Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

pgvector support for .NET (C#, F#, and Visual Basic)

License

Notifications You must be signed in to change notification settings

pgvector/pgvector-dotnet

Open more actions menu
 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

60 Commits
60 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pgvector-dotnet

pgvector support for C#

Supports Npgsql, Dapper, and Entity Framework Core

Build Status

Getting Started

Follow the instructions for your database library:

Npgsql

Run:

dotnet add package Pgvector

Import the library

using Pgvector.Npgsql;

Create a connection

var dataSourceBuilder = new NpgsqlDataSourceBuilder(connString);
dataSourceBuilder.UseVector();
await using var dataSource = dataSourceBuilder.Build();

var conn = dataSource.OpenConnection();

Create a table

await using (var cmd = new NpgsqlCommand("CREATE TABLE items (embedding vector(3))", conn))
{
    await cmd.ExecuteNonQueryAsync();
}

Insert a vector

await using (var cmd = new NpgsqlCommand("INSERT INTO items (embedding) VALUES ($1)", conn))
{
    var embedding = new Vector(new float[] { 1, 1, 1 });
    cmd.Parameters.AddWithValue(embedding);
    await cmd.ExecuteNonQueryAsync();
}

Get the nearest neighbors

await using (var cmd = new NpgsqlCommand("SELECT * FROM items ORDER BY embedding <-> $1 LIMIT 5", conn))
{
    var embedding = new Vector(new float[] { 1, 1, 1 });
    cmd.Parameters.AddWithValue(embedding);

    await using (var reader = await cmd.ExecuteReaderAsync())
    {
        while (await reader.ReadAsync())
        {
            Console.WriteLine((Vector)reader.GetValue(0));
        }
    }
}

Add an approximate index

await using (var cmd = new NpgsqlCommand("CREATE INDEX ON items USING ivfflat (embedding vector_l2_ops) WITH (lists = 100)", conn))
{
    await cmd.ExecuteNonQueryAsync();
}

Use vector_ip_ops for inner product and vector_cosine_ops for cosine distance

See a full example

Dapper

Run:

dotnet add package Pgvector.Dapper

Import the library

using Pgvector.Dapper;
using Pgvector.Npgsql;

Create a connection

SqlMapper.AddTypeHandler(new VectorTypeHandler());

var dataSourceBuilder = new NpgsqlDataSourceBuilder(connString);
dataSourceBuilder.UseVector();
await using var dataSource = dataSourceBuilder.Build();

var conn = dataSource.OpenConnection();

Define a class

public class Item
{
    public Vector? Embedding { get; set; }
}

Create a table

conn.Execute("CREATE TABLE items (embedding vector(3))");

Insert a vector

var embedding = new Vector(new float[] { 1, 1, 1 });
conn.Execute(@"INSERT INTO items (embedding) VALUES (@embedding)", new { embedding });

Get the nearest neighbors

var embedding = new Vector(new float[] { 1, 1, 1 });
var items = conn.Query<Item>("SELECT * FROM items ORDER BY embedding <-> @embedding LIMIT 5", new { embedding });
foreach (Item item in items)
{
    Console.WriteLine(item.Embedding);
}

Add an approximate index

conn.Execute("CREATE INDEX ON items USING ivfflat (embedding vector_l2_ops) WITH (lists = 100)");

Use vector_ip_ops for inner product and vector_cosine_ops for cosine distance

See a full example

Entity Framework Core

Run:

dotnet add package Pgvector.EntityFrameworkCore

Import the library

using Pgvector.EntityFrameworkCore;

Configure the connection

protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
{
    optionsBuilder.UseNpgsql("connString", o => o.UseVector());
}

Define a model

public class Item
{
    [Column(TypeName = "vector(3)")]
    public Vector? Embedding { get; set; }
}

Insert a vector

ctx.Items.Add(new Item { Embedding = new Vector(new float[] { 1, 1, 1 }) });
ctx.SaveChanges();

Get the nearest neighbors

var embedding = new Vector(new float[] { 1, 1, 1 });
var items = await ctx.Items.FromSql($"SELECT * FROM items ORDER BY embedding <-> {embedding} LIMIT 5").ToListAsync();
foreach (Item item in items)
{
    if (item.Embedding != null)
    {
        Console.WriteLine(item.Embedding);
    }
}

Add an approximate index

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
    modelBuilder.Entity<Item>()
        .HasIndex(i => i.Embedding)
        .HasMethod("ivfflat")
        .HasOperators("vector_l2_ops");
}

Use vector_ip_ops for inner product and vector_cosine_ops for cosine distance

See a full example

History

Contributing

Everyone is encouraged to help improve this project. Here are a few ways you can help:

To get started with development:

git clone https://github.com/pgvector/pgvector-dotnet.git
cd pgvector-dotnet
createdb pgvector_dotnet_test
dotnet test

About

pgvector support for .NET (C#, F#, and Visual Basic)

Resources

License

Security policy

Stars

Watchers

Forks

Packages

No packages published

Contributors 6

Morty Proxy This is a proxified and sanitized view of the page, visit original site.