Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

BUG: dot on Arrow Series produces a Numpy object result #61375

Copy link
Copy link
Closed
@theavey

Description

@theavey
Issue body actions

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd

series_result = pd.Series({"a": 1.0}, dtype="Float64").dot(
    pd.DataFrame({"col1": {"a": 2.0}, "col2": {"a": 3.0}}, dtype="Float64")
)
series_result.dtype  # is dtype('O')

series_result_2 = pd.Series({"a": 1.0}, dtype="float[pyarrow]").dot(
    pd.DataFrame({"col1": {"a": 2.0}, "col2": {"a": 3.0}}, dtype="float[pyarrow]")
)
series_result_2.dtype  # same, is dtype('O')

# `DataFrame.dot` was already fixed
df_result = pd.DataFrame({"col1": {"a": 2.0}, "col2": {"a": 3.0}}, dtype="Float64").T.dot(
    pd.Series({"a": 1.0}, dtype="Float64")
)
df_result.dtype  # is Float64Dtype()

Issue Description

Series.dot with Arrow or nullable dtypes returns series result with numpy object dtype. This was reported in #53979 and fixed for DataFrames in #54025.

Possibly side notes: I believe the "real" issue here is that the implementation uses .values which returns a dtype=object array for the DataFrame. This seems directly related to #60038 and at least somewhat related to #60301 (which is also referenced in a comment on the former).

Expected Behavior

I would expect Series.dot to return the "best" common datatype for the input datatypes (in the examples, would expect the appropriate float dtype)

import pandas as pd

series_result = pd.Series({"a": 1.0}, dtype="Float64").dot(
    pd.DataFrame({"col1": {"a": 2.0}, "col2": {"a": 3.0}}, dtype="Float64")
)
series_result.dtype  # would expect Float64Dtype()

series_result_2 = pd.Series({"a": 1.0}, dtype="float[pyarrow]").dot(
    pd.DataFrame({"col1": {"a": 2.0}, "col2": {"a": 3.0}}, dtype="float[pyarrow]")
)
series_result_2.dtype  # would expect float[pyarrow]

Installed Versions

INSTALLED VERSIONS

commit : 0691c5c
python : 3.11.12
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.19045
machine : AMD64
processor : Intel64 Family 6 Model 85 Stepping 7, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : English_United States.1252

pandas : 2.2.3
numpy : 2.2.5
pytz : 2025.2
dateutil : 2.9.0.post0
pip : 25.1
Cython : None
sphinx : 8.2.3
IPython : 9.2.0
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.13.4
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : 2025.3.2
html5lib : None
hypothesis : None
gcsfs : None
jinja2 : 3.1.6
lxml.etree : None
matplotlib : 3.10.1
numba : 0.61.2
numexpr : 2.10.2
odfpy : None
openpyxl : 3.1.5
pandas_gbq : None
psycopg2 : 2.9.9
pymysql : None
pyarrow : 19.0.1
pyreadstat : None
pytest : 8.3.5
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.15.2
sqlalchemy : 2.0.40
tables : 3.10.2
tabulate : None
xarray : None
xlrd : 2.0.1
xlsxwriter : None
zstandard : 0.23.0
tzdata : 2025.2
qtpy : None
pyqt5 : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    BugNeeds TriageIssue that has not been reviewed by a pandas team memberIssue that has not been reviewed by a pandas team member

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions

      Morty Proxy This is a proxified and sanitized view of the page, visit original site.