Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

predict-idlab/tsflex

Open more actions menu

Repository files navigation

tsflex

PyPI Latest Release Conda Latest Release support-version codecov CodeQL Downloads PRs Welcome Documentation Testing Discord

tsflex is a toolkit for flexible time series processing & feature extraction, that is efficient and makes few assumptions about sequence data.

Useful links

Installation

command
pip pip install tsflex
conda conda install -c conda-forge tsflex

Usage

tsflex is built to be intuitive, so we encourage you to copy-paste this code and toy with some parameters!

import pandas as pd; import numpy as np; import scipy.stats as ss
from tsflex.features import MultipleFeatureDescriptors, FeatureCollection
from tsflex.utils.data import load_empatica_data

# 1. Load sequence-indexed data (in this case a time-index)
df_tmp, df_acc, df_ibi = load_empatica_data(['tmp', 'acc', 'ibi'])

# 2. Construct your feature extraction configuration
fc = FeatureCollection(
    MultipleFeatureDescriptors(
          functions=[np.min, np.mean, np.std, ss.skew, ss.kurtosis],
          series_names=["TMP", "ACC_x", "ACC_y", "IBI"],
          windows=["15min", "30min"],
          strides="15min",
    )
)

# 3. Extract features
fc.calculate(data=[df_tmp, df_acc, df_ibi], approve_sparsity=True)

Note that the feature extraction is performed on multivariate data with varying sample rates.

signal columns sample rate
df_tmp ["TMP"] 4Hz
df_acc ["ACC_x", "ACC_y", "ACC_z" ] 32Hz
df_ibi ["IBI"] irregularly sampled

Working example in our docs

Why tsflex? ✨

  • Flexible:
  • Efficient:
  • Intuitive:
    • maintains the sequence-index of the data
    • feature extraction constructs interpretable output column names
    • intuitive API
  • Few assumptions about the sequence data:
    • no assumptions about sampling rate
    • able to deal with multivariate asynchronous data
      i.e. data with small time-offsets between the modalities
  • Advanced functionalities:

¹ These integrations are shown in integration-example notebooks.

Future work 🔨

  • scikit-learn integration for both processing and feature extraction
    note: is actively developed upon sklearn integration branch.
  • Support time series segmentation (exposing under the hood strided-rolling functionality) - see this issue
  • Support for multi-indexed dataframes

=> Also see the enhancement issues

Contributing 👪

We are thrilled to see your contributions to further enhance tsflex.
See this guide for more instructions on how to contribute.

Referencing our package

If you use tsflex in a scientific publication, we would highly appreciate citing us as:

@article{vanderdonckt2021tsflex,
    author = {Van Der Donckt, Jonas and Van Der Donckt, Jeroen and Deprost, Emiel and Van Hoecke, Sofie},
    title = {tsflex: flexible time series processing \& feature extraction},
    journal = {SoftwareX},
    year = {2021},
    url = {https://github.com/predict-idlab/tsflex},
    publisher={Elsevier}
}

Link to the paper: https://www.sciencedirect.com/science/article/pii/S2352711021001904


👤 Jonas Van Der Donckt, Jeroen Van Der Donckt, Emiel Deprost

Sponsor this project

  •  
  •  

Packages

No packages published

Contributors 7

Morty Proxy This is a proxified and sanitized view of the page, visit original site.