diff --git a/.travis.yml b/.travis.yml index b64ab8f..a6c913c 100644 --- a/.travis.yml +++ b/.travis.yml @@ -22,12 +22,16 @@ install: - pip install coveralls travis-sphinx==2.0.0 env: - - PYTHON_VERSION=2.7 FLOATX='float64' RUN_PYLINT="true" TESTCMD="--durations=10 --cov-append pmlearn/tests/test_base.py pmlearn/linear_model/tests/test_base.py pmlearn/linear_model/tests/test_logistic.py --ignore=pmlearn/gaussian_process/tests/test_gpr.py --ignore=pmlearn/mixture/tests/test_gaussian_mixture.py --ignore=pmlearn/mixture/tests/test_dirichlet_process.py --ignore=pmlearn/naive_bayes/tests/test_naive_bayes.py --ignore=pmlearn/neural_network/test_multilayer_perceptron.py" - - PYTHON_VERSION=2.7 FLOATX='float64' RUN_PYLINT="true" TESTCMD="--durations=10 --cov-append --ignore=pmlearn/tests/test_base.py --ignore=pmlearn/linear_model/tests/test_base.py --ignore=pmlearn/linear_model/tests/test_logistic.py --ignore=pmlearn/gaussian_process/tests/test_gpr.py --ignore=pmlearn/mixture/tests/test_gaussian_mixture.py --ignore=pmlearn/mixture/tests/test_dirichlet_process.py --ignore=pmlearn/naive_bayes/tests/test_naive_bayes.py --ignore=pmlearn/neural_network/test_multilayer_perceptron.py" - - PYTHON_VERSION=3.6 FLOATX='float64' RUN_PYLINT="true" TESTCMD="--durations=10 --cov-append pmlearn/tests/test_base.py pmlearn/linear_model/tests/test_base.py pmlearn/linear_model/tests/test_logistic.py --ignore=pmlearn/gaussian_process/tests/test_gpr.py --ignore=pmlearn/mixture/tests/test_gaussian_mixture.py --ignore=pmlearn/mixture/tests/test_dirichlet_process.py --ignore=pmlearn/naive_bayes/tests/test_naive_bayes.py --ignore=pmlearn/neural_network/test_multilayer_perceptron.py" - - PYTHON_VERSION=3.6 FLOATX='float64' RUN_PYLINT="true" TESTCMD="--durations=10 --cov-append --ignore=pmlearn/tests/test_base.py --ignore=pmlearn/linear_model/tests/test_base.py --ignore=pmlearn/linear_model/tests/test_logistic.py --ignore=pmlearn/gaussian_process/tests/test_gpr.py --ignore=pmlearn/mixture/tests/test_gaussian_mixture.py --ignore=pmlearn/mixture/tests/test_dirichlet_process.py --ignore=pmlearn/naive_bayes/tests/test_naive_bayes.py --ignore=pmlearn/neural_network/test_multilayer_perceptron.py" - - PYTHON_VERSION=3.6 FLOATX='float64' RUN_PYLINT="true" TESTCMD="--durations=10 --cov-append pmlearn/tests/test_base.py pmlearn/linear_model/tests/test_base.py pmlearn/linear_model/tests/test_logistic.py --ignore=pmlearn/gaussian_process/tests/test_gpr.py --ignore=pmlearn/mixture/tests/test_gaussian_mixture.py --ignore=pmlearn/mixture/tests/test_dirichlet_process.py --ignore=pmlearn/naive_bayes/tests/test_naive_bayes.py --ignore=pmlearn/neural_network/test_multilayer_perceptron.py" - - PYTHON_VERSION=3.6 FLOATX='float64' RUN_PYLINT="true" TESTCMD="--durations=10 --cov-append --ignore=pmlearn/tests/test_base.py --ignore=pmlearn/linear_model/tests/test_base.py --ignore=pmlearn/linear_model/tests/test_logistic.py --ignore=pmlearn/gaussian_process/tests/test_gpr.py --ignore=pmlearn/mixture/tests/test_gaussian_mixture.py --ignore=pmlearn/mixture/tests/test_dirichlet_process.py --ignore=pmlearn/naive_bayes/tests/test_naive_bayes.py --ignore=pmlearn/neural_network/test_multilayer_perceptron.py" + - PYTHON_VERSION=2.7 FLOATX='float64' RUN_PYLINT="true" TESTCMD="--durations=50 --cov-append pmlearn/tests/test_base.py pmlearn/linear_model/tests/test_base.py pmlearn/linear_model/tests/test_logistic.py --ignore=pmlearn/gaussian_process/tests/test_gpr.py --ignore=pmlearn/mixture/tests/test_gaussian_mixture.py --ignore=pmlearn/mixture/tests/test_dirichlet_process.py --ignore=pmlearn/naive_bayes/tests/test_naive_bayes.py --ignore=pmlearn/neural_network/test_multilayer_perceptron.py" + - PYTHON_VERSION=2.7 FLOATX='float64' RUN_PYLINT="true" TESTCMD="--durations=50 --cov-append pmlearn/tests/test_base.py --ignore=pmlearn/linear_model/tests/test_base.py --ignore=pmlearn/linear_model/tests/test_logistic.py pmlearn/gaussian_process/tests/test_gpr.py --ignore=pmlearn/mixture/tests/test_gaussian_mixture.py --ignore=pmlearn/mixture/tests/test_dirichlet_process.py --ignore=pmlearn/naive_bayes/tests/test_naive_bayes.py --ignore=pmlearn/neural_network/test_multilayer_perceptron.py" + - PYTHON_VERSION=3.5 FLOATX='float64' RUN_PYLINT="true" TESTCMD="--durations=50 --cov-append pmlearn/tests/test_base.py pmlearn/linear_model/tests/test_base.py pmlearn/linear_model/tests/test_logistic.py --ignore=pmlearn/gaussian_process/tests/test_gpr.py --ignore=pmlearn/mixture/tests/test_gaussian_mixture.py --ignore=pmlearn/mixture/tests/test_dirichlet_process.py --ignore=pmlearn/naive_bayes/tests/test_naive_bayes.py --ignore=pmlearn/neural_network/test_multilayer_perceptron.py" + - PYTHON_VERSION=3.5 FLOATX='float64' RUN_PYLINT="true" TESTCMD="--durations=50 --cov-append pmlearn/tests/test_base.py --ignore=pmlearn/linear_model/tests/test_base.py --ignore=pmlearn/linear_model/tests/test_logistic.py pmlearn/gaussian_process/tests/test_gpr.py --ignore=pmlearn/mixture/tests/test_gaussian_mixture.py --ignore=pmlearn/mixture/tests/test_dirichlet_process.py --ignore=pmlearn/naive_bayes/tests/test_naive_bayes.py --ignore=pmlearn/neural_network/test_multilayer_perceptron.py" + - PYTHON_VERSION=3.5 FLOATX='float64' RUN_PYLINT="true" TESTCMD="--durations=50 --cov-append pmlearn/tests/test_base.py pmlearn/linear_model/tests/test_base.py pmlearn/linear_model/tests/test_logistic.py --ignore=pmlearn/gaussian_process/tests/test_gpr.py --ignore=pmlearn/mixture/tests/test_gaussian_mixture.py --ignore=pmlearn/mixture/tests/test_dirichlet_process.py --ignore=pmlearn/naive_bayes/tests/test_naive_bayes.py --ignore=pmlearn/neural_network/test_multilayer_perceptron.py" + - PYTHON_VERSION=3.5 FLOATX='float64' RUN_PYLINT="true" TESTCMD="--durations=50 --cov-append pmlearn/tests/test_base.py --ignore=pmlearn/linear_model/tests/test_base.py --ignore=pmlearn/linear_model/tests/test_logistic.py pmlearn/gaussian_process/tests/test_gpr.py --ignore=pmlearn/mixture/tests/test_gaussian_mixture.py --ignore=pmlearn/mixture/tests/test_dirichlet_process.py --ignore=pmlearn/naive_bayes/tests/test_naive_bayes.py --ignore=pmlearn/neural_network/test_multilayer_perceptron.py" + - PYTHON_VERSION=3.6 FLOATX='float64' RUN_PYLINT="true" TESTCMD="--durations=50 --cov-append pmlearn/tests/test_base.py pmlearn/linear_model/tests/test_base.py pmlearn/linear_model/tests/test_logistic.py --ignore=pmlearn/gaussian_process/tests/test_gpr.py --ignore=pmlearn/mixture/tests/test_gaussian_mixture.py --ignore=pmlearn/mixture/tests/test_dirichlet_process.py --ignore=pmlearn/naive_bayes/tests/test_naive_bayes.py --ignore=pmlearn/neural_network/test_multilayer_perceptron.py" + - PYTHON_VERSION=3.6 FLOATX='float64' RUN_PYLINT="true" TESTCMD="--durations=50 --cov-append pmlearn/tests/test_base.py --ignore=pmlearn/linear_model/tests/test_base.py --ignore=pmlearn/linear_model/tests/test_logistic.py pmlearn/gaussian_process/tests/test_gpr.py --ignore=pmlearn/mixture/tests/test_gaussian_mixture.py --ignore=pmlearn/mixture/tests/test_dirichlet_process.py --ignore=pmlearn/naive_bayes/tests/test_naive_bayes.py --ignore=pmlearn/neural_network/test_multilayer_perceptron.py" + - PYTHON_VERSION=3.6 FLOATX='float64' RUN_PYLINT="true" TESTCMD="--durations=50 --cov-append pmlearn/tests/test_base.py pmlearn/linear_model/tests/test_base.py pmlearn/linear_model/tests/test_logistic.py --ignore=pmlearn/gaussian_process/tests/test_gpr.py --ignore=pmlearn/mixture/tests/test_gaussian_mixture.py --ignore=pmlearn/mixture/tests/test_dirichlet_process.py --ignore=pmlearn/naive_bayes/tests/test_naive_bayes.py --ignore=pmlearn/neural_network/test_multilayer_perceptron.py" + - PYTHON_VERSION=3.6 FLOATX='float64' RUN_PYLINT="true" TESTCMD="--durations=50 --cov-append pmlearn/tests/test_base.py --ignore=pmlearn/linear_model/tests/test_base.py --ignore=pmlearn/linear_model/tests/test_logistic.py pmlearn/gaussian_process/tests/test_gpr.py --ignore=pmlearn/mixture/tests/test_gaussian_mixture.py --ignore=pmlearn/mixture/tests/test_dirichlet_process.py --ignore=pmlearn/naive_bayes/tests/test_naive_bayes.py --ignore=pmlearn/neural_network/test_multilayer_perceptron.py" script: - . ./scripts/test.sh $TESTCMD diff --git a/CONTRIBUTING.rst b/CONTRIBUTING.rst index 21c15a0..486b324 100644 --- a/CONTRIBUTING.rst +++ b/CONTRIBUTING.rst @@ -1,6 +1,5 @@ -Thank you for considering contributing to ``pymc-learn``! This project is intended to be a space where anyone can share models they've built. - -Please read these guidelines before submitting anything to the project. As of the first release, I'm the only person working on this project so respecting these guidelines will help me get back to you more quickly. +Thank you for considering contributing to ``pymc-learn``! Please read these +guidelines before submitting anything to the project. Some ways to contribute: @@ -62,7 +61,7 @@ in case there have been any changes: git fetch upstream git rebase upstream/master -Then push the changes to your Gitlab account with: +Then push the changes to your Github account with: .. code-block:: bash @@ -75,8 +74,8 @@ Pull Request Checklist ................................ - Ensure your code has followed the Style Guidelines below -- Make sure you have written unittests where appropriate -- Make sure the unittests pass +- Make sure you have written tests where appropriate +- Make sure the tests pass .. code-block:: bash @@ -104,7 +103,23 @@ For the most part, this library follows PEP8 with a couple of exceptions. Notes: - Indent with 4 spaces -- Lines can be 120 characters long +- Lines can be 80 characters long - Docstrings should be written as numpy docstrings - Your code should be Python 3 compatible -- When in doubt, follow the style of the existing code \ No newline at end of file +- When in doubt, follow the style of the existing code + +Contact +............. + +To report an issue with ``pymc-learn`` please use the `issue tracker `__. + +Finally, if you need to get in touch for information about the project, `send us an e-mail `__. + +Transitioning from PyMC3 to PyMC4 +----------------------------------- + +.. raw:: html + + + + \ No newline at end of file diff --git a/README.rst b/README.rst index 9184d4b..2a9e343 100644 --- a/README.rst +++ b/README.rst @@ -6,7 +6,7 @@ pymc-learn: Practical Probabilistic Machine Learning in Python :alt: Pymc-Learn logo :align: center -|Travis| |Coverage| |Docs| |License| |Pypi| |Binder| +|status| |Travis| |Coverage| |Docs| |License| |Pypi| |Binder| **Contents:** @@ -27,8 +27,15 @@ What is pymc-learn? *pymc-learn is a library for practical probabilistic machine learning in Python*. -It provides probabilistic models in a syntax that mimics -`scikit-learn `_. +It provides a variety of state-of-the art probabilistic models for supervised +and unsupervised machine learning. **It is inspired by** +`scikit-learn `_ **and focuses on bringing probabilistic +machine learning to non-specialists**. It uses a syntax that mimics scikit-learn. +Emphasis is put on ease of use, productivity, flexibility, performance, +documentation, and an API consistent with scikit-learn. It depends on scikit-learn +and `PyMC3 `_ and is distributed under the new BSD-3 license, +encouraging its use in both academia and industry. + Users can now have calibrated quantities of uncertainty in their models using powerful inference algorithms -- such as MCMC or Variational inference -- provided by `PyMC3 `_. @@ -39,6 +46,16 @@ created. ``pymc-learn`` leverages and extends the Base template provided by the PyMC3 Models project: https://github.com/parsing-science/pymc3_models + +Transitioning from PyMC3 to PyMC4 +.................................. + +.. raw:: html + + + + + ---- Familiar user interface @@ -63,19 +80,44 @@ parameters and predictions. Quick Install ----------------- -You can install ``pymc-learn`` from source as follows: +``pymc-learn`` requires a working Python interpreter (2.7 or 3.5+). +It is recommend installing Python and key numerical libraries using the `Anaconda Distribution `_, +which has one-click installers available on all major platforms. + +Assuming a standard Python environment is installed on your machine +(including pip), ``pymc-learn`` itself can be installed in one line using pip: + +You can install ``pymc-learn`` from PyPi using pip as follows: + +.. code-block:: bash + + pip install pymc-learn + + +Or from source as follows: .. code-block:: bash pip install git+https://github.com/pymc-learn/pymc-learn +.. CAUTION:: + ``pymc-learn`` is under heavy development. + + It is recommended installing ``pymc-learn`` in a Conda environment because it + provides `Math Kernel Library `_ (MKL) + routines to accelerate math functions. If you are having trouble, try using + a distribution of Python that includes these packages like + `Anaconda `_. + + + Dependencies ................ ``pymc-learn`` is tested on Python 2.7, 3.5 & 3.6 and depends on Theano, -PyMC3, NumPy, SciPy, and Matplotlib (see ``requirements.txt`` for version -information). +PyMC3, Scikit-learn, NumPy, SciPy, and Matplotlib (see ``requirements.txt`` +for version information). ---- @@ -92,9 +134,9 @@ Quick Start >>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0) >>> kernel = DotProduct() + WhiteKernel() >>> gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) - >>> gpr.score(X, y) # doctest: +ELLIPSIS + >>> gpr.score(X, y) 0.3680... - >>> gpr.predict(X[:2,:], return_std=True) # doctest: +ELLIPSIS + >>> gpr.predict(X[:2,:], return_std=True) (array([653.0..., 592.1...]), array([316.6..., 316.6...])) ---- @@ -124,18 +166,18 @@ Citing pymc-learn To cite ``pymc-learn`` in publications, please use the following:: - Pymc-learn Developers Team (2019). pymc-learn: Practical probabilistic machine - learning in Python. arXiv preprint arXiv:xxxx.xxxxx. Forthcoming. + Emaasit, Daniel (2018). Pymc-learn: Practical probabilistic machine + learning in Python. arXiv preprint arXiv:1811.00542. Or using BibTex as follows: .. code-block:: latex - @article{Pymc-learn, - title={pymc-learn: Practical probabilistic machine learning in {P}ython}, - author={Pymc-learn Developers Team}, - journal={arXiv preprint arXiv:xxxx.xxxxx}, - year={2019} + @article{emaasit2018pymc, + title={Pymc-learn: Practical probabilistic machine learning in {P}ython}, + author={Emaasit, Daniel and others}, + journal={arXiv preprint arXiv:1811.00542}, + year={2018} } If you want to cite ``pymc-learn`` for its API, you may also want to consider @@ -186,8 +228,7 @@ Index **User Guide** The main documentation. This contains an in-depth description of all models -and how to apply them. ``pymc-learn`` leverages the Base template provided by the PyMC3 Models -project: https://github.com/parsing-science/pymc3_models. +and how to apply them. * :doc:`user_guide` @@ -225,8 +266,8 @@ in a familiar scikit-learn syntax. **API Reference** -``pymc-learn`` leverages the Base template provided by the PyMC3 Models -project: https://github.com/parsing-science/pymc3_models. +``pymc-learn`` leverages and extends the Base template provided by the PyMC3 +Models project: https://github.com/parsing-science/pymc3_models. * :doc:`api` @@ -256,11 +297,11 @@ project: https://github.com/parsing-science/pymc3_models. changelog.rst cite.rst -.. |Binder| image:: https://mybinder.org/badge.svg +.. |Binder| image:: https://img.shields.io/badge/try-online-579ACA.svg?logo= :target: https://mybinder.org/v2/gh/pymc-learn/pymc-learn/master?filepath=%2Fdocs%2Fnotebooks?urlpath=lab -.. |Travis| image:: https://api.travis-ci.org/pymc-learn/pymc-learn.svg?branch=master - :target: https://travis-ci.org/pymc-learn/pymc-learn +.. |Travis| image:: https://travis-ci.com/pymc-learn/pymc-learn.svg?branch=master + :target: https://travis-ci.com/pymc-learn/pymc-learn .. |Coverage| image:: https://coveralls.io/repos/github/pymc-learn/pymc-learn/badge.svg?branch=master :target: https://coveralls.io/github/pymc-learn/pymc-learn?branch=master @@ -280,4 +321,6 @@ project: https://github.com/parsing-science/pymc3_models. :target: https://github.com/pymc-learn/pymc-learn/blob/master/LICENSE .. |Pypi| image:: https://badge.fury.io/py/pymc-learn.svg - :target: https://badge.fury.io/py/pymc-learn \ No newline at end of file + :target: https://badge.fury.io/py/pymc-learn + +.. |status| image:: https://img.shields.io/badge/Status-Beta-blue.svg \ No newline at end of file diff --git a/docs/cite.rst b/docs/cite.rst index 413794f..45367b9 100644 --- a/docs/cite.rst +++ b/docs/cite.rst @@ -3,18 +3,18 @@ Citations To cite ``pymc-learn`` in publications, please use the following:: - Pymc-learn Developers Team (2019). pymc-learn: Practical probabilistic machine - learning in Python. arXiv preprint arXiv:xxxx.xxxxx. Forthcoming. + Emaasit, Daniel (2018). Pymc-learn: Practical probabilistic machine + learning in Python. arXiv preprint arXiv:1811.00542. Or using BibTex as follows: .. code-block:: latex - @article{Pymc-learn, - title={pymc-learn: Practical probabilistic machine learning in {P}ython}, - author={Pymc-learn Developers Team}, - journal={arXiv preprint arXiv:xxxx.xxxxx}, - year={2019} + @article{emaasit2018pymc, + title={Pymc-learn: Practical probabilistic machine learning in {P}ython}, + author={Emaasit, Daniel and others}, + journal={arXiv preprint arXiv:1811.00542}, + year={2018} } If you want to cite ``pymc-learn`` for its API, you may also want to consider diff --git a/docs/develop.rst b/docs/develop.rst index 302fa93..b1ed321 100644 --- a/docs/develop.rst +++ b/docs/develop.rst @@ -1,9 +1,8 @@ Contributing ============= -Thank you for considering contributing to ``pymc-learn``! This project is intended to be a space where anyone can share models they've built. - -Please read these guidelines before submitting anything to the project. As of the first release, I'm the only person working on this project so respecting these guidelines will help me get back to you more quickly. +Thank you for considering contributing to ``pymc-learn``! Please read these +guidelines before submitting anything to the project. Some ways to contribute: @@ -65,7 +64,7 @@ in case there have been any changes: git fetch upstream git rebase upstream/master -Then push the changes to your Gitlab account with: +Then push the changes to your Github account with: .. code-block:: bash @@ -78,13 +77,13 @@ Pull Request Checklist ................................ - Ensure your code has followed the Style Guidelines below -- Make sure you have written unittests where appropriate -- Make sure the unittests pass +- Make sure you have written tests where appropriate +- Make sure the tests pass .. code-block:: bash conda activate myenv - python -m unittest discover -cv + python -m pytest NOTE: On Windows, in your Anaconda Prompt, run ``activate myenv``. @@ -107,7 +106,7 @@ For the most part, this library follows PEP8 with a couple of exceptions. Notes: - Indent with 4 spaces -- Lines can be 120 characters long +- Lines can be 80 characters long - Docstrings should be written as numpy docstrings - Your code should be Python 3 compatible - When in doubt, follow the style of the existing code @@ -118,3 +117,12 @@ Contact To report an issue with ``pymc-learn`` please use the `issue tracker `__. Finally, if you need to get in touch for information about the project, `send us an e-mail `__. + +Transitioning from PyMC3 to PyMC4 +----------------------------------- + +.. raw:: html + + + + \ No newline at end of file diff --git a/docs/install.rst b/docs/install.rst index 538f4b7..9050891 100644 --- a/docs/install.rst +++ b/docs/install.rst @@ -1,16 +1,46 @@ Install pymc-learn =================== -``pymc-learn`` requires a working Python interpreter (2.7 or 3.3+). -It is recommend installing Python and key numerical libraries using the `Anaconda Distribution `_, +``pymc-learn`` requires a working Python interpreter (2.7 or 3.5+). +It is recommend installing Python and key numerical libraries using the `Anaconda Distribution `_, which has one-click installers available on all major platforms. -Assuming a standard Python environment is installed on your machine (including pip), ``pymc-learn`` itself can be installed in one line using pip: +Assuming a standard Python environment is installed on your machine +(including pip), ``pymc-learn`` itself can be installed in one line using pip: -.. code-block:: python +You can install ``pymc-learn`` from PyPi using pip as follows: + +.. code-block:: bash + + pip install pymc-learn + + +Or from source as follows: + +.. code-block:: bash + + pip install git+https://github.com/pymc-learn/pymc-learn + + +.. CAUTION:: + ``pymc-learn`` is under heavy development. + + It is recommended installing ``pymc-learn`` in a Conda environment because it + provides `Math Kernel Library `_ (MKL) + routines to accelerate math functions. If you are having trouble, try using + a distribution of Python that includes these packages like + `Anaconda `_. - pip install git+https://github.com/pymc-learn/pymc-learn This also installs required dependencies including Theano. For alternative Theano installations (e.g., gpu), please see the instructions on the main `Theano webpage `_. + +Transitioning from PyMC3 to PyMC4 +.................................. + +.. raw:: html + + + + \ No newline at end of file diff --git a/docs/modules/neural_networks.rst b/docs/modules/neural_networks.rst index 965ecf8..67082ae 100644 --- a/docs/modules/neural_networks.rst +++ b/docs/modules/neural_networks.rst @@ -7,12 +7,13 @@ Neural network models (supervised) .. currentmodule:: pmlearn.neural_network -.. warning:: +.. NOTE:: - This implementation is not intended for large-scale applications. In particular, - scikit-learn offers no GPU support. For much faster, GPU-based implementations, - as well as frameworks offering much more flexibility to build deep learning - architectures, see :ref:`related_projects`. + Unlike scikit-learn, this implementation of neural networks in pymc-learn is + intended for large-scale applications. Pymc-learn relies on Theano for GPU + support. + + scikit-learn offers no GPU support. .. _multilayer_perceptron: diff --git a/docs/why.rst b/docs/why.rst index c7b640c..4723631 100644 --- a/docs/why.rst +++ b/docs/why.rst @@ -14,11 +14,11 @@ you may be compelled to use ``pymc-learn``. pymc-learn prioritizes user experience --------------------------------------- -- ``pymc-learn`` mimics the syntax of `scikit-learn `_ -- a popular Python library for machine learning -- which has a consistent & simple API, and is very user friendly. +- *Familiarity*: ``pymc-learn`` mimics the syntax of `scikit-learn `_ -- a popular Python library for machine learning -- which has a consistent & simple API, and is very user friendly. -- This makes ``pymc-learn`` easy to learn and use for first-time users. +- *Ease of use*: This makes ``pymc-learn`` easy to learn and use for first-time users. -- For scikit-learn users, you don't have to completely rewrite your code. Your code looks almost the same. You are more productive, allowing you to try more ideas faster. +- *Productivity*: For scikit-learn users, you don't have to completely rewrite your code. Your code looks almost the same. You are more productive, allowing you to try more ideas faster. .. code-block:: python @@ -27,12 +27,65 @@ pymc-learn prioritizes user experience lr = LinearRegression() lr = LinearRegression() lr.fit(X, y) lr.fit(X, y) -- This ease of use does not come at the cost of reduced flexibility: because ``pymc-learn`` integrates with `PyMC3 `_, it enables you to implement anything you could have built in the base language. +- *Flexibility*: This ease of use does not come at the cost of reduced flexibility. Given that ``pymc-learn`` integrates with `PyMC3 `_, it enables you to implement anything you could have built in the base language. +- *Performance*. The primary inference algorithm is gradient-based automatic differentiation variational inference (ADVI) (Kucukelbir et al., 2017), which estimates a divergence measure between approximate and true posterior distributions. Pymc-learn scales to complex, high-dimensional models thanks to GPU-accelerated tensor math and reverse-mode automatic differentiation via Theano (Theano Development Team, 2016), and it scales to large datasets thanks to estimates computed over mini-batches of data in ADVI. ---- +Why do we need pymc-learn? +-------------------------- +Currently, there is a growing need for principled machine learning approaches by +non-specialists in many fields including the pure sciences (e.g. biology, physics, +chemistry), the applied sciences (e.g. political science, biostatistics), +engineering (e.g. transportation, mechanical), medicine (e.g. medical imaging), +the arts (e.g visual art), and software industries. + +This has lead to increased adoption of probabilistic modeling. This trend is +attributed in part to three major factors: + +(1) the need for transparent models with calibrated quantities of uncertainty, i.e. "models should know when they don't know", + +(2) the ever-increasing number of promising results achieved on a variety of fundamental problems in AI (Ghahramani, 2015), and + +(3) the emergency of probabilistic programming languages (PPLs) that provide a fexible framework to build richly structured probabilistic models that incorporate domain knowledge. + +However, usage of PPLs requires a specialized understanding of probability +theory, probabilistic graphical modeling, and probabilistic inference. Some PPLs +also require a good command of software coding. These requirements make it +difficult for non-specialists to adopt and apply probabilistic machine learning +to their domain problems. + +``Pymc-learn`` seeks to address these challenges by providing state-of-the art +implementations of several popular probabilistic machine learning models. +**It is inspired by scikit-learn** (Pedregosa et al., 2011) **and focuses on +bringing probabilistic machine learning to non-specialists**. It puts emphasis +on: + +(1) ease of use, + +(2) productivity, + +(3) fexibility, + +(4) performance, + +(5) documentation, and + +(6) an API consistent with scikit-learn. + +The underlying probabilistic models are built using pymc3 (Salvatier et al., 2016). + + +Transitioning from PyMC3 to PyMC4 +.................................. + +.. raw:: html + + + + Python is the lingua franca of Data Science -------------------------------------------- @@ -127,7 +180,7 @@ such as `NIPS `_, `UAI `_, ---- References -........... +------------ 1. Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence. Nature, 521(7553), 452. @@ -137,4 +190,10 @@ References 4. Barber, D. (2012). Bayesian reasoning and machine learning. Cambridge University Press. -5. Salvatier, J., Wiecki, T. V., & Fonnesbeck, C. (2016). Probabilistic programming in Python using PyMC3. PeerJ Computer Science, 2, e55. \ No newline at end of file +5. Salvatier, J., Wiecki, T. V., & Fonnesbeck, C. (2016). Probabilistic programming in Python using PyMC3. PeerJ Computer Science, 2, e55. + +6. Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M Blei. Automatic differentiation variational inference. The Journal of Machine Learning Research, 18(1):430{474, 2017. + +7. Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. Journal of machine learning research, 12(Oct): 2825-2830, 2011. + +8. Theano Development Team. Theano: A Python framework for fast computation of mathematical expressions. arXiv e-prints, abs/1605.02688, May 2016. URL http://arxiv.org/abs/1605.02688. \ No newline at end of file diff --git a/pmlearn/__init__.py b/pmlearn/__init__.py index 3e3d1ac..98e3329 100644 --- a/pmlearn/__init__.py +++ b/pmlearn/__init__.py @@ -10,7 +10,7 @@ See http://pymc-learn.org for complete documentation. """ -__version__ = '0.0.1.rc0' +__version__ = '0.0.1.rc3' __all__ = ['gaussian_process', 'linear_model', diff --git a/pmlearn/gaussian_process/gpr.py b/pmlearn/gaussian_process/gpr.py index 9ba1794..0c06a03 100644 --- a/pmlearn/gaussian_process/gpr.py +++ b/pmlearn/gaussian_process/gpr.py @@ -144,7 +144,7 @@ def create_model(self): if self.prior_mean is None: mean_function = pm.gp.mean.Zero() else: - mean_function = self.prior_mean + mean_function = pm.gp.mean.Constant(c=self.prior_mean) self.gp = pm.gp.Latent(mean_func=mean_function, cov_func=cov_function) @@ -173,7 +173,8 @@ def load(self, file_prefix): self.num_training_samples = params['num_training_samples'] -class StudentsTProcessRegressor(GaussianProcessRegressor): +class StudentsTProcessRegressor(BayesianModel, + GaussianProcessRegressorMixin): """ StudentsT Process Regression built using PyMC3. Fit a StudentsT process model and estimate model parameters using @@ -204,8 +205,15 @@ class StudentsTProcessRegressor(GaussianProcessRegressor): Rasmussen and Williams (2006). Gaussian Processes for Machine Learning. """ - def __init__(self, prior_mean=0.0): - super(StudentsTProcessRegressor, self).__init__(prior_mean=prior_mean) + def __init__(self, prior_mean=None, kernel=None): + self.ppc = None + self.gp = None + self.num_training_samples = None + self.num_pred = None + self.prior_mean = prior_mean + self.kernel = kernel + + super(StudentsTProcessRegressor, self).__init__() def create_model(self): """ Creates and returns the PyMC3 model. @@ -241,13 +249,17 @@ def create_model(self): degrees_of_freedom = pm.Gamma('degrees_of_freedom', alpha=2, beta=0.1, shape=1) - # cov_function = signal_variance**2 * pm.gp.cov.ExpQuad( - # 1, length_scale) - cov_function = signal_variance ** 2 * pm.gp.cov.Matern52( - 1, length_scale) + if self.kernel is None: + cov_function = signal_variance ** 2 * RBF( + input_dim=self.num_pred, + ls=length_scale) + else: + cov_function = self.kernel - # mean_function = pm.gp.mean.Zero() - mean_function = pm.gp.mean.Constant(self.prior_mean) + if self.prior_mean is None: + mean_function = pm.gp.mean.Zero() + else: + mean_function = pm.gp.mean.Constant(c=self.prior_mean) self.gp = pm.gp.Latent(mean_func=mean_function, cov_func=cov_function) @@ -277,7 +289,8 @@ def load(self, file_prefix): self.num_training_samples = params['num_training_samples'] -class SparseGaussianProcessRegressor(GaussianProcessRegressor): +class SparseGaussianProcessRegressor(BayesianModel, + GaussianProcessRegressorMixin): """ Sparse Gaussian Process Regression built using PyMC3. Fit a Sparse Gaussian process model and estimate model parameters using @@ -308,9 +321,15 @@ class SparseGaussianProcessRegressor(GaussianProcessRegressor): Rasmussen and Williams (2006). Gaussian Processes for Machine Learning. """ - def __init__(self, prior_mean=0.0): - super(SparseGaussianProcessRegressor, self).__init__( - prior_mean=prior_mean) + def __init__(self, prior_mean=None, kernel=None): + self.ppc = None + self.gp = None + self.num_training_samples = None + self.num_pred = None + self.prior_mean = prior_mean + self.kernel = kernel + + super(SparseGaussianProcessRegressor, self).__init__() def create_model(self): """ Creates and returns the PyMC3 model. @@ -344,13 +363,17 @@ def create_model(self): noise_variance = pm.HalfCauchy('noise_variance', beta=5, shape=1) - # cov_function = signal_variance**2 * pm.gp.cov.ExpQuad( - # 1, length_scale) - cov_function = signal_variance ** 2 * pm.gp.cov.Matern52( - 1, length_scale) + if self.kernel is None: + cov_function = signal_variance ** 2 * RBF( + input_dim=self.num_pred, + ls=length_scale) + else: + cov_function = self.kernel - # mean_function = pm.gp.mean.Zero() - mean_function = pm.gp.mean.Constant(self.prior_mean) + if self.prior_mean is None: + mean_function = pm.gp.mean.Zero() + else: + mean_function = pm.gp.mean.Constant(c=self.prior_mean) self.gp = pm.gp.MarginalSparse(mean_func=mean_function, cov_func=cov_function, diff --git a/pmlearn/gaussian_process/tests/test_gpr.py b/pmlearn/gaussian_process/tests/test_gpr.py index a211fbf..afc947b 100644 --- a/pmlearn/gaussian_process/tests/test_gpr.py +++ b/pmlearn/gaussian_process/tests/test_gpr.py @@ -4,56 +4,55 @@ # # License: BSD 3 clause -# import pytest +import pytest import numpy.testing as npt -# import pandas.testing as pdt +import pandas.testing as pdt import shutil import tempfile import numpy as np import pymc3 as pm -# from pymc3 import summary -# from sklearn.gaussian_process import \ -# GaussianProcessRegressor as skGaussianProcessRegressor -# from sklearn.model_selection import train_test_split -# -# -# from pmlearn.exceptions import NotFittedError -from pmlearn.gaussian_process import (GaussianProcessRegressor) -# , -# SparseGaussianProcessRegressor, -# StudentsTProcessRegressor) +from pymc3 import summary +from sklearn.gaussian_process import \ + GaussianProcessRegressor as skGaussianProcessRegressor +from sklearn.model_selection import train_test_split + + +from pmlearn.exceptions import NotFittedError +from pmlearn.gaussian_process import (GaussianProcessRegressor, + StudentsTProcessRegressor, + SparseGaussianProcessRegressor) class TestGaussianProcessRegressor(object): - """ - Compare the logp of GPR models in pmlearn to sklearn - """ def setup_method(self): - """Setup the data for testing - """ self.num_pred = 1 - self.num_training_samples = 20 - self.length_scale = 0.1 - self.signal_variance = 0.01 - self.noise_variance = 0.01 - self.X = np.random.randn(self.num_training_samples, self.num_pred) - self.y = np.random.randn(self.num_training_samples) * \ - self.noise_variance - self.Xnew = np.random.randn(50, self.num_pred) - self.pnew = np.random.randn(50) * self.noise_variance - with pm.Model() as model: - cov_func = self.signal_variance**2 * \ - pm.gp.cov.ExpQuad(self.num_pred, self.length_scale) - gp = pm.gp.Latent(cov_func=cov_func) - f = gp.prior("f", self.X, reparameterize=False) - p = gp.conditional("p", self.Xnew) - - self.latent_logp = model.logp({"f": self.y, "p": self.pnew}) - self.plogp = p.logp({"f": self.y, "p": self.pnew}) - - self.test_gpr = GaussianProcessRegressor(kernel=cov_func) + self.num_training_samples = 300 + + self.length_scale = 1.0 + self.signal_variance = 0.1 + self.noise_variance = 0.1 + + X = np.linspace(start=0, stop=10, + num=self.num_training_samples)[:, None] + + cov_func = self.signal_variance ** 2 * pm.gp.cov.ExpQuad( + 1, self.length_scale) + mean_func = pm.gp.mean.Zero() + + f_true = np.random.multivariate_normal( + mean_func(X).eval(), + cov_func(X).eval() + 1e-8 * np.eye(self.num_training_samples), + 1).flatten() + y = f_true + \ + self.noise_variance * np.random.randn(self.num_training_samples) + + self.X_train, self.X_test, self.y_train, self.y_test = \ + train_test_split(X, y, test_size=0.3) + + self.advi_gpr = GaussianProcessRegressor() + self.test_dir = tempfile.mkdtemp() def teardown_method(self): @@ -67,338 +66,320 @@ def test_advi_fit_returns_correct_model(self): # This print statement ensures PyMC3 output won't overwrite # the test name print('') - self.test_gpr.fit(self.X, self.y) - - npt.assert_equal(self.num_pred, self.test_gpr.num_pred) - npt.assert_almost_equal(self.signal_variance, - int(self.test_GPR.summary['mean']['signal_variance__0']), - 0) - self.assertAlmostEqual(self.length_scale, - int(self.test_GPR.summary['mean']['length_scale__0_0']), - 0) - self.assertAlmostEqual(self.noise_variance, - int(self.test_GPR.summary['mean']['noise_variance__0']), - 0) - - # def test_nuts_fit_returns_correct_model(self): - # # This print statement ensures PyMC3 output won't overwrite the test name - # print('') - # self.test_nuts_GPR.fit(self.X_train, self.y_train, inference_type='nuts') - # - # self.assertEqual(self.num_pred, self.test_nuts_GPR.num_pred) - # self.assertAlmostEqual(self.signal_variance, - # int(self.test_nuts_GPR.summary['mean']['signal_variance__0']), - # 0) - # self.assertAlmostEqual(self.length_scale, - # int(self.test_nuts_GPR.summary['mean']['length_scale__0_0']), - # 0) - # self.assertAlmostEqual(self.noise_variance, - # int(self.test_nuts_GPR.summary['mean']['noise_variance__0']), - # 0) - - -# class GaussianProcessRegressorPredictTestCase(GaussianProcessRegressorTestCase): -# def test_predict_returns_predictions(self): -# print('') -# self.test_GPR.fit(self.X_train, self.y_train) -# preds = self.test_GPR.predict(self.X_test) -# self.assertEqual(self.y_test.shape, preds.shape) -# -# def test_predict_returns_mean_predictions_and_std(self): -# print('') -# self.test_GPR.fit(self.X_train, self.y_train) -# preds, stds = self.test_GPR.predict(self.X_test, return_std=True) -# self.assertEqual(self.y_test.shape, preds.shape) -# self.assertEqual(self.y_test.shape, stds.shape) -# -# def test_predict_raises_error_if_not_fit(self): -# print('') -# with self.assertRaises(NotFittedError) as no_fit_error: -# test_GPR = GaussianProcessRegressor() -# test_GPR.predict(self.X_train) -# -# expected = 'Run fit on the model before predict.' -# self.assertEqual(str(no_fit_error.exception), expected) + self.advi_gpr.fit(self.X_train, self.y_train, + inference_args={"n": 25000}) + npt.assert_equal(self.num_pred, self.advi_gpr.num_pred) + npt.assert_almost_equal( + self.signal_variance, + self.advi_gpr.summary['mean']['signal_variance__0'], + 0) + npt.assert_almost_equal( + self.length_scale, + self.advi_gpr.summary['mean']['length_scale__0_0'], + 0) + npt.assert_almost_equal( + self.noise_variance, + self.advi_gpr.summary['mean']['noise_variance__0'], + 0) -# class GaussianProcessRegressorScoreTestCase(GaussianProcessRegressorTestCase): -# def test_score_matches_sklearn_performance(self): -# print('') -# skGPR = skGaussianProcessRegressor() -# skGPR.fit(self.X_train, self.y_train) -# skGPR_score = skGPR.score(self.X_test, self.y_test) -# -# self.test_GPR.fit(self.X_train, self.y_train) -# test_GPR_score = self.test_GPR.score(self.X_test, self.y_test) -# -# self.assertAlmostEqual(skGPR_score, test_GPR_score, 1) -# -# -# class GaussianProcessRegressorSaveAndLoadTestCase(GaussianProcessRegressorTestCase): -# def test_save_and_load_work_correctly(self): -# print('') -# self.test_GPR.fit(self.X_train, self.y_train) -# score1 = self.test_GPR.score(self.X_test, self.y_test) -# self.test_GPR.save(self.test_dir) -# -# GPR2 = GaussianProcessRegressor() -# GPR2.load(self.test_dir) -# -# self.assertEqual(self.test_GPR.inference_type, GPR2.inference_type) -# self.assertEqual(self.test_GPR.num_pred, GPR2.num_pred) -# self.assertEqual(self.test_GPR.num_training_samples, GPR2.num_training_samples) -# pd.testing.assert_frame_equal(summary(self.test_GPR.trace), -# summary(GPR2.trace)) -# -# score2 = GPR2.score(self.X_test, self.y_test) -# self.assertAlmostEqual(score1, score2, 1) -# -# -# class StudentsTProcessRegressorTestCase(unittest.TestCase): -# -# def setUp(self): -# self.num_training_samples = 150 -# self.num_pred = 1 -# -# self.length_scale = 2.0 -# self.noise_variance = 1.0 -# self.signal_variance = 1.0 -# self.degrees_of_freedom = 3.0 -# -# X = np.linspace(start=0, stop=10, num=self.num_training_samples)[:, None] -# cov_func = self.signal_variance**2 * pm.gp.cov.ExpQuad(self.num_pred, -# self.length_scale) -# -# mean_func = pm.gp.mean.Zero() -# f_ = np.random.multivariate_normal(mean_func(X).eval(), -# cov_func(X).eval() + 1e-8 * np.eye(self.num_training_samples), -# self.num_pred -# ).flatten() -# -# y = f_ + self.noise_variance * np.random.standard_t(self.degrees_of_freedom, -# size=self.num_training_samples) -# self.X_train, self.X_test, self.y_train, self.y_test = train_test_split( -# X, y, test_size=0.3 -# ) -# -# self.test_STPR = StudentsTProcessRegressor() -# # self.test_nuts_STPR = StudentsTProcessRegressor() -# self.test_dir = tempfile.mkdtemp() -# -# def tearDown(self): -# shutil.rmtree(self.test_dir) -# -# -# class StudentsTProcessRegressorFitTestCase(StudentsTProcessRegressorTestCase): -# def test_advi_fit_returns_correct_model(self): -# # This print statement ensures PyMC3 output won't overwrite the test name -# print('') -# self.test_STPR.fit(self.X_train, self.y_train) -# -# self.assertEqual(self.num_pred, self.test_STPR.num_pred) -# self.assertAlmostEqual(self.signal_variance, -# int(self.test_STPR.summary['mean']['signal_variance__0']), -# 0) -# self.assertAlmostEqual(self.length_scale, -# int(self.test_STPR.summary['mean']['length_scale__0_0']), -# 0) -# self.assertAlmostEqual(self.noise_variance, -# int(self.test_STPR.summary['mean']['noise_variance__0']), -# 0) - - # def test_nuts_fit_returns_correct_model(self): - # # This print statement ensures PyMC3 output won't overwrite the test name - # print('') - # self.test_nuts_STPR.fit(self.X_train, self.y_train, inference_type='nuts') - # - # self.assertEqual(self.num_pred, self.test_nuts_STPR.num_pred) - # self.assertAlmostEqual(self.signal_variance, - # int(self.test_nuts_STPR.summary['mean']['signal_variance__0']), - # 0) - # self.assertAlmostEqual(self.length_scale, - # int(self.test_nuts_STPR.summary['mean']['length_scale__0_0']), - # 0) - # self.assertAlmostEqual(self.noise_variance, - # int(self.test_nuts_STPR.summary['mean']['noise_variance__0']), - # 0) - - -# class StudentsTProcessRegressorPredictTestCase(StudentsTProcessRegressorTestCase): -# def test_predict_returns_predictions(self): -# print('') -# self.test_STPR.fit(self.X_train, self.y_train) -# preds = self.test_STPR.predict(self.X_test) -# self.assertEqual(self.y_test.shape, preds.shape) -# -# def test_predict_returns_mean_predictions_and_std(self): -# print('') -# self.test_STPR.fit(self.X_train, self.y_train) -# preds, stds = self.test_STPR.predict(self.X_test, return_std=True) -# self.assertEqual(self.y_test.shape, preds.shape) -# self.assertEqual(self.y_test.shape, stds.shape) -# -# def test_predict_raises_error_if_not_fit(self): -# print('') -# with self.assertRaises(NotFittedError) as no_fit_error: -# test_STPR = StudentsTProcessRegressor() -# test_STPR.predict(self.X_train) -# -# expected = 'Run fit on the model before predict.' -# self.assertEqual(str(no_fit_error.exception), expected) -# -# -# class StudentsTProcessRegressorScoreTestCase(StudentsTProcessRegressorTestCase): -# def test_score_matches_sklearn_performance(self): -# print('') -# skGPR = skGaussianProcessRegressor() -# skGPR.fit(self.X_train, self.y_train) -# skGPR_score = skGPR.score(self.X_test, self.y_test) -# -# self.test_STPR.fit(self.X_train, self.y_train) -# test_STPR_score = self.test_STPR.score(self.X_test, self.y_test) -# -# self.assertAlmostEqual(skGPR_score, test_STPR_score, 1) -# -# -# class StudentsTProcessRegressorSaveAndLoadTestCase(StudentsTProcessRegressorTestCase): -# def test_save_and_load_work_correctly(self): -# print('') -# self.test_STPR.fit(self.X_train, self.y_train) -# score1 = self.test_STPR.score(self.X_test, self.y_test) -# self.test_STPR.save(self.test_dir) -# -# STPR2 = StudentsTProcessRegressor() -# STPR2.load(self.test_dir) -# -# self.assertEqual(self.test_STPR.inference_type, STPR2.inference_type) -# self.assertEqual(self.test_STPR.num_pred, STPR2.num_pred) -# self.assertEqual(self.test_STPR.num_training_samples, STPR2.num_training_samples) -# pd.testing.assert_frame_equal(summary(self.test_STPR.trace), -# summary(STPR2.trace)) -# -# score2 = STPR2.score(self.X_test, self.y_test) -# self.assertAlmostEqual(score1, score2, 1) -# -# -# class SparseGaussianProcessRegressorTestCase(unittest.TestCase): -# -# def setUp(self): -# self.num_training_samples = 150 -# self.num_pred = 1 -# -# self.length_scale = 1.0 -# self.noise_variance = 2.0 -# self.signal_variance = 3.0 -# -# X = np.linspace(start=0, stop=10, num=self.num_training_samples)[:, None] -# cov_func = self.signal_variance**2 * pm.gp.cov.ExpQuad(self.num_pred, -# self.length_scale) -# -# mean_func = pm.gp.mean.Zero() -# f_ = np.random.multivariate_normal(mean_func(X).eval(), -# cov_func(X).eval() + 1e-8 * np.eye(self.num_training_samples), -# self.num_pred -# ).flatten() -# -# y = f_ + self.noise_variance * np.random.randn(self.num_training_samples) -# self.X_train, self.X_test, self.y_train, self.y_test = train_test_split( -# X, y, test_size=0.3 -# ) -# -# self.test_SGPR = SparseGaussianProcessRegressor() -# # self.test_nuts_SGPR = SparseGaussianProcessRegressor() -# self.test_dir = tempfile.mkdtemp() -# -# def tearDown(self): -# shutil.rmtree(self.test_dir) -# -# -# class SparseGaussianProcessRegressorFitTestCase(SparseGaussianProcessRegressorTestCase): -# def test_advi_fit_returns_correct_model(self): -# # This print statement ensures PyMC3 output won't overwrite the test name -# print('') -# self.test_SGPR.fit(self.X_train, self.y_train) -# -# self.assertEqual(self.num_pred, self.test_SGPR.num_pred) -# self.assertAlmostEqual(self.signal_variance, -# int(self.test_SGPR.summary['mean']['signal_variance__0']), -# 0) -# self.assertAlmostEqual(self.length_scale, -# int(self.test_SGPR.summary['mean']['length_scale__0_0']), -# 0) -# self.assertAlmostEqual(self.noise_variance, -# int(self.test_SGPR.summary['mean']['noise_variance__0']), -# 0) - - # def test_nuts_fit_returns_correct_model(self): - # # This print statement ensures PyMC3 output won't overwrite the test name - # print('') - # self.test_nuts_SGPR.fit(self.X_train, self.y_train, inference_type='nuts') - # - # self.assertEqual(self.num_pred, self.test_nuts_SGPR.num_pred) - # self.assertAlmostEqual(self.signal_variance, - # int(self.test_nuts_SGPR.summary['mean']['signal_variance__0']), - # 0) - # self.assertAlmostEqual(self.length_scale, - # int(self.test_nuts_SGPR.summary['mean']['length_scale__0_0']), - # 0) - # self.assertAlmostEqual(self.noise_variance, - # int(self.test_nuts_SGPR.summary['mean']['noise_variance__0']), - # 0) - - -# class SparseGaussianProcessRegressorPredictTestCase(SparseGaussianProcessRegressorTestCase): -# def test_predict_returns_predictions(self): -# print('') -# self.test_SGPR.fit(self.X_train, self.y_train) -# preds = self.test_SGPR.predict(self.X_test) -# self.assertEqual(self.y_test.shape, preds.shape) -# -# def test_predict_returns_mean_predictions_and_std(self): -# print('') -# self.test_SGPR.fit(self.X_train, self.y_train) -# preds, stds = self.test_SGPR.predict(self.X_test, return_std=True) -# self.assertEqual(self.y_test.shape, preds.shape) -# self.assertEqual(self.y_test.shape, stds.shape) -# -# def test_predict_raises_error_if_not_fit(self): -# print('') -# with self.assertRaises(NotFittedError) as no_fit_error: -# test_SGPR = SparseGaussianProcessRegressor() -# test_SGPR.predict(self.X_train) -# -# expected = 'Run fit on the model before predict.' -# self.assertEqual(str(no_fit_error.exception), expected) -# -# -# class SparseGaussianProcessRegressorScoreTestCase(SparseGaussianProcessRegressorTestCase): -# def test_score_matches_sklearn_performance(self): -# print('') -# skGPR = skGaussianProcessRegressor() -# skGPR.fit(self.X_train, self.y_train) -# skGPR_score = skGPR.score(self.X_test, self.y_test) -# -# self.test_SGPR.fit(self.X_train, self.y_train) -# test_SGPR_score = self.test_SGPR.score(self.X_test, self.y_test) -# -# self.assertAlmostEqual(skGPR_score, test_SGPR_score, 1) -# -# -# class SparseGaussianProcessRegressorSaveAndLoadTestCase(SparseGaussianProcessRegressorTestCase): -# def test_save_and_load_work_correctly(self): -# print('') -# self.test_SGPR.fit(self.X_train, self.y_train) -# score1 = self.test_SGPR.score(self.X_test, self.y_test) -# self.test_SGPR.save(self.test_dir) -# -# SGPR2 = SparseGaussianProcessRegressor() -# SGPR2.load(self.test_dir) -# -# self.assertEqual(self.test_SGPR.inference_type, SGPR2.inference_type) -# self.assertEqual(self.test_SGPR.num_pred, SGPR2.num_pred) -# self.assertEqual(self.test_SGPR.num_training_samples, SGPR2.num_training_samples) -# pd.testing.assert_frame_equal(summary(self.test_SGPR.trace), -# summary(SGPR2.trace)) -# -# score2 = SGPR2.score(self.X_test, self.y_test) -# self.assertAlmostEqual(score1, score2, 1) \ No newline at end of file + +class TestGaussianProcessRegressorPredict(TestGaussianProcessRegressor): + def test_predict_returns_predictions(self): + print('') + self.advi_gpr.fit(self.X_train, self.y_train, + inference_args={"n": 25000}) + preds = self.advi_gpr.predict(self.X_test) + npt.assert_equal(self.y_test.shape, preds.shape) + + def test_predict_returns_mean_predictions_and_std(self): + print('') + self.advi_gpr.fit(self.X_train, self.y_train, + inference_args={"n": 25000}) + preds, stds = self.advi_gpr.predict(self.X_test, return_std=True) + npt.assert_equal(self.y_test.shape, preds.shape) + npt.assert_equal(self.y_test.shape, stds.shape) + + def test_predict_raises_error_if_not_fit(self): + print('') + with pytest.raises(NotFittedError): + advi_gpr = GaussianProcessRegressor() + advi_gpr.predict(self.X_train) + + +class TestGaussianProcessRegressorScore(TestGaussianProcessRegressor): + def test_score_matches_sklearn_performance(self): + print('') + sk_gpr = skGaussianProcessRegressor() + sk_gpr.fit(self.X_train, self.y_train) + sk_gpr_score = sk_gpr.score(self.X_test, self.y_test) + + self.advi_gpr.fit(self.X_train, self.y_train, + inference_args={"n": 25000}) + advi_gpr_score = self.advi_gpr.score(self.X_test, self.y_test) + + npt.assert_almost_equal(sk_gpr_score, advi_gpr_score, 1) + + +class TestGaussianProcessRegressorSaveAndLoad(TestGaussianProcessRegressor): + def test_save_and_load_work_correctly(self): + print('') + self.advi_gpr.fit(self.X_train, self.y_train, + inference_args={"n": 25000}) + score1 = self.advi_gpr.score(self.X_test, self.y_test) + self.advi_gpr.save(self.test_dir) + + gpr2 = GaussianProcessRegressor() + gpr2.load(self.test_dir) + + npt.assert_equal(self.advi_gpr.inference_type, gpr2.inference_type) + npt.assert_equal(self.advi_gpr.num_pred, gpr2.num_pred) + npt.assert_equal(self.advi_gpr.num_training_samples, + gpr2.num_training_samples) + pdt.assert_frame_equal(summary(self.advi_gpr.trace), + summary(gpr2.trace)) + + score2 = gpr2.score(self.X_test, self.y_test) + npt.assert_almost_equal(score1, score2, 0) + + +class TestStudentsTProcessRegressor(object): + + def setup_method(self): + self.num_pred = 1 + self.num_training_samples = 500 + + self.length_scale = 1.0 + self.signal_variance = 0.1 + self.noise_variance = 0.1 + self.degrees_of_freedom = 1.0 + + X = np.linspace(start=0, stop=10, + num=self.num_training_samples)[:, None] + + cov_func = self.signal_variance ** 2 * pm.gp.cov.ExpQuad( + 1, self.length_scale) + mean_func = pm.gp.mean.Zero() + + f_true = np.random.multivariate_normal( + mean_func(X).eval(), + cov_func(X).eval() + 1e-8 * np.eye(self.num_training_samples), + 1).flatten() + y = f_true + \ + self.noise_variance * \ + np.random.standard_t(self.degrees_of_freedom, + size=self.num_training_samples) + + self.X_train, self.X_test, self.y_train, self.y_test = \ + train_test_split(X, y, test_size=0.3) + + self.advi_stpr = StudentsTProcessRegressor() + + self.test_dir = tempfile.mkdtemp() + + def tearDown(self): + shutil.rmtree(self.test_dir) + + +class TestStudentsTProcessRegressorFit(TestStudentsTProcessRegressor): + def test_advi_fit_returns_correct_model(self): + # This print statement ensures PyMC3 output won't overwrite + # the test name + print('') + self.advi_stpr.fit(self.X_train, self.y_train, + inference_args={"n": 25000}) + + npt.assert_equal(self.num_pred, self.advi_stpr.num_pred) + npt.assert_almost_equal( + self.signal_variance, + self.advi_stpr.summary['mean']['signal_variance__0'], + 0) + npt.assert_almost_equal( + self.length_scale, + self.advi_stpr.summary['mean']['length_scale__0_0'], + 0) + npt.assert_almost_equal( + self.noise_variance, + self.advi_stpr.summary['mean']['noise_variance__0'], + 0) + + +class TestStudentsTProcessRegressorPredict(TestStudentsTProcessRegressor): + def test_predict_returns_predictions(self): + print('') + self.advi_stpr.fit(self.X_train, self.y_train, + inference_args={"n": 25000}) + preds = self.advi_stpr.predict(self.X_test) + npt.assert_equal(self.y_test.shape, preds.shape) + + def test_predict_returns_mean_predictions_and_std(self): + print('') + self.advi_stpr.fit(self.X_train, self.y_train, + inference_args={"n": 25000}) + preds, stds = self.advi_stpr.predict(self.X_test, return_std=True) + npt.assert_equal(self.y_test.shape, preds.shape) + npt.assert_equal(self.y_test.shape, stds.shape) + + def test_predict_raises_error_if_not_fit(self): + print('') + with pytest.raises(NotFittedError): + advi_stpr = StudentsTProcessRegressor() + advi_stpr.predict(self.X_train) + + +class TestStudentsTProcessRegressorScore(TestStudentsTProcessRegressor): + def test_score_matches_sklearn_performance(self): + print('') + sk_gpr = skGaussianProcessRegressor() + sk_gpr.fit(self.X_train, self.y_train) + sk_gpr_score = sk_gpr.score(self.X_test, self.y_test) + + self.advi_stpr.fit(self.X_train, self.y_train, + inference_args={"n": 25000}) + advi_stpr_score = self.advi_stpr.score(self.X_test, self.y_test) + + npt.assert_almost_equal(sk_gpr_score, advi_stpr_score, 0) + + +class TestStudentsTProcessRegressorSaveAndLoad(TestStudentsTProcessRegressor): + def test_save_and_load_work_correctly(self): + print('') + self.advi_stpr.fit(self.X_train, self.y_train, + inference_args={"n": 25000}) + score1 = self.advi_stpr.score(self.X_test, self.y_test) + self.advi_stpr.save(self.test_dir) + + stpr2 = StudentsTProcessRegressor() + stpr2.load(self.test_dir) + + npt.assert_equal(self.advi_stpr.inference_type, stpr2.inference_type) + npt.assert_equal(self.advi_stpr.num_pred, stpr2.num_pred) + npt.assert_equal(self.advi_stpr.num_training_samples, + stpr2.num_training_samples) + pdt.assert_frame_equal(summary(self.advi_stpr.trace), + summary(stpr2.trace)) + + score2 = stpr2.score(self.X_test, self.y_test) + npt.assert_almost_equal(score1, score2, 0) + + +class TestSparseGaussianProcessRegressor(object): + + def setup_method(self): + self.num_pred = 1 + self.num_training_samples = 1000 + + self.length_scale = 1.0 + self.signal_variance = 0.1 + self.noise_variance = 0.1 + + X = np.linspace(start=0, stop=10, + num=self.num_training_samples)[:, None] + + cov_func = self.signal_variance ** 2 * pm.gp.cov.ExpQuad( + 1, self.length_scale) + mean_func = pm.gp.mean.Zero() + + f_true = np.random.multivariate_normal( + mean_func(X).eval(), + cov_func(X).eval() + 1e-8 * np.eye(self.num_training_samples), + 1).flatten() + y = f_true + \ + self.noise_variance * np.random.randn(self.num_training_samples) + + self.X_train, self.X_test, self.y_train, self.y_test = \ + train_test_split(X, y, test_size=0.3) + + self.advi_sgpr = SparseGaussianProcessRegressor() + + self.test_dir = tempfile.mkdtemp() + + def teardown_method(self): + """Tear down + """ + shutil.rmtree(self.test_dir) + + +class TestSparseGaussianProcessRegressorFit(TestSparseGaussianProcessRegressor): + def test_advi_fit_returns_correct_model(self): + # This print statement ensures PyMC3 output won't overwrite + # the test name + print('') + self.advi_sgpr.fit(self.X_train, self.y_train) + + npt.assert_equal(self.num_pred, self.advi_sgpr.num_pred) + npt.assert_almost_equal( + self.signal_variance, + self.advi_sgpr.summary['mean']['signal_variance__0'], + 0) + npt.assert_almost_equal( + self.length_scale, + self.advi_sgpr.summary['mean']['length_scale__0_0'], + 0) + npt.assert_almost_equal( + self.noise_variance, + self.advi_sgpr.summary['mean']['noise_variance__0'], + 0) + + +class TestSparseGaussianProcessRegressorPredict( + TestSparseGaussianProcessRegressor): + + def test_predict_returns_predictions(self): + print('') + self.advi_sgpr.fit(self.X_train, self.y_train, + inference_args={"n": 25000}) + preds = self.advi_sgpr.predict(self.X_test) + npt.assert_equal(self.y_test.shape, preds.shape) + + def test_predict_returns_mean_predictions_and_std(self): + print('') + self.advi_sgpr.fit(self.X_train, self.y_train, + inference_args={"n": 25000}) + preds, stds = self.advi_sgpr.predict(self.X_test, return_std=True) + npt.assert_equal(self.y_test.shape, preds.shape) + npt.assert_equal(self.y_test.shape, stds.shape) + + def test_predict_raises_error_if_not_fit(self): + print('') + with pytest.raises(NotFittedError): + advi_sgpr = SparseGaussianProcessRegressor() + advi_sgpr.predict(self.X_train) + + +class TestSparseGaussianProcessRegressorScore( + TestSparseGaussianProcessRegressor): + + def test_score_matches_sklearn_performance(self): + print('') + sk_gpr = skGaussianProcessRegressor() + sk_gpr.fit(self.X_train, self.y_train) + sk_gpr_score = sk_gpr.score(self.X_test, self.y_test) + + self.advi_sgpr.fit(self.X_train, self.y_train) + advi_sgpr_score = self.advi_sgpr.score(self.X_test, self.y_test) + + npt.assert_almost_equal(sk_gpr_score, advi_sgpr_score, 0) + + +class TestSparseGaussianProcessRegressorSaveAndLoad( + TestSparseGaussianProcessRegressor): + + def test_save_and_load_work_correctly(self): + print('') + self.advi_sgpr.fit(self.X_train, self.y_train) + score1 = self.advi_sgpr.score(self.X_test, self.y_test) + self.advi_sgpr.save(self.test_dir) + + sgpr2 = SparseGaussianProcessRegressor() + sgpr2.load(self.test_dir) + + npt.assert_equal(self.advi_sgpr.inference_type, sgpr2.inference_type) + npt.assert_equal(self.advi_sgpr.num_pred, sgpr2.num_pred) + npt.assert_equal(self.advi_sgpr.num_training_samples, + sgpr2.num_training_samples) + pdt.assert_frame_equal(summary(self.advi_sgpr.trace), + summary(sgpr2.trace)) + + score2 = sgpr2.score(self.X_test, self.y_test) + npt.assert_almost_equal(score1, score2, 0) diff --git a/requirements-dev.txt b/requirements-dev.txt index 1fc7ced..4db3e1a 100644 --- a/requirements-dev.txt +++ b/requirements-dev.txt @@ -1,4 +1,4 @@ -CommonMark==0.5.4 +CommonMark>=0.5.4 flake8>=3.5.0 # gpflowopt>=1.1 jupyter-sphinx>=0.1.3 @@ -11,6 +11,6 @@ pytest-cov>=2.5.1 pytest>=3.0.7 recommonmark>=0.4.0 sphinx>=1.5.5 -sphinx-autobuild==0.7.1 -sphinx-rtd-theme==0.4.2 +sphinx-autobuild>=0.7.1 +sphinx-rtd-theme>=0.4.2 pymc_learn_sphinx_theme>=0.1.5 diff --git a/requirements.txt b/requirements.txt index 8efdd10..4390a4b 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,13 +1,13 @@ future>=0.16.0 -joblib==0.11 -matplotlib==2.1.1 -numpy==1.13.1 -numpydoc==0.7.0 -pandas==0.21.1 +joblib>=0.11 +matplotlib>=2.1.1 +numpy>=1.13.1 +numpydoc>=0.7.0 +pandas>=0.21.1 pymc3==3.4.1 -scikit-learn==0.19.1 -scipy==1.0.0 -seaborn==0.8.1 +scikit-learn>=0.19.1 +scipy>=1.0.0 +seaborn>=0.8.1 six>=1.10.0 -theano>=1.0.0 +theano>=1.0.4 tqdm>=4.8.4 diff --git a/setup.cfg b/setup.cfg index 38b775c..c291257 100644 --- a/setup.cfg +++ b/setup.cfg @@ -13,4 +13,7 @@ python_files = test_*.py [pydocstyle] add-ignore = D100,D104 -convention = numpy \ No newline at end of file +convention = numpy + +[bdist_wheel] +universal=1 \ No newline at end of file