Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

exponentially slow typechecking when overloaded numpy functions used in generic containers like list/dict #14718

Copy link
Copy link
Open
@Hnasar

Description

@Hnasar
Issue body actions

Bug Report

If you have a list or dict with numpy functions, it takes too-long to typecheck.

We have a lot of code that uses numpy and I found that one of our 300-line modules was taking 2 hours to typecheck. Using --line-checking-stats I noticed that a single line had stats in the billions (1000x more than other lines). It was something like this:

    def get_real_df(self) -> DataFrame:
        groupby_agg = {
            "size": np.sum,
            "vol": np.sum,
            "price": np.sum,
            "last_size": np.sum,
            "last_vol": np.max,
            "is_active": np.all,
            ...
        }
        ... # <snip>
        return df.groupby("id").agg(groupby_agg)

To Reproduce

from numpy import sum
bad = [sum, sum, sum]  # try adding even more 'sum, ...' 
reveal_type(bad)

Expected Behavior

This to type check quickly.

Actual Behavior

This takes 4 seconds.

bad.py:8: note: Revealed type is "builtins.list[Overload(def [_SCT <: numpy.generic] (a: Union[numpy._typing._array_like._SupportsArray[numpy.dtype[_SCT`-1]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[_SCT`-1]]]], axis: None =, dtype: None =, out: None =, keepdims: builtins.bool =, initial: Union[builtins.int, builtins.float, builtins.complex, numpy.number[Any], numpy.bool_] =, where: Union[numpy._typing._array_like._SupportsArray[numpy.dtype[numpy.bool_]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[numpy.bool_]]], builtins.bool, numpy._typing._nested_sequence._NestedSequence[builtins.bool]] =) -> _SCT`-1, def [_SCT <: numpy.generic] (a: Union[numpy._typing._array_like._SupportsArray[numpy.dtype[_SCT`-1]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[_SCT`-1]]]], axis: None =, dtype: None =, out: None =, keepdims: builtins.bool =, initial: Union[builtins.int, builtins.float, builtins.complex, numpy.number[Any], numpy.bool_] =, where: Union[numpy._typing._array_like._SupportsArray[numpy.dtype[numpy.bool_]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[numpy.bool_]]], builtins.bool, numpy._typing._nested_sequence._NestedSequence[builtins.bool]] =) -> _SCT`-1, def [_SCT <: numpy.generic] (a: Union[numpy._typing._array_like._SupportsArray[numpy.dtype[_SCT`-1]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[_SCT`-1]]]], axis: None =, dtype: None =, out: None =, keepdims: builtins.bool =, initial: Union[builtins.int, builtins.float, builtins.complex, numpy.number[Any], numpy.bool_] =, where: Union[numpy._typing._array_like._SupportsArray[numpy.dtype[numpy.bool_]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[numpy.bool_]]], builtins.bool, numpy._typing._nested_sequence._NestedSequence[builtins.bool]] =) -> _SCT`-1, def [_SCT <: numpy.generic] (a: Union[numpy._typing._array_like._SupportsArray[numpy.dtype[_SCT`-1]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[_SCT`-1]]]], axis: None =, dtype: None =, out: None =, keepdims: builtins.bool =, initial: Union[builtins.int, builtins.float, builtins.complex, numpy.number[Any], numpy.bool_] =, where: Union[numpy._typing._array_like._SupportsArray[numpy.dtype[numpy.bool_]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[numpy.bool_]]], builtins.bool, numpy._typing._nested_sequence._NestedSequence[builtins.bool]] =) -> _SCT`-1, def (a: Union[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], builtins.bool, builtins.int, builtins.float, builtins.complex, builtins.str, builtins.bytes, numpy._typing._nested_sequence._NestedSequence[Union[builtins.bool, builtins.int, builtins.float, builtins.complex, builtins.str, builtins.bytes]]], axis: Union[None, Union[typing.SupportsIndex, typing.Sequence[typing.SupportsIndex]]] =, dtype: Union[numpy.dtype[Any], None, Type[Any], numpy._typing._dtype_like._SupportsDType[numpy.dtype[Any]], builtins.str, Union[Tuple[Any, builtins.int], Tuple[Any, Union[typing.SupportsIndex, typing.Sequence[typing.SupportsIndex]]], builtins.list[Any], TypedDict('numpy._typing._dtype_like._DTypeDict', {'names': typing.Sequence[builtins.str], 'formats': typing.Sequence[Any], 'offsets'?: typing.Sequence[builtins.int], 'titles'?: typing.Sequence[Any], 'itemsize'?: builtins.int, 'aligned'?: builtins.bool}), Tuple[Any, Any]]] =, out: None =, keepdims: builtins.bool =, initial: Union[builtins.int, builtins.float, builtins.complex, numpy.number[Any], numpy.bool_] =, where: Union[numpy._typing._array_like._SupportsArray[numpy.dtype[numpy.bool_]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[numpy.bool_]]], builtins.bool, numpy._typing._nested_sequence._NestedSequence[builtins.bool]] =) -> Any, def (a: Union[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], builtins.bool, builtins.int, builtins.float, builtins.complex, builtins.str, builtins.bytes, numpy._typing._nested_sequence._NestedSequence[Union[builtins.bool, builtins.int, builtins.float, builtins.complex, builtins.str, builtins.bytes]]], axis: Union[None, Union[typing.SupportsIndex, typing.Sequence[typing.SupportsIndex]]] =, dtype: Union[numpy.dtype[Any], None, Type[Any], numpy._typing._dtype_like._SupportsDType[numpy.dtype[Any]], builtins.str, Union[Tuple[Any, builtins.int], Tuple[Any, Union[typing.SupportsIndex, typing.Sequence[typing.SupportsIndex]]], builtins.list[Any], TypedDict('numpy._typing._dtype_like._DTypeDict', {'names': typing.Sequence[builtins.str], 'formats': typing.Sequence[Any], 'offsets'?: typing.Sequence[builtins.int], 'titles'?: typing.Sequence[Any], 'itemsize'?: builtins.int, 'aligned'?: builtins.bool}), Tuple[Any, Any]]] =, out: None =, keepdims: builtins.bool =, initial: Union[builtins.int, builtins.float, builtins.complex, numpy.number[Any], numpy.bool_] =, where: Union[numpy._typing._array_like._SupportsArray[numpy.dtype[numpy.bool_]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[numpy.bool_]]], builtins.bool, numpy._typing._nested_sequence._NestedSequence[builtins.bool]] =) -> Any, def (a: Union[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], builtins.bool, builtins.int, builtins.float, builtins.complex, builtins.str, builtins.bytes, numpy._typing._nested_sequence._NestedSequence[Union[builtins.bool, builtins.int, builtins.float, builtins.complex, builtins.str, builtins.bytes]]], axis: Union[None, Union[typing.SupportsIndex, typing.Sequence[typing.SupportsIndex]]] =, dtype: Union[numpy.dtype[Any], None, Type[Any], numpy._typing._dtype_like._SupportsDType[numpy.dtype[Any]], builtins.str, Union[Tuple[Any, builtins.int], Tuple[Any, Union[typing.SupportsIndex, typing.Sequence[typing.SupportsIndex]]], builtins.list[Any], TypedDict('numpy._typing._dtype_like._DTypeDict', {'names': typing.Sequence[builtins.str], 'formats': typing.Sequence[Any], 'offsets'?: typing.Sequence[builtins.int], 'titles'?: typing.Sequence[Any], 'itemsize'?: builtins.int, 'aligned'?: builtins.bool}), Tuple[Any, Any]]] =, out: None =, keepdims: builtins.bool =, initial: Union[builtins.int, builtins.float, builtins.complex, numpy.number[Any], numpy.bool_] =, where: Union[numpy._typing._array_like._SupportsArray[numpy.dtype[numpy.bool_]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[numpy.bool_]]], builtins.bool, numpy._typing._nested_sequence._NestedSequence[builtins.bool]] =) -> Any, def (a: Union[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], builtins.bool, builtins.int, builtins.float, builtins.complex, builtins.str, builtins.bytes, numpy._typing._nested_sequence._NestedSequence[Union[builtins.bool, builtins.int, builtins.float, builtins.complex, builtins.str, builtins.bytes]]], axis: Union[None, Union[typing.SupportsIndex, typing.Sequence[typing.SupportsIndex]]] =, dtype: Union[numpy.dtype[Any], None, Type[Any], numpy._typing._dtype_like._SupportsDType[numpy.dtype[Any]], builtins.str, Tuple[Any, builtins.int], Tuple[Any, Union[typing.SupportsIndex, typing.Sequence[typing.SupportsIndex]]], builtins.list[Any], TypedDict('numpy._typing._dtype_like._DTypeDict', {'names': typing.Sequence[builtins.str], 'formats': typing.Sequence[Any], 'offsets'?: typing.Sequence[builtins.int], 'titles'?: typing.Sequence[Any], 'itemsize'?: builtins.int, 'aligned'?: builtins.bool}), Tuple[Any, Any]] =, out: None =, keepdims: builtins.bool =, initial: Union[builtins.int, builtins.float, builtins.complex, numpy.number[Any], numpy.bool_] =, where: Union[numpy._typing._array_like._SupportsArray[numpy.dtype[numpy.bool_]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[numpy.bool_]]], builtins.bool, numpy._typing._nested_sequence._NestedSequence[builtins.bool]] =) -> Any, def [_ArrayType <: numpy.ndarray[Any, numpy.dtype[Any]]] (a: Union[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], builtins.bool, builtins.int, builtins.float, builtins.complex, builtins.str, builtins.bytes, numpy._typing._nested_sequence._NestedSequence[Union[builtins.bool, builtins.int, builtins.float, builtins.complex, builtins.str, builtins.bytes]]], axis: Union[None, Union[typing.SupportsIndex, typing.Sequence[typing.SupportsIndex]]] =, dtype: Union[numpy.dtype[Any], None, Type[Any], numpy._typing._dtype_like._SupportsDType[numpy.dtype[Any]], builtins.str, Union[Tuple[Any, builtins.int], Tuple[Any, Union[typing.SupportsIndex, typing.Sequence[typing.SupportsIndex]]], builtins.list[Any], TypedDict('numpy._typing._dtype_like._DTypeDict', {'names': typing.Sequence[builtins.str], 'formats': typing.Sequence[Any], 'offsets'?: typing.Sequence[builtins.int], 'titles'?: typing.Sequence[Any], 'itemsize'?: builtins.int, 'aligned'?: builtins.bool}), Tuple[Any, Any]]] =, out: _ArrayType`-1 =, keepdims: builtins.bool =, initial: Union[builtins.int, builtins.float, builtins.complex, numpy.number[Any], numpy.bool_] =, where: Union[numpy._typing._array_like._SupportsArray[numpy.dtype[numpy.bool_]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[numpy.bool_]]], builtins.bool, numpy._typing._nested_sequence._NestedSequence[builtins.bool]] =) -> _ArrayType`-1)]"
Success: no issues found in 1 source file

real    0m4.010s

Workaround

If you add an explicit type then it typechecks quickly:

import numpy as np
from typing import Any, Callable

okay: list[Callable[..., Any]] = [np.sum, np.sum, np.sum]

Your Environment

  • Mypy version used: 1.0.0 (compiled: no -- because I wanted to profile with py-spy; pip install --force mypy --no-binary :all)
  • Mypy command-line flags: none
  • Mypy configuration options from mypy.ini (and other config files): none
  • Python version used: 3.10
  • Numpy version: 1.24.2

Note: I also tried mypy 0.982 and it was about 10x slower. The performance improvements (e.g. #13821) definitely helped!

Profile

I graphed the relation between the size of the list and the time to typecheck:
image

and I ran it through py-spy:

py-spy record -o profile.svg -- python3.10 -m mypy bad.py

image

Metadata

Metadata

Assignees

No one assigned

    Labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions

      Morty Proxy This is a proxified and sanitized view of the page, visit original site.