Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

pgvector/pgvector-raku

Open more actions menu

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
7 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pgvector-raku

pgvector examples for Raku

Supports DBIish and DB::Pg

Build Status

Getting Started

Follow the instructions for your database library:

DBIish

Enable the extension

$dbh.execute('CREATE EXTENSION IF NOT EXISTS vector');

Create a table

$dbh.execute('CREATE TABLE items (id bigserial PRIMARY KEY, embedding vector(3))');

Insert vectors

my $embedding1 = '[1,1,1]';
my $embedding2 = '[2,2,2]';
my $embedding3 = '[1,1,2]';
$dbh.execute('INSERT INTO items (embedding) VALUES (?), (?), (?)', $embedding1, $embedding2, $embedding3);

Get the nearest neighbors

my $embedding = '[1,1,1]';
.say for $dbh.execute('SELECT * FROM items ORDER BY embedding <-> ? LIMIT 5', $embedding).allrows();

Add an approximate index

$dbh.execute('CREATE INDEX ON items USING hnsw (embedding vector_l2_ops)');
# or
$dbh.execute('CREATE INDEX ON items USING ivfflat (embedding vector_l2_ops) WITH (lists = 100)');

Use vector_ip_ops for inner product and vector_cosine_ops for cosine distance

See a full example

DB::Pg

Enable the extension

$pg.query('CREATE EXTENSION IF NOT EXISTS vector');

Create a table

$pg.query('CREATE TABLE items (id bigserial PRIMARY KEY, embedding vector(3))');

Insert vectors

my $embedding1 = '[1,1,1]';
my $embedding2 = '[2,2,2]';
my $embedding3 = '[1,1,2]';
$pg.query('INSERT INTO items (embedding) VALUES ($1), ($2), ($3)', $embedding1, $embedding2, $embedding3);

Get the nearest neighbors

my $embedding = '[1,1,1]';
.say for $pg.query('SELECT * FROM items ORDER BY embedding <-> $1 LIMIT 5', $embedding).arrays;

Add an approximate index

$pg.query('CREATE INDEX ON items USING hnsw (embedding vector_l2_ops)');
# or
$pg.query('CREATE INDEX ON items USING ivfflat (embedding vector_l2_ops) WITH (lists = 100)');

Use vector_ip_ops for inner product and vector_cosine_ops for cosine distance

See a full example

Contributing

Everyone is encouraged to help improve this project. Here are a few ways you can help:

To get started with development:

git clone https://github.com/pgvector/pgvector-raku.git
cd pgvector-raku
createdb pgvector_raku_test
zef install DBIish DB::Pg
raku dbiish.raku
raku dbpg.raku

About

pgvector examples for Raku

Resources

License

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

Morty Proxy This is a proxified and sanitized view of the page, visit original site.