Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Commit 3cf4558

Browse filesBrowse files
committed
placeholder for blog
1 parent 555e88f commit 3cf4558
Copy full SHA for 3cf4558

File tree

Expand file treeCollapse file tree

50 files changed

+1141
-255
lines changed
Filter options

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.
Dismiss banner
Expand file treeCollapse file tree

50 files changed

+1141
-255
lines changed

‎config.toml

Copy file name to clipboard
+112-2Lines changed: 112 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,114 @@
11
theme = "hugo-theme-slim"
2-
baseURL = "http://example.org/"
2+
baseURL = "http://blog.pymc-learn.org/"
33
languageCode = "en-us"
4-
title = "My New Hugo Site"
4+
title = "pymc-learn Blog"
5+
enableEmoji = true
6+
footnotereturnlinkcontents = "<sup>^</sup>"
7+
8+
# Enable comments by entering your Disqus shortname
9+
disqusShortname = "emaasit"
10+
11+
# Default language to use (if you setup multilingual support)
12+
defaultContentLanguage = "en"
13+
defaultContentLanguageInSubdir = false
14+
15+
[permalinks]
16+
post = "/post/:year/:month/:day/:slug/"
17+
18+
[blackfriday]
19+
hrefTargetBlank = true
20+
21+
# Date format (refer to Go's date format: http://flippinggodateformat.com )
22+
# Examples: "Mon, Jan 2, 2006" or "2006-01-02"
23+
date_format = "Mon, Jan 2, 2006"
24+
25+
# Enable global LaTeX math rendering?
26+
# If false, you can enable it locally on a per page basis.
27+
math = true
28+
29+
# For more info on the highlighting options, see:
30+
# https://gcushen.github.io/hugo-academic-demo/post/writing-markdown-latex/#highlighting-options
31+
highlight = true
32+
highlight_languages = []
33+
# highlight_style = "github"
34+
# highlight_version = "9.9.0"
35+
36+
# Enable native social sharing buttons?
37+
sharing = true
38+
39+
# Link custom CSS and JS assets
40+
# (relative to /static/css and /static/js respectively)
41+
custom_css = ["cc-fonts.css"]
42+
custom_js = []
43+
44+
# Publication types.
45+
# Used to categorize publications.
46+
# The index of the publication type in the list is used as its unique numerical identifier.
47+
# The numeric ID is used in a publication's frontmatter to categorize it.
48+
# The language can be edited below.
49+
# For multi-lingual sites, copy this block to each language section at the end of this file.
50+
publication_types = [
51+
'Uncategorized', # 0
52+
'Conference proceedings', # 1
53+
'Journal', # 2
54+
'Work in progress', # 3
55+
'Technical report', # 4
56+
'Book', # 5
57+
'Book chapter' # 6
58+
]
59+
60+
61+
# Social/Academic Networking
62+
#
63+
# Icon pack "fa" includes the following social network icons:
64+
#
65+
# twitter, weibo, linkedin, github, facebook, pinterest, google-plus,
66+
# youtube, instagram, soundcloud
67+
#
68+
# For email icon, use "fa" icon pack, "envelope" icon, and
69+
# "mailto:your@email.com" as the link.
70+
#
71+
# Full list: https://fortawesome.github.io/Font-Awesome/icons/
72+
#
73+
# Icon pack "ai" includes the following academic network icons:
74+
#
75+
# google-scholar, arxiv, orcid, researchgate, mendeley
76+
#
77+
# Full list: https://jpswalsh.github.io/academicons/
78+
79+
[[params.social]]
80+
icon = "envelope"
81+
icon_pack = "fa"
82+
link = "mailto:devs@pymc-learn.org"
83+
84+
[[params.social]]
85+
icon = "twitter"
86+
icon_pack = "fa"
87+
link = "//twitter.com/pymc_learn"
88+
89+
[[params.social]]
90+
icon = "github"
91+
icon_pack = "fa"
92+
link = "//github.com/pymc-learn"
93+
94+
# Navigation Links
95+
# To link a homepage widget, specify the URL as a hash `#` followed by the filename of the
96+
# desired widget in your `content/home/` folder.
97+
# The weight parameter defines the order that the links will appear in.
98+
99+
[[menu.main]]
100+
name = "Home"
101+
url = "/"
102+
weight = 1
103+
104+
[[menu.main]]
105+
name = "pymc-learn"
106+
url = "http://pymc-learn.org"
107+
weight = 2
108+
109+
# Taxonomies.
110+
[taxonomies]
111+
tag = "tags"
112+
category = "categories"
113+
publication_type = "publication_types"
114+

‎content/post/2015-07-23-r-rmarkdown.Rmd

Copy file name to clipboardExpand all lines: content/post/2015-07-23-r-rmarkdown.Rmd
-37Lines changed: 0 additions & 37 deletions
This file was deleted.

‎content/post/2015-07-23-r-rmarkdown.html

Copy file name to clipboardExpand all lines: content/post/2015-07-23-r-rmarkdown.html
-49Lines changed: 0 additions & 49 deletions
This file was deleted.
+44Lines changed: 44 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,44 @@
1+
---
2+
title: 'pymc-learn: Practical Probabilistic Machine Learning in Python'
3+
author: Daniel Emaasit
4+
date: '2018-10-15'
5+
slug: pymc-learn-practical-probabilistic-machine-learning-in-python
6+
categories:
7+
- Announcement
8+
tags:
9+
- bayesian
10+
- pymc3
11+
- scikit-learn
12+
- machine-learning
13+
---
14+
15+
PyMC3 is a Python package for probabilistic machine learning that enables users
16+
to build bespoke models for their specific problems using a probabilistic
17+
modeling framework. However, PyMC3 lacks the steps between creating a model and
18+
reusing it with new data in production. The missing steps include: scoring a
19+
model, saving a model for later use, and loading the model in production
20+
systems. In contrast, *scikit-learn* which has become the standard
21+
library for machine learning provides a simple API that makes it very easy for
22+
users to train, score, save and load models in production. However,
23+
*scikit-learn* may not have the model for a user's specific problem.
24+
These limitations have led to the development of the open
25+
source *pymc3-models* library which provides a template to build bespoke
26+
PyMC3 models on top of the *scikit-learn* API and reuse them in
27+
production. This enables users to easily and quickly train, score, save and
28+
load their bespoke models just like in *scikit-learn*.
29+
30+
The ``pymc-learn`` project leverages the template in *pymc3-models* to
31+
develop custom Bayesian models. This provides users with probabilistic models
32+
in a simple workflow that mimics the scikit-learn API.
33+
34+
#### References
35+
1. Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence. Nature, 521(7553), 452.
36+
37+
2. Bishop, C. M. (2013). Model-based machine learning. Phil. Trans. R. Soc. A, 371(1984), 20120222.
38+
39+
3. Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT Press.
40+
41+
4. Barber, D. (2012). Bayesian reasoning and machine learning. Cambridge University Press.
42+
43+
5. Salvatier, J., Wiecki, T. V., &amp; Fonnesbeck, C. (2016). Probabilistic programming in Python using PyMC3. PeerJ Computer Science, 2, e55.
44+
+81Lines changed: 81 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,81 @@
1+
<!DOCTYPE html>
2+
<html lang="en-us">
3+
4+
<head>
5+
<meta http-equiv="content-type" content="text/html; charset=utf-8">
6+
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1">
7+
<title> Announcement &middot; pymc-learn Blog </title>
8+
9+
10+
<link rel="stylesheet" href="/css/slim.css">
11+
<link rel="stylesheet" href="/css/highlight.min.css">
12+
<link href='https://fonts.googleapis.com/css?family=Source+Sans+Pro:400,700|Source+Code+Pro' rel='stylesheet' type='text/css'>
13+
14+
<link rel="apple-touch-icon-precomposed" sizes="144x144" href="/apple-touch-icon-144-precomposed.png">
15+
<link rel="shortcut icon" href="/favicon.ico">
16+
17+
18+
<link href="/categories/announcement/index.xml" rel="alternate" type="application/rss+xml" title="pymc-learn Blog" />
19+
20+
</head>
21+
22+
<body>
23+
<div class="container">
24+
<div class="header">
25+
<h1 class="site-title"><a href="/">pymc-learn Blog</a></h1>
26+
<p class="site-tagline"></p>
27+
<div class="nav">
28+
<a class="nav-btn" href="#">
29+
<span class="ci ci-burger"></span>
30+
</a>
31+
<ul class="nav-list">
32+
33+
<li><a href="/">Home</a></li>
34+
35+
<li><a href="http://pymc-learn.org">pymc-learn</a></li>
36+
37+
<li class="spacer">&ac;</li>
38+
39+
</ul>
40+
</div>
41+
</div>
42+
<div class="content">
43+
<div class="posts">
44+
45+
<div class="post">
46+
<h2 class="post-title"><a href="/post/2018/10/15/pymc-learn-practical-probabilistic-machine-learning-in-python/">pymc-learn: Practical Probabilistic Machine Learning in Python</a></h2>
47+
<span class="post-date">Oct 15, 2018</span>
48+
49+
<span class="post-tags">
50+
51+
#<a href="/tags/bayesian">bayesian</a>&nbsp;
52+
53+
#<a href="/tags/pymc3">pymc3</a>&nbsp;
54+
55+
#<a href="/tags/scikit-learn">scikit-learn</a>&nbsp;
56+
57+
#<a href="/tags/machine-learning">machine-learning</a>&nbsp;
58+
59+
</span>
60+
61+
62+
</div>
63+
64+
</div>
65+
<div class="pagination">
66+
67+
</div>
68+
</div>
69+
<div class="footer">
70+
71+
<p>Powered by <a href="http://gohugo.io">Hugo</a>. This theme—Slim—is open sourced on <a href="https://github.com/zhe/hugo-theme-slim">Github</a>.</p>
72+
73+
</div>
74+
75+
</div>
76+
<script src="/js/slim.js"></script>
77+
78+
79+
</body>
80+
81+
</html>
+24Lines changed: 24 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,24 @@
1+
<?xml version="1.0" encoding="utf-8" standalone="yes" ?>
2+
<rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom">
3+
<channel>
4+
<title>Announcement on pymc-learn Blog</title>
5+
<link>/categories/announcement/</link>
6+
<description>Recent content in Announcement on pymc-learn Blog</description>
7+
<generator>Hugo -- gohugo.io</generator>
8+
<language>en-us</language>
9+
<lastBuildDate>Mon, 15 Oct 2018 00:00:00 +0000</lastBuildDate>
10+
11+
<atom:link href="/categories/announcement/index.xml" rel="self" type="application/rss+xml" />
12+
13+
14+
<item>
15+
<title>pymc-learn: Practical Probabilistic Machine Learning in Python</title>
16+
<link>/post/2018/10/15/pymc-learn-practical-probabilistic-machine-learning-in-python/</link>
17+
<pubDate>Mon, 15 Oct 2018 00:00:00 +0000</pubDate>
18+
19+
<guid>/post/2018/10/15/pymc-learn-practical-probabilistic-machine-learning-in-python/</guid>
20+
<description>PyMC3 is a Python package for probabilistic machine learning that enables users to build bespoke models for their specific problems using a probabilistic modeling framework. However, PyMC3 lacks the steps between creating a model and reusing it with new data in production. The missing steps include: scoring a model, saving a model for later use, and loading the model in production systems. In contrast, scikit-learn which has become the standard library for machine learning provides a simple API that makes it very easy for users to train, score, save and load models in production.</description>
21+
</item>
22+
23+
</channel>
24+
</rss>
+1Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1 @@
1+
<!DOCTYPE html><html><head><title>/categories/announcement/</title><link rel="canonical" href="/categories/announcement/"/><meta name="robots" content="noindex"><meta charset="utf-8" /><meta http-equiv="refresh" content="0; url=/categories/announcement/" /></head></html>

0 commit comments

Comments
0 (0)
Morty Proxy This is a proxified and sanitized view of the page, visit original site.