_out_stub
mkldnn_adaptive_avg_pool2d mkldnn_adaptive_avg_pool2d
mkldnn_adaptive_avg_pool2d.out mkldnn_adaptive_avg_pool2d_out
mkldnn_adaptive_avg_pool2d_backward mkldnn_adaptive_avg_pool2d_backward
avg_pool2d.out mkldnn_avg_pool2d_out
avg_pool2d mkldnn_avg_pool2d
avg_pool2d_backward.grad_input mkldnn_avg_pool2d_backward_out
avg_pool2d_backward mkldnn_avg_pool2d_backward
avg_pool3d.out mkldnn_avg_pool3d_out
avg_pool3d mkldnn_avg_pool3d
avg_pool3d_backward.grad_input mkldnn_avg_pool3d_backward_out
avg_pool3d_backward mkldnn_avg_pool3d_backward
Clone this wiki locally
Morty Proxy This is a proxified and sanitized view of the page, visit original site.