Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Subproc exception with torch complie for Torch 2.4.0 and Nightly #131070

Copy link
Copy link
Closed
@ajindal1

Description

@ajindal1
Issue body actions

🐛 Describe the bug

Getting subproc exception with torch compile when onnxruntime-training and deepspeed packages are installed. This occurs for me both with Torch 2.4.0 and the nightly wheels.

Steps to reproduce:

docker run -it --gpus all --ipc host nvcr.io/nvidia/pytorch:24.06-py3
# Inside docker image
pip uninstall torch pytorch-quantization pytorch-triton torch-tensorrt torchvision -y
pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu118
pip install onnxruntime-training
pip install deepspeed
python
# Inside python run this:
import torch
def foo(x, y):
  a = torch.sin(x)
  b = torch.cos(y)
  return a + b

opt_foo = torch.compile(foo)

This is the error which I get:

>>> opt_foo = torch.compile(foo)
[2024-07-18 22:47:08,296] [INFO] [real_accelerator.py:203:get_accelerator] Setting ds_accelerator to cuda (auto detect)
/usr/local/lib/python3.10/dist-packages/onnxruntime/capi/onnxruntime_validation.py:114: UserWarning: WARNING: failed to get cudart_version from onnxruntime build info.
  warnings.warn("WARNING: failed to get cudart_version from onnxruntime build info.")
>>> E0718 22:47:11.256000 657 torch/_inductor/compile_worker/subproc_pool.py:183] failure in SubprocPool._read_thread
E0718 22:47:11.256000 657 torch/_inductor/compile_worker/subproc_pool.py:183] Traceback (most recent call last):
E0718 22:47:11.256000 657 torch/_inductor/compile_worker/subproc_pool.py:183]   File "/usr/local/lib/python3.10/dist-packages/torch/_inductor/compile_worker/subproc_pool.py", line 161, in _read_thread
E0718 22:47:11.256000 657 torch/_inductor/compile_worker/subproc_pool.py:183]     job_id, data = _recv_msg(self.read_pipe)
E0718 22:47:11.256000 657 torch/_inductor/compile_worker/subproc_pool.py:183]   File "/usr/local/lib/python3.10/dist-packages/torch/_inductor/compile_worker/subproc_pool.py", line 61, in _recv_msg
E0718 22:47:11.256000 657 torch/_inductor/compile_worker/subproc_pool.py:183]     data = read_pipe.read(length) if length > 0 else b""
E0718 22:47:11.256000 657 torch/_inductor/compile_worker/subproc_pool.py:183] MemoryError
/usr/local/lib/python3.10/dist-packages/onnxruntime/capi/onnxruntime_validation.py:114: UserWarning: WARNING: failed to get cudart_version from onnxruntime build info.
  warnings.warn("WARNING: failed to get cudart_version from onnxruntime build info.")

Versions

PyTorch version: 2.5.0.dev20240718+cu118
Is debug build: False
CUDA used to build PyTorch: 11.8
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.29.3
Libc version: glibc-2.35

Python version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.15.160.1-1.cm2-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.5.40
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A100-SXM4-80GB
GPU 1: NVIDIA A100-SXM4-80GB
GPU 2: NVIDIA A100-SXM4-80GB
GPU 3: NVIDIA A100-SXM4-80GB
GPU 4: NVIDIA A100-SXM4-80GB
GPU 5: NVIDIA A100-SXM4-80GB
GPU 6: NVIDIA A100-SXM4-80GB
GPU 7: NVIDIA A100-SXM4-80GB

Nvidia driver version: 550.54.15
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.1.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 96
On-line CPU(s) list: 0-95
Vendor ID: AuthenticAMD
Model name: AMD EPYC 7V12 64-Core Processor
CPU family: 23
Model: 49
Thread(s) per core: 1
Core(s) per socket: 48
Socket(s): 2
Stepping: 0
BogoMIPS: 4890.87
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid
Hypervisor vendor: Microsoft
Virtualization type: full
L1d cache: 3 MiB (96 instances)
L1i cache: 3 MiB (96 instances)
L2 cache: 48 MiB (96 instances)
L3 cache: 384 MiB (24 instances)
NUMA node(s): 4
NUMA node0 CPU(s): 0-23
NUMA node1 CPU(s): 24-47
NUMA node2 CPU(s): 48-71
NUMA node3 CPU(s): 72-95
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled
Vulnerability Spec rstack overflow: Mitigation; safe RET, no microcode
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected

Versions of relevant libraries:
[pip3] numpy==1.24.4
[pip3] onnx==1.16.0
[pip3] onnxruntime-training==1.18.0
[pip3] optree==0.11.0
[pip3] pytorch-triton==3.0.0+dedb7bdf33
[pip3] torch==2.5.0.dev20240718+cu118
[pip3] torchaudio==2.4.0.dev20240718+cu118
[pip3] torchvision==0.20.0.dev20240718+cu118
[conda] Could not collect

cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @anijain2305 @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @muchulee8 @ColinPeppler @amjames @desertfire @peterbell10

Metadata

Metadata

Assignees

Labels

high prioritymodule: inductoroncall: pt2triagedThis issue has been looked at a team member, and triaged and prioritized into an appropriate moduleThis issue has been looked at a team member, and triaged and prioritized into an appropriate module

Type

No type

Projects

No projects

Milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions

    Morty Proxy This is a proxified and sanitized view of the page, visit original site.