Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

BUG: read_csv silently ignores out of bounds errors when parsing date columns #61447

Copy link
Copy link
Open
@ssuhre

Description

@ssuhre
Issue body actions

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd
import tempfile as tmp

with tmp.TemporaryFile(mode='r+') as csv_file:
    pd.DataFrame({
        'over_and_under': [
            '2262-04-12',
            '1677-09-20',
        ]
    }).to_csv(csv_file, index=False)
    csv_file.seek(0)
    df = pd.read_csv(csv_file, parse_dates=['over_and_under'], date_format='%Y-%m-%d')
    print(df.info())
    pd.to_datetime(df['over_and_under'], format='%Y-%m-%d')

Issue Description

pandas 2.2.3 read_csv does not raise an Exception when parsing a date column with specified date_format if values are out of bounds and silently keeps the column as object dtype.
An explicit call of to_datetime on the column reveals the out of bounds problem which I expected to get from read_csv

Expected Behavior

read_csv should propagate or raise an OutOfBoundsDatetime exception like to_datetime.

Installed Versions

INSTALLED VERSIONS

commit : 0691c5c
python : 3.12.9
python-bits : 64
OS : Darwin
OS-release : 24.4.0
Version : Darwin Kernel Version 24.4.0: Fri Apr 11 18:33:47 PDT 2025; root:xnu-11417.101.15~117/RELEASE_ARM64_T6000
machine : arm64
processor : arm
byteorder : little
LC_ALL : en_US.UTF-8
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 2.2.3
numpy : 2.2.5
pytz : 2025.2
dateutil : 2.9.0.post0
pip : 24.3.1
Cython : None
sphinx : None
IPython : 9.2.0
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : None
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : None
html5lib : None
hypothesis : None
gcsfs : None
jinja2 : None
lxml.etree : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
psycopg2 : None
pymysql : None
pyarrow : None
pyreadstat : None
pytest : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlsxwriter : None
zstandard : None
tzdata : 2025.2
qtpy : None
pyqt5 : None

Metadata

Metadata

Assignees

Labels

BugNeeds TriageIssue that has not been reviewed by a pandas team memberIssue that has not been reviewed by a pandas team member

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions

    Morty Proxy This is a proxified and sanitized view of the page, visit original site.